
230V 0.5 TO 125HP 460V 0.5 TO 600HP

(VARIABLE TORQUE INVERTER)

STANDARD
SCHEMATIC/INTERCONNECT
FOLLOWS

A

8

C

D

Ε

 2	т	г-	

- * -INDICATES COMPONENTS NOT SUPPLIED.
- -INDICATES CUSTOMER CONNECTION TERMINAL, WIRE ONLY TO TERMINALS SHOWN.
- () -INDICATES ALTERNATE TERMINAL MARKINGS, I e .(r) AND \$\ellis\$1
- I. THE SWITCHES INDICATE FACTORY SETTING SWITCHES 5S AND 6S (8) ARE DEPENDENT ON DRIVE CAPACITY AND INPUT VOLTAGE RESPECTIVELY. IS CHANGES THE V/HZ PROFILE WITH A MAXIMUM SETTING OF ISOHZ. 2S CHANGES ACCEL/ DECEL TIME RANGE. REFER TO REFERENCE MANUAL FOR ADDITIONAL SETTINGS.

58	DRIVE CAPACITY (HP)							
2307	.5 I	3	5 7.5	10 15	20 25 30	40	50 60	75
460V	.5 	Э	5 7.5	10 15 20	25 30	40	50 60	75 100
NOTCH	1	2	3	4	5	6	7	8
230V	100	125						
460V			150		200	250	300,350,400, 450,500,600	
NOTCH	9	Α	В	C	D	E	F	

68	OPERATION M	ODE	
ГОИ	CH	SELECTION	
	FUNCTION	OFF	ON
8	SUPPLY VOLTAGE (V)	230	460

- 2. AUTO REFERENCE IS FACTORY SET FOR O TO IOV INPUT (V). IF 4-20MA IS DESIRED, MOVE JUMPER TO THE (C) POSITION.
- 3. TERMINAL \$3 (t) ONLY APPLIES TO 460V, 125 TO 400HP UNITS.TERMINALS \$1(r) AND \$2(s) ARE NOT AVAILABLE ON 230V, .5 TO 5HP UNITS JUMPERS ARE FACTORY INSTALLED
- 4. TERMINALS PI AND P2 ARE NOT AVAILABLE ON 230V, .5 TO IOHP UNITS JUMPERS ARE FACTORY INSTALLED.

- 5. WHEN REMOTE OPERATORS ARE USED (IPB), REMOVE JUMPER BETWEEN TERMINALS I AND 3
- 6. FOR REMOTE MANUAL SPEED (IRH) ONLY, ADD JUMPER BETWEEN TERMINALS I AND 6.

: 0

- 7. THE LANCER GPD 602 DOES NOT CONTAIN OVERLOAD IOL:IOL IS A SEPARATE ITEM. ALSO, THE CONTACTS FROM THE SEPARATELY SUPPLIED OVERLOAD RELAY SHOULD BE INTERLOCKED WITH THE LANCER GPD 602 AS SHOWN, AND SHOULD BE MANUAL RESET TYPE TO PREVENT AUTOMATIC RESTART FOLLOWING A MOTOR FAULT AND SUBSEQUENT CONTACT RECLOSURE AFTER COOL DOWN.
- 8. INSULATED TWISTED SHIELED WIRE IS REQUIRED.
 2 CONDUCTOR #18GA. (BELDEN #8760 OR EQUIVALENT).
 3 CONDUCTOR #18GA. (BELDEN #8770 OR EQUIVALENT).
 SHIELD TO BE CONNECTED TO PROPER TERMINAL AS SHOWN.
 CONNECT SHIELD ONLY AT END. STUB AND ISOLATE OTHER END
- 9. REMOTE OPERATORS, AS SHOWN, MAY NOT BE REQUIRED WHEN USING EITHER AN ANALOG OR A DIGITAL OPERATOR. WHEN USING A ANALOG OPERATOR, "R/L" JUMPER NEEDS TO BE PLACED IN "L", WHICH DOES NOT PERMIT USE OF REMOTE MANUAL SPEED REFERENCE.
- 10. CUSTOMER TO CONNECT TERMINAL GND (E) TO EARTH GROUND.

			MagneTek	LANCER GPD 602 VAPIABLE TORQUE	\dashv $_{\kappa}$
			This SCO will be selected that a selection of the selecti	208 TO 230V, 5 TO 75HP 380 TO 450V, 5 TO 600HP	ا ا
		İ	THEY D. SONAN 12.5.5-M 12.6.7. 3.5.5.	SHEETIOFI	
			ROS.N SATE SOCIAL DATE	3Y04464-0020	7
2	12	13	.4	16 17	_

TABLE OF CONTENTS

SECTIO	<u>N</u>	PAGE
1.	RECEIVING	. 3
2.	FUNCTIONAL DESCRIPTION	. 4
2.1	Functional Block Diagrams	. 4
2.2	Circuit Operational Description	. 6
2.2.1	Main Circuit	. 6
2.2.2	Control Circuit	. 6
2.2.3	Protective Circuits	. 7
3.	INSTALLATION	. 8
3.1	Location	. 8
3.2	Positioning	. 8
3.3	Mounting Dimensions	. 9
4.	WIRING	. 13
4.1	Interconnections	. 13
4.2	Wire Size	. 13
4.3	Wiring Instructions	. 15
4.3.1	Control Circuit	. 15
4.3.2	Main Circuit	. 15
4.3.3	Grounding	. 16
4.3.4	Insulation Resistance Test	. 16
5.	CONVERTER ADJUSTMENTS	. 18
5.1	Location of Adjustments	. 18
5.2	Description of Adjustments	. 18
6.	MAINTENANCE	. 27
7.	FAILURE INDICATION AND DETAILS	. 29

4Y-5 EFF. 12/15/87

TABLE OF CONTENTS

SECTIO	<u>N</u>	PAGE
8.	TROUBLESHOOTING	31
8.1	Measuring Points and Instruments	31
	APPENDIX 1 RATINGS AND SPECIFICATIONS	45
	APPENDIX 2 TERMINAL FUNCTIONS	48
	APPENDIX 3 OPTIONS	52
	APPENDIX 4 CHECKING OF DIODE AND TRANSISTOR MODULES	53
	APPENDIX 5 SPARE PARTS	55

WARNING

AFTER TURNING OFF AC INPUT POWER, AVOID DIRECT CONTACT WITH CIRCUIT COMPONENTS UNTIL "CHARGE" LAMP NO LONGER GLOWS. ATTEMPTING TO WORK ON THE UNIT WHILE THE LAMP IS LIT CAN CAUSE SEVERE ELECTRICAL SHOCK.

BEFORE CHANGING SWITCH SETTINGS (1S THRU 6S), TURN OFF AC INPUT POWER AND CONFIRM THAT THE "CHARGE" LAMP IS NOT GLOWING.

DO NOT CONNECT OR DISCONNECT WIRES AND CONNECTORS WHILE POWER IS APPLIED TO THE UNIT.

IMPORTANT

Be sure to ground the unit using terminal GND (E). (See para. 4.3.3). Never connect main circuit output terminals T1, T2, T3 to AC input power.

The Lancer GP Converter has been adjusted at the factory. Changes or adjustments should not be attempted until after reading this manual.

Do not hipot any part of this unit. The internal semiconductors are vulnerable to high voltage and can be severely damaged.

Performing insulation resistance tests with a megger requires special care and safety precautions. (Refer to para 4.3.4).

CAUTION

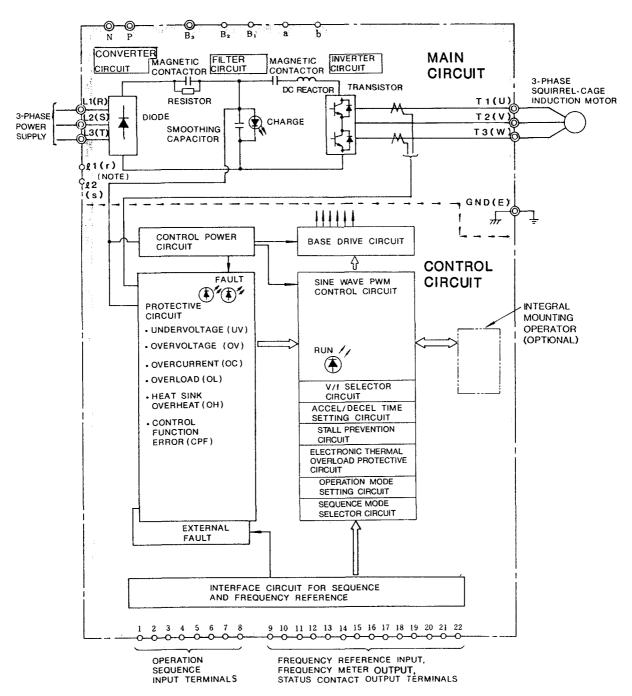
NEVER CONNECT CAPACITORS ACROSS THE CONVERTER OUTPUT AND MOTOR. UPON APPLICATION OF POWER, THE CONVERTER INITIALLY SEE THE CAPACITORS AS A SHORT CIRCUIT, HIGH CURRENTS RESULT AND EQUIPMENT WILL BE DAMAGED.

IF REQUIRED, POWER FACTOR CORRECTION CAPACITOR NETWORKS MAY BE CONNECTED ACROSS THE INPUT POWER SOURCE ONLY AFTER CONSULTING LOUIS ALLIS.

IMPROPER USE OF POWER FACTOR CORRECTION CAPACITOR NETWORKS WILL DAMAGE EQUIPMENT.

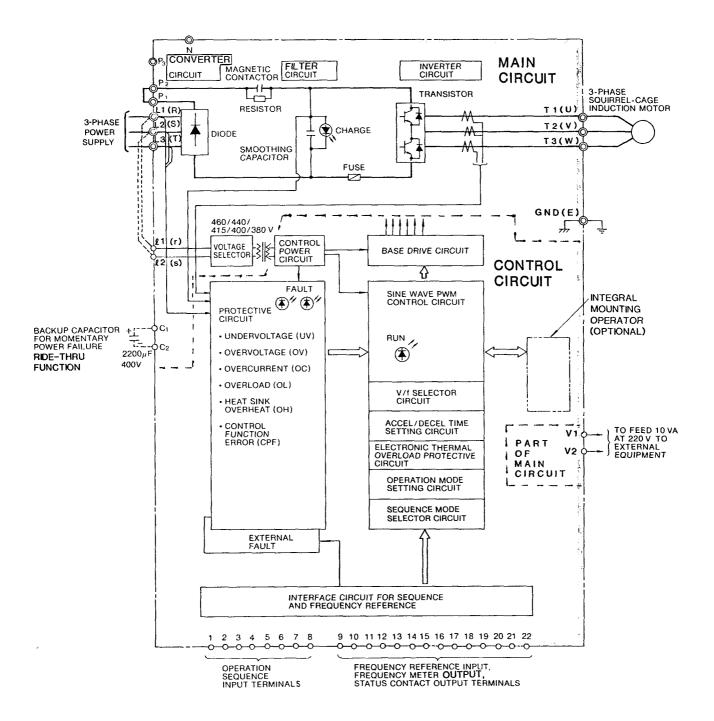
NOTICE

This equipment is exempted from FCC regulations. See 47CFR15.8Ø1.


