Product Transition Guide GPD 506/P5 to F7

Product Transition Guide

 GPD506/P5 to F7
NOTICE

The information contained within this document is the proprietary property of Yaskawa Electric America, Inc., and may not be copied, reproduced or transmitted to other parties without the expressed written authorization of Yaskawa Electric America, Inc. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa is constantly improving its high-quality products, the information contained in this document is subject to change without notice. Every precaution has been taken in the preparation of this document. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.
Feature Overview 5
GPD506/P5 to F7 Specification Differences 7
Digital Operator Comparison 10
Front Cover \& Cooling Fan Comparison 11
Main Control PCB Comparison 12
Nameplate/ Labeling Differences 13
Physical Dimensions 14
GPD506/P5 to F7 Terminal Comparison 15
Network Communications 19
Details on New F7 Features \& Functions 20
New "Heavy Duty" and "Normal Duty" ratings for the F7 21
Appendix 1 23
Ratings Comparison 25
NEC HP Ratings for 230V Heavy Duty Models 25
NEC HP Ratings for 460V Heavy Duty Models 26
NEC HP Ratings for 230V Normal Duty Models 27
NEC HP Ratings for 460V Normal Duty Models 28
Heat Loss Data 29
Appendix 2 31
Panel Cut-out for External Heatsink Mounting 33
Mounting Hole Data 34
Appendix 3 - Parameter Cross Reference 35

Product Transition Guide GPD506/P5 to F7

Page Intentionally Left Blank

Feature Overview

This document details differences between the GPD506/P5 and F7 product to assist in product transition and new product introduction.

F7 Drive

The F7 drive is positioned as the Industrial Workhorse. It is the best choice in a single drive format for every conventional industrial drive application in its
horsepower range of $1 / 2$ to 500 hp . industrial drive application in its
horsepower range of $1 / 2$ to 500 hp . It is dual rated to enable best choice for Normal (Variable choice for Normal (Variable
Torque) machine loads and Heavy Duty (Constant torque) machine loads.

F7 Benefits vs. P5

F7 Performance Improvements

- $230 / 240 \mathrm{~V}$ models now to 150 HP and 480 V models to 500 HP
- Closed and open loop flux vector motor control
- Improved starting torque with vector control
- Dual rating: Heavy Duty $150 \% 60$ secs/ Normal Duty $110 \% 60$ secs
- Two separate (ASR) speed loop tuning parameter sets for fine tuning both constant horsepower and low speed performance
- Three addition points on the V / F pattern for fine-tuning V/f performance
- Built-in dynamic braking transistor with optional DB resistor
- Intelligent stall prevention during accel and decel. Accel is completed in the shortest time possible based on current and fast decal without overvoltage trips.
- Auto-tuning 3-Methods (R1/Static/Dynamic) Static no load auto-tuning offers same torque accuracy performance as dynamic auto-tuning at base speed $\&$ below
- Forward and reverse direction torque compensation adjustments to improve motor stability and response
- Wider storage temperature range
- DC Link to 500HP
- 12-pulse to 500 HP

F7 Functional Improvements

- Optional 1500 Hz output frequency software
- Custom Application Software Environment (CASE) available
- Drive Wizard support tool software available
- Built in RS-485 MODBUS serial communications
- Optional communications: ModbusPlus, DeviceNet, Profibus-DP, Interbus-S, CAN Open, CC- Link, others.
- Improved bi-directional Speed search with current or speed estimation
- Two feedback PID control
- DC input compatible (all models) simplified connection to DC power, removal of internal DC bus choke not required
- Improved Energy Savings- manual/automatic modes
- New High Slip Braking (HSB) function to decrease motor stopping time without the addition of a braking resistor option
- New programmable motor dwelling during starting and stopping
- Zero servo position loop control in closed loop vector
- Expanded multi-stage accel/decel selections
(Continued on next page)

F7 Benefits vs. P5 (continued)

F7 Functional Improvements (continued)

- 10 additional preset speeds for a total of 16 preset speeds plus jog
- Three jump frequencies
- Selectable Torque/Speed control
- Motor 1 and Motor 2 parameter sets for switching between two different motors on one drive
- Over-speed detection in torque control for safe operation
- Speed deviation and encoder loss detection circuits and software
- Independently adjustable accel and decel S-curve profiles
- Two new PID operating modes: (Freq. Ref. + PID output ($\mathrm{D}=$ Feedback) (Freq. Ref. + PID output ($\mathrm{D}=$ Feed-Forward)
- Set a predefined speed to run at when serial communication is lost.
- Modbus serial communication speed is now faster at 19200 baud.

F7 I/O Improvements

- Two more digital inputs for a total of eight
- Two additional relay outputs M5 and M6 relays
- One more analog input than P5 for a total of 3 analog inputs
- A convenient PCB switch now changes analog input A2 between current and voltage, cutting PCB jumper for mA signal is no longer required
- Analog output monitors are now programmable to: $0-10 \mathrm{~V},-10$ to $+10 \mathrm{v}, 4-20 \mathrm{ma}$ signal levels
- 22 more programmable functions for digital inputs than P5. 51 total
- 35 possible programmable functions for the digital outputs, 18 more than the P5
- 24 programmable selections for the analog outputs, 20 more than the P5
- More versatile PNP/NPN sinking/sourcing I/O
- Optional high resolution 14 bit analog input card

F7 I/O Improvements (continued)

- Optional 8 channel or 16 channel binary/BCD digital input cards
- Optional 12 bit analog output card
- Option expanded 2 channel or 8 channel digital output card
- Built-in RS-485/422 modbus serial communications
- Adjustable analog input signal filter for added stability
- Additional pulse train input and output signals
- Motor thermister input with overheat alarms and fault signals

F7 Start-up, Installation \& Maintenance Improvements

- Enhanced digital keypad (5 Line x 16 Character LCD (Std)
- Parameter copy function to another F7 using standard digital operator
- Improved fault storage, last 10 faults
- Quick disconnect I/O blocks for easy wiring
- Six more keypad language selections
- User customizable parameter list displays (A1-02)
- Two independent programmable over and under torque detection levels
- Automatic ambient temperature compensation to protect the drive in environments exceeding its rating
- Logged cooling fan hours for scheduled maintenance
- Modular cooling fan for easy replacement
- Automatic cooling fan run control to extend fan life
- 15 different preset V/f patterns for easy V/f profile setup

GPD506/P5 to F7 Specification Differences

Feature or Function	Item	Yaskawa GPD506/P5	Yaskawa F7

HP Range Note: The voltage rating in the "Item" column is generalized. Refer to the Service Conditions section for rated input voltage requirements.	240 V	0.75 to 125HP (VT)	0.5 to 150HP (ND) ${ }^{1}$
	480 V	0.75 to 500HP (VT)	0.5 to $500 \mathrm{HP}\left(\mathrm{ND}\right.$ or HD) ${ }^{1}$
	600 V	2 to 200HP (VT)	Available w/GPD506/P5 Not Available in F7
Overload Rating	\% for Minutes	150% for 1 min (CT) 200\% peak 120% for 1 min (VT) 180\% peak	150% for $1 \mathrm{~min}(\mathrm{HD})$ 110% for 1 min (ND) 200\% peak
PWM Carrier Frequency	Range	See Carrier Frequency Table	See Carrier Frequency Table
Max. Output Frequency	Hz	400 Hz	$\begin{gathered} 300 \mathrm{~Hz}(\mathrm{HD}) 400 \mathrm{~Hz}(\mathrm{ND}) \\ 1000 \mathrm{~Hz} \text { optional } \end{gathered}$
Speed Range	V/f	40:1	40:1
	V/f w/PG	Not Applicable	50:1
	Open Loop	Not Applicable	200:1
	Closed Loop	Not Applicable	1000:1
Speed Regulation	V/f w/PG	Not Applicable	0.2\%
	Open Loop	Not Applicable	0.2\%
	Closed Loop	Not Applicable	0.01\%
Starting Torque at Low Speed	\% @ Hz	100\% @ 3Hz (V/f)	$\begin{gathered} 150 \% @ 1.0 \mathrm{~Hz} \text { (V/f) } \\ 150 \% @ 0.5 \mathrm{~Hz} \text { (OLV) } \\ 150 \% @ 0.3 \mathrm{~Hz} \text { (Closed loop) } \end{gathered}$

Protective Features

Torque Limit / Current Limit		-- Stall Prevention During Accel/Run/Decel (V/F) Stall Prevention -- Undertorque Warning and Output Action	Stall Prevention During Accel/Run/Decel (V/F) Torque Limit in 4 Quadrants (OLV)
	-	Torque Limit Accel/Run/Decel	Over/Under Torque Detection
Heat Sink Temperature Fault	Fault Action	Coast, Ramp, Continue	Coast, Ramp, Continue or Continue with reduced speed

Design Features

Keypad Design	Display	2 Line x 16 Character LCD 5×7 Segment LED (Optional)	5 Line x 16 Character LCD (Std) 5×7 Segment LED (Optional)
	Qty of keys	7	11
	Language	1	$7(\mathrm{w} / \mathrm{LCD})$
			Yes
	Copy Function	No	

[^0]GPD506/P5 to F7 Specification Differences (continued)

Feature or Function	Item	Yaskawa GPD506/P5	Yaskawa F7
Design Features (continued)			

Network Communications	Standard	Modbus RTU via RS232	Modbus RTU via built in RS485/422
	Optional	RS232 to RS485, DeviceNet, Lonworks, ApogeeFLN, MetasysN2	DeviceNet, Profibus-DP, Interbus-S, CAN Open, CC- Link, Ethernet
Diagnostics	Fault Storage	Last 4 Faults	Last 10 Faults with Elapsed Time, Most Recent Fault with all Operating Conditions
Quick Disconnect I/O Terminals	Type	No	Yes (Phoenix) With split front cover for easy wiring
Auto-Tuning	Rotating/Stationary	No	Rotating (dynamic) Stationary (static) Primary Resistance
Speed Search Synchronized Start	Bi/Uni-Directional	Uni-Directional	Bi-Directional
	Method	Current	Current/Speed
PI / PID Control	Analog Input Signal Filter	No	Yes
	Two Feedback	No	Yes
Sleep Function	In Open Loop Mode	No	Yes
Automatic Restart	Time Between Attempts	Not Adjustable	$0.0-5.0 \mathrm{sec}$ (selectable)
V/Hz Patterns	Qty.	1 Preset, 1 Custom	15 Preset, 1 Custom
Skip Frequencies	Qty.	2	3
Preset Speeds	Qty.	6	17
Custom Drive Software	Embedded	No	CASE w/flash memory
Parameter Upload/Download	PC Software	InverterWin	Drive Wizard Software
Accel/Decel Time	Sec.	0.0-3600.0 sec	0.1-6000.0 sec.
Closed Loop PID Control	Analog Input Filter	No	Yes
	Two Feedback	No	Yes
Sleep Function	In Open Loop Mode	No	Yes
DC Injection Function	At Start/At Stop	At Start/At Stop	At Start/At Stop (adjustable) +HSB during stop
Braking Function	DB Transistor	Built-in to 10HP (VT-230V) Built-in to 25HP (VT-460V)	Built-in to 25HP
	Special	No	High Slip Braking all models (Faster stopping without options)
Cooling Fan	On/Off Control	Power-up based	Run Based
	Service	Disassembly required	Modular/pluggable fan select models
	Operating Hours	Drive power-up hours logged	Logged
Timer Function	On/Off Delay	On/Off Delay (0-25.5 sec)	On Delay at start ($0-600 \mathrm{sec}$) On/Off Delay Timer ($0-3000 \mathrm{sec}$)

GPD506/P5 to F7 Specification Differences (continued)

