```
AC SPINDLE DRIVE VS-626MT

( TYPE CIMR-MT )
```

CONTENTS

- 1. SPECIFICATION
- 2. INTERFACE
- 3. PROTECTIVE FUNCTION
- 4. ORIENTATION UNIT
- 5. DEMENSIONS DIAGRAMS
- 6. CONNECTION DIAGRAMS
- 7. ELEMENTARY DIAGRAMS
- 8. EXTERNAL TERMINAL LIST
- 9. ADJUSTMENT
- 10. LOCATIONS OF POTS AND CHECK POINTS
- 11. BLOCK DIAGRAM AND WAVEFORMS AT CHECKS POINTS
- 12. TROUBLE SHOOTING

1. SPECIFICATIONS

TYPE		CIMR-MT7.5K	CIMR-MT11K	CIMR-MT15K
Nominal Rat	ing	7.5KW	11KW	15KW
Applicable Motor	Continous 30 Minutes	5.5KW 7.5KW	7.5KW 11KW	11KW 15KW
Power Supply	y	3 Phase 50/0 60 I	60HZ 200/220 HZ 240V	OV (±10%) (+5%,-15%)
Power Supply	y Capacity	12KVA	18KVA	22KVA
Main Circuit	t		wave rectificed PWM Inverte	
Maximum Out	out Voltage		1607	
Maximum Peal Current		55A	80A 60 Sec.	100A
Rated Output Current		45A	65A	85A
Speed Control Range			1:100	<u></u>
Constant Out	put Range		1:3	
Rated Speed		4500	RPM or 6000 F	RPM
Speed	Load Fluctuation	±0.5% 100% L	oad Fluctuati	ion
Fluctuati š n	Offset	0.1% at 10	to 100% Speed	1
Acceleration Deceleration		0.5 to 6.5 sec. (every 0.5 sec)		
Operating and Braking Methods			eration and reaking	egenerative
Cooling Method		Fan Cooled Ty	/pe	
Ambient Temperature		-10 to +45°C	(Under 80% re	elative humidity)

2. INTERFACE

2.1 INPUT INTERFACE

Rated Speed Reference	±10V DC
Input Resistance	15K Ohms
Running Signal	+12V Run ØV Stop
Torque Limit	+12V Low Torque ØV High Torque

2.2 OUTPUT INTERFACE

Zero Speed Detection	Contact closes when the motor speed drops to 1% or lower than the rated speed
Speed Agreement Detection	Contact closes when the motor speed is within ±15% of the commanded speed
Excessive Deviation Detection	Contact closes when the motor speed drops to 50% or less of the commanded speed.
Trouble Detection	Contact closes or opens when any trouble is detected.
Overload Detection	Contact closes when the current goes over the set current limit.
Speed Detection	Contact closes when the speed drops under the set speed
Speed Meter Drive	One way swing DC 1mA meter (Full scale at Max. speed)

3. PROTECTIVE FUNCTIONS

	<u></u>	
OC	Checks the Main DC Current and protects the Power Transistors	
0L	Checks the Main AC Current and protects the Moter and Power Transistors.	
ov	Checks the Main DC Voltage and protects the Power Transistors.	
0\$	Checks the Motor Speed and protects the Motor and the Machine.	
FU (Fuse Blown)	Detects if the Main fuse has blown	
UV (Under Voltage)	Checks the DC Power source for the Control Circuits.	

- 4. ORIENTATION UNIT
 (Option for Machining Centers)
- 1) Positioning Accuracy- ±0.5mm or less
- 2) Position Detector
 - a. Sensor FS-200 (joint type) or FS-1378 (separate type)
 - b. Magnet MG-1378

230

4-HOLES. FOR. MS. MIG.. SCREW 4-M6H AXITA.

022

MAIN TERMINALS WITH M4 SCREW FEBRETA HA

MAIN_IERMINALS EBISTANS.

MAIN TERMINALS

ATHERSTONE BLYKE

ळा

Dwg Po

Connection Diagram (with Orientation Unit)

8

K Elective Check Open Statist Tringistor Interfer Electing Diagram Min Co., 14. Appl.