1. RECEIVING

All equipment is tested against defect at Louis Allis. Any damages or shortages evident when the equipment is received must be reported immediately to the commercial carrier who transported the equipment. Assistance, if required, is available from the nearest Louis Allis District Office. Always refer to the Louis Allis order number, equipment description, and serial number when contacting Louis Allis.

2. FUNCTIONAL DESCRIPTION


2.1 Functional Block Diagrams.

TYPICAL 2Ø8-23Ø VOLT UNIT

Note: Terminals (f)($_r$) and (2)($_s$) are not provided on 5 to 5 HP units

TYPICAL 380-460 VOLT UNIT

2.2 Circuit Operational Description

2.2.1 Main Circuit

- (1) Converter: Converts three-phase AC input to DC voltage via diode rectification.
- (2) Filter: Smoothes DC ripple via a capacitor.
- (3) Converter: Coverts DC voltage to AC voltage of a preset frequency by switching six transistors. The output voltage level is controlled by changing the pulse width ratio.

2.2.2 Control Circuit

- (1) Base drive circuit: Drives the transistors in the converter circuit.
- (2) Sine wave PWM control circuit: Calculates the pulse width every time a reference signal is received from the V/f control circuit, and outputs a PWM signal approximating a sine wave.
- (3) V/f selector circuit: Selects V/f pattern from 15 types of built-in voltage/frequency (V/f) patterns. (See Figure 3)
- (4) Acceleration and deceleration circuit: Acceleration and deceleration times can be independently set by the acceleration (ACC) and deceleration (DEC) time setting potentiometers. (See Figure 4)
- (5) Stall prevention circuit:

During acceleration, acceleration stops in the event of overcurrent condition and prevents the motor from stalling due to overcurrent. When the current returns to the rated value, acceleration is resumed.

During deceleration, deceleration stops in the event of overvoltage condition and prevents the motor from stalling due to overvoltage. When the voltage returns to the rated value, deceleration is resumed.

In Constant-Speed Operation, motor speed is reduced in the event of an overload condition to prevent the motor from stalling. When the overload condition is cleared, motor resumes running at set speed.

(6) Operation mode selector circuit: Allows selection of eight operation modes, to individually tailor the drive to a specific application.

2.2.3 Protective Circuits

NOTE

If a trip condition occurs, refer to Section 8.

- (1) Undervoltage protective circuit: If supply voltage drops below a set level or any one phase* is open, the undervoltage protective circuit shuts off the power transistors in the main circuit and outputs a fault signal (UV operation). With the appropriate operation mode selected, operation can continue during power failures less than .2 seconds or up to 2 seconds with the ride-thru capacitor option. (230 volt units do not require the added capacitor; 2 second ride-thru is standard).
- (2) Overvoltage protective circuit: If the main circuit DC voltage becomes higher than the set level, the overvoltage protective circuit shuts off the power transistors in the main circuit and outputs a fault signal (OV operation).
- (3) Overcurrent protective circuit: If more than 200% of the rated current flow is detected, the overcurrent protective circuit shuts off the power transistors in the main circuit and outputs a fault signal (OC operation).
- (4) Overload protective circuit: When a Converter or motor overload is detected, the overload protective circuit shuts off the power transistors in the main circuit after a specified time and outputs a fault signal (OL operation).
- (5) Electronic thermal overload protective circuit: Automatically adjusts protective characteristics to current and time to maximize operating capability.
- * Single phase protection is not available on 230V units rated 10 HP or less.

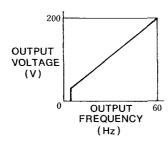


Figure 3. Example of V/f Pattern

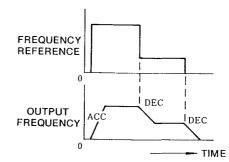


Figure 4. Accel/Decel Time Setting

3. INSTALLATION

3.1 Location

The equipment should be installed in areas where the following conditions exist.

- Ambient temperature: -10 to +40 C
- Protected from rain or moisture
- Protected from direct sunlight
- Protected from corrosive gases or liquids
- Free from airborne dust or metallic particles
- Free from vibration

CAUTION

NEVER MOVE, LIFT OR HANDLE A WALL-MOUNT BY THE FRONT COVER.

3.2 Positioning

Sufficient clearances must be maintained around the unit for proper cooling and to allow for routine maintenance.

A wall-mounted unit must be installed on a flat vertical and level surface, using mounting holes provided. (See Figure 5)

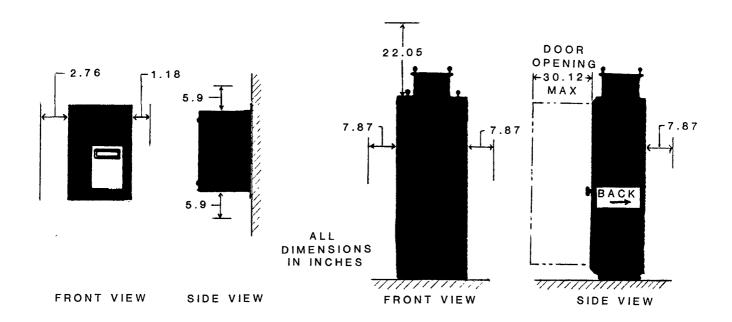


Figure 5.

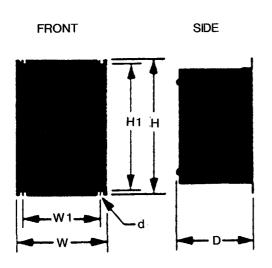
3.3 Mounting Dimensions

The mounting dimensions for the controls are given in Table 1.

Table 1. Installation Dimensions

23Ø V UNITS								
						MOUNTING		
HP	FIGURE	W	Н	D	W1	H1	d	
. 5	6A	7.87	7.87	8.07	6.89	11.42	. 187	
1	6A	7.87	11.81	8.Ø7	6.89	11.42	. 187	
3	6A	7.87	11.81	8.Ø7	6.89	11.42	. 187	
5	6A	7.87	11.81	8.Ø7	6.89	11.42	. 187	
7.5	6B	7.87	13.78	8.46	4.92	13.39	. 187	
1Ø	6B	7.87	13.78	8.46	4.92	13.39	. 187	
15	6B	9.84	19.69	1Ø.Ø4	7.87	19.Ø9	. 234	
2ø	6B	12.8Ø	21.65	1Ø.Ø4	10.83	21.Ø6	. 234	
25	6B	12.8Ø	21.65	1Ø.Ø4	1Ø.83	21.Ø6	. 234	
3Ø	6B	12.8Ø	21.65	1Ø.Ø4	1Ø.83	21.Ø6	. 234	
4Ø	6B	12.8Ø	21.65	1Ø.Ø4	1Ø.83	21.Ø6	. 234	
5ø	6B	18.7ø	31.45	11.Ø2	14.76	3Ø.71	.39ø	
6ø	6B	18.7ø	31.45	11.Ø2	14.76	3Ø.71	.39ø	
75	6B	18.7ø	31.45	11.Ø2	14.76	3Ø.71	.39ø	

NOTE: All dimensions are in inches.


Table 1. Installation Dimensions (Continued)

460 V UNITS									
						OUNTING			
HP	FIGURE	W	Н	D	W1	H1	d		
.5	6A	7.87	13.78	9.25	6.89	13.39	. 187		
1	6A	7.87	13.78	9.25	6.89	13.39	. 187		
3	6A	7.87	13.78	9.25	6.89	13.39	. 187		
5	6A	7.87	13.78	9.25	6.89	13.39	. 187		
7.5	6B	7.87	15.75	11.42	6.89	15.35	. 187		
1ø	6B	7.87	15.75	11.42	6.89	15.35	. 187		
15	6B	9.84	19.69	12.ØØ	7.87	19.Ø9	. 234		
2ø	6B	9.84	19.69	12.ØØ	7.87	19.Ø9	. 234		
25	6B	9.84	19.69	12.00	7.87	19.Ø9	. 234		
3Ø	6B	12.8Ø	21.65	1Ø.Ø4	1Ø.43	21.Ø6	. 234		
4Ø	6B	12.8Ø	21.65	1Ø.Ø4	1Ø.43	21.Ø6	. 234		

Table 1. Installation Dimensions (Continued)

	460 V UNITS (Continued)								
					1	MOUNTING			
НР	FIGURE	W	Н	D	W1	H1	d		
5Ø	6B	13.78	28.54	11.02	9.84	27.76	. 312		
6Ø	6B	13.78	28.54	11.Ø2	9.84	27.76	.312		
75	6B	13.78	28.54	11.Ø2	9.84	27.76	.312		
1ØØ	6B	22.64	36.42	11.Ø2	18.7Ø	35.43	. 468		
15Ø	6B	22.64	36.42	11.Ø2	18.7ø	35.43	. 468		
2ØØ	6B	22.64	36.42	11.Ø2	18.7Ø	35.43	. 468		
25Ø	6C	31.5Ø	91.89	23.62	_	_	_		
3ØØ	6C	31.5Ø	91.89	23.62	_		_		
35Ø	6C	86.61	93.7Ø	31.5Ø	_	_	_		
4ØØ	6C	86.61	93.7Ø	31.5Ø	_	_	_		
45Ø	6C	86.61	93.7Ø	31.5Ø	_	_	-		
5øø	6C	86.61	93.7Ø	31.5Ø	_		_		
6ØØ	6C	86.61	93.7Ø	31.5Ø		_	_		

NOTE: All dimensions are in inches.

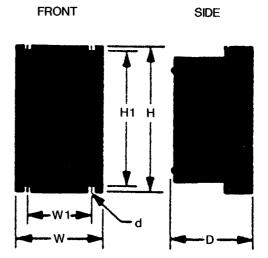


Figure 6A. Small Wall-Mount

Figure 6B. Large Wall-Mount

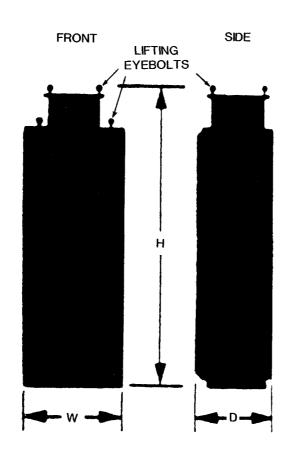


Figure 6C. Floor Standing Cabinet (NEMA 1)

4. WIRING

4.1 <u>Interconnections</u>

The unit nameplate identifies wiring diagrams which support your equipment. Refer to these diagrams for circuit, equipment and interconnection details. If the equipment is modified after installation, the diagrams may have to be updated to reflect changes made.

4.2 Wire Size

Wire sizes for main and control circuits are listed in Table 2. All established Electrical Codes take precedence over these recommendations for input and output wire sizes and motor overload protection.

Table 2. Wire Size for Main and Control Circuits.