Feature or Function	Item	Yaskawa GPD506/P5	Yaskawa F7
Design Features (continued)			
Common DC Bus Capable	-	No	
DC Link or AC Choke	-	230V: 30HP to 125 HP (VT) $460 \mathrm{~V}: 30$ to 250 HP (VT)	DC Link (Standard) $240 \mathrm{~V}: 30 \mathrm{HP}$ to 150 HP $480 \mathrm{~V}: 30 \mathrm{HP}$ to 500 HP
Harmonic Counter Measures	-	12 Pulse: 230V: 30HP and Above $460 \mathrm{~V}: 30 \mathrm{HP}$ to 250 HP	12 Pulse: $240 \mathrm{~V}: 30 \mathrm{HP}$ to 150 HP $480 \mathrm{~V}: 30 \mathrm{HP}$ to 500 HP
Unique Feature/Function	-	-	HSB - High Slip Braking
Inputs and Outputs			
Digital Input Terminal	Total Qty.	6	7 (optically isolated)
	NPN/PNP	NPN	Switchable NPN/PNP
Digital Output Terminal	Total Qty	2	4
	Relay Output	$1 \times$ Form C, $1 \times$ Form A,	3 x Form A, $1 \times$ Form C
Analog Input	Qty.	2	3
	Level Input	$0-10 \mathrm{~V}$ or $4-20 \mathrm{~mA}$	-10 to $+10 \mathrm{~V}, 0-10$ or $4-20 \mathrm{~mA}$
	Scan Rate	5 msec	5 msec
	Loss Detection	Ramp or Continue	Ramp, Coast or Continue
Analog Output	Qty.	1	2
	Output Level	0-10V	$0-10 \mathrm{~V}$ or $-10-+10 \mathrm{~V}$ or $4-20 \mathrm{ma}$ With independent level selections
	Resolution	9 bit	10 bit plus sign
Digital Pulse Input	Qty.	No	1
	Input Freq.	No	$1-32 \mathrm{kHz}$
Digital Pulse Output	Qty.	No	1
	Output Freq.	No	$0-32 \mathrm{kHz}$
Service Conditions			
Rated Input	-	3-phase, $200-230 \mathrm{Vac}$ 3-phase, $380-460 \mathrm{Vac}$ Tolerance +10 to -15% 3-phase, $500-600 \mathrm{Vac}$ Tolerance +10 to -10% Frequency: $50 / 60 \mathrm{~Hz}+/-5 \%$	3-phase, 200-240Vac 3-phase, 380-480Vac Tolerance +10 to -15% Frequency: $50 / 60 \mathrm{~Hz}+/-5 \%$ Note: F7 Models 2037-2090 rated for 200-230Vac.
Ambient Temperature	${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { (IP21/NEMA1) } \\ -10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C} \\ \text { (IP00/Protected Chassis) } \\ -10^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} &-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}(\text { IP21/NEMA1) } \\ &-10^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C} \end{aligned}$ (IP00/Protected Chassis) (Automatic OL protection curve based on ambient temperature setting of L8-12)
Storage Temperature	${ }^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$
Enclosure Types	NEMA 4X	Optional	N/A
	NEMA 3/3R	Optional	N/A

Digital Operator Comparison

- Enhanced LCD operator with built-in copy function and parameter verify for F7
- Optional LED operator available for F7
- LCD contrast adjustment
- Simplified parameter grouping for easier navigation and set-up

GPD506/P5 Operator

LCD Display
2 Line x 16 Characters

- F7 copy keypad is capable of uploading all of the parameter settings from the F7 drive memory.
o Upload of GPD506/P5 parameters to F7 not possible at this time
o F7 Drives must have the same software version, model, and control mode to copy parameters.
- A Quick Start menu is added to aid in simple start-ups.
- The Quick Start menu consists of 26 parameters. The Advanced menu is the other menu choice.

Simplified Menu Structure in F7:

GPD506/P5	
--	Operation"DRIVE" F7
Quick Start -- 16 Parameters	Quick Setting"QUICK"
Programming (All Parameters)	Programming "ADV"
--	Modified Constants "VERIFY"
--	Auto-Tuning "A.TUNE"
--	

Product Transition Guide GPD506/P5 to F7

Front Cover \& Cooling Fan Comparison

GPD506/P5 Front Cover (not split)

F7 - New Split Front Cover

The F7 comes with a split cover to allow easy terminal access. This limits exposure of the Control PCB or power structure during wiring.

A decal with terminal designations is displayed above the terminal block.

- The F7 features an easy to remove heat sink cooling fan.
- The fan operation can be controlled via programming parameters.
- Hours of fan operation can be viewed via the digital operator to aid in preventive maintenance.

Product Transition Guide GPD506/P5 to F7

Main Control PCB Comparison

GPD506/P5 Control PCB
New F7 Control PCB

Removable F7 terminal block

Control PCB part number designation

Product Transition Guide GPD506/P5 to F7

Nameplate/ Labeling Differences

GPD506/P5 Side Nameplate

GPD506/P5 Front Label
F7 Front Label

F7 Side Nameplate

Product Transition Guide

 GPD506/P5 to F7
Physical Dimensions

Between $20-200 \mathrm{HP}$, the F 7 is 18% smaller volume on average than the equivalent GPD506/P5.
(See appendix 1)

Based on meeting NEC full load amp requirements, the F7 footprint can offer a space savings over the GPD506/P5.

Normal Duty Footprint Comparison

Footprint Area Comparison GPD506/P5 VT vs. F7 (480V Normal Duty)

Heavy Duty Footprint Comparison

GPD506/P5 to F7 Terminal Comparison

The factory default is 2 -wire control as shown.

GPD506/P5 Terminal			F7 Terminal (Designations similar to GPD506/P5)		
Type	GPD506/P5	Default Function \& Description	$\begin{array}{c\|} \hline \text { F7 } \\ \text { Terminal } \\ \hline \end{array}$	Default Function	F7 Description
	S1	Forward run/stop, Forward run when closed, and stop when open. Photo-coupler insulation Input: +24VDC 8mA	S1	Forward run/stop command	-
	S2	Reverse run/stop, Reverse run when closed, Stop when open. Multi-function contact input (n036) Photo-coupler insulation Input: +24VDC 8mA	S2	Reverse run/stop command	-
	S3	External fault input, Fault when closed, normal state when open. Multi-function contact input (n037) Photo-coupler insulation Input: +24VDC 8mA	S3	External fault input	Multi-function digital inputs. Functions set by: H1-01 to H1-06. 24 VDC, 8 mA Photo coupler isolation
	S4	Fault reset input, Reset when closed. Multi-function contact input (n038) Photo-coupler insulation Input: +24VDC 8mA	S4	Fault reset	
	S5	Multi-step speed reference 1, Enabled when closed. Multi-function contact input (n039) Photo-coupler insulation Input: +24VDC 8mA	S5	Multi-step speed reference 1 (Master/auxiliary switch)	
	S6	Multi-step speed reference 2, Enabled when closed. Multi-function contact input (n040) Photo-coupler insulation Input: +24VDC 8mA	S6	Multi-step speed reference 2	
	-	-	S7	Jog frequency reference	
	-	-	S8	External baseblock N.O.	
	SC	Sequence input common terminal	SN	Digital input common	Factory connected for internal supply sinking mode. Refer to F7 User Manual for other methods.
		-	SC	Factory connected to SP	
		-	SP	Factory connected to SC	

GPD506/P5 Terminal			F7 Terminal (Designations similar to GPD506/P5)		
Type	GPD506/P5	Default Function \& Description	$\begin{array}{\|c} \hline \text { F7 } \\ \text { Terminal } \\ \hline \end{array}$	Default Function	F7 Description
	FS	+15 V Power supply output for analog command (Allowable current, 20mA max.)	+V	+15 Vdc power output	$\begin{aligned} & +15 \mathrm{Vdc} \\ & \text { (Max. current: 20mA) } \end{aligned}$
	-	-	-V	-15 Vdc power output	-15Vdc (Max. current: 20mA)
	FV	Frequency reference input (voltage) 0 to $+10 \mathrm{~V} / 100 \%$, n043 = "FV=MSTR": FV enabled n043 = "FI=MSTR": FI enabled 0 to $+10 \mathrm{~V}(20 \mathrm{~kW})$	A1	Analog input or speed command	0 to $+10 \mathrm{Vdc}=100 \%$ 0 to $+/-10 \mathrm{Vdc}=100 \%$ (H3-01) (20k ohm)
	FI	Frequency reference input (current) 4 to $20 \mathrm{~mA} / 100 \%$ n043 = "FV=MSTR": FV enabled n043 = "FI=MSTR": FI enabled 4 to 20 mA (250 W)	A2	Add to terminal A1	4 to $20 \mathrm{~mA}=100 \% /(250 \mathrm{ohms})$ 0 to $+10 \mathrm{Vdc}=100 \% /(20 \mathrm{k}$ ohm $)$ Function set by H3-09.
			A3	Aux. frequency reference 1	$\begin{aligned} & 0 \text { to }+10 \mathrm{Vdc}=100 \% /(20 \mathrm{k} \mathrm{ohm}) \\ & 0 \text { to }+/-10 \mathrm{Vdc}=100 \% \\ & \text { Function set by } \mathrm{H} 3-05 \\ & \hline \end{aligned}$
	FC	Common terminal 0V	AC	Analog common	-
	E(G)	Connection to shield sheath of signal lead	E(G)	Shield wire, optional ground line connection point	-
	M1	During running (N.O. contact) Closed when running. Multi-function contact output (n042) Dry contact capacity: 250 VAC 1A or less 30VDC 1A or less	M1	During run (N.O. contact)	Form A Dry contacts capacity: 1 A max. at 250 Vac 1 A max. at 30 Vdc Multi-function digital output. Function set by H2-01.
	M2		M2		
	-	-	M3	Zero speed (N.O. contact)	Form A Dry contacts capacity: 1 A max. at 250 Vac 1 A max. at 30 Vdc Multi-function digital output. Function set by H2-02.
	-	-	M4		
	-	-	M5	Frequency agree (N.O. contact)	Multi-function digital output. Function set by H2-03.
	-	-	M6		
	MA	Fault contact output (N.O./N.C. contact)	MA	Fault output signal (SPDT)	Form C Dry contacts capacity:
	MB		MB		

GPD506/P5 Terminal			F7 Terminal (Designations similar to GPD506/P5)		
Type	GPD506/P5 Terminal	Default Function \& Description	$\begin{array}{c\|} \hline \text { F7 } \\ \text { Terminal } \\ \hline \end{array}$	Default Function	F7 Description
	MC	Fault when closed between terminals MA and MC Fault when open between terminals MB and MC Multi-function contact output (n041) Dry contact capacity: 250VAC 1A or less 30VDC 1A or less	MC		$\begin{aligned} & 1 \text { A max. at } 250 \mathrm{Vac} \\ & 1 \mathrm{~A} \text { max. at } 30 \mathrm{Vdc} \end{aligned}$
	AM	Frequency meter output 0 to $+10 \mathrm{~V} / 100 \%$ frequency Multi-function analog monitor 1 (n052) 0 to +10 V 2 mA or less	FM	Output frequency	$\begin{array}{\|l} \hline 0 \text { to }+10 \mathrm{Vdc} \text { or } \\ +/-10 \mathrm{Vdc} 500 \text { ohm input } \\ 10 \mathrm{~V}=100 \% \text { Output frequency } \\ \text { (Max current } 2 \mathrm{~mA} \text {). } \\ 4 \text { to } 20 \mathrm{~mA} \\ 20 \mathrm{~mA}=100 \% \text { Output } \\ \text { frequency } \\ \text { Function set by H4-01. } \\ \hline \end{array}$
	-	-	AM	Output current	0 to +10 Vdc or -10 to +10 Vdc 500 ohm input $10 \mathrm{~V}=100 \%$ Drive output current (Max current 2mA) 4 to $20 \mathrm{~mA} / 100 \%$ Drive's rated output current / Function set by H4-04.
	AC	Frequency meter output "AM" Common	AC	Analog common	-
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{3} \end{aligned}$	-	$\underbrace{-}$	RP	Pulse input	1 to 32 kHz (3 k ohms) $\pm 5 \%$ High level voltages 3.5 to 13.2 Low level voltages 0.0 to 0.8 Duty Cycle (on/off) 30% to 70% Function set by H6-01.
	-	-	MP	Pulse monitor	0 to 32 kHz +5 V output (Load: 1.5k ohms) Function set by H6-06.
$$	-	-	R+	Modbus communication	-
	-	-	R-	Differential input, PHC isolation	
	-	-	S+	Modbus communication Differential output, PHC isolation	
	-	-	S-		
	-	-	IG	Signal common	-

Product Transition Guide Terminal Comparison

represent actual drive size.

Product Transition Guide GPD506/P5 to F7

Network Communications

GPD506/P5	F7
Not Available	DeviceNet
Not Available	ControlNet
Not Available	EtherNet
Not Available	Profi-Bus
Not Available	CanOpen
Not Available	Interbus-S
ModBus Plus	
SI-K2/P RS-485 Modbus Communication Card on¢ $\quad \rightarrow$	(New) Built-in RS-485
Lon Works	(New) Lon Works ${ }^{2}$

${ }^{2}$ Available as an option based on market demands

Network Communications Option Timeline

Note: Communication option release dates are subject to change. Yaskawa Marketing Communications will provide official notice of product availability.

June 2003 December 2003

Product Transition Guide GPD506/P5 to F7

Details on New F7 Features \& Functions

Note: This section details only a few of the new F7 features.

