Servopack®

Sept., 1979

TYPE CPCR-QR

1. GENERAL

The Type CPCR-QRD SERVOPACK is a control unit of adjustable frequency inverter drive to provide a highly accurate, wide range of adjustable speed of Yaskawa AC motors. It is ideally suited for various application requiring maintenance-free, constant motor output, and exacting speed control, such as main spindle drive for NC machine tools.

The control section of the Servopack consists of a speed loop, a current loop, and a control power supply section. As the Servopack is based on a power transistorized pulse width modulation (PWM) inverter circuit consisting of power transistors, its current waveform is sinusoidal and is free from high harmonics, unlike conventional inverter controls based on square voltage or current waveform. This results in substantial freedom from torque ripples.

The most important feature of the Servopack is that even a conventional AC motor can be operated with performances equivalent to those of DC motors. The vector control of the Servopack makes the exciting current component and the secondary current component flow at right angles both in static- and transient-base so that current reference becomes equal to torque reference.

	Table of Contents
	Page
1.	GENERAL
2.	SPECIFICATIONS AND TYPE DESIGNATION
3.	OPERATING PRINCIPLE
4.	CIRCUIT CONFIGURATION
5.	ADJUSTMENT
6.	TROUBLESHOOTING
7.	CONNECTION DIAGRAM
8.	PARTS ARRANGEMENT
9.	MAIN PARTS LIST

2. SPECIFICATIONS AND TYPE DESIGNATION

2.1 Specifications

Table 1 Specifications of Type CPCR-OR Servopack

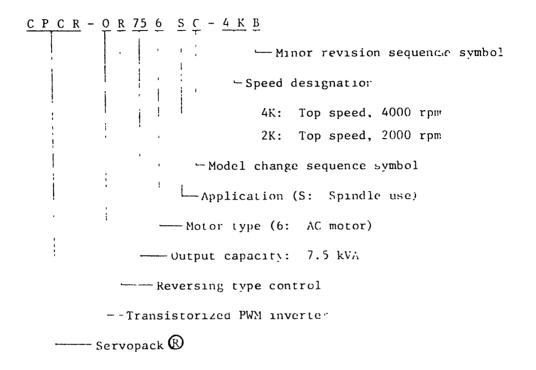
Type Name		CPGR-QR756SC-4K CPCR-OR756SC-4KB	CPCR-QR756SC-2K CPCK-OR756SC-2KE
Applicable Motor		UAASE-5K, 3.5 kW, 850 rpm	UAASE-5K, 3.5 kW 750 ะวุมท
Power Supp	ly	3-phase, 200/220 VAC,	±10%, 'n0/60Hz
Power Supp	ly Capacity	11	kVA
Main Cırcu	ıt	3-phase, full wave re Transistorized PWM in	
Maximum Ou	tput Voltage	160	v
Maximum Pe Current (T	-	32 A, 15-min rating (6 kg-m).	32 A, 30% ED (7.15 kg-m)
Continuous	Output Current	24.5 A, (4 kg-m)	24.5 A. (5.1 kg-m)
Internal C	urrent Limit Range	10 - 32 A	
External C	urrent Limit Range	4 - 3	2 A
Speed Cont	rol Range	30, 120-4000 rpm	32, 95-2000 rpm
Speed	Load Fluctuation	±0.5%, Load fluctuation: 1007	
Fluctuation	Voltage Fluctuation	±0.5%, Current fluctuation: 10%	
Input	Rated Speed Reference Voltage	±10	VDC
	Resistance	15 k-ohms	
	Rated Speed Reference Voltage	±6.5 - ±30 VDC	
Input	Resistance	9.4 - 50 k-ohms	
Speed Detec	ction	Resolver: 12.5 kHz, ±3.5 kHz	
Built-in Sp Power Supp	peed Reference ly	±12 V,	10 m/s
Ambient Ter	nperature	0 - 55°C (at	panel inside)
Applicable	Load GD ²		

Table 1 Specifications of Type CPCR-QR Servopack (Cont'd)

Type Name		CPCR-QR756SC-4K
Mounting		Base mounting
Acceleration/ Deceleration Adjustment		1, 2, 3 Seconds/0 = ±10 V reference DIC switching.
	Speed Concordance Detection	±15%, Variable to - 35% in one direction
	Zero Speed Detection	±15 - ±20 rpm
Addi- tional Functions	Excessive Deviation Detection	-15%, Variable between -30 and 70%
	Speedometer Drive Output	l mA DC/full scale
	Accel./Decel. Time 60% Reference	

2.2 Protective Functions

2.2.1 Motor


Overload Protection	Thermal protector:	<pre>fripping at 155°C</pre>
· · · · · · · · · · · · · · · · · · ·		

2.2.2 Control unit.

Overspeed Protection	Overspeed detection: 120 - 130% rated speed.	
	The following also available by this circuit:	
	 Breaking of resolver detection circuit. 	
	o Stop of clock frequency.	
Power Transistor Protection	Transistor overcurrent detection/protection.	
Abnormal Regenerative Voltage	Excessive load $GD^{\frac{2}{3}}$ detection.	
Fan Stop, Power Transistor Overheating	Heat sink temperature detection: 85°C	

2.3 Type Designation

Servopack types are designated in accordance with the following system. When replacing circuit boards, pay attention to the type designation of your unit.

OPERATING PRINCIPLE

3.1 Synchronous Speed and Actual Speed

The actual speed of 3-phase induction motors remains behind by the elip from the synchronous speed when they are operated under the control of Servopack units.

3.2 Synchronous Wattage and Vactor Control

Fig. 1 shows an equivalent circuit to one of three phases of an induction motor. Where disregarding the secondary leakage inductance, primary winding resistance, and the primary leakage inductance to simplify the explanation the total power consumption in r/s of the three phases is deemed as the same with the secondary input, and (1-S) times the secondary input is the mechanical output $P_{\rm M}$.