23ØV UNITS					
MAIN CIRCUIT TERMINAL	НР	WIRE Size AWG			
L1, L2, L3 T1, T2, T3 N (-), P (+), B1, B2, B3, a, b	.5 1 3 5 7.5	12			
	1Ø	1ø			
L1, L2, L3, T1, T2, T3 N (-), P1,	15 2ø	8			
P2, P3	25	4			
	3Ø	3			
	4Ø	1			
	5ø	ØØ			
	6ø	ØØØ			
	75	ØØØØ			
Control Circuit Terminals 1-22, r, s	A11	20-14			
Ground	All	12-400			

46ØV UNITS					
MAIN CIRCUIT TERMINAL	НР	WIRE SIZE AWG			
L1, L2, L3 T1, T2, T3 N (-), P (+), B1, B2, a, b	.5 1 3 5 7.5 1Ø 15	12			
	2Ø	1ø			
	25	8			
L1, L2, L3, T1, T2, T3,	3Ø	8			
N (-), P1, P2, P3	4Ø	6			
12, 13	5ø	4			
	6Ø	3			
	75	1			
	1ØØ	øøø			
	15Ø	ØØØØ			
	200	4ØØ			
	25Ø	4ØØ			
	3ØØ	6øø			
	4ØØ	7øø			
	45Ø	7øø			
	5ØØ	15ØØ			
	6øø	15ØØ			
Control Circuit Terminals 1–22, r, s, t	A11	20-14			
Ground	All	12-400			

4.3 Wiring Instructions

Complete interconnections following the instructions given below. Check all connections before applying power.

4.3.1 Control Circuit

(1) SEPARATION OF CONTROL CIRCUIT LEADS AND MAIN CIRCUIT LEADS

Control circuit leads 1 thru 22 must be separated from main circuit leads L1, L2, L3, N (-), P1, P2, P3, T1, T2, and T3 to prevent erroneous operation caused by noise interference. If control circuit leads 12 thru 16 (relay contact output) are connected to an external power supply, it may be necessary to separate them from 1 thru 11 and 17 thru 22.

(2) CONTROL CIRCUIT

Use twisted-pair or shielded leads for the control circuit lines. Connect the shield to control terminals 4, 11, or 19. (See Figure 8)

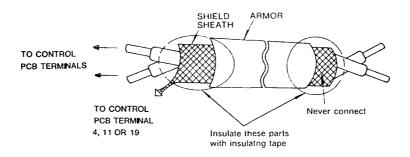


Figure 8. Shielded Lead Termination

(3) WIRING DISTANCE

It is recommended that the wiring distance of the signal leads 1 thru 22 be 164 feet or less.

4.3.2 Main Circuit

(1) PHASE ROTATION OF POWER

Phase rotation of power determines motor rotation.

When output terminals T1, T2, and T3 are matched to motor terminals T1, T2, and T3, motor rotation will be counterclockwise viewed from opposite drive end. To reverse the rotation, interchange any two of the motor leads or use the electronic forward/reverse feature built into the drive.

EFF. 12/15/87

- (2) Never connect input power supply to output terminals T1, T2, and T3.
- (3) Care should be taken to prevent contact of wiring leads with Converter cabinet, as a short-circuit condition may occur.
- (4) Never connect a power factor correction capacitor or noise filter to the Converter output.

4.3.3 Grounding

Make a positive ground using the ground terminal GND (E).

- (1) Ground resistance should be 100 ohms or less.
- (2) Never ground the unit to the same common ground as welding machines, motors or other types of large electrical equipment. Run a separate ground lead for the Converter. Make the length as short as possible.
- (3) Even when the unit is grounded through a mounting, such as channel base or steel plate, you must still ground the unit using the ground terminal.
- (4) Where several units are used side by side, all the units should be connected directly to ground. However, connecting all the ground terminals of the units together and grounding only one is also permissible (See Figure 9). Do not form a loop with the ground leads.

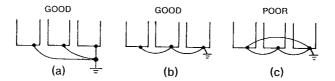


Figure 9. Grounding of Three Units.

4.3.4 Insulation Resistance Test

CAUTION

NEVER MEASURE THE INSULATION RESISTANCE OF CIRCUITS OTHER THAN THE MAIN CIRCUIT.

For megger-testing the main circuit, measure the insulation resistance with a 500V megger. (See Figure 10).

- a. Use a common wire to short together all main circuit terminals except GND (E).
- b. Use a common wire to short together all Control PCB terminals <u>except</u> 4, 11 and 19.

c. Measure the insulation resistance between the main circuit terminals and ground (terminal GND). A reading above 1 meg-ohm is considered satisfactory.

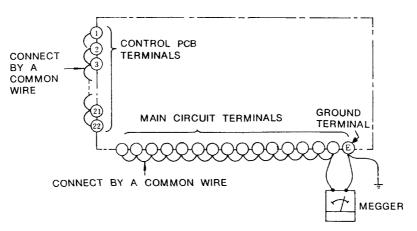


Figure 10. Connections for Megger Testing

EFF. 12/15/87

5. CONVERTER ADJUSTMENTS

5.1 Location of Adjustments

All internal adjustments for the Converter are located on the Control PC Board and (460V) units only) the Voltage Selecting PC Board. The adjustments are listed in Table 3.

5.2 Description of Adjustments

Before making adjustments, shut off AC input power and wait until the "CHARGE" lamp goes out. If any settings, except for accel/decel time, are performed with the power on, the following failure indication will occur:

- Both FAULT lamps (F1 and F2) on the Control PCB blink.
- CPF lamp, or display if the Analog or Digital Operator is used.

If any settings are changed during operation, operation will continue with the settings made before the change. The new settings will not effect operation until the power is removed, and then reapplied.

- The remote Operator Control Station (OCS) provides no failure indication for changing settings with the power ON.

Table 3. List of Converter Adjustments.

Α	djustmen	t Name	Symbol	Function	Factory-setting
	V/f Pattern Selector Switch		15 072 3	Selects one of 15 V/f patterns to match specific applications	Notch ⑥
	Accel/ Switch		2S (0,72)	Selects accel/decel time range (0.2 to 1800 seconds)	Notch ①
	Time Setting	Potentiometer	ACC DEC	Accel/decel times independently adjustable within the time range selected by 2S	Scale 5
				Selects one of 15 types of sequences according to application requirements	
1 PCB)	Sequence I Selector S		35	CAUTION Do not tamper with this switch.	Notch (F)
C Board (1 PCB	Electronic Thermal Overload Protective Switch		4S	Protects motor and Converter from overcurrent conditions if motor capacity is different from Converter capacity	Notch (F)
Control PC	Converter Capacity Selector Switch		5S	Set according to Converter capacity CAUTION Do not tamper with this switch.	(See Table 8)
	Operation Mode Selector Switch		6S 88888888	Selects the operation mode according to specific applications.	
	Auto Fre Reference Signal Sele	quency ector Shunt	C V	Selects either a current signal (4-20mA) or a voltage signal (0-10V) to feed frequency reference signal at terminal (9)	V (Voltage signal)
	Manual Frequency Reference Signal Selector Shunt		R O L	Set to input frequency reference at external terminal (2) When the Analog Operator is used for frequency setting, set the shunt on "L" because signals from external terminal (2) are not accepted	R
		460V unit			
electing (3 PCB)	Voltage Selector Shunt		See Figure 14	Selects voltage according to supply voltage	460V
Voltage Selecting PC Board (3 PCB)	Radio Noise Reducing Filter Circuit Selector Shunt		See Figure 15	Selects radio noise reducing filter circuit according to application A: Ground interruptor not used. B. Ground interruptor used Shuts off ground circuit and prevents malfunction if the interruptor trips	А

(1) Setting of V/f pattern selector switch (1S)

The V/f pattern selector switch (1S) has been factory-set at notch 1. The customer should select the optimum V/f pattern according to his load characteristics. (See Table 4).

Appli-18 Appli-18 V/f Pattern Specification Specification V/f Pattern Notch cation Notch cation Starting Torque 8 Low O 50Hz 50Hz 0 High Starting Torque Starting Torque 9 High 0 125 2 5 0 1,25 2 5 50 (Hz) 60 Hz Starting General Purpose Satu-Torque Α 1 ration Low 60Hz 60Hz Starting 50 Hz Satu-2 Torque В 14 High ration 60 (Hz) 72Hz 3 90Hz C 0 18 36 60 72 0 2.25 4 5 Variable Torque 4 Machine Tools 2 120Hz 50Hz D 70 Fans and Pumps Variable Torque 5 1 50 (Hz) Variable Torque 6 2 60Hz 180Hz E 70 Variable Torque 7 1 180 (Hz) 0 45 60

Table 4. V/f Pattern Selection

Note:

- 1 Take account of the following conditions and others when selecting V/f pattern:
 - Pattern matching the voltage-frequency characteristic of the motor
 - · According to the maximum motor speed
- 2. V/f pattern for high starting torque should be selected for:
- Long wiring distance
- Large voltage drop at start
- AC reactor connected to input or output of the Converter
- Use of motor of the rating below the max

3 Patterns shown for 400V input: for other inputs, multiply all (V) values shown by the factor (VIN/400)

2) Setting of acceleration and deceleration times (2S, ACC, DEC)

Set the acceleration and deceleration times using the time range selector switch (2S) and the acceleration (ACC) and deceleration (DEC) time setting potentiometers. (See Table 5)

2S has been factory-set to notch 1, and the ACC and DEC potentiometers have been individually set to 50% (approximately 10% seconds).

Table 5. Accel/Decel Time Range Setting

2S NOTCH	ACCEL/DECEL TIME SETTING RANGE (SEC)
Ø	Ø.2-6
1 (Factory Setting)	1.8–18
2	6-6Ø
3	18-18Ø
4	6Ø-6ØØ
5 – D	18Ø-18ØØ
E	Ø
F	For Calibrating freq meter

(3) Selection of sequence mode (3S)

The standard sequence mode selector switch (3S) is factory-set (and paint-locked) to notch F.

(4) Setting of electronic thermal overload setting switch (4S)

Switch 4S is factory-set at notch F. When a motor has a capacity different from the maximum applicable capacity of the Converter, this setting can be changed to better protect the motor. For details, contact your Louis Allis Sales representative.

(5) Selection of Converter capacity (5S)

Switch 5S has been factory-set to agree with the Converter capacity as shown in Table 8. $\underline{\text{DO}}$ $\underline{\text{NOT}}$ $\underline{\text{CHANGE}}$.

Table 8. Converter Capacity Selection

CONVERTER H.P.	INPUT VOLTS	5S SETTING
.5	23Ø, 46Ø 23Ø, 46Ø	1
3	23Ø, 46Ø	2
5	23Ø, 46Ø	3
7.5	23Ø, 46Ø	
1Ø	23Ø, 46Ø	4
15	23Ø, 46Ø	4
2ø	46Ø	į
20	23Ø	5
25	23Ø, 46Ø	
3ø	23Ø, 46Ø	
4Ø	23Ø, 46Ø	6
5ø	23Ø, 46Ø	7
6ø	23Ø, 46Ø	
75	23Ø, 46Ø	8
1ØØ	46Ø	
15Ø	46Ø	В
2ØØ	46Ø	D
25Ø	46Ø	E
3ØØ	46Ø	F
35Ø	46Ø	
4ØØ	46Ø	
45Ø	46Ø	1
5øø	46Ø	
6ØØ	46Ø	

(6) Selection of operation modes (6S)

Select the operation modes from Table 9 according to the application, and set each notch of switch 6S as indicated.

NOTE

For 460V units, notches 1 thru 7 have been factory-set to 0FF and 8 to 0N. For 230V units, notches 1 thru 8 have been factory-set to 0FF.