Rovitions:

8. External Terminal List

	Terminal Symbol	Name	Description
	R, S, T	Main Power Input	3-phase 200/220 VAC ±10%, 50/60 Hz.
	r, s, t	Control Power Input	3-phase, 200/220 VAC ±10%, 50/60 Hz
CIRCUIT	U, V, W	Motor Connection	Connect U, V, and W to the corresponding motor terminals.
MAIN	Р, В	Resistor Connection	Connected before shipment.
	23, 25	Spindle Condition Dete- ction	Normal condition: Open
	23, 24	Spindle Control Abnormal Detection	Detection of spindle control circuit abnormal condition: Closed
<i>\</i>	33, 32	Speed Reference Input	32 is connected to OV, 33 is connected to speed reference (±10V)
	13, 14	Resolver Input	14 is connected to OV, 13 to resolver terminal C, and 14 to F.
CUIT	9, 10	Resolver Phase A Exci- tation	10 is connected to OV, 9 to resolver terminal A, and 10 to D.
CIR	11	Resolver Phase B Exci- tation	11 to resolver terminal B
CONTROL	12	Grounding	Connect E to resolver terminal E and ground it.
	6, 7, 8	±12V Output	7 is OV common, 6 is ±12V, 8 is -12V. 10mA can be supplied. Usable for speed setting, etc.
	50	Torque Limit	When +12V is applied to 50, torque limit is ineffect.
	37	Start Interlock	When +12V is applied to 37 interlock is not ineffect

External Terminal List (CONT)

	Terminal Symbol	Name	Description
	51, 52	Output for Tachometer	DC 1mA with 52 negative and 51 positive.
	44, 45	Zero Speed Detection	44 and 45 are closed, when speed is detected.
	47, 48	Speed agreement Detection	47 and 48 are closed, when speed agrees with command.
	42, 43	Excessive Deviation Detection	When 42 and 43 are closed, excessive deviation is detected.
	49	Speed agreement for Orientation	When 49 is OV, speed conforms.
	46	Zero speed for Orien- tation	When 46 is OV, zero speed is detected.
 -	5	Torque reference to Orientation	
L CIRCUIT	16	Torque reference from Orientation	
CONTROL	4	Speed reference to Orientation	
	3	Speed reference from Orientation	

FOR TYPE VS-626 A.C. SPINDLE DRIVE

Instructions for Removal and Installation of the Spindle Drive Circuit Boards

- 1. Shut off the Control and turn off the Main Power Switch
- 2. Open the door to the Spindle Drive Cabinet
- 3. Remove the clear plastic cover on the Spindle Drive.
- 4. Make a list of all the wires onto the terminal strips on both the large and small boards on the spindle drive. These strips are located on the left side of both boards and also there are some small terminals on the bottom of the small board.
- 5. Remove all wires from the board to be replaced

 *CAUTION: Insure that your wire list is complete and correct before removing any
 wires
- 6. Remove all ribbon connectors and if necessary remove the connector with the yellow wires at the top of the large board (it has 5 straight pins in a row)
- 7. If the large board is to be removed: At the top of the board there are 2 pairs of Red and White wires (the wires are wound together as a twisted pair) Trace these back to their white connectors and pull the connectors apart.

*NOTE: These plugs are labeled 1 and 2.

- 3. The small board is held down by plastic squeeze tabs. To remove the board, squezze the tabs together with a pair of needle-nose pliers while gently lifting the board. When the board is free, lift it gently away and set it aside.
 - *CAUTION: When handling circuit boards ensure that they are not set on a wet surface. If possible set them on plastic of some sort.
- 9. The large board is normally held down by 9 screws,8 of which are located on the outside edge of the board. The remaining screw is located in the very middle of the board. Remove the screws and gently lift the board free.
- 10. To install the new boards simply reverse the above procedure. All of the Ribbon cables and all of the connectors are keyed to fit only in one direction in their appropriate sockets. Ensure that <u>all</u> of the wires on the terminal strip are in their <u>proper</u> location and that they are tightly screwed down.

If you have <u>any</u> questions or problems please call: YASNAC Service Department
Phone Number (312) 564-0806

Please return the bad boards to: YASNAC America Inc. Attn: Field Service Department 305 Era Drive Northbrook, Illinois 60662

9. ADJUSTMENT

1. Adjustment of Speed Reference

- (A) means part with a parenthesis are found on the JPAC-C026 (C) means part with a parenthesis are found on the JPAC-C051 $\,$

SYMBOL	FUNCTION	ADJUSTMENT
1RH(A)	OFFSET adjustment of speed reference	Adjust CH4(A) within ±3mV when speed reference is zero.
2RH(A)	LIMIT adjustment of speed reference	CH4(A) Adjust the maximum speed reference. Normally set full CW. Speed Reference
3RH(A)	GAIN adjustment of forward reference	Adjust the CH4(A) to +6.00V at 100% forward speed reference.
4RH(A)	GAIN adjustment of reverse reference	Adjust the CH4(A) to -6.00V ±3% at 100% reverse speed reference.

2. Adjustment of Speed Feedback

SYMBOL	FUNCTION	ADJUSTMENT
6RH(C)	ZERO adjustment of feedback	Adjust CH3(C) within ±3mV when speed is zero.
5RH(C)	GAIN adjustment of feedback	Adjust CH3(C) to ±6.00V at rated speed (-: forward, +: reverse)

3. Adjustment of Speed

SYMBOL	FUNCTION	ADJUSTMENT
NFB(C)	Adjustment of Speed	Adjust to rated speed at rated speed reference. If there is a difference between forward and reverse, adjust by 4RH(A).
1RH(C)	OFFSET adjustment of Speed	If there is a difference between forward and reverse at low speed, adjust so they are equal.