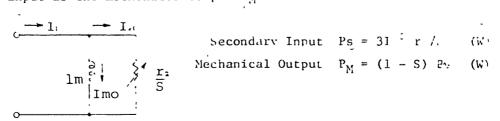


Fig. 1 Equivalent Circuit

The torque I generated by a motor is given by

Torque
$$T = P_M/\omega m = Ps/\omega s$$
 (N-m)

Where $\omega s = 2\pi f/P$ (synchronous angular velocity)

With induction motors, Ps is sometimes adopted as the value representing torque, and T = Ps (synchronous wattage) is known as synchronous wattage torque. The relationship between the primary current I_1 and generated torque T of a motor is given by,

$$T = \frac{3P}{\omega} \cdot \frac{(\omega k m^2) (r_2/S)}{(r_2/S)^2 + (\omega k m)^2} \cdot 1_1^2$$

Where, $I = \sqrt{Im_0^2 + I_{20}^2}$

$$S\omega = r_2 I_{20} / km \ lm_1$$
 ($\omega km lm = \frac{r_-}{S} I_{20}$)

Then,

$$T = 3p \{ m \mid Im_0 \mid I_{20} \}$$

This indicates that, with the exciting current lmo of an induction motor maintained at a constant level, and the slip angle frequency Sw is controlled in proportion to the secondary current \mathbf{I}_{20} , the torque varies in proportion to the secondary current \mathbf{I}_{20} , and the Servopack is equivalent to the control of DC motors in all respects. The speed n(rpm) of a motor is given by,

$$n = (1 - S) n_{S}$$

$$n_{S} - n = Sn_{S}$$

$$f_{S} - f_{R} = Slip f$$

$$\omega s - \omega = S\omega$$

$$= \frac{r_{2}}{\ell m \ Im_{G}} I_{2}$$

$$= k I_{2}$$
Slip S

Therefore,

$$\omega st = \omega + kI_{20}$$

When a slip ferquency signal component which is proportional to the required load torque is added to the motor speed frequency signals detected by the resolver, and the sum signals are used as the primary exciting speed reference signal, the motor speed can be maintained at a constant level despite of fluctuations in the torque due to load. With the vector control, the amplitude of the primary current (\mathbf{l}_1) is controlled to a value equal to the vector sum of the secondary current (\mathbf{l}_{20}) corresponding to the load torque, and the field exciting current (\mathbf{l}_{mo}) of the motor. At the same time the angular velocity (ws) of the primary current is also controlled to a value that is equal to the sum of the angular velocity of the control speed plus the slip in proportion to the required load torque.

4. CIRCUIT CONFIGURATION

Shown in Fig. 2 is a block diagram of the circuit of Servopack.

4.1 Main Circuit Section

The main circuit consists of a converter section to transform the 3-phase AC voltage into a DC voltage, and a PWM transistor inverter section for inverting the DC voltage into variable-frequency voltages.

4.2 Current Loop Section

This section is to supply the primary speed reference current

With amplitude of
$$I_1 = \sqrt{Im_0^2 + I_{21}^2}$$

And frequency of $f_S = f_R + Slip$ (=_kI_20

that is sent out from the vector control circuit in 1PWB to the motor.

The speed reference current is supplied in two phases. For current detection, the 3-phase current is coverted into 2-phase current by means of an insulated isolator which takes out the V and V phases out of the three phases, and the 2-phase current is compared with the speed reference current in a 2-phase current amplifier.

The 2-phase speed reference current is then converted into 3-phase current, and amplified phase by phase in pulse-width-modulated control, by means of base drivers, each of which is serving individual power transistors.

4.3 Vector Control Section

The Servopack control unit employs a multi-pole resolver in order to detect the speed feedback signals of AC motors.

To utilize the revolution frequency signals detected by the multi-pole resolver in obtaining exciting current trequency reference signals, they are converted into analogue voltage speed feedback signals.

The differential signals (i_2) between the speed reference voltage and speed feedback voltage is used as the torque reference signal, and leads the exciting current reference signal by a phase angle of 90° in the secondary current reference circuit. In the exciting current reference circuit, slip frequencies proportionate to the torque reference signals are added to the detected revolution frequency signals to obtain the frequencies of the primary speed reference current.

Stepped speed reference voltages are converted into ramp \tilde{r} or voltages by a linear acceleration-deceleration circuit. Time limit is selectable among anyone of 1, 2 and 3 seconds.

Block Diagram of Servopack Multi-)pole re-RASE-DRIVER Curren de tec-PWM CONTROL 2 PWB 3-phase-to-2-phase an CONNEKTER 7-PHASE/3-PHASE amplifier Phase A Phase B power process Regenerative Current Lacitink, current reference excitation Secondary current rent reference Resolver ٥ Multi-4ma plier Control power supply Slip cal-Speed de-Speed amplifier ¥ AC 200/ \$ 100/0s Soft PWB