New Auto Tuning

The F7 has three different Auto-tuning functions to help to optimize the drive performance:
Leakage inductance is also auto-tuned, this improved torque linearity.

Feature	GPD506/P5	F7
Primary Resistance Auto-tuning	No	Yes
Static Auto-tuning	No	Yes
Dynamic Auto-tuning	Yes	Yes

Primary Resistance Auto-tuning

F7 performs a non-rotational stator resistance measurement. This method applies to the V/Hz modes only.

Static Auto-tuning

This tuning method is for motors that prohibit uncoupling of the load. This method involves no motor shaft rotation. This method applies to both the Open Loop Vector and Closed Loop Vector modes.

Dynamic Auto-tuning

This tuning method is for motors that are uncoupled from a load that allow motor shaft rotation. This method applies to both the Open Loop Vector and Closed Loop Vector modes.

New High Slip Braking

The F7 incorporates a new braking function called High Slip Braking (HSB).
By using a method that utilizes increased rotor slip, the drive will gain the capability of stopping up to 50% faster than without a braking resistor. All of this without the need of any

Motor speed

Motor voltage
DC-Bus voltage external equipment or resistors!

Greater than 150\% brake torque is possible.

Motor speed

Motor voltage
DC-Bus voltage

New "Heavy Duty" and "Normal Duty" ratings for the F7

The Drive's capacity is categorized on two types of load characteristics, Heavy Duty and Normal Duty. The table below explains which drive selections apply to each duty and the features provided with the selected duty. Parameter C6-01 affects the drives carrier frequency setting, and in some models, the 100% output current rating. The carrier frequency setting can change the overload capacity and maximum output frequency.

C6-01 Setting	Carrier Frequency	Output Current Ratings	Overload Capacity	Maximum Output Frequency
0: Heavy Duty (F7 default)	Low (2kHz)	Level A (Matches HD ${ }^{2}$ nameplate rating)	150%	300 Hz
2: Normal Duty 2	Higher than Heavy Duty (Adjustable lower only) (Varies by model)	Level B > A (On certain models, see ratings table) (Matches ND ${ }^{2}$ nameplate rating)	Varies by model (See Appendix 1)	400 Hz

Product	C6-01 Heavy/Normal Duty Setting
New F7	C6-01 Drive Duty Selection Setting 0: Heavy Duty (default) - Rated output current is HD (Heavy Duty) rating on drive nameplate. - Overload Capacity is 150% for 1 min . - Carrier frequency is fixed 1 at 2 kHz - Maximum output frequency is 300 Hz . - L8-15: OL2 Characteristic selection@low speed (=0 Disabled) - allows 150% for 1 minute at any frequency. 2: Normal Duty 2 - Output current is ND (Normal Duty) rating on drive nameplate. - Overload capacity varies by model. (See appendix 1) - Setting C6-02 Carrier Frequency greater than default is prohibited. (Default is highest possible setting) - Maximum output frequency is 400 Hz . - Fixed low speed protection method: Carrier is automatically lowered when output frequency is $<6.0 \mathrm{~Hz}$ and current is $>100 \%$. - L8-15: OL2 Characteristic selection@low speed (=1 Enabled) expedites OL2 at low output frequencies6 Hz and below.
GPD506/P5	n116 CT/VT Selection 0: CT operation Constant torque - Factory default for models 20P4-23P7 and 40P4-4015 - 150% for 1 minute overload capacity - Inverter rated current is lower than VT on these models: 25P5-2075, 47P5, 4018-4300 1: VT Operation Variable torque - Factory default for models 25P5-2110 and 4010-4300 - 120% for 1 minute overload capacity - Inverter rated current is higher than CT on these models: 25P5-2075, 47P5, 4018-4300

[^1]
Product Transition Guide
 Duty Ratings for the F7

Page Intentionally Left Blank

Product Transition Guide GPD506/P5 to F7

Appendix 1

Ratings and Heat Loss Comparison

Product Transition Guide GPD506/P5 to F7

Page Intentionally Left Blank

Product Transition Guide Appendix 1 -Ratings and Heat Loss Comparison

Ratings Comparison NEC HP Ratings for 230V Heavy Duty Models

		GPD506/P5 230V Models				F7 240V Models			
		Constant Torque (n116=0)				Heavy Duty (C6-01=0)			
	NEC Amps	$\begin{aligned} & \text { GPD506/P5 } \\ & \text { Model } \\ & \text { CIMR-P5U } \end{aligned}$	Output Amps	Fc kHz	Overload\% CT 1 minute	F7 Model CIMR-F7U	Output Amps	$\begin{gathered} \mathrm{Fc} \\ \mathrm{kHz} \end{gathered}$	$\begin{gathered} \text { Overload \% } \\ \text { HD } \\ 1 \text { minute } \end{gathered}$
0.5	2.2	20P41	3.2	15	150	20P41	3.2	2	150
0.75	3.2	20P41	3.2	15	150				
						20P71	4.1	2	150
1	4.2	20P71	6	15	150	21P51	7	2	150
1.5	6	20P71	6	15	150				
2	6.8	$\frac{21 \mathrm{P} 51}{22 \mathrm{P} 21}$	8	15	150				
3	9.6	$22 \mathrm{P} 21$	11	15	150	22P21	9.6	2	150
						23P71	15	2	150
5	15.2	23P71	17.5	15	150	25P51	23	2	150
7.5	22	25P51	25	10	150				
10	28	27P51	33	10	150	27P51	31	2	150
15	42	20111	49	10	150	20111	45	2	150
20	54	$\begin{aligned} & 20151 \\ & \hline 20181 \end{aligned}$	64	10	150	20151	58	2	150
			64	15	150				
25	68	20221	83	15	150	20181	71	2	150
30	80					20221	85	2	150
40	104	20301	104	10	150	20301	115	2	150
		20371	128	10	150				
50	130	20451	154	10	150	20371	145	2	150
60	154					20451	180	2	150
75	192	20551	198	8	150	20551	215	2	150
100	248	20751	250	8	150	20751	283	2	150
125	312	-	-	-	-	20901	346	2	150
150	360	-	-	-	-	21100	415	2	150

NEC HP Ratings for 460V Heavy Duty Models

		GPD506/P5 460V Models				F7 480V Models			
		Constant Torque (n116=0)				Heavy Duty (C6-01=0)			
$\begin{aligned} & \text { NEC } \\ & \text { HP } \\ & \text { 460V } \end{aligned}$	NEC Amps	GPD506/P 5 Model CIMR-P5U	Output Amps	Fc kHz	$\begin{gathered} \text { Overload } \\ \% \\ \text { CT } \\ 1 \text { minute } \end{gathered}$	$\begin{gathered} \text { F7 } \\ \text { Model } \\ \text { CIMR-F7U } \end{gathered}$	Output Amps	$\begin{gathered} \mathrm{Fc} \\ \mathrm{kHz} \end{gathered}$	Overload \% HD 1 minute
0.5	1.1	40P41	1.9	10	150	40P41	1.8	2	150
0.75	1.6								
1	2.1	40P71	3.6	10	150	$\begin{aligned} & 40 \mathrm{P} 71 \\ & \hline 41 \mathrm{P} 51 \end{aligned}$	2.1	2	150
1.5	3						3.7	2	150
2	3.4								
3	4.8	41P51	5.1	10	150	42P21	5.3	2	150
		42P21	6.6	10	150				
5.0	7.6	43P71	8.5	10	150	43P71	7.6	2	150
						44P01	8.7	2	150
7.5	11	44P01	11.7	10	150	45P51	12.5	2	150
10	14	45P51	14.8	10	150	47P51	17	2	150
		47P51	18	15	150				
15	21	40111	28.6	10	150	40111	24	2	150
20	27					40151	31	2	150
		40181	32	10	150				
25	34	40151	34	10	150	40181	39	2	150
30	40	40221	42	8	150	40221	45	2	150
40	52	40301	52	8	150	40301	60	2	150
		40371	64	5	150				
50	65					40371	75	2	150
60	77	40451	77	5	150	40451	91	2	150
75	96	40551	102	5	150	40551	112	2	150
100	124	40751	144	5	150	40751	150	2	150
125	156	41101	182	5	150	40901	180	2	150
150	180								
						41101	216	2	150
200	240	41601	242	5	150	41321	260	2	150
250	302	41850	304	2.5	150	41601	304	2	150
300	361	42200	404	2.5	150	41850	370	2	150
350	414	43000	540	2.5	150	42200	506	2	150
400	477								
500	590	-	-	-	-	43000	675	2	150

Product Transition Guide Appendix 1 -Ratings and Heat Loss Comparison

NEC HP Ratings for 230V Normal Duty Models

		GPD506/P5 230V Models				F7 240V Models			
		Variable Torque (n116=1)				Normal Duty (C6-01=2)			
	NEC Amps	$\begin{aligned} & \text { GPD506/P5 } \\ & \text { Model } \\ & \text { CIMR-P5U } \end{aligned}$	Output Amps	$\begin{aligned} & \text { Fc } \\ & \text { kHz } \end{aligned}$	$\begin{aligned} & \text { Overload\% } \\ & \text { VT } \\ & 1 \text { minute } \end{aligned}$	F7 Model CIMR-F7U	Output Amps	$\begin{gathered} \mathrm{Fc} \\ \mathrm{kHz} \end{gathered}$	Overload \% ND 1 minute
0.5	2.2	20P41	3.2	15	120	20P41	3.6	10	107
0.75	3.2								
1	4.2	20P71	6.0	15	120	20P71	4.6	10	107
1.5	6					21P51	7.8	10	108
2	6.8	21P51	8.0	15	120				
3	9.6	22P21	11	15	120	22P21	10.8	8	107
5	15.2	23P71	17.5	15	120	23P71	16.8	10	107
7.5	22	25P51	27	10	120	25P51	23	15	120
10	28	27P51	36	10	120	27P51	31	15	102
15	42	20111	54	10	120	20111	46.2	8	117
20	54					20151	59.4	10	117
25	68	20151	68	10	120	20181	74.8	10	114
30	80	20181	80	15	120	20221	88	10	116
40	104	20221	104	15	120	20301	115	10	120
50	130	20301	130	10	120	20371	162	5	107
60	154	20371	160	10	120				
75	192	20451	192	10	120	20451	192	5	113
						20551	215	8	120
100	248	20551	248	8	120	20751	312	2	109
125	312	20751	312	8	120				
150	360	-	-	-	-	20901	360	2	115
150	360	-	-	-	-	21100	415	2	120

NEC HP Ratings for 460V Normal Duty Models

		GPD506/P5 460V Models				F7 480V Models			
		Variable Torque (n116=1)				Normal Duty (C6-02=2)			
	NEC Amps	GPD506/P5 Model CIMR-P5U	Output Amps	Fc kHz		F7 Model CIMR-F7U	Output Amps	$\begin{gathered} \text { Fc } \\ \text { kHz } \end{gathered}$	Overload \% ND 1 minute
0.5	1.1	40P41	1.9	10	120	40P41	1.8	15	120
0.75	1.6								
1	2.1	40P71	3.6	10	120	40P71	2.1	15	120
1.5	3					41P51	3.7	15	120
2	3.4								
3	4.8	41P51	5.1	10	120	42P21	5.3	15	120
		42P21	6.6	10	120				
5.0	7.6	43P71	8.5	10	120	43P71	7.6	15	120
						44P01	8.7	15	120
7.5	11	44P01	11.7	10	120	45P51	12.5	15	120
10	14	45P51	14.8	10	120	47P51	17	15	120
15	21	47P51	21	10	120	40111	27	8	107
20	27	40111	28.6	10	120				
25	34	40151	34	10	120	40151	34	10	109
30	40	40181	41	10	120	40181	40	10	117
40	52	40221	52	8	120	40301	67.2	8	107
50	65	40301	65	5	120				
60	77	40371	80	5	120	40371	77	8	117
75	96	40451	96	5	120	40451	96	8	114
100	124	40551	128	5	120	40551	125	5	108
125	156	40751	180	5	120	40751	156	5	115
150	180					40901	180	8	120
200	240	41101	240	5	120	41101	240	5	108
						41321	260	5	120
250	302	41601	302	5	120	41601	304	5	120
300	361	41850	380	2.5	120	41850	414	2	107
350	414	42200	506	2.5	120				
400	477					42200	506	2	118
450	506								
500	590	43000	675	2.5	120	43000	675	2	120
550	660								

Product Transition Guide Appendix 1 - Ratings and Heat Loss Comparison

Heat Loss Data

Note: Ampacity ratings vary between GPD506/P5 and F7 models. Refer to NEC Ratings tables in Appendix 1 for the appropriate GPD506/P5 to F7 cross-reference.