Table 9. Selection of Operation Modes

6S Notch	FEATURES	DESIRED OPERATION	ON	OFF
1	DC INJECTION AT STOP	DC INJECTION IS APPLIED AFTER CONTROLLED DECELERATION TO 1/4Ø OF MAXIMUM SPEED.		x
		MOTOR COASTS BELOW 1/40 OF MAXIMUM SPEED.	Х	
2	STOPPING MOTOR	CONTROLLED DECELERATION AS PER NOTCH 1.		Х
		COAST TO STOP.	х	
3	3 BRAKING RESISTORS	DYNAMIC BRAKE OPTION IS NOT USED.		х
		DYNAMIC BRAKE OPTION IS USED.	X	
4	DC INJECTION AT START	DC INJECTION BEFORE STARTING (ANTI-WINDMILLING) FOR 1/5 OF DECELERATION TIME.	X	
		NORMAL ACCELERATION OPERATION.		Х
5	POWER FAILURE	MOTOR COASTS TO STOP AFTER MOMENTARY POWER FAILURE.		х
RIDE-THRU	MOTOR CONTINUES OPERATION IF POWER FAILURE IS LESS THAN 2 SECONDS, OR COASTS TO A STOP IF FAILURE IS GREATER THAN 2 SECONDS.	X		

Table 9. Selection of Operation Modes (Continued)

6S Notch	FEATURES	DESIRED OPERATION	ON	0FF
6	SPEED SEARCH *	ABILITY TO START INTO A COASTING MOTOR (SPEED SEARCH). IMPORTANT - NOTCH 5 MUST BE ON.		х
		SPEED SEARCH OVER-RIDE.	х	
7	JOGGING	SOFT JOG OPERATION TO 1/10 SPEED.	Х	
		NORMAL JOG OPERATION AT 1/10 SPEED.		х
8		23ØV		Х
VOLTAGE **		46ØV	х	

^{*} Drive output frequency is synchronized with motor speed, then motor is accelerated back to set speed.

** DO NOT CHANGE.

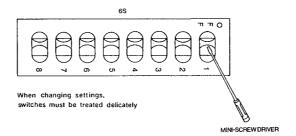


Figure 11. Switch 6S.

(7) Selection of master frequency reference signal

Input terminal 9 will accept either a current signal (4 to 20mA) or a voltage signal (0 to 10VDC).

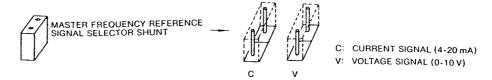


Figure 12. Master Frequency Reference Signal Selection

(8) Selection of auxiliary frequency reference signal

When the shunt is in the (R) position, terminal 21 can be used as a frequency reference input. If the shunt is in the (L) position, terminal 21 will not be operable.

The shunt is factory-set to (R) and must be changed to the (L) position when using the Analog Operator option.

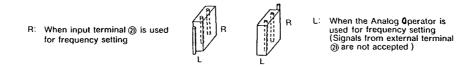


Figure 13. Auxiliary Frequency Reference Signal Selection

(9) Selection of supply voltage (46ØV units only)

Connect the shunt according to the supply voltage level. The voltage shunt comes preset in the 46%V position and should not be changed unless undervoltage tripping occurs.

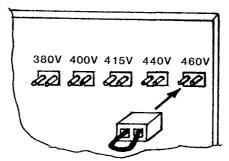


Figure 14. Voltage Selector.

(10) Selection of radio noise reducing filter circuit (460 volt units only)

The RF noise filter is factory set to the "ON" position. Its function is to reduce the amount of RF noise that can be emitted by the Converter.

NOTE

When a separate ground fault interrupter is used, this circuit should be changed to the "OFF" position to prevent false tripping.

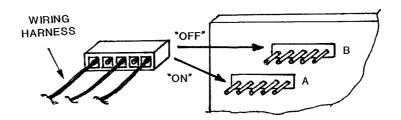


Figure 15. Radio Noise Filter Circuit Shunt.

6. MAINTENANCE

The Converter requires almost no routine checks. It will provide efficient and reliable service if it is kept clean, cool and dry, observing precautions listed in Section 3.1. Check for tightness of electrical connections, component discoloration or other signs of overheating. Use Table 10 as the inspection guide.

CAUTION

BEFORE INSPECTING, TURN OFF THE AC INPUT POWER AND ALLOW THE "CHARGE" LAMP TO GO OUT.

Table 10. Periodic Inspection.

COMPONENT	CHECK	CORRECTIVE ACTION
EXTERNAL TERMINALS,	LOOSE SCREWS.	TIGHTEN
UNIT MOUNTING BOLTS, CONNECTORS, ETC.	LOOSE CONNECTORS.	TIGHTEN
HEAT SINK COOLING FINS	BUILD-UP OF DUST AND DIRT	CLEAN WITH DRY COMPRESSED AIR (15 TO 3Ø PSI).
PRINTED CIRCUIT BOARDS	FOR BUILD-UP OF CONDUCTIVE DUST AND OIL MIST.	CLEAN THE BOARD. IF DUST AND OIL CANNOT BE REMOVED, REPLACE THE BOARD.
	DISCOLORATION DUE TO HEAT.	REPLACE THE BOARD.
POWER ELEMENTS	ACCUMULATION OF DUST AND DIRT.	CLEAN WITH DRY COMPRESSED AIR (15 TO 3Ø PSI).
FILTER CAPACITOR	DISCOLORATION OR ODOR.	REPLACE THE CAPACITOR.

7. FAILURE INDICATION AND DETAILS

A failure, when detected, will shut off the output power transistors and output a FAULT signal by contact closure at Converter terminals 14, 15, and 16.

When an Analog or Digital Operator is used, failure indications listed in Table 11 will function; otherwise failure conditions are shown by the two FAULT lamps (F1 and F2) on the Control PCB in the Converter, as listed in Table 12.

Table 11. Failure Indication with an Analog or Digital Operator.

INDICATION ±	CAUSE
UV* OR (UU +) (UNDERVOLTAGE)	DC BUS VOLTAGE LOWER THAN APPROX. 45ØV FOR 46ØV UNITS, 225V FOR 23ØV UNITS.
OV OR (OU+) (OVERVOLTAGE)	DC BUS VOLTAGE HIGHER THAN APPROX. 79ØV FOR 46ØV UNITS, 395V FOR 23ØV UNITS.
OC (OVERCURRENT)	200 PERCENT OF RATED CURRENT WAS EXCEEDED. (INSTANTANEOUS OPERATION)
OL (OVERLOAD)	OVERLOAD OF MOTOR AND CONVERTER DETECTED BY ELECTRONIC THERMAL CIRCUIT.
OH (HEAT SINK OVERHEAT)	THERMOSWITCH OPERATED BY OVERHEATING OF MAIN CIRCUIT SEMICONDUCTOR HEAT SINK.
CPF (CONTROL FUNCTION ERROR)	DETECTION OF CPU FAILURE OR MAIN CONTROL FUNCTION BY SELF-DIAGNOSTIC FUNCTION.
EB (OR Eb+) (EXTERNAL FAULT)	EXTERNAL FAULT SIGNAL INPUT AT CONVERTER TERMINAL 7.
FU (BLOWN FUSE)	MAIN CIRCUIT FUSE BLOWN.

- * Operation continues after a momentary power failure when notch 5 of switch 6S is ON; UV lamp or display flashes for approximately two seconds.
- + For Digital Operator display.
- \pm FAULT will be displayed with individual failure indication on the screen of Digital Operator.

Table 12. Failure Indication on Control PCB.

INDICATION				
F1	F2	CAUSE		
		FU (FUSE BLOWN): MAIN CIRCUIT FUSE BLOWN		
		OC (OVERCURRENT): MORE THAN 200 PERCENT OF RATED CURRENT WAS REQUIRED.		
		OC (OVERLOAD): ELECTRONIC THERMAL CIRCUIT DETECTED MOTOR AND CONVERTER OVERLOAD.		
		OV (OVERVOLTAGE): DC BUS VOLTAGE HIGHER THAN 79ØV FOR 46ØV UNITS, 395 FOR 23ØV UNITS.		
		UV1 (UNDERVOLTAGE): DC BUS LOWER THAN SPEC. WITH 6S-5 SET TO ON. (BLINKS FOR 2 SEC.)		
		UV2 (UNDERVOLTAGE): DC BUS LOWER THAN 45ØV FOR 46ØV UNITS, 225V FOR 23ØV UNITS.		
		OH (OVERHEAT): THERMOSWITCH ON SEMICONDUCTOR HEAT SINK DETECTED EXCESSIVE TEMPERATURE.		
		EB (EXTERNAL FAULT): EXTERNAL FAULT SIGNAL INPUT AT CONVERTER TERMINAL 7.		
		CPF (CONTROL FUNCTION ERROR): CPU FAILURE		
		CPF-SEL (SELECTION ERROR): SWITCH 1S THRU 6S CHANGED WITH POWER ON.		

NOTE: INDICATION STATUS IS AS FOLLOWS:

LIGHT OFF.

BLINKING AT EQUAL INTERVALS.

BLINKING AT SHORT-LONG INTERVALS.

LIGHT ON STEADY.

8. TROUBLESHOOTING

If the unit malfunctions, locate the cause and take corrective action by following the flowcharts given in this section.

MOTOR SYMPTOMS

	Will Not Run Stalls During Acceleration	
FAULT	CONDITIONS	

Overvoltage (OV)	Chart	8.3
Overcurrent (OC)	Chart	8.4
Overload (OL)	Chart	8.5
Undervoltage (UV)	Chart	8.6
Converter Overheated (OH)	Chart	8.7
Control Function Error (CPF)	Chart	8.8
Fault Signal Input (EB)	Chart	8.9

If the cause cannot be located by the flowcharts, the Converter or some internal parts may be damaged. Contact a Louis Allis Representative for your nearest authorized repair center.

8.1 Measuring Points and Instruments

Since the Lancer GP Converter utilizes the PWM control mode, specified instruments must be used for correct measurements.

The measuring points and types of instruments are shown in Table 13 and Figure 16.

Table 13. Measuring Points and Instruments.