DE 6429218-32

5. ADJUSTMENT

5.1 External Terminal List

	Terminal Symbol	Name	Description
· [R, S, T	Main Power Input	3-phase 200/220 VAC ±10%, 50/60 Hz.
RCUI	r, t,	Control Power Input	Single phase, 200/220 VAC ±10%, 50/60 Hz
MAIN CIRCUIT	. U, V, W	Motor Connection	Connect U, V, and W to the corresponding motor terminals.
	R ₁ , R ₂	Resistor Connection	Connected before shipment.
	C5, C6		Connect to motor incorporated thermal protector. C5: Motor 1, C6: Motor 1b.
	. c7, c8,	Spindle Condition Detection	Normal condition: Normally open.
	C9, C10	Spindle Control Abnormal Detection	Detection of spindle control circuit abnormal condition: Normally closed.
	1 '2,	Speed Reference Input	With 2 connected to OV, rated speed at 10 V.
11	3 4	Resolver Input	With 4 connected to OV, connect: . 3 to resolver terminal C, and 4, to.
CONTROL CIRCUII	5 6	Resolver Phase A Excitation	With 6 connected to OV, connect:5 to resolver terminal A, and 6, to D
ONTROL.	7 8	Resolver Phase B Excitation	With 8:connected to OV, connect: . 7 to resolver terminal B, and 8, to D.
č	E	-	Connect E to resolver terminal E and ground it.
	9 2	Auxiliary Input	Use these terminals when obtaining the rated motor revolution at voltages (6.5 - 30 V) other than rated reference voltage (10 V). CAUTION REQUIRED!!
	10, 11 12		Connect 11 to 0V common, 10 to +12V, 12 to -12V. 10 mA can be supplied. Usable for speed setting, etc.
,	13		When 13 is closed to OV terminal 11, the control operations are forced to stop.
, I	14 15 1		When 14 and 15 are closed, torque limitation start. (Torque limitation impossible on reverse run.)

	Terminal Svmbol		Name	Description		
	16	17	Start Interlock	Closing 16 and 17 starts control. Opening 16 and 17 stops control.		
Т.	18	19	Output for Tachometer	DC 1 mA with 18 negative and 19 positive.		
CI RCUIT	20	 2 <u>j</u>	Zero Speed Detection	When 20 and 21 are closed, zero speed.		
CONTROL	22	2̂3,	Speed Concordance Detection	When 22 and 23 are closed, speed conforms.		
; ; !:	24	25	Excessive Devia- tion Detection	When 24 and 25 are closed, excessive deviation.		
	26		Time Limit 60% Reference	When 26 and 12 are closed, acceleration and deceleration time becomes 60%. (Lse is prohibited for 1 second setting)		

5.2 Potentiometer Adjustment

5.2.1 1 PWŁ

POT.	Sym- bol	Functions	Adjustment	Change of Characteris- tics by Adjustment
iN-OFS	16VR	Offset adjustment of soft start circuit.	. -	-
TIME	17VR	ment.	Turn CW for incresing time. Turn CCW for shorten- ing time.	10V/7
			•	1 second or tess.
TIME SELECT	1D1C	Selection of time limit		With 1S shorted: 1 sec, With 2S shorted: 2 sec, With 3S shorted: 3 sec.
i				The time limits are used at 0 to 10 V.

Pot.	Sym- bol	Functions		Adjustment	Change of Characteris- tice by Adjustment
FB-AJ	2VR	Motor speed fine adjustment	Adjumote rpm speedage acre	UTION) ust so that the or reaches rated, with the rated ed reference voltable the terminals and 2.	+NR
OFS-A.J	4VR	Speed amplifier offset adjust-ment.	CW: CCW:	Reverse run. Forward run.	R.P.M. INPUT
C-LIM	5VR	Current limit adjustment.	CW:	Current increases. Current decreases.	At SPM voltage. CPCR-QR756SC-4k ±6V max, CPCR-QR756SC-2K ±6.5V max.
TOL-L	12VR	Torque setting when limiting torque (current) on external	CW:	Current increases. Current decreases.	_
SPD- BAL	8VR :	Zero adjustment of speed feedback voltage.	CW:	TG-M voltage shifts towards TG-M voltage shifts towards +.	With the motor at stand- still, set so that ±2mV obtained across terms. TG-M and OV.
GAIN	18VR.	Gain adjustment of speed feedback voltage detection circuit.	CCW:	TG-M voltage decreases. TG-M voltage increases.	Th.4 VDC at rated motor speed operating on TG-M voltage.
A-BAL	9VR	of resolver exciting voltage.	volt		Approx. ±5.6Vp, 12.5 kHz at A-res and B-res voltages

Pot.	Sym- bol •	Functions		Adjustment	Change of Characteris- tice by Adjustment
SI -F	6VR	Slip frequency adjustment.	CCW:	Slip frequency inceases. Slip frequency decreases.	CPCR-QR756SC-4K at SPM=6V, SLF-M=4.4 kH: (t=225 s).
	-				CPCR-QR 756SC-2K at 'SPM=0.5V, 'SLF=M5.10 kHz (t=194 s).
A-AJ	7VR	Exciting current reference adjustment	· CW: CCW:	Exciting current increases. Exciting current decreases.	I _{MA} , I _{MB} ±3Vp
AGREE	14VR	Speed concordance detection adjustment	•	ĺ	Adjust so that absolute values of TG-M and AGR-M voltage become equal.
AGR- AJ	20VR	Adjustment of speed concordance detection point.	CW: CCW:	Concordance point rises. Concordance point falls.	DETECTION POINT 100%
Z-SPD	13VR	Zero speed detection point adjustment.	CCW:	Detection point rises. Detection point falls.	setting
DEV-A	19VR	Excess deviation detection point adjustment.	CW: CCW:	falls.	70

Pot.	Sym-	Functions	Adjustment	Change of Characteris- tice by Adjustment
METER	: 15VR	lachometer scale adjustment.	CW: Meter needle Lowers.	External output current DC lmA, at full scale lmA
INPUT	1VR	Speed reference input voltage adjustment.	:	Effective only when the terminal (9) is used as input—terminal but speed concordance and excessive deviation are not detected
5.	2.2 2	PWB		
UC-Z	3VR	Zero adjustment of phase U current detection isolator.		Adjust within ±1mV at 0A.
VC-Z	5VR	Zero adjustment of phase V current detection isolator.	-	Adjust within ±1mV at OA.
UC-AD	2VR	Sensitivity adjust- ment of phase U current detection isolator.	CW: Gain increases. CCW: Gain decreases.	Adjust to 0 177.
VC-AD	4VR	Sensitivity adjust- ment of phase V current detection isolator.	CW: Gain increases.	Adjust to 0 lV/A.
OFF-1	8VR	Offset adjustment of phase A current amplifier.	. –	Adjust so that the Incomponent of phase to and V currents are
OFF-2	9VR	Offset adjustment of phase B current amplifier.	-	removed. Mutual interference occurs.
OV-A	iVR	Adjustment of over- voltage protection detection level.	(CAUTION) Do not tamper with this potentiometer.	N RPM
	1			AA1- 375-380
•			!	Voltage acres.
	<u> </u>	1		o:

