```
AC SPINDLE DRIVE VS-626MT
    ( TYPE CIMR-MT )
```

CONTENTS

1. SPECIFICATION
2. INTERFACE
3. PROTECTIVE FUNCTION
4. ORIENTATION UNIT
5. DEMENSIONS DIAGRAMS
6. CONNECTION DIAGRAMS
7. ELEMEMTARY DIAGRAMS
8. EXTERNAL TERMINAL LIST
9. ADJUSTMENT
10. LOCATIONS OF POTS AND CHECK POINTS
11. BLOCK DIAGRAM AND WAVEFORMS AT CHECKS POINTS
12. TROUBLE SHOOTING

NTROO 10

1. SPECIFICATIONS

TYPE		CIMR-MT7.5K	CIMR-MT11K	CIMR-MT15K
Nominal Rating		7.5KW	11 KW	15 KW
Applicable Motor	Continous	5.5KW	7.5KW	11 KW
	30 Minutes	7.5KW	11 KW	15KW
Power Supply		$\begin{aligned} 3 \text { Phase } & 50 / 60 \mathrm{HZ} \\ & 60 \mathrm{HZ} \end{aligned}$	$\begin{aligned} & 200 / 220 \mathrm{~V} \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & (\pm 10 \%) \\ & (+5 \%,-15 \%) \end{aligned}$
Power Supply Capacity		12KVA	18 KVA	22KVA
Main Circuit		3-Phase full wave rectification Transistorized PWM Inverter		
Maximum Output Voltage		160 V		
Maximum Peak Output Current		55A	80A	100A
		60 sec .		
Rated Output Current		45A	65A	85A
Speed Control Range		1:100		
Constant Output Range		$1: 3$		
Rated Speed		4500 RPM or 6000 RPM		
Speed Fluctuatión	Load Fluctuation	$\pm 0.5 \%$ 100\% Load Fluctuation		
	Dffset	0.1\% at 10 to 100% Speed		
Acceleration Deceleration		0.5 to 6.5 sec . (every 0.5 sec)		
Operating and Braking Methods		Reversing Operation and regenerative Braking		
Cooling Method		Fan Cooled Type		
Ambient Temoerature		-10 to $+45^{\circ} \mathrm{C}$ (Under 80% relative humidity)		

2. INTERFACE

2.1 INPUT INTERFACE

2.2 OUTPUT INTERFACE

Zero Speed Detection	Contact closes when the motor speed drops to 1% or lower than the rated speed
Speed Agreement Detection	Contact closes when the motor speed is within $\pm 15 \%$ of the commanded speed
Excessive Deviation Detection	Contact closes when the motor speed drops to 50\% or less of the commanded speed.
Trouble Detection	Contact closes or opens when any trouble is detected.
Overload Detection	Contact closes when the current goes over the set current limit.
Speed Detection	Contact closes when the speed drops under the set speed
Speed Meter Drive	one way swing DC limA meter (Full scale at Max. speed)

3. PROTECTIVE FUNCTIONS

$O C$	Checks the Main DC Current and protects the Power Transistors
$O L$	Checks the Main AC Current and protects the Moter and Power Transistors.
OV	Checks the Main DC Voltage and protects the Power Transistors.
OS	Checks the Motor Speed and protects the Motor and the Machine.
FU (Fuse $B l o w n)$	Detects if the Main fuse has blown
UV (Under Voltage)	Checks the DC Power source for the Control Circuits.

4. ORIENTATION UNIT
(Option for Machining Centers)
1) Positioning Accuracy- $\pm 0.5 \mathrm{~mm}$ or less
2) Position Detector
a. Sensor
FS-200 (joint type)
FS-1378 (separate type)
b. Magnet MG-1378
THIRD ANGLE PROJECTION
务三角法
5．DIMENSIONS
DIAGTRAMS