ITEM	POINTS	INSTRUMENTS	NOTE
SUPPLY VOLTAGE	L1-L2 L2-L3 L3-L1	VOLTMETER: RECTIFIER OR MOVING IRON TYPE	
SUPPLY CURRENT	L1, L2 L3	AMMETER: MOVING IRON TYPE	
SUPPLY POWER	W(L1), W(L1), W(L3)	WATTMETER: ELECTRODYNAMOMETER TYPE (INCORPORATING A HALL GENERATOR	P1 = W(L1) + W(L2) + W(L3)
OUTPUT VOLTAGE	T1-T2 T2-T3 T3-T1	VOLTMETER: RECTIFIER TYPE ONLY	1ØØØ V SCALE (46ØV) 5ØØV SCALE (23ØV)
OUTPUT CURRENT	T1, T2 T3	AMMETER: MOVING IRON TYPE	
OUTPUT POWER	W(T1), W(T2), W(T3)	WATTMETER: ELECTRODYNAMOMETER	P2 = W(T1) + W(T2) + W(T3)
FREQUENCY SETTING SIGNAL	9(+) TO 1Ø 21(+) TO 2Ø	VOLTMETER: MOVING-COIL TYPE INTERNAL RESISTANCE 5ØK OHM MAXIMUM	Ø TO 1Ø VDC
FREQUENCY MONITOR	17(+) TO 18		10 VDC AT MAX SPEED AND UNLOADED

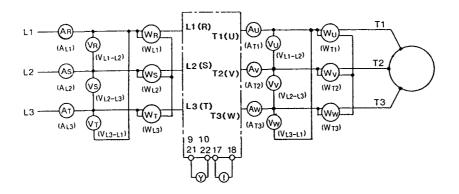
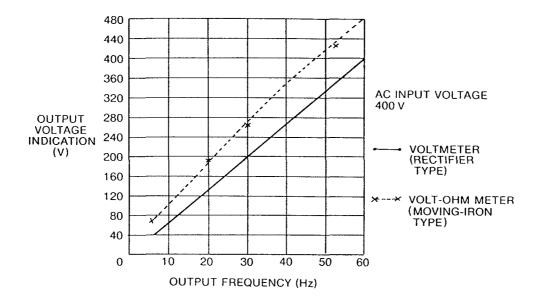
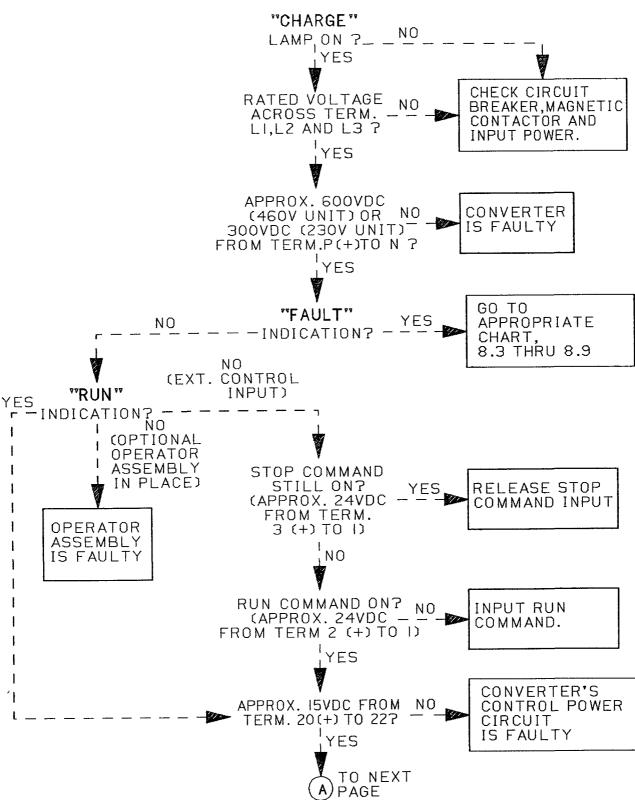
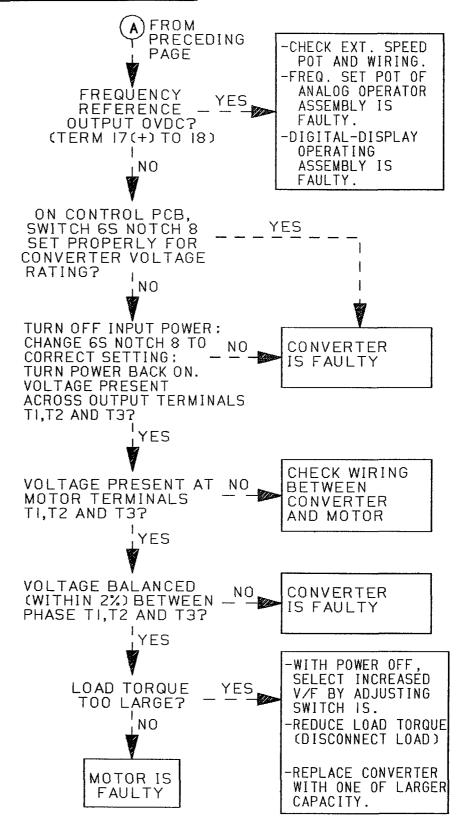


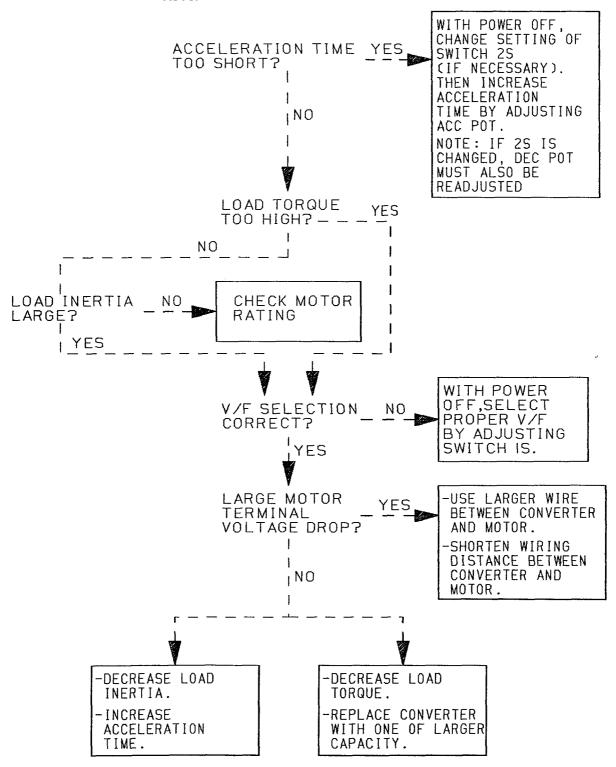
Figure 16.

Figure 17 shows an example of actually measured output voltage. The rectifier type instruments may give different readings depending on the type used.

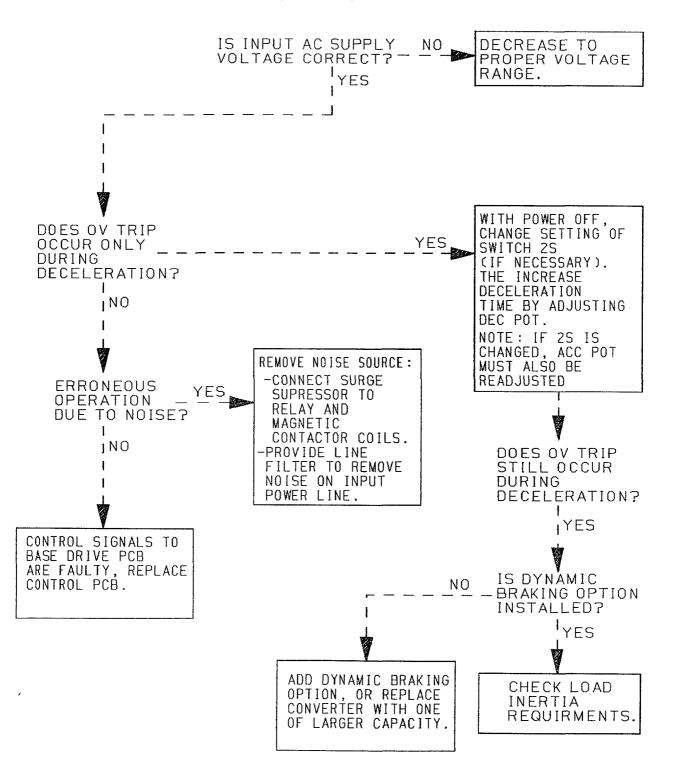




Figure 17.

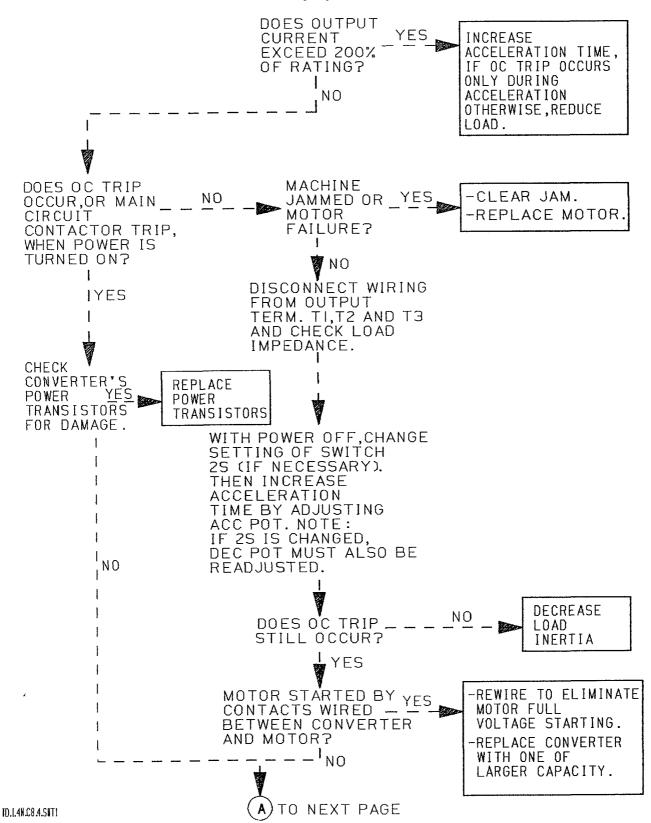
MOTOR WILL NOT RUN


TD.I.4N.C 8.I.SHT I

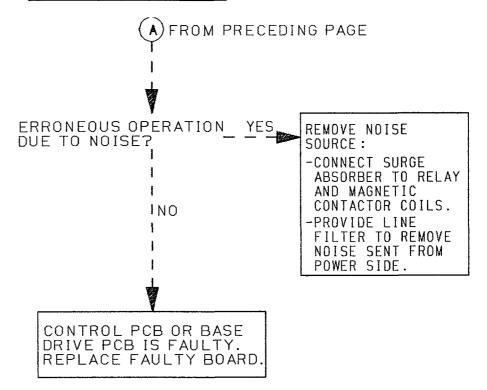
TROUBLESHOOTING CHART 8.1 (Continued)