5.3 Check Terminals

5.3.1 1PWB

Symbol	Name	Description			
ov	SIGNAL GROUND	OV terminal for waveform monitoring.			
iN-M		For monitoring speed reference input waveform 0 to ±10V.			
		Monitoring is possible only when input is applied to terminal $\widehat{1}$.			
SFM	SOFT START OUTPUT MONITOR	For monitoring output waveform of soft start circuit 0 to $\pm 10\mathrm{V}$.			
SPM		For monitoring speed amplitier output, i.e., torque reference waveform 0 to ± 6.5 V.			
i2A		Phase A secondary current speed reference voltage 0 to ±3.5%.			
i2B		Phase B secondary current speed reference voltage. O to ±3.5V.			
A-RES	RESOLVER-6 EXCITING VOLI MONITOF	For monitoring resolver phase A exciting voltage ±5.6 Vp. 12.5 kHz. A leads B by a phase angle of 90°.			
B-RES	RESOLVER-B EXCITING VOLT MONITOK	For monitoring resolver phase B exciting voltage ±5.6 Vp, 12.5 kh B lags bening A by a phase angle of 90°.			
O-RES	RESOLVER SIGNAL MONITOR	For monitoring resolver detection signal ±0.2Vp, 12.5 kHz, ±3.5 kHz.			
THITA	O-RES MONITOR	For monitoring shaped waveform of resolver detection signal ± 7 Vp, 12.5 kHz, ± 3.5 kHz.			
TG-M	SPEED FEEDBACK VOLT MONITOR	For monitoring speed feedback voltage ±6.4V/±4000 rpm, ±6.4V/±2000 rpm.			
CF	CLOCK FREQUEN- CY MONITON	For monitoring clock frequencyO			
		2 MHz -21 , $t=0.5\mu s$ -71			
+51	C.F OSC POWER SOURCE MONITOR	For monitoring power source of			
— М.Г.	MULTIPLIER FREQUENCY OSC MONITOR	t For moritoring multiplier saw + 30 teetn oscillator. 15 kH. t=66.7 pc			

Symbol	Name	Description		
IM-A EXCITING CUR- RENT-A SIGNAL MONITOR		Phase A exciting current reference voltage ±3 Vp, 0 to 133 Hz.		
		$f = \frac{4 \times N \text{ rp.}^2}{120}$ (Hz)		
ІМ-В	EXCITING CUR- RENT-B SIGNAL MONITOR	Phase B exciting current reference voltage ± 3 Vp, 0 to 133 hz. $f = \frac{4 \times N \text{ rpr}}{120} \text{(nz)}$		
SLF-M	SLIP FREQUENCY MONITOR	For monitoring slip frequency. — +7\(\text{Refer to SL-F above for frequency.}\)		
AGR-M	AGREEMENT MONITOR	For monitoring when adjusting AGREE (14VF). The voltages at TG-M and AGR-M are equal in the absolute values.		
+12\		For monitoring +12V control power source voltage +12V ±0.5V.		
-12\		For monitoring -12V control power source vo. 130 -12V ±0.5V.		
+71		For monitoring +7V control power source voltage +6 to +6.5V.		
-7V		For monitoring -7V control power source voltage -6 to -6.5V.		
A		For monitoring reference wave of resolver phase exciting voltage ±6.5 Vp, 12.5 kHz. A leads B by a phase angle of 90°.		
В		For monitoring reference wave of resolver phase B exciting voltage ±6.5 Vp. 12.5 km. B lags behind by a phase angle of 90		
Г1	•	For monitoring slip frequency calculation clock 500 kH 500 kH		
F3		For monitoring slip frequent calculation clock 500 km = -6.5		
Γ10		For monitoring slip irequency calculation clock		

5.4 Adjustment Results

5.4.1 Normal state

1 PWB

. Control Power Source

Name	Normal state	Check point
+12 V	+12 V ±0.5 V	+12 V
-12 V	-12 v ±0.5 v	-12 V
+7 V	+6 to +6.5 V	+7 V
-7 V	-6 to -6.5 V	-7 V
+5 V	4.4 V to 5.0 V	+5 V

. Oscillator

Clock	Rectangular wave 2MHz (0.5µS)	CF
	\^ \sigma -2 \mathred{1} -7	
Multiplier	Saw teeth wave ±3 Vp ±0.3 V, 15 kHz±1.5 kHz	ML

. Resolver

A excitation	Nearly sine wave	12.5 kHz, ±5 to ±6 Vp	A-RES
B excitation	Nearly sine wave	12.5 kHz, ±5 to ±6 Vp	B-RES
O detection	Sine wave	12.5 kHz, ± \(\Delta f \pm 1 \) to \(\Delta 3 \) Vp	O-RES

Across A and B there is 90° phase difference.

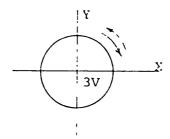
Zero detection leads in phase when motor runs forward (frequency increases). Zero detection lags in phase when motor runs reverse (frequency decreases).

Relationship between Δf and motor speed

Resolver Δf Motor Primary Current (At no load) Motor Speed Δf Hz x 1/25 = f Hz x 30 = N rpm.