5. Connection Diagram (without orientation unit)

Elementary Diagram
CIMR-MT-15

62
82

8. External Terminal List

	Terminal Symbol	Name	Description
들른늘눌	R, S, T	Main Power Input	3-phase $200 / 220$ VAC $\pm 10 \%, 50 / 60 \mathrm{~Hz}$.
	r, s, t	Control Power Input	3-phase, $200 / 220$ VAC $\pm 10 \%, 50 / 60 \mathrm{~Hz}$
	U, V, W	Motor Connection	Connect U, V, and W to the corresponding motor terminals.
	P, B	Resistor Connection	Connected before shipment.
$\begin{aligned} & \text { 늘 } \\ & \text { 은 } \\ & \text { 웅 } \\ & \text { 옹 } \end{aligned}$	23, 25	Spindle Condition Detection	Normal condition: Open
	23, 24	Spindle Control Abnormal Detection	Detection of spindle control circuit abnormal condition: Closed
	33, 32	Speed Reference Input	32 is connected to $0 \mathrm{~V}, 33$ is connected to speed reference ($\pm 10 \mathrm{~V}$)
	13, 14	Resolver Input	14 is connected to $O V, 13$ to resolver terminal C, and 14 to F.
	9, 10	Resolver Phase A Excitation	10 is connected to $O V, 9$ to resolver terminal A, and 10 to 0 .
	11	Resolver Phase B Excitation	11 to resolver terminal B
	12	Grounding	Connect E to resolver terminal E and ground it.
	6, 7, 8	$\pm 12 V$ Output	7 is OV common, 6 is $\pm 12 \mathrm{~V}, 8$ is -12 V . 10 mA can be supplied. Usable for speed setting, etc.
	50	Torque Limit	When $+12 V$ is applied to 50 , torque limit is ineffect.
	37	Start Interlock	When +12 V is applied to 37 interlock is not ineffect

External Terminal List (CONT)

	Terminal Symbol	Name	Description
	51, 52	Output for Tachometer	DC 1mA with 52 negative and 51 positive.
	44,45	Zero Speed Detection	44 and 45 are closed, when speed is detected.
	47, 48	Speed agreement Detection	47 and 48 are closed, when speed agrees with command.
	42,43	Excessive Deviation Detection	When 42 and 43 are closed, excessive deviation is detected.
	49	Speed agreement for Orientation	When 49 is OV , speed conforms.
	46	Zero speed for Orientation	When 46 is OV , zero speed is detected.
	5	Torque reference to Orientation	
	16	Torque reference from Orientation	
	4	Speed reference to Orientation	
	3	Speed reference from Orientation	

FOR TYPE VS-626 ג.C. SPINDLE DRIVE
 Instructions for Removal and Installation of the Spindle Drive Circuit Boards

1. Shut off the Control and turn off the Main Power Switch
2. Open the door to the Spindle Orive Cabinet
3. Remove the clear plastic cover on the Spindle Drive.
4. Make a list of all the wires onto the terminal strips on both the large and small boards on the spindle drive. These strips are located on the left side of both boards and also there are some small terminals on the bottom of the small board.
5. Remove all wires from the board to be replaced
*CAUTION: Insure that your wire list is complete and correct before removing any wires
6. Remove all ribbon connectors and if necessary remove the connector with the yellow wires at the top of the large board (it has 5 straight pins in a row)
7. If the large board is to be removed: At the top of the board there are 2 pairs of Red and White wires (the wires are wound together as a twisted pair) Trace these back to their white connectors and pull the connectors apart. *NOTE: These plugs are labeled 1 and 2.
8. The small board is held down by plastic squeeze tabs. To remove the board, squezze the tabs together with a pair of needle-nose pliers while gently lifting the board. When the board is free, lift it gently away and set it aside. *CAUTION: When handling circuit boards ensure that they are not set on a wet surface. If possible set them on plastic of some sort.
9. The large board is nomally held down by 9 screws, 8 of which are located on the outside edge of the board. The remaining screw is located in the very middle of the board. Remove the screws and gently lift the board free.
10. To install the new boards simply reverse the above procedure. All of the Ribbon cables and all of the connectors are keyed to fit only in one direction in their appropriate sockets. Ensure that $2 l l$ of the wires on the terminal strip are in their proper location and that they are tightly screwed down.