P5 Model	GPD506/P5 (W)		
	Internal	Heatsink	Total
20P4	50	15	65
20P7	65	25	90
21P5	80	40	120
22P2	60	80	140
23P7	80	135	215
25P5	90	210	300
27P5	110	235	345
2011	160	425	585
2015	200	525	725
2018	230	655	885
2022	280	830	1110
2030	500	1050	1550
2037	700	1250	1950
2045	750	1550	2300
2055	1000	1950	2950
2075	1300	2300	3600
2090	-		
2110	- -		
40P4	50	10	60
40P7	65	20	85
41P5	80	30	110
42P2	60	65	125
43 P 7	65	80	145
44P0	80	120	200
45P5	85	135	220
47P5	120	240	360
4011	150	305	455
4015	180	390	570
4018	195	465	660
4022	260	620	880
4030	315	705	1020
4037	370	875	1245
4045	415	970	1385
4055	710	1110	1820
4075	890	1430	2320
4090	80 1430 2320		
4110	1160	1870	3030
4132	-		
4160	1520	2670	4190
4185	1510	3400	4910
4220	2110	4740	6850
4300	2910	6820	9730

F7	F7 (W)		
Model	Internal	Heatsink	Total
20P4	39	19	58
20P7	42	26	68
21P5	50	48	98
22P2	59	68	127
$\mathbf{2 3 P 7}$	74	110	184
$\mathbf{2 5 P 5}$	84	164	248
$\mathbf{2 7 P 5}$	113	219	332
$\mathbf{2 0 1 1}$	168	357	525
$\mathbf{2 0 1 5}$	182	416	598
$\mathbf{2 0 1 8}$	208	472	680
$\mathbf{2 0 2 2}$	252	583	835
$\mathbf{2 0 3 0}$	333	883	1216
$\mathbf{2 0 3 7}$	421	1010	1431
$\mathbf{2 0 4 5}$	499	1228	1727
$\mathbf{2 0 5 5}$	619	1588	2207
$\mathbf{2 0 7 5}$	844	1956	2800
$\mathbf{2 0 9 0}$	964	2194	3158
$\mathbf{2 1 1 0}$	1234	2733	3967
$\mathbf{4 0 P 4}$	39	14	53
$\mathbf{4 0 P 7}$	41	17	58
$\mathbf{4 1 P 5}$	48	36	84
$\mathbf{4 2 P 2}$	56	59	115
$\mathbf{4 3 P 7}$	68	80	148
$\mathbf{4 4 P 0}$	70	90	160
$\mathbf{4 5 P 5}$	81	127	208
$\mathbf{4 7 P 5}$	114	193	307
$\mathbf{4 0 1 1}$	158	232	390
$\mathbf{4 0 1 5}$	169	296	465
$\mathbf{4 0 1 8}$	201	389	590
$\mathbf{4 0 2 2}$	233	420	653
$\mathbf{4 0 3 0}$	297	691	988
$\mathbf{4 0 3 7}$	332	801	1133
$\mathbf{4 0 4 5}$	386	901	1287
$\mathbf{4 0 5 5}$	478	1204	1682
$\mathbf{4 0 7 5}$	562	1285	1847
$\mathbf{4 0 9 0}$	673	1614	2287
$\mathbf{4 1 1 0}$	847	1889	2736
$\mathbf{4 1 3 2}$	1005	2388	3393
$\mathbf{4 1 6 0}$	1144	2791	3935
$\mathbf{4 1 8 5}$	1328	2636	3964
$\mathbf{4 2 2 0}$	1712	3797	5509
$\mathbf{4 3 0 0}$	2482	5838	8320

Product Transition Guide

Appendix 1 - Ratings and Heat Loss Comparison

Page Intentionally Left Blank

Product Transition Guide GPD506/P5 to F7

Appendix 2

Mechanical Dimensions

Product Transition Guide GPD506/P5 to F7

Page Intentionally Left Blank

Product Transition Guide Appendix 2 - Mechanical Dimensions

Panel Cut-out for External Heatsink Mounting

Note: Ampacity ratings vary between GPD506/P5 and F7 models. Refer to NEC Ratings tables in Appendix 1 for the appropriate GPD506/P5 to F7 cross-reference.

GPD506/P5 Panel Cutout for External Heatsink					F7 Panel Cutout for External Heatsink				
Model	P5 (mm)		P5 (in)		Model	F7 (mm)		F7 (in)	
	W	H	W	H		W	H	W	H
20 P 4	138	271	5.43	10.67	20P4	138	271	5.43	10.67
20P7	138	271	5.43	10.67	20P7	138	271	5.43	10.67
21P5	138	271	5.43	10.67	21P5	138	271	5.43	10.67
22P2	138	271	5.43	10.67	22P2	138	271	5.43	10.67
23P7	138	271	5.43	10.67	23 P 7	138	271	5.43	10.67
25P5	180	298	7.09	11.73	25P5	138	271	5.43	10.67
27P5	180	298	7.09	11.73	27P5	197	298	7.76	11.73
2011	200	377	7.87	14.84	2011	197	298	7.76	11.73
2015	200	377	7.87	14.84	2015	233	353	9.17	13.90
2018	308	404	12.13	15.91	2018	233	353	9.17	13.90
2022	308	404	12.13	15.91	2022	244	369	9.61	14.53
2030	403	627	15.87	24.69	2030	269	419	10.59	16.50
2037	403	627	15.87	24.69	2037	359	545	14.13	21.46
2045	445	756	17.52	29.76	2045	359	545	14.13	21.46
2055	445	756	17.52	29.76	2055	434	673	17.09	26.50
2075	555	894	21.85	35.20	2075	434	673	17.09	26.50
2090	-				2090	484	782	19.06	30.79
2110					2110	555	817	21.85	32.17
40P4	138	271	5.43	10.67	40P4	138	271	5.43	10.67
40P7	138	271	5.43	10.67	40P7	138	271	5.43	10.67
41P5	138	271	5.43	10.67	41P5	138	271	5.43	10.67
42P2	138	271	5.43	10.67	42P2	138	271	5.43	10.67
43P7	138	271	5.43	10.67	43P7	138	271	5.43	10.67
45P5	180	298	7.09	11.73	45P5	138	271	5.43	10.67
47P5	180	298	7.09	11.73	47P5	197	298	7.76	11.73
4011	200	377	7.87	14.84	4011	197	298	7.76	11.73
4015	200	377	7.87	14.84	4015	233	353	9.17	13.90
4018	308	404	12.13	15.91	4018	233	353	9.17	13.90
4022	308	404	12.13	15.91	4022	269	419	10.59	16.50
4030	309	571	12.17	22.48	4030	269	419	10.59	16.50
4037	309	571	12.17	22.48	4037	309	519	12.17	20.43
4045	309	571	12.17	22.48	4045	309	519	12.17	20.43
4055	440	761	17.32	29.96	4055	309	519	12.17	20.43
4075	440	761	17.32	29.96	4075	434	673	17.09	26.50
4090		-			4090	434	673	17.09	26.50
4110	555	894	21.85	35.20	4110	484	782	19.06	30.79
4132		-			4132	484	782	19.06	30.79
4160	555	894	21.85	35.20	4160	555	817	21.85	32.17
4185	875	1324	34.45	52.13	4185				
4220	875	1324	34.45	52.13	4220				
4300	873	1475	34.37	58.07	4300				

Product Transition Guide
 Appendix 2 - Mechanical Dimensions

Mounting Hole Data

Note: Ampacity ratings vary between GPD506/P5 and F7 models.
Refer to NEC Ratings tables in Appendix 1 for the appropriate GPD506/P5 to F7 cross-reference.

GPD506/P5					
Model	Enclosure	(in)		(mm)	
		H1	W1	H1	W1
20P41	NEMA1	10.47	4.96	266	126
20P71	NEMA1	10.47	4.96	266	126
21P51	NEMA1	10.47	4.96	266	126
22P21	NEMA1	10.47	4.96	266	126
23P71	NEMA1	10.47	4.96	266	126
25P51	NEMA1	11.22	7.32	285	186
27P51	NEMA1	11.22	7.32	285	186
20111	NEMA1	14.37	9.29	365	236
20151	NEMA1	14.37	9.29	365	236
20181	NEMA1	17.13	10.83	435	275
20221	NEMA1	17.13	10.83	435	275
20301	NEMA1	25.59	12.6	650	320
20371	NEMA1	25.59	12.6	650	320
20451	NEMA1	30.51	14.57	775	370
20551	NEMA1	30.51	14.57	775	370
20751	NEMA1	35.24	17.52	895	445
20900	Open (IP00)				
21100	Open (IP00)	-			
40P41	NEMA1	10.47	4.96	266	126
40P71	NEMA1	10.47	4.96	266	126
41P51	NEMA1	10.47	4.96	266	126
42P21	NEMA1	10.47	4.96	266	126
43P71	NEMA1	10.47	4.96	266	126
45P51	NEMA1	10.22	7.32	260	186
47P51	NEMA1	10.22	7.32	260	186
40111	NEMA1	14.37	9.29	365	236
40151	NEMA1	14.37	9.29	365	236
40181	NEMA1	17.13	10.83	435	275
40221	NEMA1	17.13	10.83	435	275
40301	NEMA1	24.02	10.83	610	275
40371	NEMA1	24.02	10.83	610	275
40451	NEMA1	24.02	10.83	610	275
40551	NEMA1	31.3	13.78	795	350
40751	NEMA1	31.3	13.78	795	350
40901	NEMA1		-		
41101	NEMA1	35.24	17.52	895	445
41321	NEMA1	35.24	17.52	895	445
41601	NEMA1	35.24	17.52	895	445
41850	Open (IP00)	55.12	29.53	1400	750
42200	Open (IP00)	55.12	29.53	1400	750
43000	Open (IP00)	61.02	29.53	1550	750

F7					
Model	Enclosure	(in)		(mm)	
		H1	W1	H1	W1
20P41	NEMA1	10.47	4.96	266	126
20P71	NEMA1	10.47	4.96	266	126
21P51	NEMA1	10.47	4.96	266	126
22P21	NEMA1	10.47	4.96	266	126
23P71	NEMA1	10.47	4.96	266	126
25P51	NEMA1	10.47	4.96	266	126
27P51	NEMA1	11.22	7.32	285	186
20111	NEMA1	11.22	7.32	285	186
20151	NEMA1	13.19	8.5	335	216
20181	NEMA1	13.19	8.5	335	216
20221	NEMA1	15.16	7.68	385	195
20301	NEMA1	17.13	8.66	435	220
20371	NEMA1	22.64	9.84	575	250
20451	NEMA1	22.64	9.84	575	250
20551	NEMA1	27.56	12.8	700	325
20751	NEMA1	27.56	12.8	700	325
20901	NEMA1	32.28	14.57	820	370
21100	Open (IP00)	33.56	17.52	852	445
40P41	NEMA1	10.47	4.96	266	126
40P71	NEMA1	10.47	4.96	266	126
41P51	NEMA1	10.47	4.96	266	126
42P21	NEMA1	10.47	4.96	266	126
43P71	NEMA1	10.47	4.96	266	126
45P51	NEMA1	10.47	4.96	266	126
47P51	NEMA1	11.22	7.32	285	186
40111	NEMA1	11.22	7.32	285	186
40151	NEMA1	13.19	8.5	335	216
40181	NEMA1	13.19	8.5	335	216
40221	NEMA1	17.13	8.66	435	220
40301	NEMA1	17.13	8.66	435	220
40371	NEMA1	21.06	10.24	535	260
40451	NEMA1	21.06	10.24	535	260
40551	NEMA1	21.06	10.24	535	260
40751	NEMA1	27.56	12.8	700	325
40901	NEMA1	27.56	12.8	700	325
41101	NEMA1	32.28	14.57	820	370
41321	NEMA1	32.28	14.57	820	370
41601	NEMA1	33.66	17.52	855	445
41850 (1)	Open (IP00)	50	10.63	1270	270
42200 (1)	Open (IP00)	50	10.63	1270	270
43000 (1)	Open (IP00)	56.7	14.37	1440	365

Note (1): 3 mounting holes top and 3 mounting holes bottom.
Dimension is between each mounting hole.

Product Transition Guide GPD506/P5 to F7

Appendix 3 - Parameter Cross Reference

The following parameter list shows each GPD506/P5 parameter and the F7 equivalent. F7 parameters without a GPD506/P5 equivalent are omitted for brevity. For details on F7 parameters please refer to the F7 manual. Parameters are listed numerically by GPD506/P5.