Example: 3000 Hz 120 Hz 3600 rpm (60 rpm)

2 PWB


Symbol	Name	Description
CH 1U	CURRENT MONI- TOR-U	For monitoring phase U current waveform 0.1 V/A.
CH1V	CURRENT MON1- TOR-V	For monitoring phase V current waveform 0.1 VA.
PF	PWM-OSC MONITOR	For monitoring PWM sawteeth wave oscillator voltage ±3 Vp, 1.8 kHz.
СН3		For monitoring drive signals for power transistors 1, 3 and 5.
СН2		For monitoring drive signals for power transistors 2, 4 and 6. 1.8 kHz
PR1M		For monitoring detection signals of transistor protection. +12V t OPERATES AI t≤60
PCM	Terms for monitoring the power circuit:	For monitoring 1 to 6BDR (base drivers) photo-coupler function signals. OV -C.4 OFF 1.8 kHz
DLYM	Measure across terminal OV: 1BDR, 3BDR and 5BDR have independent terminal OV.	For monitoring 1 to 6BDR delay 50 s +10V waveform. OV
СН9		1 to 7BDR base drive signal +1 to 2% waveform. OV
PR2M		1 to 6BDR protection-detec- +10V tion signal.

Symbol	Name	Descriptio ₁
EC	Terms. for monitoring the power circuit: Measure across terminal OV. 1BDR, 3BDR and 5BDR have independent term. OV.	0v
+10V 0V -10V	Terminals for the power circuit:	Four in total: One for each 1BDR, 3BDR,5BDR, and one in common for 2, 4, 6 and 7BDRs.
+5V -5V	- Neasure across : terminal OV. -	For monitoring 7BDR +5V or -5V power source.

. Exciting Current Reference Voltage

Name	Normal state	Check Point
Phase A exciting current	Sine wave 0 to 134 Hz ± 3 Vp	
reference	4000 rpm motor.	IMA
Phase B exciting current	Sine wave 0 to 65 Hz ±3 Vp	I MB
reference	2000 rpm motor.	2110

Phase A and phase B are 90° apart in phase Lissajous' figure of Exciting current

Speed reference + input CW revolution at twice the motor speed.
- input CCW revolution at twice the motor speed.

2 PWB

. Control power supply

. Name	Normal state	Check point
. lBDR power supply		1BDR +10 V -10 V
3BDR power supply	+10 V ±1 V -10 V ±1 V	3BDR <u>+10 v</u> <u>ov</u> -10 v
5BDR power supply		5BDR +10 V OV
2BDR power supply 4BDR power supply 6BDR power supply 7BDR power supply	+10 v ±1 v, +5 v ±0.5 v -10 v ±1.4v, -5 v ±0.5 v	$\frac{2,4,6,7BDR}{+10 \text{ V}} + \frac{5 \text{ V}}{-5 \text{ V}} = 0\text{V}$

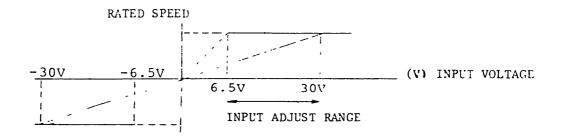
. Oscillator

1	PWM	Sawteeth	wave:	1.8 kHz	<u>+</u> 0.2	kHz ±3	Vp ±3	v	' PF
_									

5.4.2 Adjustment

. Adjustment of soft start-stop time

With TIME SELECT set to 1S, adjust potentiometer TIME so that output voltage at SFM point comes to rise and fall in 1 second.

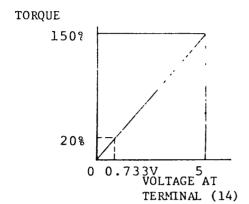

Time can be selected among 1, 2 and 3 seconds with the DIP connector When the external terminals $\frac{26}{2}$ and $\frac{12}{2}$ are shorted, set time is reduced to $\frac{60\%}{2}$.

Note: Do not use at time setting 1 second or shorter.

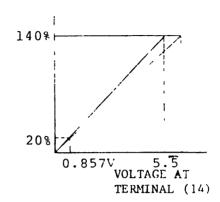
. When the reference voltage takes some values other than ±10 \

When a voltage between ± 6.5 and ± 30 V is adopted as the rated speed reference voltage, the terminal (9) is used.

The input voltage is adjusted by input.



. Zero adjustment of speed feedback voltage


Adjust with potentiometer SPD-BAL until the average value of the TG-M voltages becomes within ± 1 mV when the motor at 0 rpm

. Torque limiter adjustment

Adjust the torque limiter with the potentiometer TOL-L so as to satisfy the characteristics shown below.

A 4000 RPM MOTOR

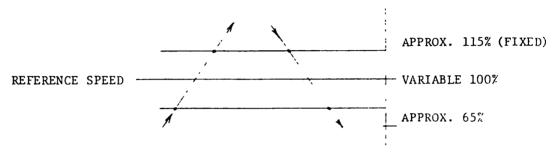
A 2000 RPM MOTOR

. Speed adjustment

The fine adjustment of the speed reference voltage and motor speed can be made with the potentiometer FB-AJ. However, when they are adjusted more than $\pm 3\%$ from the adjustment made before shipment, the speed corcordance setting becomes incorrect. In this case, DO NOI FORGET TO READJUST THE POTENTIOMETER AGREE REFERRING TO (7).

. Slip frequency adjustment

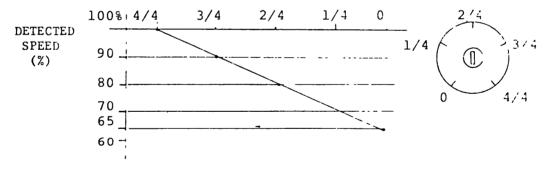
With only the control circuit energized, impress the speed reference voltage, and adjust the potentiometer SL-F until the SPM and the SFI-M achieve the conditions shown below.