If you have any questions or problems please call:
YASNAC Service Department
Phone Number (312) 564-0806

Please return the bad boards to:
YASNAC America Inc.
Attn: Field Service Department
305 Era Drive
Northbrook, Illinois
60fis2

9. ADJUSTMENT

1. Adjustment of Speed Reference

(A) means part with a parenthesis are found on the JPAC-CO26
(C) means part with a parenthesis are found on the JPAC-C051

SYMBOL	FUNCTION	ADJUSTMENT
IRH(A)	OFFSET adjustment of speed reference	Adjust CH4(A) within $\pm 3 \mathrm{mV}$ when speed reference is zero.
2RH(A)	LIMIT adjustment of speed reference	Adjust the maximum speed reference. Normally set full CW.
3RH(A)	GAIN adjustment of forward reference	Adjust the CH4(A) to +6.00 V at 100% forward speed reference.
4RH(A)	GAIN adjustment of reverse reference	Adjust the CH4(A) to $-6.00 \mathrm{~V} \pm 3 \%$ at 100\% reverse speed reference.

2. Adjustment of Speed Feedback

SYMBOL	FUNCTION	ADJUSTMENT
6RH(C)	ZERO adjustment of feedback	Adjust $\mathrm{CH} 3(\mathrm{C})$ within $\pm 3 \mathrm{mV}$ when speed is zero.
5RH(C)	GAIN adjustment of feedback	Adjust $\mathrm{CH} 3(\mathrm{C})$ to $\pm 6.00 \mathrm{~V}$ at rated speed (-: forward, $+:$ reverse)

3. Adjustment of Speed

SYMBOL	FUNCTION	ADJUSTMENT
NFB(C)	Adjustment of Speed	Adjust to rated speed at rated speed reference. If there is a difference between forward and reverse, adjust by 4RH(A).
IRH(C)	OFFSET adjustment of Speed	If there is a difference between forward and reverse at low speed, adjust so they are equal.

4. Adjustment of Exciting Current

SYMBOL	FUNCTION	ADJUSTMENT
8RH(C)	Adjustment of excitation current	Adjust the $\mathrm{CH} 6(\mathrm{C})$ and $\mathrm{CH} 7(\mathrm{C})$ to $\pm 3 \mathrm{~V}$ peak.
5RH(A)	Adjustment of minimum excitation current	Adjust the excitation current at zero speed reference and zero torque reference.
6RH(A)	Inclination adjustment of excitation current against speed	
7RH(A)	Inclination adjustment of excitation current against secondary current	

5. Adjustment of Basic Circuit

SYMBOL	FUNCTION	ADJUSTMENT
2RH(C)	Voltage adjustment of DC supply (+12V)	Adjust so $\mathrm{CHI}(\mathrm{A})$ is $+12.00 \mathrm{~V} \pm 0.1 \mathrm{~V}$
$3 \mathrm{RH}(\mathrm{C})$	Voltage adjustment of DC supply (-12V)	Adjust so $\mathrm{CH} 3(\mathrm{~A})$ is $-12.00 \mathrm{~V} \pm 0.1 \mathrm{~V}$
7RH(C)	Frequency adjustment of logic circuit	Adjust so $\mathrm{CHIL}(\mathrm{C})$ is $144 \mathrm{KHZ} \pm 1 \%$
11RH(C)	Balance adjustment of resolver excitation voltage	Adjust so that α-res. yoltage is the same level as β-res. voltage.
$\begin{aligned} & 19 \mathrm{RH}(\mathrm{C}) \\ & 20 \mathrm{RH}(\mathrm{C}) \end{aligned}$	Offset adjustment of phase α current amp Offset adjustment of phase β current amp	Adjust to remove the $D C$ component from the AC output current.
16RH(C)	Carrier frequency adjustment of PWM	Adjust to $2 \mathrm{KHZ}-3 \mathrm{KHZ}$ according to the specification.
$\frac{17 R H(C)}{18 R H(C)}$	Carrier frequency adjustment of PWM against speed	Usually this function is not used. Set full CCW.
T LIMIT (C)	Level adjustment of current limit	Adjust to 125% of the 30 minute rated current.
$\begin{aligned} & \text { SLIP } \\ & \text { FREQ(C) } \end{aligned}$	Slip frequency adjustment	
4RH(C)	Slip frequency adjustment against speed	
12RH(C)	Current level adjustment of OVERLOAD detection	Adjust to 105% of the 30 minute rated current.