4. Adjustment of Exciting Current

SYMBOL	FUNCTION	ADJUSTMENT
8RH(C)	Adjustment of excitation current	Adjust the CH6(C) and CH7(C) to ±3V peak. CH6 CH7 CH7 -3V
5RH(A)	Adjustment of minimum excitation current	Adjust the excitation current at zero speed reference and zero torque reference.
6RH(A)	Inclination adjust- ment of excitation current against speed	Im SRH SRH Absolute Speed
7RH(A)	Inclination adjust- ment of excitation current against secondary current	Im TRH 5RH → Absolute Secondary Current

5. Adjustment of Basic Circuit

SYMBOL	FUNCTION	ADJUSTMENT
2RH(C)	Voltage adjustment of DC supply (+12V)	Adjust so CH1(A) is +12.00V ±0.1V
3RH(C)	Voltage adjustment of DC supply (-12V)	Adjust so CH3(A) is -12.00V ±0.1V
7RH(C)	Frequency adjustment of logic circuit	Adjust so CH11(C) is 144KHZ ±1%
11RH(C)	Balance adjustment of resolver excitation voltage	Adjust so that $\[\] \sim -res. \] voltage is the same level as \[\] \beta -res. \]$
19RH(C)	Offset adjustment of phase ム current amp	Adjust to remove the DC component from the AC output current.
20RH(C)	Offset adjustment of phase ß current amp	
16RH(C)	Carrier frequency adjustment of PWM	Adjust to 2KHZ-3KHZ according to the specification.
17RH(C)	Carrier frequency	Usually this function is not used.
18RH(C)	adjustment of PWM against speed	Set full CCW.
T LIMIT	Level adjustment of current limit	Adjust to 125% of the 30 minute rated current.
SLIP FREQ(C)	Slip frequency adjustment	
4RH(C)	Slip frequency adjustment against speed	
12RH(C)	Current level adjust- ment of OVERLOAD detection	Adjust to 105% of the 30 minute rated current.

5. Cont.

SYMBOL	FUNCTION	ADJUSTMENT
13RH(C)	Time adjustment of OVERLOAD detection	Adjust to 60-120 sec. according to specification.
10RH(C)	Level adjustment of Over Speed detection	Adjust to 110% of rated speed.
15RH(C)	Level adjustment of Low Voltage detection	Adjust to 84% of rated voltage.

6.

SYMBOL	FUNCTION	ADJUSTMENT
9RH(A)	Level adjustment of zero speed detection	Adjust within 1% of rated speed.
AGREE(A)	Level adjustment of speed agree detection	Adjust to ±15% of commanded speed
10RH(A)	Offset adjustment of speed agree detection (-15%)	Adjust to -15% of commanded speed at low speed range.
11RH(A)	Offset adjustment of speed agree detection (+15%)	Adjust to +15% of the commanded speed at low speed.
DEV-A(A)	Level adjustment of deviation	Adjust to 50% of the commanded speed

7.

SYMBOL	FUNCTION	ADJUSTMENT
TIME(A)	Selection of acc/dec time limit	T is equal to the time set by the DIP switch.

7. Cont.

SYMBOL	FUNCTION	ADJUSTMENT
8RH(A)	Level adjustment of current limit at deceleration	Normally the current is not limited during deceleration. (8RH is set to full CCW) But if the load has a large inertia and a large current flow through braking circuit at deceleration, 8RH should be adjusted to reduce the current.

8.

SYMBOL	FUNCTION	ADJUSTMENT
METER(A)	Scale adjustment of Tachometer	Adjust the tachometer at rated speed. A 1ma DC full scale ammeter should be used for the tachometer.
NDET(A)	Level adjustment of speed detection	Adjust to 10-30% of rated speed. (0.6V-1.8V at CH8(A)) If the speed goes under the set level, terminals 40 and 41(A) will be closed.
IDET(A)	Level adjustment of current detection	Adjust to 0-200% of rated current. If current goes over set level, terminals 200 38 & 39(A) will close.
ILIM(A)	Level adjustment of current limit	Can adjust 10-100% of rated current when 12V is applied at terminal 50(A), otherwise it is set by TLIM.