	CPCR - QR746SC -	4K 4KB	CPCR - QR756SC -	2K 2KB
SPM	6.0 V	5.0	6.50 V	5.5
SFL-M	225 % Sec 4.44 kHz	3.7 kHz	195, Sec 5.13 kHz	4.3 kHz

. Speed concordance detection adjustment

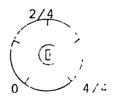
With the motor running at the rated speed, or at half the rated speed, adjust the potentiometer AGREE until the absolute values of the IN-M voltage and the AGR-Mivoltage become equal.

Note: DO NOT CONFUSE THE POTENTIOMETERS AGREE AND AGR-AJ].


. Adjustment of speed concordance detectiom point

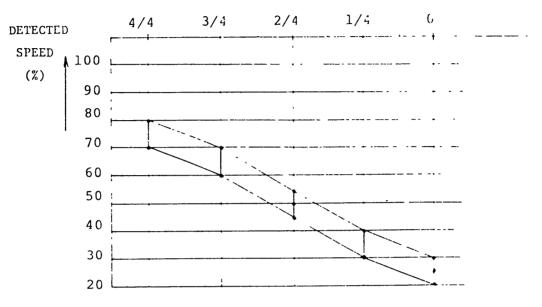
The potentiometer AGR-AJ is for adjusting the concordance point where the motor reaches the reference speed during acceleration as shown above, and the disagreement point where the motor deviates from the reference speed during its deceleration.

Before shipment, it is set to 2/4 graduation and 80%.

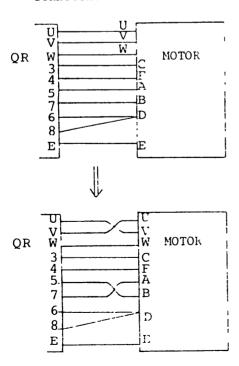

AGR-AJ GRADUATION

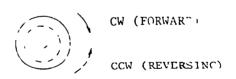
. Zero speed detection

The zero speed detection point is adjusted with the potentiometer [7-SPJ]. Before shipment the potentiometer is set to 2/4 graduation.


Potentiometer Gradation	0	2/4	4/4
Detected RPM	5-10	15-20	30-35

. Excessive deviation detection point


The excessive deviation detection point is adjusted with the potentiometer |DEV-A> .


DEV-A GRADUATION

. Reversing direction of rotation

To reverse the motor running direction, interchange the connections of two of the three motor terminals, and simultaneously, reverse the connections of the resolver excitation terminals.

SPEED REFERENCI (+) ----- (C'...
(-) ------ C'm

6. TROUBLE SHOOTING

6.1 Trouble Indication and Operation Indication

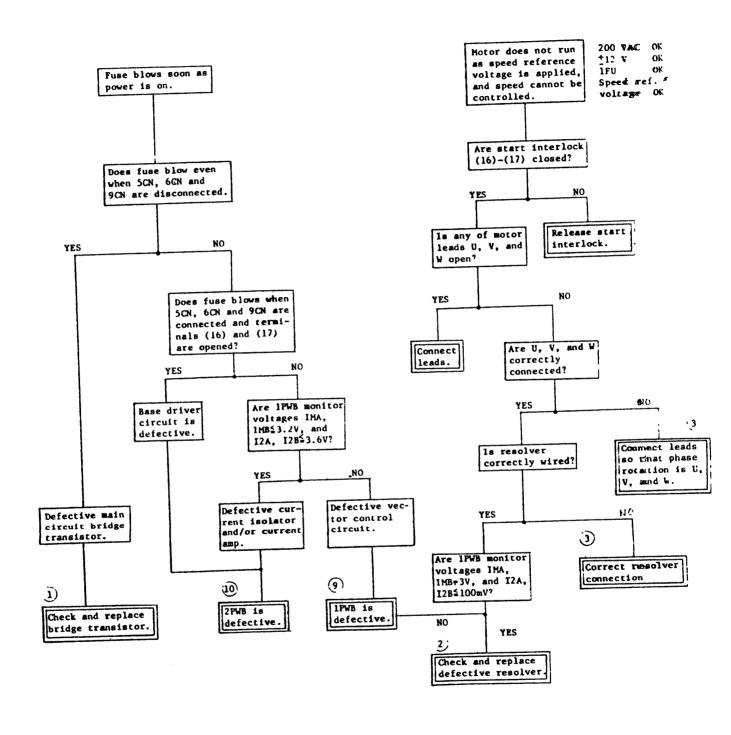
Name	Indication	Output
Zero Speed	ZERO-S 3 LED	20, - 21, Closed
Speed Concordance	AGREE! 4 LED	22 - (23) Closed

Name	Indication	Output	
Excessive Deviation	_	24 25 Closed.	
Transistor Protection Excessive Regenerative Voltage	PROTECT 1 LED, and CR2X) light.	_	
Overspeed	OVR-SPD 1 LED, 2 LED, and CR2X light.	C9 - C10 Open.	
Fuse Blown	IFUX CR2X lights, and CR3X does not light.		
Motor Overheating	CR3X Does not light, and CR5X lights.	(C7) - (C8·Closed.	
Heat Sink Overheating (Fan stops)	CR5X Lights.	(C9) - C10 Open.	
Regenerative Power Resistor (3R) Overheating	CR2X Lights.	C7,- C8 Closed	