Appendix 3- Parameter Cross Reference

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
Param No. No Nxxx	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
010	V/f patern selection	$\begin{aligned} & \text { 1: Fixed V/f pattern } \\ & \text { 0: Adjustible V/f pattern } \\ & \text { (Constant n011-n017 can be set) } \end{aligned}$		V/F Pattern Selection	E1-03
011	Max. output frequency	Set unit: 0.1 Hz and set range: $50.0-400.0 \mathrm{~Hz}$	HD: 40.0 t 3000.0 ND2. 40.0 to 400.0	Maximum Output Frequency	E1-04
012	Maximum voltage	Set unit: 0.1V and set ranges: 0.1-733.1V	0 to 255.0 (240V), 0 to $510.0(480 \mathrm{~V})$	Maximum Output Voltage	E1-05
013	Base Frequency	Set unit: 0.1 Hz and set range: $0.2-400.0 \mathrm{~Hz}$	0.0 to 400.0	Base Frequency	E1-06
014	Mid Freq output	Set unit: 0.1 Hz and set range: $0.1-399.9 \mathrm{~Hz}$	0.0 to 400.0	Mid Output Frequency A	E1-07
015	Mid Freq. voltage	Set unit: 0.1V and set ranges: 0.1-733.1V	0 to 255.0 (240V,) 0 to $510.0(480 \mathrm{~V})$	Mid Output Voltage A	E1-08
016	Min output frequency	Set unit: 0.1 Hz and set range: $0.1-10.0 \mathrm{~Hz}$	0.0 to 400.0	Minimum Output Frequency	E1-09
017	Min output volage	Set unit: 0.1V and set ranges: 0.1-143.7V	0 to $255.0(240 \mathrm{~V}), 0$ to $510.0(480 \mathrm{~V})$	Minimum Output Voltage	E1-10
018	Acceleration time 1	Set unit: $0.1 \mathrm{sec}(1$ sec in 1000 sec or more) Set range: 0 to 3600 sec	0.0 to 6000.0	Acceleration Time 1	C1-01
019	Deceleration time 1	Set unit: $0.1 \mathrm{sec}(1 \mathrm{sec}$ in 1000 sec or more) Set range: 0.0 to 3600 sec Set range: 0.to 3600 sec		Deceleration Time 1	C1-02
020	Acceleration time 2	Set unit: 1sec and set range: $0-255 \mathrm{sec}$		Acceleration Time 2	C1-03
021	Deceleration time 2	Set unit: Isec and set range: $0-255 \mathrm{sec}$		Deceleration Time 2	C1-04
022	S curve selection	$\begin{aligned} & 0: \text { No S curve } \\ & 1: 0.2 \mathrm{sec} \\ & 2: .5 \mathrm{sec} \\ & 3: 1.0 \mathrm{sec} \end{aligned}$	0.00 to 2.50	S-Curve Characteristic at Accel Start	C2-01
				S-Curve Characteristic at Accel End	C2-02
				S-Curve Characteristic at Decel Start	C2-03

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
Param No. Nxxx	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
				S-Curve Characteristic at Decel End	C2-04
023	Digital operator display mode	Set range: 0-4999 $0: \mathrm{Hz}$ with 0.1 Hz $1: \%$ speed with 0.1% 2-39: RPM. RPM $=120$ * freq $\operatorname{ref}(\mathrm{Hz}) / \mathrm{n} 023$ (N023 is a motor pole) 40-4999: n23 fourth digit = decimal point n23 1,2,3 digits $=100 \%$ freq set value $\left(100 \%\right.$ frequency $=x x x^{*} 10$ in case of $\left.4 x x x\right)$	Sets the units of the Frequency References (d1-01 io d1-17), the Frequency Reference Monitors (U1-01, U1-02, U1-05), and the Modbus communication frequency reference. 0: Hz $1: \%(100 \%=E 1-04)$ 2 to 39 : RPM (Enter the number of motorpoles). 40 to 39999: User diplay. Set the number desired at maximum output frequency. 4 digit number Number of digits from the right of the decimal point Example 1: ol - $03=12000$, will result in frequency reference from 0.0 to 200.0 ($200.0=$ Fmax). Example 2: ol $-03=21234$, will result in frequency reference from 0.00 to $1234(1234=$ Fmax $)$.	Digital Operator Display Selection	01-03
024	Freq Ref 1	Set unit: Set range by constant n023 setting: $0-9999$	0.00 to E1-04 Value Setting units are affected by o1-03	Frequency Reference 1	d1-01
025	Freq Ref 2	Set unit: Set range by constant n 023 setting: $0-9999$	0.00 to E1-04 Value Frequency reference when multi-function input "Multi-step speed reference 1 " is ON . Setting units are affected by ol-03.	Frequency Reference 2	d1-02
026	Freq Ref 3	$\begin{aligned} & \hline \begin{array}{l} \text { Set unit: Set range by constant n023 setting: } \\ 0-9999 \end{array} \end{aligned}$	0.00 to E1-04 Value Frequency reference when multi-function input "Multi-step speed reference 2" is ON. Setting units are affected by ol-03.	Frequency Reference 3	d1-03
027	Freq Ref 4	$\begin{aligned} & \hline \text { Set unit: Set range by constant n023 setting: } \\ & 0-9999 \end{aligned}$	0.00 to E1-04 Value Frequency reference when multi-function input "Multi-step speed reference 1,2" is ON. Setting units are affected by ol-03.	Frequency Reference 4	d1-04
028	Freq Ref 5	Set unit: Set range by constant n023 setting: 0-9999 (GPD506 only)	0.00 to E1-04 Value Frequency reference when multi-function input "Multi-step speed reference 3 " is ON. Setting units are affected by ol-03.	Frequency Reference 5	d1-05
029	Freq Ref 6	Set unit: Set range by constant n023 setting: 0-9999 (GPD506 only)	0.00 to E1-04 Value Frequency reference when multi-function input "Multi-step speed reference 1,3 " is ON. Setting units are affected by ol-03.	Frequency Reference 6	d1-06
030	Jog Ref	Set unit: Set range by constant n023 setting: $0-9999$	0.00 to E1-04 Value Frequency reference when: "Jog frequency reference" is selected via multi-function input terminals. "Jog frequency reference" has priority over "multi-step speed reference 1 to 4 ". d1-17 is also the reference for the JOG key on the Digital Operator, and the multi-function inputs "forward jog" and "reverse jog". Setting units are affected by o1-03.	Jog Frequency Reference	d1-17
031	Output freq upper limit	Set unit: 1% and set range:0-109\%	0.0 to 110.0 Determines maximum frequency reference, set as a percentage of maximum output frequency (E1-04). If the frequency reference is above this value, actual Drive speed will be limited to this value. This parameter applies to all frequency ₹ reference sources.	Frequency Reference Upper Limit	d2-01
032	Output freq lower limit	Set unit: 1% and set range:0-100\%	0.0 to 110.0 Determines minimum frequency reference, set as a percentage of maximum output frequency (E1-04). If frequency reference is below this value, actual Drive speed will be set to this value. This parameter applies	Frequency Reference Lower Limit	d2-02

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
Param No. Nxxx	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
			to all frequency reference sources.		
033	Rated motor current	Set unit: 0.1A (In 1000A or more, every 1A) Set range: $10-200 \%$ of drive rated current	Set to the motor nameplate full load current in amperes (A). This value is automatically set during Auto-Tuning.	Motor Rated Current	E2-01
034	Motor protection selection (OL1)	0: Disabled. 1: Standard motor (eight minutes) 2: Standard motor (five minutes) 3: Inverter rated motor (eight minutes) 4: Inverter rated motor (five minutes)	Sets the motor thermal overload protection (OL1) based on the cooling capacity of the motor. 0 : Disabled 1: Standard Fan Cooled (< 10:1 motor) 2: Standard Blower Cooled ($\geqslant 10: 1$ motor) 3: Vector Motor ($<1000: 1$ motor)	Motor Overload Protection Selection	L1-01
035	Cooling fin overheat Stop method selection	0: Deceleration stop (Decelerate by deceleration time 1) 1: Coast to stop 2: Deceleration stop (Decelerate by deceleration time 2) 3: Operation continues (The alarm is displayed, and drive runs at 80% of the freq ref)	Selects the Drive operation upon an OH pre-alarm detection. 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only	Overheat Pre-Alarm Operation Selection	L8-03
036	Multi-function contact input 1 (terminal S2)	0 : REV command (2wire sequence selection) 1: FWD/REV Command (3wire sequence selection) 2: External fault. (N.O contact input) 3: External fault. (N.C contact input) 4: Fault reset 5: LOCAL/REMOTE switch (run and freq ref) 6: Communication/Control circuit terminal switch (run and freq ref) 7: Emergency stop (N.O. contact input) 8: Emergency stop (N.C contact input) 9: FV/FI terminal switch 10: Multistep speed set 1 11: Multistep speed set 2 12: Multistep speed set 3 13: Jog frequency select 14: Accel/decel time switch 15: External base block instruction (N.O.contact input) 16: External base block instruction (N.C contact input) 17: Speed search command from Max frequency 18: Speed search command from set frequency 19: Parameter set enable/disable 20: PID integral value reset 21: PID control disable 22: Timer start command 23: Inverter overheat (blinking display of OH 3) 24: Sample/holding of analog reference 25: KEB instruction (N.O. contact) 26: KEB instruction (N.C. contact) 27: Decel/accel prohibit 28: PID input characteristic switchover	-	Terminal S2 is not programmable in F7: F7 default setting for terminal S2: Reverse run when closed, stopped when open. Initialization parameter A1-03 programs terminals S1 and S2 for 2-Wire or 3-Wire run control.	-
037	Multi-function contact input 2 (terminal S3)	Set range: $2-28$ (It is the same as constant n036)	0 to 78 Selects the function of terminal S3. 0: 3-wire control FWD/REV selection for 3-wire sequence. 1: Local/Remote Selection 2: Option/Inv Selection Selects source of frequency reference and sequence. Closed $=$ Option Card, Open $=$ b1-01 \& b1-02. 3: Multi-Step Frequency Reference 1 4: Multi-Step Frequency Reference 2	Multi-Function Digital Input Terminal S3 Function Selection	H1-01

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
$\begin{aligned} & \text { Param } \\ & \text { No. } \\ & \text { Nxxx } \end{aligned}$	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
$\left[\begin{array}{l} \text { (con't) } \\ \mathbf{0 3 7} \end{array}\right.$	Multi-function contact input 2 (terminal S3) (terminal S3)	Set range: 2-28		Multi-Function Digital Input Terminal S3 Function Selection	H1-01

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
$\begin{gathered} \text { Param } \\ \text { No. } \\ \mathrm{Nxxx} \end{gathered}$	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
$\left\lvert\, \begin{aligned} & \text { (con't) } \\ & 037 \end{aligned}\right.$	Multi-function contact input 2 (terminal S3)	Set range: 2-28 (It is the same as constant n036)	Open = Only using monitor U1-01 can 1C: Trim Control Increase Closed $=$ Increase frequency reference By value in d4-02. Open $=$ Return to normal frequency reference. Not effective when "multi-step speed 1 to 4 " input is closed. Must be used in conjunction with Trim Ctrl Decrease. Closed = Dect Decrease Closed $=$ Decrease frequency reference by value in d4-02 Open $=$ Return reference. d1-16 ${ }^{\text {antive }}$ when using d1-01 thru di-16 as frequency reference. Must be used in conjunction with Trim Ctrl Increase. 1E: Reference Sample Hold Analog frequency reference is sampled then held at time of input closure. Detected, Ramp To Stop 21: External Fault, Normally Closed, Always Detected, Ramp To Stop Run, Ramp To Stop 23: External Fault, Normally Closed, During Run, Ramp To Stop 24: External Fault, Normally Open, Always 25: External Fault, Normally Closed, Always Detected, Coast To Stop 26: External Fault, Normally Open, During Run, Coast To Stop 27: External Fault, Normally Closed, During Run, Coast To Stop 28: External Fault, Normally Open, Always Detected, Fast-Stop 29: External Fault, Normally Closed, 2A: External Fault, Normally Open, During Run, Fast-Stop 2B: External Fault, Normally Closed, 2C: External Fault, Nop Always Detected, Alarm Only 2D: External Fault, Normally Closed, 2E: External Fault, Normally Open, During Run, Alarm Only 2F: External Fault, Normally Closed, During Run, Alarm Only Closed $=$ Set integrator value to 0 . PID integral hold Closed $=$ Hold integrator at its present : Multi-Step Reference 4 Based on the status of Multi-Step Reference 1 to 4 (d1-16). 34: PID Soft Starter Cancel Closed $=\mathrm{bs}-17$ is ignored 35: PID Input (Error) Polarity Change Closed = PID error signal polarity is reversed $(1$ to -1 or - to to $)$ 60: DC Injection Braking Closed $=$ Apply DC injection current as set in parameter b2-02 set in parameter b2-02.	Multi-Function Digital Input Terminal S3 Function Selection	H1-01