TD.1.4%C 8.1.5HT 2

MOTOR STALLS DURING ACCELERATION

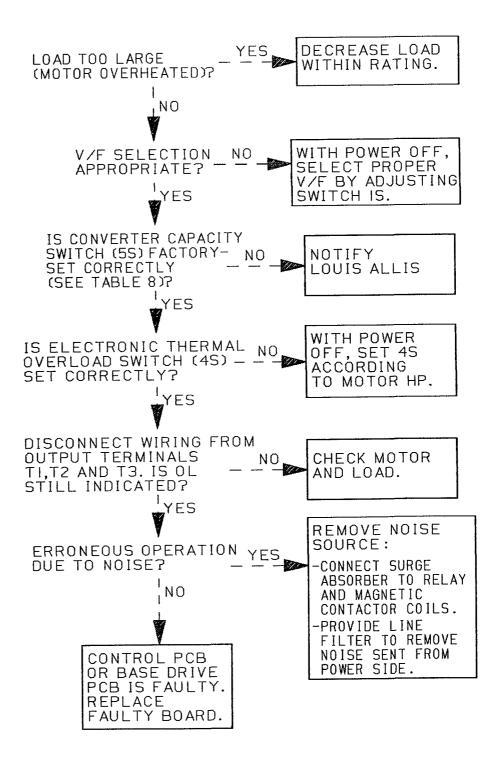

TD.I.4N.C8.2

OVERVOLTAGE (OV OR OU) FAULT INDICATION

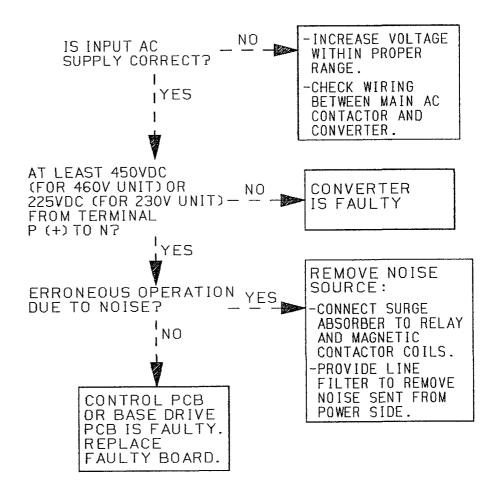


TD.1.4N C8.J

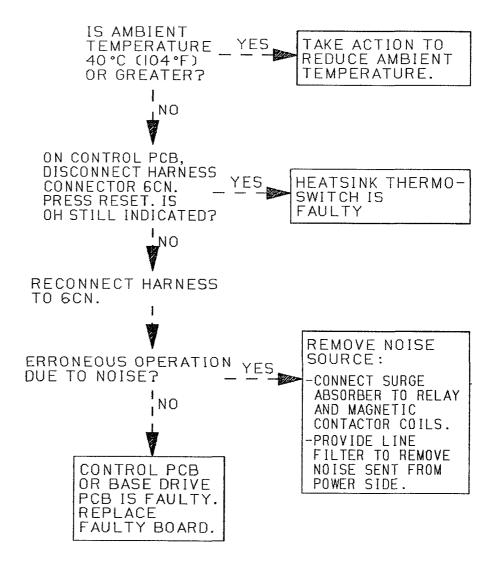
OVERCURRENT (OC) FAULT INDICATION



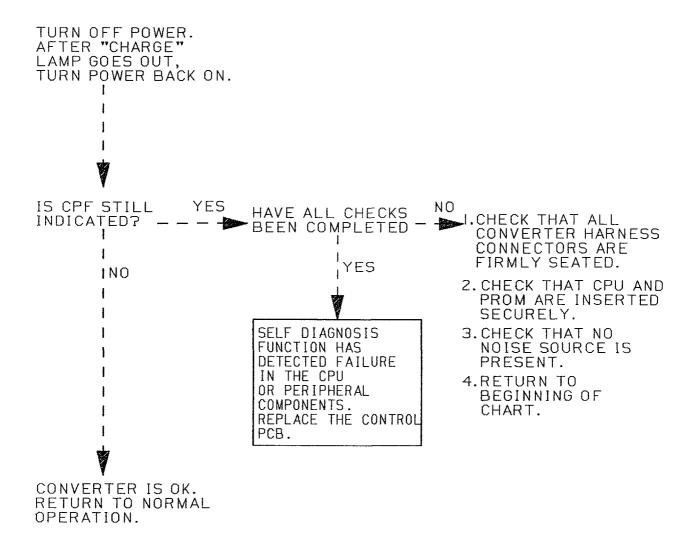
TROUBLESHOOTING CHART 8.4 (Continued)


ID.I.4N.C8.4.SIT2

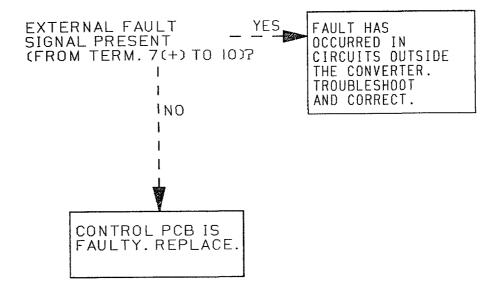
OVERLOAD (OL) FAULT INDICATION


TD.J.4N.C8.5

UNDERVOLTAGE (UV OR UU) FAULT INDICATION



TD.1.4N.C8.6


CONVERTER OVERHEATED (OH) FAULT INDICATION

CONTROL FUNCTION ERROR (CPF) FAULT INDICATION

EXTERNAL FAULT (EB OR Eb) INDICATION

APPENDIX 1. RATINGS AND SPECIFICATIONS

Ratings and Specifications 230 Volt Units

POWER INPUT

Voltage:

208-230 Volts AC + 10%

Phase:

Three (3)

Frequency:

50/60 Hertz <u>+</u>5%

POWER OUTPUT

Voltage:

Ø to 2Ø8-23Ø Volts AC

Phase:

Three (3)

Frequency:

Max 50, 60, 72, 90, 120, 180

Wave Form:

Sine coded PWM

Frequency

Range:

4Ø to 1

23Ø Volt

MAX HP	OUTPUT KVA	OUTPUT AMPS
. 5	1.3	3.3
1	2.0	5.Ø
3	4.Ø	1Ø.Ø
5	6.9	17.3
7.5	1Ø.6	26.5
1ø	13.9	34.6
15	20.8	51.9
2ø	24.8	62.Ø
25	29.Ø	72.4
3Ø	36.3	9Ø.6
4Ø	43.8	1Ø9.2
5Ø	58.1	144.9
6ø	72.8	181.6
75	87.1	217.3

Ratings and Specifications 460 Volt Units

POWER INPUT

Voltage: $46\emptyset$ Volts AC $\pm 10\%$

Phase: Three (3)

Frequency: 50/60 Hertz ±5%

POWER OUTPUT

Voltage: Ø to 460 Volts AC

Phase: Three (3)

Frequency: Max 50, 60, 72, 90, 120, 180

Wave Form: Sine coded PWM

Frequency

Range: 40 to 1

46Ø Volt

MAX HP	OUTPUT KVA	OUTPUT AMPS
.5	1.4	1.7
1	2.1	2.6
3	4.2	5.3
5	7.4	9.2
7.5	11.Ø	13.8
1ø	14.5	18.1
15	18.6	23.2
2Ø	22.7	28.3
25	29.Ø	36.2
3Ø	36.7	45.8
4Ø	43.7	54.6
5ø	58.Ø	72.4

MAX HP	OUTPUT KVA	OUTPUT AMPS
6ø	74.5	93.Ø
75	87.Ø	1Ø8.6
1ØØ	1Ø9.Ø	136.5
15Ø	16Ø.Ø	199.5
2ØØ	2Ø4.Ø	254.1
25Ø	258.Ø	324.Ø
3ØØ	29Ø.Ø	36Ø.Ø
35Ø	345.Ø	43Ø.Ø
4ØØ	368.Ø	462.Ø
45Ø	417.Ø	52Ø.Ø
5ØØ	481.Ø	6ØØ.Ø
6ØØ	577.Ø	72Ø.Ø

Specifications - All Units

Frequency Accuracy: Digital command Ø.Ø1% (-10 to 40°C)

Analog command $\emptyset.2\%$ (25° \pm 10°C)

ENVIRONMENTAL SPECIFICATION

Ambient Temperature: Operating -10 to 40° C (14 to 104° F)

Storage $-2\emptyset$ to $6\emptyset^{O}$ C (-4 to $14\emptyset^{O}$ F)

Humidity: Up to 90% Relative (Non-Condensing) Altitude: Up to 3,300 Feet Above Sea Level

STANDARD FEATURES

Volts per Hertz: Constant or Variable (15 selectable curves total)

Low Frequency Voltage Boost: 4 selectable curves Acceleration Time: Adjustable .2 to 1800 Seconds Deceleration Time: Adjustable .2 to 1800 Seconds

Electronic Reversing: Standard

Speed Setting Signal Inputs: Ø to 10 VDC

(Input Impedance: 20K Ohms)

4 to 20 mA DC

(Input Impedance: 500 Ohms)

Overcurrent Capacity: 150% for 60 seconds

Regenerative Braking Torque: Approximately 20% of Rated Full Load Torque

Isolated: Low Voltage DC Control Circuit

PROTECTIVE FEATURES

Power Failure Ride-Thru: .2 sec or *2 sec (switch selectable)

* Added external capacitor required on 460V units.

Undervoltage: Drive trips below 85% of Rated Line Voltage Overvoltage: Drive trips above 115% of Rated Line Voltage

Overcurrent: Drive trips if 150% of Rated Current exists for 60 seconds or more Overtemperature: Drive trips if heat sink exceeds a safe operating temperature Current Limited Stall Prevention: Operates during acceleration, deceleration, and

while motoring

Trip Diagnostics: Two FAULT LED's indicate the type of trip by varying

illumination

Ground Fault: Drive trips if a Phase-to-Ground short occurs. (Not available on

230 Volt units less than 15 HP)

Instantaneous Overcurrent: Trip occurs at 200% of Rated Output Current

SPECIAL FEATURES (SWITCH SELECTABLE)

Speed Search: Allows the Converter to start a coasting motor.

Anti-Windmill Protection: DC Injection before motor acceleration

DC Braking: DC injection below 1/40 of Rated Frequency

Electronic Thermal Motor Overload: Provides thermal protection for the motor

when motor HP is less than or equal to

the Converter Rating.

APPENDIX 2. TERMINAL FUNCTIONS

Terminal Functions and Voltage of Main Circuit

Table 15a. .5-10 HP, 230 Volts

TERMINALS	FUNCTIONS	LEVELS
L1 L2 L3	MAIN CIRCUIT INPUT POWER SUPPLY	THREE PHASE 2Ø8-23Ø VAC, AT 5Ø/6Ø HZ (VOLTAGE FLUCTUATION <u>+</u> 1Ø%)
l 1 l 2	COOLING FAN INPUT POWER SUPPLY	SINGLE PHASE (FROM INPUT POWER SUPPLY)
T1 T2 T3	ОИТРИТ	THREE PHASE 208-230 VAC MAXIMUM (CORRESPONDING TO INPUT VOLTAGE)
B1, B2 a, b	BRAKING MODULE (INTERNAL MOUNTING OPTION)	Ø TO APPROXIMATELY 3ØØ VDC
B3, N-	BRAKING RESISTOR UNIT*	
P+ TO N-	MAIN CIRCUIT DC POWER SUPPLY	APPROXIMATELY 3ØØ VDC
GND	GROUND TERMINAL	

^{*} External option, used with braking module.

Table 15b. 15-75 HP, 230 Volts

TERMINALS	FUNCTIONS	LEVELS
L1 L2 L3	MAIN CIRCUIT INPUT POWER SUPPLY	THREE PHASE 208-230 VAC, AT 50/60 HZ (VOLTAGE FLUCTUATION <u>+</u> 10%)
l1 l2	COOLING FAN INPUT POWER SUPPLY	SINGLE PHASE (FROM INPUT POWER SUPPLY)
T1 T2 T3	ОИТРИТ	THREE PHASE 208-230 VAC MAXIMUM (CORRESPONDING TO INPUT VOLTAGE)
P1 T0 N-	BRAKING UNIT *	Ø TO APPROXIMATELY 3ØØ VDC
P1, P2, P3 T0 N-	MAIN CIRCUIT DC POWER SUPPLY	APPROXIMATELY 3ØØ VDC
GND	GROUND TERMINAL	

^{*} External option.