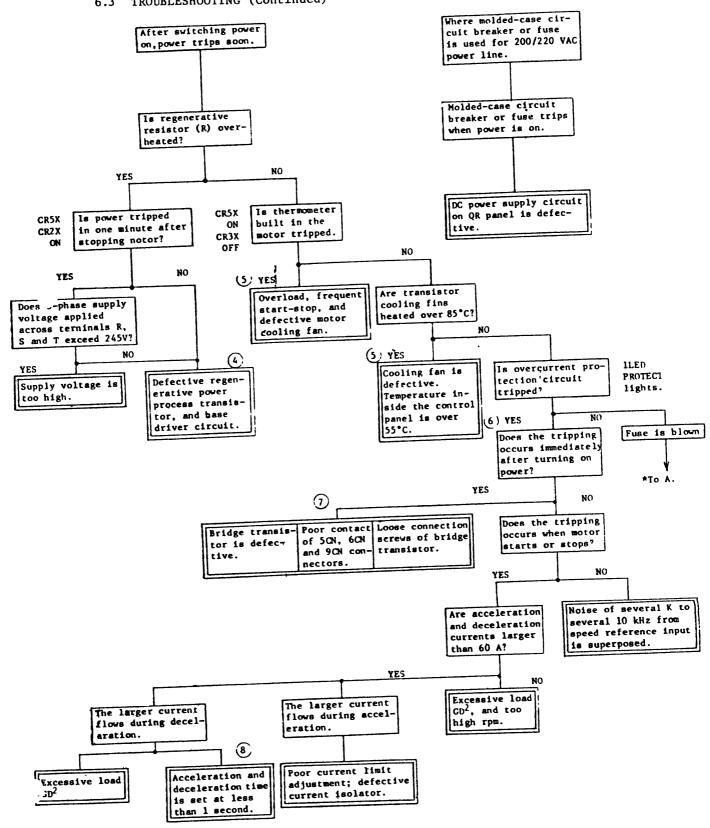
6.2 Symptoms Resulting from Incorrect Connection of Motor Resolver

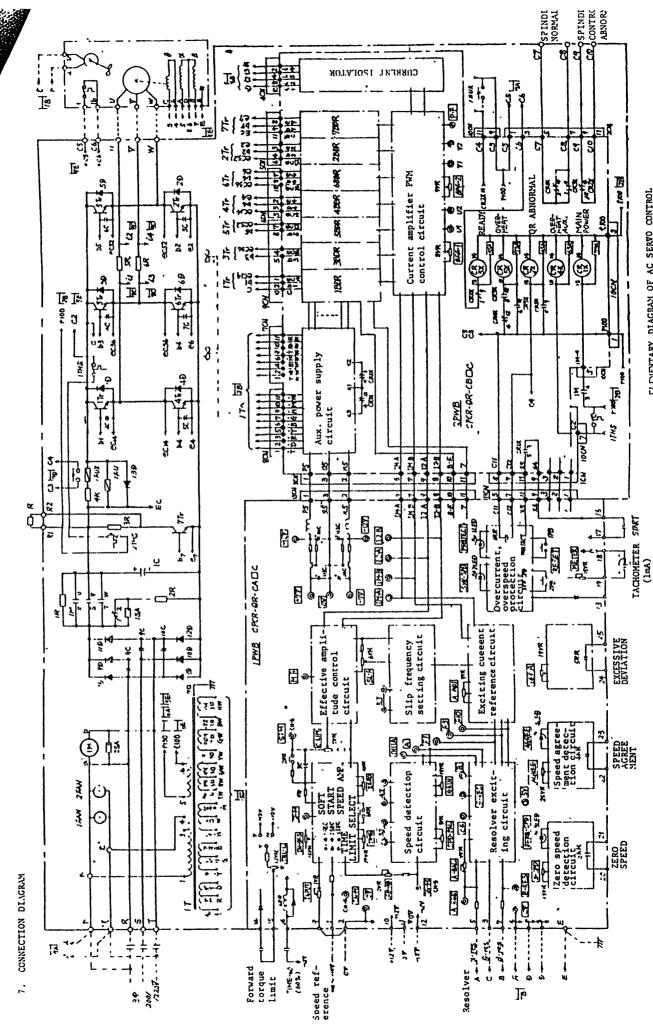
6.2.1 Motor

Causes

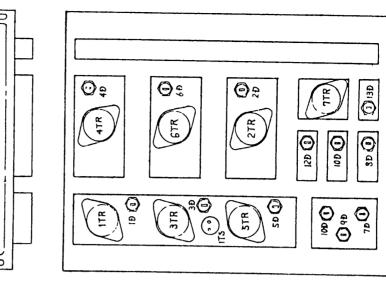

Incorrect connection
of phases U, V and W
as 75 rpm.

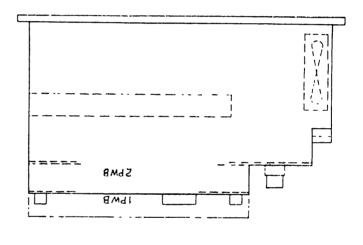
Symptoms

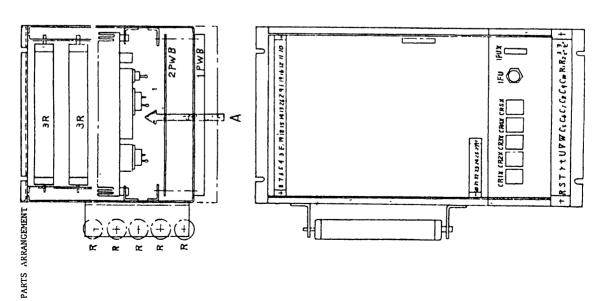

Even when a speed reference voltage is applied, the motor runs at a speed as low as 75 rpm.