5. Cont.

SYMBOL	FUNCTION	ADJUSTMENT
$13 R H(C)$	Time adjustment of OVERLOAD detection	Adjust to 60-120 sec. according to specification.
$10 R H(C)$	Level adjustment of Over Speed detection	Adjust to 110\% of rated speed.
$15 R H(C)$	Level adjustment of Low Voltage detection	Adjust to 84\% of rated voltage.

6.

SYMBOL	FUNCTION	ADJUSTMENT
9RH(A)	Level adjustment of zero speed detection	Adjust within 1% of rated speed.
AGREE(A)	Level adjustment of speed agree detection	Adjust to $\pm 15 \%$ of commanded speed
$10 R H(A)$	Offset adjustment of speed agree detection (-15%)	Adjust to -15% of commanded speed at low speed range.
$11 R H(A)$	Offset adjustment of speed agree detection $(+15 \%)$	Adjust to +15\% of the commanded speed at low speed.
DEV-A(A)	Level adjustment of deviation detection	Adjust to 50% of the commanded speed

7.

SYMBOL	FUNCTION	ADJUSTMENT
TIME (A)	Selection of acc/dec time limit	Tis equal to the time set by the DIP switch.

7. Cont.

SYMBOL	FUNCTION	ADJUSTMENT
8RH(A)	Level adjustment of current limit at deceleration	Normally the current is not limited during deceleration. (8RH is set to full CCW)
	But if the load has a large inertia and a large current flow through braking circuit at deceleration, 8RH should be adjusted to reduce the current.	

3.

SYMBOL	FUNCTION	ADJUSTMENT
METER (A)	Scale adjustment of Tachometer	Adjust the tachometer at rated speed. A lma DC full scale ammeter should be used for the tachometer.
$\operatorname{NDET}(\mathrm{A})$	Level adjustment of speed detection	Adjust to $10-30 \%$ of rated speed. (0.6V-1.8V at CH8(A)) If the speed goes under the set level, terminals 40 and $41(A)$ will be closed.
IDET(A)	Level adjustment of current detection	Adjust to 0-200\% of rated current. If current goes over set level, terminals 38 \& $39(A)$ will close.
$\operatorname{ILIM}(A)$	Level adjustment of current limit	Can adjust $10-100 \%$ of rated current when 12 V is applied at terminal $50(\mathrm{~A})$, otherwise it is set by TLIM.

1. Control Board

2. Auxiliary Board

Trouble	Check Item
.. QS alarm	1. Check the resolver wiring The figure at the right shows the wave form between terminals 13 and 14 (C) 2. Check the speed reference from N / C (Terminal $33(A)$), output of speed AMP (CH4(A)) and speed feed back (CH 3(A))
2. QL alarm	1. Check the load to see if it exceeds the specifications of the drive unit 2. Check the starting and stopping operation frequency
3. OV alarm	1. Adjust $8 \mathrm{RH}(\mathrm{A})$ if it occures during deceleration 2. Check the AC Main Supply Voltage 3. Check the Power Transistors and wiring of the braking circuit When the power is turned on immediately after it has been turned off. There is a chance that the OV alarm will appear so wait three or four minutes before turning on again
4. QC alarm	1. Check the six Main Power Transistors 2. Check the output circuit (including the motor) for shorts or excessive impedance to ground
5. FU alarm	See Item 4
6. Motor does not start	1. Check the alarm Leds if there are any alarms indicated refer to items 1 through 5 2. Check the speed reference from N / C (Terminal $33(A)$), the output of speed AMP (CH4 (A)) and the speed feed back (CH3 (A)) 3. Check the start interlock signal (Terminal 37 (A) should be 12V) 4. Check the wiring of resolver and motor
7. "Z-SPD" doesn't come at zero speed	1. Check the resolver wiring 2. Adjust $1 \mathrm{RH}(\mathrm{A})$ and / or $6 \mathrm{RH}(\mathrm{C})$
8. "Agree" doesn' \ddagger come when speed is correct	1. Adjust $1 \mathrm{RH}(\mathrm{A})$ and / or $6 \mathrm{RH}(\mathrm{C})$
9. The thermal relay in the braking circuit trips ring deceleratio	1. Check the Power Transistor in the braking circuit 2. Adjust 8RH (A)