Table 15c. .5-150 HP, 460 Volts

TERMINALS	FUNCTIONS	LEVELS
L1 L2 L3	MAIN CIRCUIT INPUT POWER SUPPLY	3-PHASE 46Ø VAC AT 5Ø/6Ø HZ (VOLTAGE FLUCTUATION <u>+</u> 1Ø%)
l1 l2	CONTROL CIRCUIT INPUT POWER SUPPLY	SINGLE-PHASE (FROM INPUT POWER SUPPLY)
T1 T2 T3	ОИТРИТ	3-PHASE 46Ø VAC (CORRESPONDING TO INPUT VOLTAGE)
P1, P2	DC REACTOR FOR POWER FACTOR CORRECTION	
P3 T0 N-	EXTERNAL CAPACITOR (UP TO THE SAME CAPACITY OF CAPACITOR INCORPORATED IN CONVERTER)	APPROXIMATELY 6ØØ VDC
P1 TO N-	BRAKING UNIT*	Ø TO APPROXIMATELY 6ØØ VDC
P1, P2, N-	MAIN CIRCUIT DC POWER SUPPLY	APPROXIMATELY 6ØØ VDC
C1, C2	BACKUP CAPACITOR FOR MOMENTARY FAILURE	APPROXIMATELY 3ØØ VDC
V1, V2	POWER SUPPLY TO EXTERNAL EQUIPMENT	22ØV, 5Ø/6Ø HZ
GND	GROUND TERMINAL	

^{*} External option.

Table 15d. 100-600 HP, 460 Volts

TERMINALS	FUNCTIONS	LEVELS
L1 L2 L3	MAIN CIRCUIT INPUT POWER SUPPLY	3-PHASE 460 VAC AT 50/60 HZ (VOLTAGE FLUCTUATION <u>+</u> 10%)
l 1 l 2 l 3	CONTROL CIRCUIT INPUT POWER SUPPLY	3-PHASE (FROM INPUT POWER SUPPLY)
T1 T2 T3	оитрит	3-PHASE 46Ø VAC (CORRESPONDING TO INPUT VOLTAGE)
P1, P2	DC REACTOR FOR POWER FACTOR CORRECTION	
P3 T0 N	EXTERNAL CAPACITOR (UP TO THE SAME CAPACITY OF CAPACITOR INCORPORATED IN CONVERTER)	APPROX 6ØØ DC
P1 T0 N	BRAKING UNIT*	Ø TO APPROXIMATELY 6ØØ VDC
P1, P2, N	MAIN CIRCUIT DC POWER SUPPLY	APPROXIMATELY 600 VDC
C1, C2	BACKUP CAPACITOR FOR MOMENTARY POWER FAILURE	APPROXIMATELY 300 VDC
V1, V2	POWER SUPPLY TO EXTERNAL EQUIPMENT	22ØV, 5Ø/6Ø HZ
GND	GROUND TERMINAL	

^{*} External option.

Table 16. Terminal Functions and Signals of Control Circuit

TERMINALS	FUNCTIONS	LEVELS
1	CONTROL CIRCUIT INPUT COMMON	COMMON
2	RUN SIGNAL	RUN AT CLOSED*
3	STOP SIGNAL	STOP AT OPEN+
4	CONNECTION TO SHIELD OF SIGNAL LEAD	GND.
5	FWD/REV OPERATION SELECTOR	FORWARD AT OPEN+, REV AT CLOSED*
6	AUTO/MAN FREQUENCY SIGNAL SELECTOR	AUTO SPEED AT OPEN+, MAN AT CLOSED*
7	EXTERNAL FAULT INPUT	EXTERNAL FAULT AT CLOSED*
8	FAULT RESET INPUT (EXTERNAL)	FAULT RESET AT CLOSED*
9 1ø	"AUTO" MODE FREQUENCY SIGNAL INPUT	Ø TO +1ØV (2ØK OHM) OR 4-2Ø MA (5ØØ OHM) COMMON
11	CONNECTION TO SHIELD OF SIGNAL LEAD	GND.
12 13	RUN CONTACT OUTPUT (1 N.O.) CLOSED DURING RUN	CONTACT CAPACITY: 250 VAC AT 1A 30 VDC AT 1A
14 COM 15 N.C. 16 N.O.	FAULT CONTACTOR OUTPUT (FORM C) N.C. OPEN AT FAULT N.O. CLOSED AT FAULT	CONTACT CAPACITY: 25Ø VAC AT 1A 3Ø VDC AT 1A
17	FREQUENCY METER	APPROXIMATELY +10 V/100%, OUTPUT IMPEDANCE, 3K OHM
18		COMMON
19	CONNECTION TO SHIELD OF SIGNAL LEAD	GND.
2Ø , 21 22	"MAN" MODE FREQUENCY SIGNAL INPUT	+15V (2ØMA MAX.) Ø TO 1Ø VDC COMMON

^{*} Short-circuited with terminal 1.

⁺ Not shorted to terminal 1.

APPENDIX 3. OPTIONS

Table 17.

NAME	FUNCTIONS	
DIGITAL OPERATOR	MOUNTED ON THE CONVERTER WITH CONNECTION TO CONTROL PCB. ISSUES OPERATION COMMANDS, SETS THE FREQUENCY BY THE DIGITAL SIGNAL. DISPLAYS THE PRESET OR CURRENT FREQUENCY IN DIGITAL FORM. ALSO, DISPLAYS FAULT CODE WHEN A FAILURE OCCURS.	
ANALOG OPERATOR	MOUNTED ON THE CONVERTER WITH CONNECTION TO CONTROL PCB. GIVES OPERATION COMMANDS, SETS THE FREQUENCY BY THE ANALOG SIGNAL. INDICATES THE CURRENT FREQUENCY ON THE FREQUENCY METER. ALSO, WHEN A FAILURE OCCURS, TYPE OF FAULT IS IDENTIFIED BY LAMP ILLUMINATION.	
PROGRAMMING OPERATOR	WHEN A CONTROL EXPANSION OPTION IS PRESENT, ALLOWS PROGRAMMING OF CONSTANTS IN THAT OPTION'S EEPROM. OTHERWISE FUNCTIONS THE SAME AS DIGITAL OPERATOR.	
MEMORY MODULE CONTROL EXPANSION	MOUNTS TO SIDE OF CONVERTER ENCLOSURE, WITH CONNECTION TO CONTROL PCB. ADDS ADDITIONAL (SETTABLE) CONSTANTS AND BACKUP MEMORY CAPABILITY TO CONTROL CIRCUIT PROGRAMMING.	

APPENDIX 4. CHECKING OF DIODE AND TRANSISTOR MODULES

Diode Module

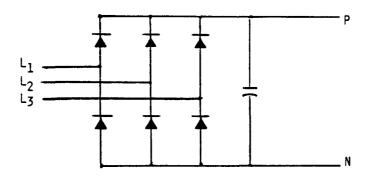

Measure the resistance across the module terminals with a volt-ohm meter. Set the meter at the X1 range. The measured resistance should be within the reference values listed in Table 18.

Table 18. Diode Module Resistances

+ ON	- ON	NORMAL READING (OHMS)	ABNORMAL READING (OHMS)
L1	Р		
L2	Р	1ø	Ø
L3	Р	то	OR
N	L1	5Ø	INF
N	L2		
N	L3		
l	l	!	

+ ON	- ON	NORMAL READING (OHMS)	ABNORMAL READING (OHMS)
L1 L2 L3 P P	N N N L1 L2 L3	INF	LESS THAN
Р	N	MAGNI- TUDE OF CAP CHARGE TO INF	Ø OR INF

RESISTANCE TEST FOR 30 CONVERTER MODULES (BRIDGE RECT)

VOM RESISTANCE SCALE RX1

- + IS THE POSITIVE POLARITY LEAD*
- IS THE NEGATIVE POLARITY LEAD

^{*}THE VOM RED LEAD IS NOT NECESSARILY THE POSITIVE POTENTIAL IN THE RESISTANCE MODE. FOR THESE TESTS THE + LEAD REFERS TO THE POSITIVE POTENTIAL. MAKE SURE YOU KNOW WHICH POLARITY YOU HAVE ON YOUR VOM.

Transistor Module

Measure the resistance across the module terminals with a volt-ohm meter. Set the meter to the X1 range. The measured resistance should be within the reference values listed in Table 19.

Table 19. Transistor Module Resistances

+ ON	- ON	NORMAL READING (OHMS)	ABNORMAL READING (OHMS)
P	Α		
Р	В	GREATER	
Р	С		ø
Α	N	THAN	
В	N		
С	N	5ØK	
Α	Р		
В	P	ĺ	Ø
С	P	1Ø TØ 5Ø	
N	A		OR
N	В		
N	С		INF

+ ON	- ON	NORMAL READING (OHMS)	ABNORMAL READING (OHMS)
<u> </u>			
B1A	Α		
B1B	В		GREATER
B1C	С	1Ø TO 5Ø	
B2A	N		THAN
B2B	N		
B2C	N		1øK
Α	B1A		
В	в1в	2øø	ø
С	в1С	то	
N	B2A	5K	oR
N	B2B	İ	
N	B2C	İ	INF
1	i	i	i

RESISTANCE TEST FOR 30 TRANSISTOR MODULES

VOM RESISTANCE SCALE RX1

- + IS THE POSITIVE POLARITY LEAD*
- IS THE NEGATIVE POLARITY LEAD

^{*}THE VOM RED LEAD IS NOT NECESSARILY THE POSITIVE POTENTIAL IN THE RESISTANCE MODE. FOR THESE TESTS THE + LEAD REFERS TO THE POSITIVE POTENTIAL. MAKE SURE YOU KNOW WHICH POLARITY YOU HAVE ON YOUR VOM.

APPENDIX 5. SPARE PARTS

Louis Allis recommends the customer stock on-site spare parts to minimize costly down time. Table 20 lists parts which have a high probability of needing replacement.

Table Entry XXXXXXXX - Item Model Number

XXXXXXXXX - Part Number

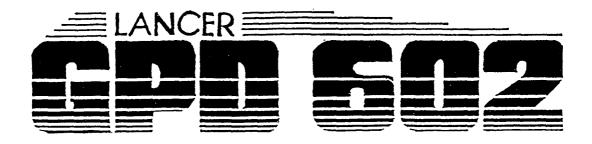

X - Qty in Converter

Table 20. Recommended Spart Parts

Section A. Wall-Mount Units								
	23øv	4(6ØV					
НР	DC BUS FUSE	НР	DC BUS FUSE					
15	CR2L-75 FUØØØ747 1	.5, 1 3, 5	8ØLF-15 FUØØØ76Ø 1					
2Ø, 25	CR2L-1ØØ FUØØØ748 1	7.5, 10	8ØLF-25 FUØØØ761 1					
3Ø	CR2L-125 FUØØØ749 1	15, 20, 25	8ØLF-5Ø FUØØØ762 1					
4Ø	CR2L-15Ø FUØØØ75Ø 1	3Ø, 4Ø	CR6L-75 FUØØØ757 1					
5ø	CR2L-2ØØ FUØØØ751 1	5ø	CR6L-1ØØ FUØØØ758 1					
6ø	CR2L-26Ø FUØØØ752 1	6Ø, 75	CR6L-15Ø FUØØØ756 1					
75	CR2L-3ØØ FUØØØ753	1ØØ	CR6L-2ØØ FUØØØ755 1					
_	_	15Ø	CR6L-3ØØ FUØØØ754 1					

Table 20. Recommended Spart Parts (Continued)

Section B. 46ØV Floor Standing							
НР	INPUT POWER	DC BUS	FAN				
	FUSE	FUSE	FUSE				
2ØØ	CS5F-6ØØ	CS1ØF-35Ø	FCF-2				
	FUØØØ616	FUØØØ789	FUØØØ597				
	2	1	2				
25Ø, 3ØØ	CS5F-6ØØ FUØØØ616 2	CS1ØF-5ØØ FUØØØ68Ø 1	FCF-2 FUØØØ597 2				
35Ø	CS5F-8ØØ	CS1ØF-8ØØ-P					
4ØØ	FUØØØ687	FUØØØ8Ø4					
45Ø	2	1					
5ØØ, 6ØØ	CS5F-1ØØØ-P FUØØØ8Ø2 2	CS1ØF-1ØØØ-P FUØØØ8Ø1 1					

1. INTRODUCTION

The following information and instructions are provided as a supplement to the standard Lancer GPD 602 Reference Manual 4Y-5. This addendum addresses those items which are unique to this drive system, specifically: a general description and adjustment procedure associated with the power conversion unit, optional printed circuit boards, and system logic; system logic control modes and detailed sequence of operation.