6.2.2 Resolver

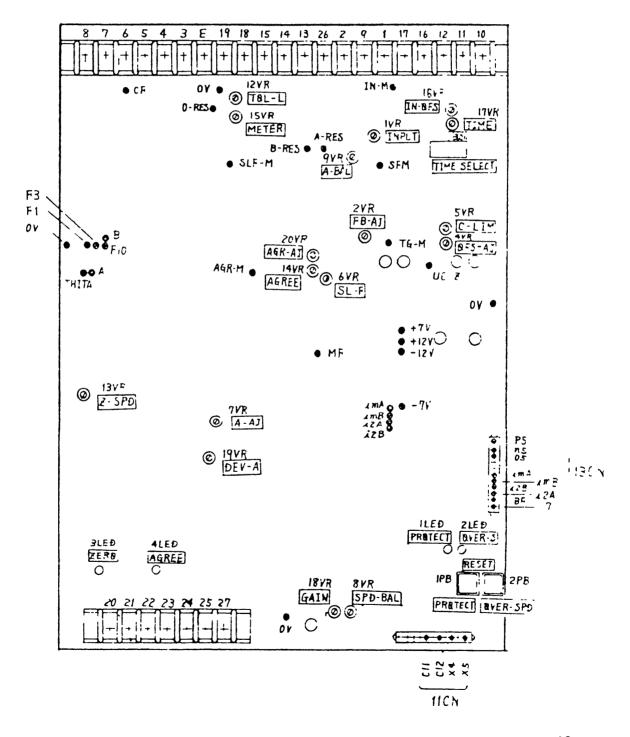
Terminal 3 Open	The overspeed protection operates.
Terminal 4 Open	When a speed reference voltage is applied, the motor runs only jerkily.
Terminal 5 Open	When a speed reference voltage is applied, the motor runs at a speed below $100~\text{rpm}$.
Terminal 7 Open	When a speed reference voltage is applied, the motor runs at a speed below 100 rpm.
Terminal 6 Open	When a speed reference voltage is applied, the motor runs at a speed below 50 rpm.
5 and 7 Reversed	When a speed erference voltage is applied, the motor runs at a speed below 75 rpm.

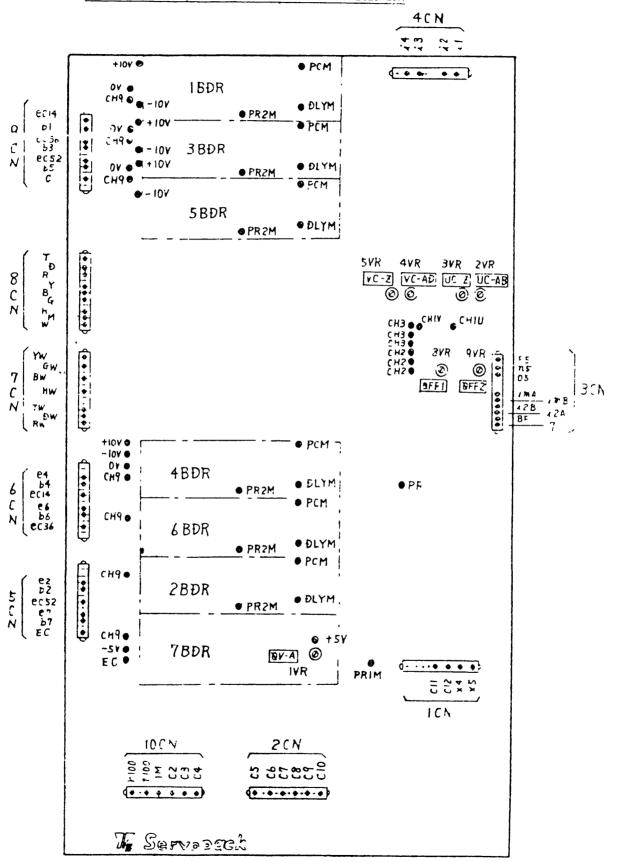

6.3 TROUBLESHOOTING (Continued)




CLENENTARY DIAGRAM OF AC SERVO CONTROL CCR-ORL) SC FOR SPINDLE AC CONTROL

- 31


PARTS LAYOUT OF HEA1 SINK (View Arrow A)


1 PWB CPCR- QR-CA_C

POTENTIOMETER, CHECK TERMINAL LAYOUT DRAWING

2 PWB CPCR-QR-CB C

POTENTIOMETER, CHECK TERMINAL LAYOUT DRAWING

9. MAIN PARTS LIST

Symbol	Name	Ratings and spec- ifications	Maker
1M	Magnetic contactor	HI-12E/1B2, 200VAC	Yaskawa Electric Mfg. Co., Ltd.
1FU	Fuse	BLA03 (C-30), 30A	Fuji Electric Co., Ltd.
1FUX	Alarm fuse	P430, 3A	Daito Communication Apparatus
1THS	Thermo-switch	US-118XN, 80 to 90°C Asahi Keiki Co., Ltd.	
2THS		US-118XN, 140 to	Asahi Keiki Co., Ltd.
lTr-6Tr	Darlington transis- tors	2SD466, 450V, 50A, hFE100	Shindengen Electric Mfg. Co., Ltd.
7Tr	Darlington transis- tors	2SD915, 450V, 30A, hFE100	Fuji Electric Co., Ltd.
1D-6D	Fast recovery diodes	30JG11, 600V, 30A	Tokyo Shibaura Electric Co., Ltd.
7D-12D	Diodes	10M80, 800V, 40A	International Rectifier Corporation, Japan, Ltd.
13D	Diode	6M80, 800V, 15A	International Rectifier Corporation, Japan, Ltd.
1C	Capacitor	CW450LGSN, 450V, 1500µX2P	Nippon Chemical Condenser Co.,
5r, 6r	Resistors	QRY60, 60W, 0.02 ohm	Japan Resistor Mfg. Co., Ltd
1FAN, 2FAN	Fans	! HS4556, 200VAC	Tobishi kosan Co., Ltd.
CR1X- CR5X	ı Relavs	'NY-4N, 100VAC	Omron Tateishi Electronics Co.