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
Param No. Nxxx	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
$\begin{array}{\|l\|l\|} \hline \text { (con't) } \\ 037 \end{array}$	Multi-function contact input 2 (terminal S3)	Set range: 2-28 (It is the same as constant n036)	61: Speed Search 1 Closed = While a run command is given, Drive does a speed search starting at maximum frequency (E1-04). Speed search based on b3-01. 62: Speed Search 2 Closed $=$ While a run command is Given, Drive does a speed search starting at frequency reference. Speed search based on b3-01. 63: Field Weakening Command (Energy Savings) Closed $=$ Field weakening control set for d6-01 and d6-02. 64: Speed Search 3 Closed = And a run command is given, Drive does a speed search starting at output frequency. Speed search based on b3-01. 65: Kinetic Energy Braking Ride-thru N.C. Closed $=$ Normal operation Open $=$ KEB ride-thru is enabled. 66: Kinetic Energy Braking Ride-thru N.O. Closed $=$ KEB ride-thru is enabled. 67: Communications Test Mode Used to test Modbus RS-485/422 interface. 68: High Slip Braking Closed = Drive stops using High Slip Braking regardless of run command status. 69: Jog 2 Closed = Drive runs at frequency reference entered into parameter d1-17. Direction determined by fwd/rev input. 3-wire control Only. 6A: Drive Enable - Closed = Drive will accept run command. Open $=$ Drive will not run. If running, Drive will stop per b1-03. 71: Speed / Torque Control Selection Closed $=$ Torque control operation. Open = Speed control operation. 72: Zero-Servo Command Closed $=$ Zero-Servo ON 77: ASR 2 Selection Closed = ASR proportional gain and integral time is set according to C5-03 and C5-04. 78: Polarity Reversing Command for External Torque Control Closed $=$ Reverse polarity.	Multi-Function Digital Input Terminal S3 Function Selection	H1-01
038	Multi-function contact input 3 (terminal S4)	Set range: 2-28 (It is the same as constant n036)	$0-78$ Same selections as H1-01	Multi-Function Digital Input Terminal S4 Function Selection	H1-02
039	Multi-function contact input 4 (terminal S5)	Set range: 2-28 (It is the same as constant n036)	$0-78$ Same selections as H1-01	$\begin{array}{\|l} \hline \begin{array}{l} \text { Multi-Function Digital Input } \\ \text { Terminal S5 Function } \\ \text { Selection } \end{array} \\ \hline \end{array}$	H1-03
040	Multi-function contact input 5 (terminal S6)	Set range: 2-29	$0-78$ Same selections as $\mathrm{H} 1-01$	Multi-Function Digital Input Terminal S6 Function Selection	H1-04

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
Param No. Nxxx	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
041	Multi-function contact output 1 (terminal MA-MB-MC)	0: Fault 1: During run. 2: Frequency agree 3: At set frequency agree 4: Freq detect (output freq $=$ set freq detection level) 5: Freq detect (output frequency $=$ set freq detect level) 6: Overtorque detect. (N.O contact) 7: Overtorque detect. (N.C contact) 8: The base block. 9: Operation mode 10: Inverter drive ready 11: Timer function 12: Auto restart. (Fault retry) 13: OL pre-alarm (OL1,OL2) 14: Frequency reference loss 15: Closed from serial communication. 16: PID feedback loss 17: OH1 alarm	: Selects the function of terminals M1 to M6. 0 : During RUN 1 Closed $=$ When a run command is input or the Drive is outputting voltage. 1: Zero Speed Closed = When Drive output frequency is less than minimum output frequency (E1-09). 2: Fref/Fout Agree 1 Closed $=$ When Drive output frequency equals the frequency reference $+/$ - the hysteresis of L4-02. 3: Fref/Set Agree 1 Closed = When the Drive output frequency and the frequency reference are equal to the value in $\mathrm{L} 4-01+/$ - the hysteresis of L4-02. 4: Frequency Detection 1 Closed = When the Drive output frequency is less than or equal to the value in L4-01 with hysteresis determined by L4-02. 5: Frequency Detection 2 Closed $=$ When the Drive output frequency is greater than or equal to the value in L4-01, with hysteresis determined by L4-02. 6: Inverter Ready Closed $=$ When the Drive is powered up, not in a fault state, and in the DRIVE mode. 7: DC Bus Undervoltage Closed $=$ When the DC bus voltage falls below the UV trip level set in L2-05. 8: Base Block 1 N.O. Closed $=$ When the Drive is not outputting voltage. 9: Operator Reference Closed $=$ When the frequency reference is coming from the Digital Operator. A: LOCAL/REMOTE Operation Closed $=$ When the run command is coming from the Digital Operator. B: Torque Detection 1 N.O Closed $=$ When the output current/torque exceeds the torque value set in parameter L6-02 for more time than is set in parameter L6-03. C: Loss of Reference Closed $=$ When the Drive has detected a loss of the analog frequency reference. Frequency reference is considered lost when it drops 90% in 0.4 seconds. Parameter L4-05 determines Drive reaction to a loss of frequency reference. D: Braking Resistor Fault Closed $=$ When braking resistor or transistor is overheating or has faulted. Only active when L8-01 = 1 . E: Fault Closed $=$ When the Drive experiences a major fault. F: Not Used 10: Alarm Closed $=$ When Drive experiences an alarm. : Reset Command Active Closed $=$ When the Drive receives a reset command from a digital input terminal or serial communication.	Terminal M1-M2 Function Selection	H2-01

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
$\begin{array}{\|c\|} \hline \text { Param } \\ \text { No } \\ \mathrm{Nxxx} \end{array}$	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
	Multi-function contact output 1 (terminal MA-MB-MC)			Terminal M1-M2 Function Selection	H2-01

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter					F7 Parameter		
Param No. Nxxx	Parameter Name		Description or Selection		Description or Selection	Parameter Name	Param. No.
041	$\begin{aligned} & \text { contact output } 1 \\ & \text { (terminal MA-MB-MC) } \end{aligned}$				(when in torque control) Closed $=$ When motor frequency is at the speed limit value when running in torque control. 33: Zero-Servo Complete Closed $=$ When Zero Servo is complete within the b9-02 zero servo completion width. 37: During Operation Closed $=$ When Drive is operating (except during baseblock or DC braking). 38: Drive Enable Closed $=$ When the Drive enable input is active.	Terminal M1-M2 Function Selection	H2-01
042	$\begin{array}{\|l\|} \hline \text { Multi-function } \\ \text { contact output 2 } \\ \text { (terminal M1-M2) } \\ \hline \end{array}$		It is the same as constant n041.		Same selections as H2-01	Terminal M3-M4 Function Selection	H2-02
043	Analog input select						
	Value	Terminal FV	FI terminal	Note			
	0	Master speed	Auxiliary	FV/FI switch enabled			
	1	Auxiliary	Master speed	FV/FI switch enable			
	2	Fault reset	Master speed	FV/FI switch disabled			
	3	Master speed	\sqrt{N} monitor input	FV/FI switch disabled	-	-	-
	4 Note: (n084 register 80	Fault reset $\begin{aligned} & 34 \neq 0) \mathrm{FV} \text { term }= \\ & H=0 \text { does not se } \end{aligned}$	N monitor input ster speed, FI term 4.	FV/FI switch disabled nal = feedback. Memobus			
044	Terminal FI signal Level Selection		0 : The FI terminal inputs $0-10 \mathrm{~V}$. (Jumper J 1 is cut) 1: The FI terminal inputs $4-20 \mathrm{~mA}$.		```Selects the signal level of terminal A2. 0: 0 to 10 Vdc (switch S1-2 must be in the OFF position). 1: -10 to +10 Vdc (switch S1-2 must be in the OFF position). 2: 4 to 20 mA (switch S1-2 must be in the ON position)```	Terminal A2 Signal Level Selection	H3-08
045	Frequency Reference Retention		1: The holding frequency reference is not memorized. 0 : The holding frequency reference is memorized and stored in n024		This parameter is used to retain the held frequency reference in U1-01 (d1-01) when power is removed. This function is available when the multi-function inputs "accel/decel ramp hold" or "up/down" commands are selected (H1-XX = A or 10 and 11). 0 : Disabled 1: Enabled	Frequency Reference Hold Function Selection	d4-01
046	Frequency Ref Loss selection		0: No detection 1: Continue running at n047 setting		The frequency reference is considered lost when reference drops 90% or more of its current value in less than 400 ms . 0 : Normal Operation - Drive will run at the frequency reference. 1: Run at L4-06 PrevRef - Drive will run at the percentage set in L4-06 of the frequency reference level at the time frequency reference was lost.	Frequency Reference Loss Detection Selection	L4-05
047	Frequency Ref when frequency reference is lost		Set unit: 1% and set range: 0-100\%		```0 to 100.0 If the frequency reference loss function is enabled (L4-05=1) and frequency reference is lost, the Drive will run at a reduced frequency reference determined by the following formula: Fref=Fref at time of loss * L4-06.```	Frequency Reference Level at Loss Frequency	L4-06
048	Terminal FV gain		Set unit: 1% and set range: 0 to 200%		0.0 to1000.0 Sets the output level when 10 V is input, as a percentage of the maximum output	Terminal A1 Gain Setting	H3-02

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
$\begin{aligned} & \text { Param } \\ & \text { No. } \\ & \text { Nxxx } \end{aligned}$	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
048	Terminal FV gain	Set unit: 1\% and set range: 0 to 200\%	0.0 tol000.0 Sets the output level when 10 V is input, as a percentage of the maximum output frequency (E1-04).	Terminal Al Gain Setting	H3-02
049	Terminal FV bias	Set unit: 1% and set range $=-100$ to $+100 \%$	-100.0 to +100.0 都 0 V is input, as a percentage of the maximum output frequency (E1-04)	Terminal A1 Bias Setting	H3-03
050	Terminal FI gain	Set unit: 1\% and set range: 0 to 200\%	0.0 to 1000.0 Sets the output level when 10 V is input.	Terminal A2 Gain Setting	H3-10
051	Terminal FI b bias	Set unit: 1\% and set range - 100 to $+100 \%$	$\begin{aligned} & -100.0 \text { to }+100.0 \\ & \text { Sets the output level when } 0 \mathrm{~V} \text { is input. } \end{aligned}$	Terminal A2 Bias Setting	H3-11
052	Analog output Select (terminal AM-AC)	0: Output frequency ($10 \mathrm{~V}=$ Max frequency n 011) 1: Output current 2. $10 \mathrm{~V}=$ rated current of inverter) 2. Output power $(10 \mathrm{~V}=$ inverter rated power $)$ 3: DC bus voltage $(10 \mathrm{~V}=1150 \mathrm{VDC})$	Selects which monitor will be output on 1. terminals FM and FC . 100% = Maximum output frequency 2: Output Frequency 100% = Maximum output frequency Output Current $100 \%=$ Drive rated current. : Motor Speed 100% = Maximum output frequency Output Voltage $100 \%=200 / 400 \mathrm{Vac}$ depending on Drive voltage rating. $100 \%=400 / 800 \mathrm{Vdc}$ depending on Drive voltage rating. 8: Output kWatts 100% = Drive rated power. 9: Torque Reference $100 \%=$ Motor rated torque. : Terminal A1 Input Level $100 \%=10 \mathrm{Vdc}$ 16: Terminal A2 Input Level $100 \%=10 \mathrm{Vdc}$ or 20 mA $100 \%=10 \mathrm{Vdc}$ 18: Motor Secondary Current $100 \%=$ Motor rated secondary current. Motor Excitation Current $100 \%=$ Motor rated secondary current. SFS Output 100% = Maximum output frequency : ASR Input $100 \%=$ Maximum output frequency 100% = Maximum output frequency 24: PID Feedback 100% = Maximum output frequency. 26:Output Voltage Reference Vq $100 \%=$ E1-05, default 240 V or 480 V . 27: Output Voltage Reference Vd $100 \%=$ E1-05, default 240 V or 480 V . 31: Not Used 36: PID Input $100 \%=$ Maximum output frequency : PID Output $100 \%=$ Maximum output frequency PID Setpoint 45: Feedforward Control Out frequency $100 \%=$ Motor rated secondary current.	Terminal FM Monitor Selection	H4-01
053	Analog output gain	Set unit: 0.01 and set range: 0.01-2.00	0.0 to 1000.0 Sets terminal FM output level when selected monitor is at 100%.	Terminal FM Gain Setting	H4-02