10 Locations of Pots and Check Points

1. Control Board

2. Auxiliary Board

Trouble		Check Item	
Q S	alarm	. Check the resolver wiring The figure at the right shows the wave form between terminals 13 and 14 (C)	_
		. Check the speed reference from N/C (Terminal 33 (A)), output of speed AMP (CH4(A)) and speed feed back (CH 3(A))	
2. QL	àlarm	. Check the load to see if it exceeds the specifications of the dunit	irive
		. Check the starting and stopping operation frequency	
3. OV	alarm	. Adjust 8RH(A) if it occures during deceleration	
		. Check the AC Main Supply Voltage	
		. Check the Power Transistors and wiring of the braking circuit When the power is turned on immediately after it has been turne off. There is a chance that the OV alarm will appear so wait three or four minutes before turning on again	ed
4. QC	alarm	. Check the six Main Power Transistors	
		. Check the output circuit (including the motor) for shorts or excessive impedance to ground	
5. FU	alarm	ee Item 4	
6. Mot	or does not	. Check the alarm Leds if there are any alarms indicated refer to items 1 through 5	0
		. Check the speed reference from N/C (Terminal 33(A)), the output of speed AMP (CH4 (A)) and the speed feed back (CH3 (A))	t
		. Check the start interlock signal (Terminal 37 (A) should be 12V	<i>(</i>)
		. Check the wiring of resolver and motor	
	SPD" doesn't e at zero speed	 Check the resolver wiring Adjust 1RH(A) and / or 6RH(C) 	
com	ree" doesn'± e when speed is rect	. Adjust 1RH(A) and / or 6RH(C)	
in cir	thermal relay the braking cuit trips ing deceleration	. Check the Power Transistor in the braking circuit . Adjust 8RH (A)	

ORIENTATION UNIT (TYPE JPAC-C050)

1. Specifiction

Item	Specification	Terminal
Power Supply	Single-phase 200/220V (-15%-+10%) 50/60Hz	200VR1-T 220VR2-T
DC Power Supply For Magnetic Sensor	DC 12V ±10% 50mA (For Type FS-200)	-12V(Black)4 OV(Red)16
	DC 15V ±10% 50mA (For Type FSD-1378)	OV(C)16 -15V(B)15 Connect 4 to 15
Orientation Command	On at orientation start	1
Gear Position	On when in Low Gear Off when in High Gear	2
Speed Reference	±6V/±100% speed	17
: Reference	-3V/+100% Torque	8
Zero Speed Detection	On at zero speed	7
Speed Agree Detection	"L" at speed agree	6
osition Detection	6V p-p-16V p-p	13(+) 14(-)
rientation Speed eference		12
rientation Torque eference		11
rientation Conculsion Contact closes when orientation is finis		9 10
tion Speed Range	0-2.2% of rated speed in H gear 0-8.8% of rated speed in L gear	
sitioning Accuracy	± 0.5 mm or less on the circumference 120mm $\cancel{8}$	

2. Connection Diagram

: 2.5 Kg TYPE : JPAC-CODE NO.: EUADO APPROX. WEIGHT V # 22 14 # 12 14 孝 168 MAK. 148.5 **(a** ÅÅ ਊ ¥ <u>005</u> SO **SPO** 5 50 10, 50, 10, 01010 0 VA YAPKANIA Cheek. Of, 280 or VARIABLE RESISTOR 4-7 DIA MTG HOLES CHECK TERMINALS CONTROL SELECTOR SWITCH WITH M4 SCREW CONNECTION TERMINALS 三日の田 の後スイッチ 1. 1. 2 44.1 C&MPEN. BRIENT. SP. GAIN GAIN FRIC-T 18N LEVEL BIAS Bev bisens: 5 2

M.EUAQQ1...QU.K.

3. Dimension Diagram THIRD ANGLE PROJECTION ■ E A A

DIMENSIONS IN

Dimension Diagram of Orientation Unit

cymbol & Function	Adjustment	
LEVEL Level adjustment of position detection	Move the motor in the <u>forward direction</u> slowly and chech the waveform at CHK4. If the voltage isn't 20Vp-p ±0.5V, adjust [Level] to correct it. If the waveform is like (b): terminals 13, 14 should be switched 20V ±0.5V (a) Correct Waveform	
ORIENT. SP Speed adjustment in orientation mode	Motor speed (not spindle speed) should be set over 30rpm in orientation mode. Orientation Speed Setting Example NH (Max. rated speed in H gear)= 4500rpm N REF (Max. rated speed reference)= 6V N OR (orientation speed)=50rpm Orientation Speed= $\frac{NOR}{NH}$ * NREF * 20V Reference (CHK1) = $\frac{50}{4500}$ * 6 x20 $\stackrel{?}{=}$ 1.33 \checkmark	
H. GAIN L. GAIN Gain adjustment of servo loop	Adjust the gain, so there is no hunting when the spindle stops in orientation position. Adjust H. Gain in H gear Adjsut L. Gain in L gear	
BIAS Fine djustment of orien- tation position	Select L gear range, adjust so the spindle position coincides with the proper orientation position.	
FRICTION Fine adjustment of orientation position in H Gear	Select H gear range, adjust so spindle position coincides with the proper orientation position.	

ניל נימעומווו