It is essential that the person who inspects, operates, and maintains the drive, thoroughly reads and understands Reference Manual 4Y-5 and this supplement.

Cus	stomer		
LA	Order	No.	

2. DESCRIPTION

The Lancer GPD 602 drive system consists of the items checked in the following paragraphs.

2.1 Power Conversion Unit (1EA)

The Lancer GPD	602 is a	standard		V,	HP	unit.	Ref	er to	the
 reference manua	al and ins	truction	sheet	02Y00025-0	0247	for	a11 a	adjust	ments
associated with	n the basio	c drive.							

This unit contains a special EPROM IC (3lic). Its use required that certain internal drive switch settings be factory set. They SHOULD NOT BE CHANGED BY THE USER.

FACTORY	SETTINGS
SW	POS
1S	1
2S	3
3S	F
4S	F

Note: These settings take precedence over settings identified in Reference Manual 4Y-5.

All other switches are set as described in Reference Manual 4Y-5 and may be re-set as dictated by the users application.

2.2 Optional Printed Circuit Boards

3-15 PSIG Follower PCB. This board accepts a 3-15 PSIG pneumatic speed signal from the customer process controller and converts it to a 0-11.54 VDC reference signal suitable for input to the drive. Customer connection to the drive is accomplished with a 1/4-NPT male connector (not supplied).

2.3 System Logic

2.3.1 Power Components

- a. Input circuit breaker (1CB) connects/disconnects 3-phase power to the drive, system logic control transformer, and line (bypass) contactor 1ML.
- b. Input contactor (2MV) connects/disconnects 3-phase power to the drive. 2MV is ALWAYS ENERGIZED.

CAUTION

2MV IS ENERGIZED WHENEVER INPUT POWER IS PRESENT. ALWAYS DISCONNECT INPUT POWER BEFORE REMOVING UNIT FRONT COVER. OTHERWISE EQUIPMENT DAMAGE OR PERSONNEL INJURY MAY OCCUR.

2.3.1	Power	Com	ponents (Continued)
		c.	Output contactor (1MV) connects/disconnects 3-phase variable voltage and frequency to the motor. 1MV is energized with 2SS in INVERTER and 1SS in either MAN or AUTO. It is de-energized with 2SS in LINE or with 1SS in OFF, or following a drive/motor fault. It is electrically interlocked with 1ML.
		d.	The line (bypass) contactor (1ML) connects/disconnects fixed 3-phase at 60HZ to the motor. 1ML is energized with 2SS in LINE and 1SS in either MAN or AUTO. It is de-energized with 2SS in INVERTER or with 1SS in OFF, or following a motor fault, It is electrically interlocked with 1MV.
2.3.2	Contr	ol C	omponents
	a. 0	pera	tors
		1)	The INVERTER FAULT/RESET (1PBL) push button located on the outer enclosure door may be used to manually reset the drive following an inverter fault.
		2)	The MOTOR FAULT/RESET (2PBL) push button located on the enclosure door is used to manually reset the motor fault circuit (1CR) following a motor fault such as overload or overtemperature.
		3)	The system mode select MAN-OFF-AUTO switch (1SS) selects the system mode of operation. With 1SS in MAN, motor will run in either the Variable or Constant Speed mode. With 1SS in OFF, the motor will not run. With 1SS in AUTO, motor will run in either the Variable or Constant Speed mode following closure of customer Auto Mode Start/Stop contact.
		4)	Motor operating on INVERTER-LINE switch (2SS) selects which source the motor will operate from. With 2SS in INVERTER, the motor will operate variable speed controlled by the MANUAL SPEED pot, FREQ. ADJ. pot, or 3-15 PSIG control signal. With 2SS in LINE, the motor will operate constant speed.
		5)	MANUAL SPEED pot (1RH) controls motor speed with the system in the Manual-Variable Speed mode of operation (1SS in MAN, 2SS in INVERTER).
ъ	. Indi	cato	rs
*	1)	Lig	hts
			a) POWER ON (1PL) illuminates white indicating presence of 115 VAC control power to the system logic.
			b) INVERTER FAULT (1PBL) illuminates red for a drive fault.
			c) MOTOR FAULT (2PBL) illuminates red for a motor fault.

	1)	Ligh	ts (Continued)
			d)	MOTOR CONSTANT (2PL) illuminates green when the motor is operating across the line.
			e)	MOTOR VARIABLE (3PL) illuminates green when the motor is operating on the drive.
	2)	Mete	rs	
		***************************************	a)	MOTOR CURRENT (1AM) is calibrated in AAC, and indicates motor current in both Variable and Constant Speed modes of operation.
			ъ)	% SPEED (1TVM) is calibrated in percent, and indicates motor speed in both Manual and Auto-Variable Speed modes of operation
			c)	LINE VOLTAGE (1VM) is calibrated in VAC, and indicates input voltage.
			d)	ELAPSED TIME METER (ETM) is calibrated in tenths of an hour, and indicates operating time of the motor.
2.	Spec	ial R	elay	Functions
		1)	Res ene 1TR fun	omatic restart following a power outage is provided by the Auto tart (ITR) electronic timing relay, which is factory adjusted to rgize 1 second after reapplication of power. A normally closed contact, in parallel with the RESET push button, performs this ction. Once ITR energizes, the normally closed contact opens, ch returns manual reset capability to the motor fault circuitry.
		2)	It	ed Search (2TR) is an electronic timing relay set for 3 seconds. enables starting the drive into a spinning motor when switching m constant speed to variable speed.
		3)	and lig	or Overload Relay (10L) provides motor protection under running stall overloads. When a motor overload occurs, MOTOR FAULT ht illuminates red. It is resettable by pressing the RESET push ton.

3. OPERATION

Table 1 lists available control modes. In the paragraphs that follow, the sequence of operation in each mode is described in detail.

Table 1. Operating Modes

	MODE OF OPERATION	1SS SETTING	2SS SETTING	START/STOP CONTROL	SPEED REFERENCE	SEQUENCE OF OPERATION PARAGRAPH
	MAN-VARIABLE SPEED	MAN	INVERTER	188	MANUAL SPEED 1RH	3.1.1
	MAN-CONSTANT SPEED	MAN	LINE	188	N/A	3.1.2
	AUTO-VARIABLE SPEED	AUTO	INVERTER	1SS & Customer Auto Mode Start/Stop	3-15 PSIG, or 4-20mA Signal	3.1.3
	AUTO-CONSTANT SPEED	AUTO	LINE	1SS & Customer Auto Mode Start/Stop	N/A	3.1.4

3.1 Operator Initiated

3.1.1 Manual-Variable Speed Operation

- a. Start the DRIVE/motor by turning 1SS to MAN with 2SS in INVERTER position. Motor will accelerate to set speed on the drive.
- b. The MANUAL SPEED pot (1RH) or FREQ. ADJ. pot controls motor speed; adjust as required.
- c. Stop the drive/motor by turning 1SS to OFF. Motor will decelerate (ramp) to stop under drive control.

3.1.2 Manual-Constant Speed Operation

- a. Start the motor by turning ISS to MAN and 2SS to LINE. Motor will accelerate to full speed across the line.
- b. Stop the motor by turning 1SS to OFF. Motor will coast-to-stop.

3.1.3 Automatic-Variable Speed Operation

- a. Start drive/motor by turning 1SS to AUTO, 2SS to INVERTER and closing customer Auto Mode Start/Stop contact. Motor will accelerate to set speed on the drive.
- b. The 3-15 PSIG or 4-20mA customer signal dictates the motor speed.
- c. Stop drive/motor by turning ISS to OFF, or opening Auto Mode Start/Stop contact. Motor will decelerate (ramp) to stop under drive control.

3.1.4 Automatic-Constant Speed Operation

- a. Start the motor by turning ISS to AUTO, 2SS to LINE, and closing customer Auto Mode Start/Stop contact. Motor will accelerate to full speed across the line.
- b. Stop the motor by turning ISS to OFF, or opening Auto Mode Start/Stop contact. Motor will coast-to-stop.

3.2 Initiated By Interruption Of Power

Normally closed 1TR contact in parallel with RESET push button (2PBL) provides automatic restart following reapplication of power.

3.3 Fault Initiated

3.3.1 Drive Fault

Motor will coast-to-stop on a drive fault -- overcurrent (OC), overload (OL), DC Bus over-voltage (OV), input under-voltage (UV) or heat sink overtemperature (E). General drive fault indication is provided by the red INVERTER FAULT (1PBL) light. Two LEDs on the Lancer GPD 602 provide individual annunciation (see Section 7 of the reference manual). To reset, momentarily press the INVERTER RESET PB (2PB).

3.3.2 Motor Fault

Motor will decelerate (ramp) to stop under drive control on motor fault — opening of motor winding temperature actuated switch (if provided) or thermal overload relay contact 10L. General motor fault indication is provided by MOTOR FAULT (2PBL, RED) light. To reset, following TAS/OL contact reclosure, momentarily press RESET push button (2PBL).

4. ADJUSTMENTS

4.1 Lancer GPD 602

Refer to the reference manual and instruction sheet 02Y00025-0247 for all adjustments associated with the unit.

When the power is on, high voltage is applied to the Main Control printed circuit board.

Prior to connecting and disconnecting test equipment, follow the steps listed below.

- a. Disconnect all input power.
- b. Wait at least 5 minutes.
- c. Remove the front cover of the drive and check that the CHARGE LED is OFF.

CAUTION

THE "CHARGE" LED BEING ILLUMINATED IMPLIES THAT HAZARDOUS DC BUS CAP POTENTIAL STILL EXISTS. AS AN ADDED SAFETY MEASURE, AFTER THE "CHARGE" LED EXTINGUISHES, VERIFY THAT THERE IS NO LONGER A CHARGE BY MEASURING THE POTENTIAL ACROSS CAPACITOR C1 WITH A VOLTMETER.

4.2 Optional Printed Circuit Boards

3-15 PSIG Follower PCB - The ZERO pot is factory set for 1.5HZ output from the drive with a process control signal of 3PSIG. SPAN is set for 60HZ output with a reference input of 15PSIG. Because ZERO and SPAN interact, several adjustments are required when resetting these pots.

Power and control products including Solid State starters, Eddy Current drives, DC drives and Adjustable Frequency drives MagneTek Drives & Systems (800) 262-6511, (414) 782-0200, FAX (414) 782-1283 16555 W. Ryerson Road New Berlin, Wisconsin 53151