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
$\begin{aligned} & \text { Param } \\ & \text { No. } \\ & \text { Nxxx } \end{aligned}$	Parameter Name	Description or Selection	Description or Selection	Parameter Name	$\begin{aligned} & \text { Param. } \\ & \text { No. } \end{aligned}$
054	Carrier frequency		Selects the number of pulses per second of the output voltage waveform. Setting range determined by C6-01 setting 0 : Low noise 1: $\mathrm{Fc}=2.0 \mathrm{kHz}$ 2: $\mathrm{Fc}=5.0 \mathrm{kHz}$ 3: $\mathrm{Fc}=8.0 \mathrm{kHz}$ 4: $\mathrm{Fc}=10.0 \mathrm{kHz}$ 5: $\mathrm{Fc}=12.5 \mathrm{kHz}$ 6: $\mathrm{Fc}=15.0 \mathrm{kHz}$ F: Program (Determined by the settings of C6-03 thru C6-05)	Carrier Frequency Selection	C6-02
			2.0 to 15.0 kHz	Carrier Frequency Upper Limit	C6-03
			0.41015 .0 kHz	Carrier Frequency Lower Limit	C6-04
			Sets the relationship of output frequency to carrier frequency when $\mathrm{C} 6-02=\mathrm{F}$.	Carrier Frequency Proportional Gain	C6-05
055	Operation after momentary power los	0: Not Provided. 1: Operation continues after power recovery within 2 sec 2: Operation continues while control power is on (UV1, UV3 faults not are detected)	Enables and disables the momentary power loss function. 0 : Disabled - Drive trips on (UV1) fault when power is lost. 1: Power Loss Ride Thru Time - Drive will restart if power returns within the time set in L2-02.* 2: CPU Power Active - Drive will restart if power returns prior to control power supply shut down.* * In order for a restart to occur, the run command must be maintained throughout the ride thru period.	Momentary Power Loss Detection Selection	L2-01
056	Speed search operation level	Set unit: 1% Set range: 0-200\% ($100 \%=$ rated current of inverter)	0 to 200 Used only when b3-01 $=2$ or 3 . Sets the speed search operation current as a percentage of Drive rated current.	Speed Search Deactivation Current	b3-02
057	Minimum base block time	$\begin{array}{\|l} \hline \text { Set unit: } 0.1 \mathrm{sec} \\ \text { Set range: } 0.5-10.0 \mathrm{sec} \end{array}$	0.1 to 5.0 sec Sets the minimum time to wait to allow the residual motor voltage to decay before the Drive output turns back on during power is greater than L2-02, operation resumes after the time set in L2-03.	Momentary Power Loss Minimum Base Block Time	L2-03
058	V / f during speed search	Set unit: 1% and set range: 0-100\%			-
059	Power ride through time	Set unit: 0.1 sec and set range: 0.0-2.0sec	0.0 to 25.5 sec Sets the power loss ride-thru time. This value is dependent on the capacity of the Drive. Only effective when $\mathrm{L} 2-01=1$.	Momentary Power Loss Ride-thru Time	L2-02

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
Param No. Nxxx	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
060	No. of Fault Retries	Setting unit $=1$ times Set range: 0-10 times (There is no fault retry at 0)	0 to 10 Sets the counter for the number of times the Drive will perform an automatic restart on the following faults: GF, $\mathrm{LF}, \mathrm{OC}, \mathrm{OV}, \mathrm{PF}$, PUF, RH, RR, OL1, OL2, OL3, OL4, UV1. Auto restart will check to see if the fault has cleared every 5 ms . When no fault is present, the Drive will attempt an auto restart. If the Drive faults after an auto restart attempt, the counter is incremented. When the drive operates without fault for 10 minutes, the counter will reset to the value set in L5-01	Number of Auto Restart Attempts	L5-01
061	Fault contact during fault retry	0 : Fault contact output enabled while fault retry. 1: Fault contact output disabled while fault retry.	Determines if the fault contact activates during an automatic restart attempt. 0 : No Fault Relay - fault contact will not activate during an automatic restart attempt. 1: Fault Relay Active - fault contact will activate during an automatic restart attempt.	Auto Restart Operation Selection	L5-02
062	Jump frequency 1	Set unit: 0.1 Hz and set range: $0.0-400.0 \mathrm{~Hz}$	$\begin{aligned} & 0.0 \text { to } 200.0 \\ & \text { These parameters allow programming of up } \end{aligned}$	Jump Frequency 1	d3-01
063	Jump frequency 2	Set unit: 0.1 Hz and set range: $0.0-400.0 \mathrm{~Hz}$	to three prohibited frequency reference points for eliminating problems with	Jump Frequency 2	d3-02
064	Width of jump	Set unit: 0.1 Hz and set range: $0.0-25.5 \mathrm{~Hz}$	This feature does not actually eliminate the selected frequency values, but will accelerate and decelerate the motor through the prohibited bandwidth.	Jump Frequency Width	d3-04
065	Elapsed timer 1 mode	0: Operation time accumulates. 1: Operation time accumulates. (During Run)	Sets how time is accumulated for the elapsed operation timer U1-13. 0: Power-On Time - Time accumulates when the Drive is powered. 1: Running Time - Time accumulates only when the Drive is running.	Cumulative Operation Time Selection	02-08
066	Elapsed timer 1 (lower 4 digits)	Setting unit $=1$ hour, range $=0 \sim 9999$ hours 1 minute is stored in EEPROM, < 1day rounded up	0 to 65535 Sets the initial value of the elapsed operation timer U1-13.	Cumulative Operation Time Setting	02-07
067	Elapsed timer 1 (upper 4 digits)	Set unit: 1(For 10000 hours) and a set range: 0-27. * Initial value becomes 0 only when initialized during CPF4 occurrence.			
068	DC injection braking current	Set unit: 1% Set range: 0-100\% ($100 \%=$ rated current of inverter)	0 to 100 Sets the DC injection braking current as a percentage of the Drive rated current.	DC Injection Braking Current	b2-02
069	DC braking time at stop	Set unit:0.1 sec and set range: $0.0-10.0 \mathrm{sec}$	0.00 to 10.00 Sets the time length of DC injection braking at stop in units of 0.01 seconds. NOTE: When b1-03 = 2, actual DC Injection time is calculated as follows: b2-04 * 10 * Output Frequency / E1-04. NOTE: When b1-03 $=0$, this parameter determines the amount of time DC Injection is applied to the motor at the end of the decel ramp. NOTE: This should be set to a minimum of 0.50 seconds when using HSB. This will activate DC injection during the final portion of HSB and help ensure that the motor stops completely.	DC Injection Braking Time at Stop	b2-04
070	DC braking time at start	Set unit: 0.1 sec and set range: $0.0-10.0 \mathrm{sec}$	0.00 to 10.00 Sets the time of DC injection braking at start in units of 0.01 seconds.	DC Injection Braking Time at Start	b2-03

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
Param No. Nxxx	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
071	Torque comp gain	Set unit: 0.1 and set range: $0.0-3.0$	0.00 to 2.50 This parameter sets the gain for the Drive's automatic torque boost function to match the Drive's output voltage to the motor load. This parameter helps to produce better starting torque. It determines the amount of torque or voltage boost based upon motor current, motor resistance, and output frequency.	Torque Compensation Gain	C4-01
072	Stall prevention during deceleration	0: Stall prevention function none at deceleration 1: The stall prevention is provided while decelerating.	When using a braking resistor, use setting " 0 ". Setting " 3 " is used in specific applications. 0 : Disabled - The Drive decelerates at the active deceleration rate. If the load is too large or the deceleration time is too short, an OV fault may occur. 1: General Purpose - The Drive decelerates at the active deceleration rate, but if the main circuit DC bus voltage reaches the stall prevention level ($380 / 760 \mathrm{Vdc}$), deceleration will stop. Deceleration will continue once the DC bus level drops below the stall prevention level. 2: Intelligent - The active deceleration rate is ignored and the Drive decelerates as fast as possible w/o hitting OV fault level. Range: C1-02 / 10. 3: Stall Prevention w/ Braking Resistor	Stall Prevention Selection During Deceleration	L3-04
073	Stall prevention level during acceleration	Set unit: 1% Set range: $30-200 \%$ $(100 \%=$ rated current of inverter $)$ (Stall prevention disabled when set point $=200 \%)$	Selects the stall prevention method used to prevent excessive current during acceleration. 0 : Disabled - Motor accelerates at active acceleration rate. The motor may stall if load is too heavy or accel time is too short. 1: General Purpose - When output current exceeds L3-02 level, acceleration stops. Acceleration will continue when the output current level falls below the L3-02 level. 2: Intelligent - The active acceleration rate is ignored. Acceleration is completed in the shortest amount of time without exceeding the current value set in L3-02.	Stall Prevention Selection During Accel	L3-01
			0 to 200 This function is enabled when L3-01 is " 1 " or " 2 ". Drive rated current is 100%. Decrease the set value if stalling or excessive current occurs with factory setting.	Stall Prevention Level During Acceleration	L3-02
074	Stall prevention level during run	Set unit: 1% Set range: $30-200 \%$ $(100 \%=$ rated current of inverter $)$ (Stall prevention disabled when set point $=200 \%)$	Selects the stall prevention method to use to prevent Drive faults during run. 0 : Disabled - Drive runs a set frequency. A heavy load may cause the Drive to trip on an OC or OL fault. 1: Decel Time 1 - In order to avoid stalling during heavy loading, the Drive will decelerate at Decel time 1 (C1-02) if the output current exceeds the level set by L3-06. Once the current level drops below the L3-06 level, the Drive will accelerate back to its frequency reference at the active acceleration rate. 2: Decel Time 2 - Same as setting 1 except the Drive decelerates at Decel Time 2 (C1-04). When output frequency is 6 Hz or less, stall prevention during running is disabled regardless of L3-05 setting.	Stall Prevention Selection During Running	L3-05

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
Param No. Nxxx	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
075	Set frequency detection level	Set unit: 0.1 Hz and set range: $0.0-400.0 \mathrm{~Hz}$	0.0 to 400.0 These parameters configure the multifunction output (H2-) settings "Fref/Fout agree 1", "Fref/Set agree 1", "Frequency detection 1," and "Frequency detection 2". They are used as a setpoint and hysteresis for a contact closure for the functions.	Speed Agreement Detection Level	L4-01
076	Width of frequency agreement detection	Set unit: 0.1 Hz and set range: $0.0-25.5 \mathrm{~Hz}$	0.0 to 20.0	Speed Agreement Detection Width	L4-02
077	Overtorque/ Undertorque Selection	0: Overtorque/undertorque detection disabled. 1: Overtorque is detected during constant speed operation and operation continues after overtorque detection. 2: Overtorque is always detected and operation continues after overtorque detection. 3: Overtorque is detected during constant speed operation and inverter output is disabled after overtorque detection. 4: Overtorque is always detected and inverter output is disabled after overtorque detection. 5: Undertorque is detected during constant speed operation and operation continues after undertorque detection. 6: Undertorque is always detected and operation continues after undertorque detection. 7: Undertorque is detected during constant speed operation and inverter output is disabled after undertorque detection. 8: Undertorque is always detected and inverter output is disabled after undertorque detection.	Determines the Drive's response to an Overtorque/Undertorque condition. Overtorque and Undertorque are determined by the settings in parameters L6-02 and L6-03. The multi-function output settings " B " and " 17 " in the H 2 parameter group are also active if programmed. 0 : Disabled 1: OL3 at Speed Agree - Alarm (Overtorque Detection only active during Speed Agree and Operation continues after detection). 2: OL3 at RUN - Alarm (Overtorque Detection is always active and operation continues after detection). 3: OL3 at Speed Agree - Fault (Overtorque Detection only active during Speed Agree and Drive output will shut down on an OL3 fault). 4: OL3 at RUN - Fault (Overtorque Detection is always active and Drive output will shut down on an OL3 fault). 5: UL3 at Speed Agree - Alarm (Undertorque Detection is only active during Speed Agree and operation continues after detection). 6: UL3 at RUN - Alarm (Undertorque Detection is always active and operation continues after detection). 7: UL3 at Speed Agree - Fault (Undertorque Detection only active during Speed Agree and Drive output will shut down on an OL3 fault). 8: UL3 at RUN - Fault (Undertorque Detection is always active and Drive output will shut down on an OL3 fault).	Torque Detection Selection 1	L6-01
078	Overtorque detection level	Set unit: 1% Set range: 30-200\% ($100 \%=$ rated current of inverter)	0 to 300 Sets the Overtorque/Undertorque detection level as a percentage of Drive rated current or torque for torque detection 1. Current detection for A1-02 $=0$ or 1 . Torque detection for A1-02 $=2$ or 3 .	Torque Detection Level 1	L6-02
079	Overtorque detection time	Set unit: 0.1 sec and set range: $0.1-10.0 \mathrm{sec}$	0.0 to 10.0 Sets the length of time an Over/Under torque condition must exist before torque detection 1 recognized by the Drive.	Torque Detection Time 1	L6-03
080	(timer function) ON Delay time	Set unit: 0.1 sec Set range: $0.0-25.5 \mathrm{sec}$	0.0 to 3000.0 Used in conjunction with a multi-function digital input and a multi-function digital output programmed for the timer function. This sets the amount of time between when the digital input is closed, and the digital output is energized.	Timer Function ON-Delay Time	b4-01