1. Specifiction

Item	Specification	Terminal
Power Supply	Single-phase $\begin{array}{r}\text { 200/220V } \\ 50 / 60 \mathrm{~Hz}\end{array} \quad(-15 \%-+10 \%)$	$\begin{aligned} & \text { 200V....R1-T } \\ & \text { 220V....R2-T } \end{aligned}$
DC Power Supply For Magnetic Sensor	DC 12V $\pm 10 \% 50 \mathrm{~mA}$ (For Type FS-200)	$\begin{array}{r} -12 V(\text { Black }) . .4^{4} \\ \text { OV(Red) ... } 16 \end{array}$
	DC 15V $\pm 10 \% 50 \mathrm{~mA}$ (For Type FSD-1378)	$\begin{array}{r} \text { OV(C) } \ldots \ldots .16 \\ -15 V(B) \ldots .15 \\ \text { Connect } 4 \text { to } 15 \end{array}$
Orientation Command	On at orientation start	1
Gear Position	On when in Low Gear Off when in High Gear	2
Speed Reference	$\pm 6 \mathrm{~V} / \pm 100 \%$ speed	17
: Reference	-3V/+100\% Torque	8
Iero Speed Detection	On at zero speed	7
jpeed Agree Detection	"L" at speed agree	6
'osition Detection	6V p-p-16V p-p	$\begin{aligned} & 13(+) \\ & 14(-) \end{aligned}$
Irientation Speed :eference		12
rientation Torque eference		11
rientation Conculsion	Contact closes when orientation is finished	9 10
tion Speed Range	$0-2.2 \%$ of rated speed in H gear $0-8.8 \%$ of rated speed in L gear	
sitioning Accuracy	$\pm 0.5 \mathrm{~mm}$ or less on the circumference $120 \mathrm{~mm} \varnothing$	

Power Supply（／ø） sa／bore

的《回
Cónnect 15 to μ
sentura
NI SNOISNZWIO
1

- 3 Ydr : 3dh1

Dimension Diagram of Orientation Unit
4. ADJUSTMENT

Cymbol \& Function	Adjustment
LEVEL Level adjustment of position detection	Move the motor in the forward direction slowly and chech the waveform at CHK4. If the voltage isn't $20 \mathrm{Vp}-\mathrm{p} \pm 0.5 \mathrm{~V}$, adjust Level to correct it. If the waveform is like (b): terminals 13,14 should be switched (a) Correct (b) Wrong Waveform
ORIENT. SP Speed adjustment in orientation mode	Motor speed (not spindle speed) should be set over 30 rpm in orientation mode. Orientation Speed Setting Example NH (Max. rated speed in H gear) $=4500 \mathrm{rpm}$ N REF (Max. rated speed reference) $=6 \mathrm{~V}$ N OR (orientation speed) $=50 \mathrm{rpm}$ Orientation Speed $=\frac{N Q R}{N H}$ * NREF * 20 V Reference (CHK1) $=\frac{50}{4500} * 6 \times 20 \doteqdot 1.33 \nabla$

H. GAIN

L. GAIN

Gain adjustment of servo loop

Adjust the gain, so there is no hunting when the spindle stops ir orientation position.
Adjust H . Gain in H gear
Adjsut L. Gain in L gear
BIAS
Fine djustment of orien-
tation position

FRICTION
Fine adjustment of orientation position in H Gear

Select L gear range, adjust so the spindle position coincides with the proper orientation position.

Select H gear range, adjust so spindle position coincides with the proper orientation position.