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
Param No. Nxxx	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
081	(timer function) Off delay time	Set unit: 0.1 sec Set range: $0.0-25.5 \mathrm{sec}$	0.0 to 3000.0 Used in conjunction with a multi-function digital input and a multi-function digital output programmed for the timer function. This sets the amount of time the output stays energized after the digital input is opened.	Timer Function OFF-Delay Time	b4-02
082	Braking resistor Overheat protection	0: Braking resistor overheat protection disabled. 1: Braking resistor overheat protection enabled.	Selects the DB protection only when using 3\% duty cycle heatsink mount Yaskawa braking resistor. This parameter does not enable or disable the DB function of the Drive. 0: Not Provided 1: Provided	Internal Dynamic Braking Resistor Protection Selection	L8-01
083	Input open-phase detection level	Set unit: 1% and set range: $1-100 \%$ (Open-phase detection disabled at set point $=100 \%$)	Selects the detection of input current phase loss, power supply voltage imbalance, or main circuit electrostatic capacitor deterioration. 0: Disabled 1: Enabled	Input Phase Loss Protection Selection	L8-05
084	(PID control) PID control selection	0: PID control disabled. 1: PID control enabled. ($\mathrm{D}=\mathrm{Fdbk}$) 2: PID control enabled. ($\mathrm{D}=\mathrm{Fdfwd}$) 3: PID control enabled. ($\mathrm{D}=\mathrm{Fdbk}$, feedback=reverse)	This parameter determines the function of the PID control. 0: Disabled 1: D = Feedback 2: D = Feed-Forward 3: Freq. Ref. + PID output ($\mathrm{D}=$ Feedback) 4: Freq. Ref. + PID output ($\mathrm{D}=$ Feed-Forward)	PID Function Setting	b5-01
085	(PID control) Feedback gain	Set unit: 0.01 Set range: 0.00-10.00	-	-	-
086	(PID control) Proportional gain	$\begin{array}{\|l\|} \hline \text { Set unit: } 0.1 \\ \text { Set range: } 0.0-10.0 \end{array}$	0.00 to25.00 Sets the proportional gain of the PID controller	Proportional Gain Setting	b5-02
087	(PID control) Integral time	Set unit: 0.1 sec Set range: $0.0-100.0 \mathrm{sec}$	0.0 to 360.0 Sets the integral time for the PID controller. A setting of zero disables integral control.	Intregral Time Setting	b5-03
088	(PID control) Derivative time	Set unit: 0.01 sec Set range: $0.00-1.00 \mathrm{sec}$	0.00 to 10.00 Sets D control derivative time. A setting of 0.00 disables derivative control.	Derivative Time	b5-05
089	(PID control) Integration upper limit	$\begin{array}{\|l\|} \hline \text { Set unit: } 1 \% \\ \text { Set range: } 0-109 \% \end{array}$	0.0 to 100.0 Sets the maximum output possible from the integrator. Set as a\% of maximum frequency	Intregral Limit Setting	b5-04
090	PID Feedback loss detection selection	0: PID feedback loss disabled. 1: PID feedback loss enabled, no fault detected. 2: PID feedback loss enabled, fault detection enabled.	0: Disabled 1: Alarm 2: Fault	PID Feedback Reference Missing Detection Selection	b5-12
091	PID Feedback loss detection level	$\begin{array}{\|l\|} \hline \text { Set unit:1\% } \\ \text { Set range: } 0-100 \% \end{array}$	0 to 100 Sets the PID feedback loss detection level as a percentage of maximum frequency (E1-04).	PID Feedback Loss Detection Level	b5-13
092	PID Feedback loss detection time	Set unit: 0.1 sec Set range: $0.0-25.5 \mathrm{sec}$	0.0 to 25.5 Sets the PID feedback loss detection delay time in terms of seconds.	PID Feedback Loss Detection Time	b5-14
093	PID output reverse-characteristic	0: Reverse-characteristic disabled 1: Reverse-characteristic enabled.	Determines whether the PID controller will be direct or reverse acting. 0 : Normal Output (direct acting) 1: Reverse Output (reverse acting)	PID Output Level Selection	b5-09
094	PID Sleep function operation level	Set unit: 0.1 Hz Set range: $0.0-400.0 \mathrm{~Hz}$	$\begin{array}{\|l\|} \hline 0.0 \text { to } 200.0 \\ \text { Sets the sleep function start frequency. } \end{array}$	Sleep Function Start Level	b5-15
095	PID Sleep function operation time	Set unit: 0.1 sec Set range: $0.0-25.5 \mathrm{sec}$	0.0 to 25.5 Sets the sleep function delay time in terms of seconds.	Sleep Delay Time	b5-16

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
Param No. Nxxx	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
096	Energy Saving Selection	0: Energy saving disabled 1: Energy saving enabled	Energy Savings function enable/disable selection. 0: Disabled 1: Enabled	Energy Saving Control Selection	b8-01
097	Energy Saving Gain K2	Set unit: 0.01 (It is 0.1 units in 100 or more) Set range: 0.00-655.0 (Energy Saving disabled $=0.00$)	0.0 to 10.0 Sets energy savings control gain when in vector control method.	Energy Saving Gain	b8-02
098	Energy Save Voltage Lower limit @ 60 Hz	Set unit: 1% Set range: 0-120\%	Used to fine-tune the energy savings function when in V/F control method.	Power Detection Filter Time	b8-05
099	Energy Save Voltage Lower limit @ 6 Hz	Set unit:1\% Set range:0-25\%		Search Operation Voltage Limit	b8-06
100	Time of average KW	Set unit:1 ($1=25 \mathrm{~ms}$) Set range: $1-200(25 \mathrm{~ms}=5.0 \mathrm{sec})$	0 to 2000 Used to fine-tune the energy savings function when in V/F control method.	Power Detection Filter Time	b8-05
101	MEMOBUS timeout detection	0: Timeout detection disabled. 1: Timeout detection enabled.	Enables or disables the communications timeout fault (CE). 0 : Disabled - A communication loss will not cause a communication fault. 1: Enabled - If communication is lost for more than 2 seconds, a CE fault will occur.	Communication Fault Detection Selection	H5-05
102	MEMOBUS Stop method selection at communication error (CE)	0: Deceleration stop (Decelerate by deceleration time 1) 1: Coast stop 2: Deceleration stop (Decelerate by deceleration time 2) 3: Continue operation (alarm display)	```Selects the stopping method when a communication timeout fault (CE) is detected. 0 : Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only \#4: Run at d1-04```	Stopping Method After Communication Error	H5-04
103	MEMOBUS Frequency reference unit selection	$0: 0.1 \mathrm{~Hz} / 1$ $1: 0.01 \mathrm{~Hz} / 1$ $2: 100 \% / 30000$ $3: 0.1 \% / 1$	-	-	-
104	MEMOBUS Slave address	Set unit:1 Set range:0-31 (There is no MEMOBUS communication at set point $=0$)	```0 to 20 Hex Selects Drive station node number (address) for Modbus terminals R+, R-, S+, S-. The Drive's power must be cycled for the setting to take effect.```	Drive Node Address	H5-01
105	MEMOBUS Baud rate selection	0: 2400bps 1: 4800bps 2: 9600 bps	```Selects the baud rate for Modbus terminals R+, R-, S+ and S-. The Drive's power must be cycled for the setting to take effect. 0: 1200 bps 1: 2400 bps 2: 4800 bps : 3: 9600 bps : 4: 19200 bps```	Communication Speed Selection	H5-02
106	MEMOBUS Parity selection	0: Parity none 1: Even parity 2: Odd parity	Selects the communication parity for Modbus terminals R+, R-, S+ and S-. The Drive's power must be cycled for the setting to take effect. 0 : No Parity 1: Even Parity :2: Odd Parity	Communication Parity Selection	H5-03
107	Slip compensation Gain	Set unit: 0.1% Set range: 0.0-9.9\% ($100 \%=$ maximum voltage frequency)	$\begin{aligned} & 0.0 \text { to } 2.5 \\ & \text { This parameter is used to increase motor } \\ & \text { speed to account for motor slip by boosting } \\ & \text { the output frequency. } \\ & \text { If the speed is lower than the frequency } \\ & \text { reference, increase C3-01. } \\ & \text { If the speed is higher than the frequency } \\ & \text { reference, decrease C3-01 } \end{aligned}$	Slip Compensation Gain	C3-01
108	Motor no-load current	Set unit: 1% Set range: 0-99\% ($100 \%=$ rated current of motor)	Set to the magnetizing current of the motor as a percentage of full load amps (E2-01). This value is automatically set during rotational Auto-Tuning.	Motor No-Load Current	E2-03
109	Slip comp Primary Delay Time Constant	Set unit: 0.1 sec Set range: $0.0-25$ and 5 sec	0 to 10000 This parameter adjusts the filter on the	Slip Compensation Primary Delay Time	C3-02

Appendix 3- Parameter Cross Reference

GPD506/P5 Parameter			F7 Parameter		
Param No. Nxxx	Parameter Name	Description or Selection	Description or Selection	Parameter Name	Param. No.
			$\begin{aligned} & \text { output of the slip compensation function. } \\ & \text { Increase to add stability, decrease to } \\ & \text { improve response. } \end{aligned}$		
110	Operator Connection Fault Detect Select	0: Operator connection fault disabled. 1: Operator connection fault enabled.	Determines if the Drive will stop when the Digital Operator is removed when in LOCAL mode or b1-02=0. 0: Disabled - The Drive will not stop when the Digital Operator is removed. 1: Enabled - The Drive will fault (OPR) and coast to stop when the operator is removed.	Operation Selection when Digital Operator is disconnected	02-06
111	Local/remote Change- over function Select	0: Cycle External run 1: Accept external run	0: Cycle External RUN - If the run command is closed when switching from local mode to remote mode, the Drive will not run. 1: Accept External RUN - If the run command is closed when switching from local mode to remote mode, the Drive will run.	Local/Remote Run Selection	b1-07
112	Low frequency OL starting point	$\begin{array}{\|l\|} \hline \text { Set unit: } 0.1 \mathrm{~Hz} \\ \text { Set range: } 0.0-10.0 \mathrm{~Hz} \end{array}$	This parameter assists in protecting the output transistors from overheating when output current is high and output frequency is low (6 Hz and less). 0: Disabled 1: Enabled (L8-18 is active)	OL2 Characteristic Selection at Low Speeds	L8-15
113	$\begin{aligned} & \text { Continuous running } \\ & \text { level at } 0 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \hline \text { Set unit: } 1 \% \\ & \text { Set range: } 25-100 \% \end{aligned}$			
114	$\sqrt{N}_{\text {Gain of monitor }}$	Set unit: 1 and set range:0-99	-	-	-
115	KVA selection	$\begin{array}{\|l\|} \hline \text { Set unit: } 1 \\ \text { Set range: PC5 (} 0 \sim 8,20 \sim 29 \text {), P5(} 9 \sim \mathrm{~F}, 2 \mathrm{~A} \sim 35) \end{array}$	0 to FF Sets the kVA of the Drive. Enter the number based on Drive model number. Use the last four digits of the model number. CIMR-F7U This parameter only needs to be set when installing a new control board. Do not change for any other reason. Refer to Table B.1. in the F7 Instruction Manual	Drive/kVA Selection	02-04
116	CT/VT selection	0: Constant Torque selection 1: Variable Torque selection	Selects Drive's rated input and output current, overload capacity, carrier frequency, current limit, and maximum output frequency. See Introduction for details. 0 : Heavy Duty (C6-02 = 0 to 1) 1: Normal Duty $1(\mathrm{C} 6-02=0$ to F$)$ 2: Normal Duty 2 (C6-02 = 0 to F)	Drive Duty Selection	C6-01

[^0]: ${ }^{1} \mathrm{HD}=$ Heavy Duty, ND=Normal Duty

[^1]: ${ }^{2}$ Technical manual and promotional material will only refer to Normal Duty and Heavy Duty. The term Normal Duty refers to Normal Duty 2 (C6-01=2) setting.

