YASKAWA

Machine Controller MP2000 Series SVA-01 Motion Module USER'S MANUAL

Model: JAPMC-MC2300 (-E)

Overview

Settings and Installation
Setup
Operation Modes

Motion Parameter Setting Examples
Motion Commands

Switching Commands during Execution
Control Block Diagram

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

Using this Manual

Read this manual to ensure correct usage of the MP2000-series Machine Controller (hereinafter referred to as Machine Controller unless otherwise specified) and the SVA-01 Module. Keep this manual in a safe place so that it can be referred to whenever necessary.

- Manual Configuration

Read the chapters of this manual as needed.

			$\begin{aligned} & \text { ㅇ } \\ & 0 \\ & 0 \\ & 0 \\ & \varepsilon \\ & 0 \\ & \omega \\ & \omega \end{aligned}$			
1	Overview	\checkmark				\checkmark
2	Settings and Installation	\checkmark		\checkmark		\checkmark
3	Setup		\checkmark		\checkmark	\checkmark
4	Operation Modes		\checkmark		\checkmark	
5	Motion Parameters		\checkmark		\checkmark	
6	Motion Parameter Setting Examples		\checkmark		\checkmark	
7	Motion Commands		\checkmark		\checkmark	
8	Switching Commands during Execution		\checkmark		\checkmark	
9	Control Block Diagram		\checkmark		\checkmark	
10	Absolute Position Detection		\checkmark		\checkmark	
11	Utility Functions		\checkmark		\checkmark	\checkmark
12	Troubleshooting		\checkmark		\checkmark	\checkmark

- Symbols Used in this Manual

The symbols used in this manual indicate the following type of information.

1 - This symbol is used to indicate important information that should be memorized or minor precautions, such as precautions that will result in alarms if not heeded.

Terms Used to Describe "Torque"

Although the term "torque" is commonly used when describing rotary servomotors and "force" or "thrust" are used when describing linear servomotors, this manual uses "torque" when describing both (excluding parameters).

- Indication of Reverse Signals

In this manual, the names of reverse signals (ones that are valid when low) are written with a forward slash (/) before the signal name, as shown in the following example:

Notation Examples

- $\overline{\mathrm{S}-\mathrm{ON}}=/ \mathrm{S}-\mathrm{ON}$
- $\overline{\mathrm{P}-\mathrm{CON}}=/ \mathrm{P}-\mathrm{CON}$

Related Manuals

The following table lists the manuals relating to the SVA－01 Module．Refer to these manuals as required．

Manual Name	Manual Number	Contents
Machine Controller MP2100／MP2100M User＇s Manual Design and Maintenance	SIEP C880700 01	Describes how to use the MP2100 and MP2100M Machine Controllers．
Machine Controller MP2200 User＇s Manual	SIEP C880700 14	Describes how to use the MP2200 Machine Controller and the modules that can be connected．
Machine Controller MP2300 Basic Module User＇s Manual	SIEP C880700 03	Describes how to use the MP2300 Basic Module and the modules that can be connected．
Machine Controller MP2500／MP2500M／ MP2500D／MP2500MD User＇s Manual	SIEP C880752 00	Describes how to use the MP2500，MP2500M， MP2500D，and MP2500MD Machine Controllers．
Machine Controller MP2000 Series Motion Module User＇s Manual Built－in SVB／SVB－01 Module	SIEP C880700 33	Provides a detailed description on the MP2000－series Machine Controller built－in SVB Module and slot－ mounting optional SVB－01 Module．
Machine Controller MP2000 Series Communication Module User＇s Manual	SIEP C880700 04	Provides the information on the Communication Module that can be connected to MP2 $\square 00$ Machine Controller and the communication methods．
Machine Controller MP900／MP2000 Series User＇s Manual，Ladder Programming	SIEZ－C887－1．2	Describes the instructions used in MP900／MP2000 lad－ der programming．
Machine Controller MP900／MP2000 Series User＇s Manual Motion Programming	SIEZ－C887－1．3	Describes the instructions used in MP900／MP2000 motion programming．
Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User＇s Manual	SIEP C880700 30	Describes how to install and operate the programming tool MPE720 version 6 for MP2000－series Machine Controllers．
Machine Controller MP900／MP2000 Series MPE720 Software for Programming Device User＇s Manual	SIEP C880700 05	Describes how to install and operate the MP900／MP2000 Series programming system（MPE720）．
Σ Series SGMD／SGD User＇s Manual	SIE－S800－26．3	Describes the Σ－I Series SERVOPACK models，specifi－ cations，and capacity selection methods．
Σ－II Series SGMDH／SGDH User＇s Manual	SIEP S800000 05	Describes the installation，wiring，trial operation，func－ tion applications methods，maintenance，and inspection of the Σ－II Series SERVOPACKs．
ᄃ－II Series SGMDH／SGDM User＇s Manual	SIEP S800000 15	Describes the installation，wiring，trial operation，func－ tion applications methods，maintenance，and inspection of the Σ－II Series SERVOPACKs．
AC Servo Drives Σ－III Series SGMロロ／SGDS User＇s Manual	SIEP S800000 00	Describes the models，specifications，wiring，trial opera－ tion，adjustment，function application methods，mainte－ nance，and inspection of the Σ－III Series SERVOPACKs and Servomotors．
AC Servodrive Σ－V Series SGMロロ／SGDV User＇s Manual Design and Maintenance Rotational Motor Analog Voltage and Pulse Train Reference	SIEP S800000 45	Describes the models，specifications，wiring，trial opera－ tion，adjustment，function application methods，mainte－ nance，and inspection of the Σ－V Series SERVOPACKs and Servomotors．
AC Servodrive Σ－V Series User＇s Manual Design and Maintenance Linear Motor Analog Voltage and Pulse Train Reference	SIEP S800000 47	Describes the models，specifications，wiring，trial opera－ tion，adjustment，function application methods，mainte－ nance，and inspection of the Σ－V Series SERVOPACKs and Linear Servomotors．
इ－7－Series AC Servo Drive Σ－7S SERVOPACK with Analog Voltage／Pulse Train References Product Manual	SIEP S800001 26	Describes the selection of Σ－ 7 －Series SERVOPACKs and the installation，connection，settings，trial operation，tun－ ing，and monitoring of Servo Drives．

Manual Name	Manual Number	Contents
L-III Series SGMDS/SGDS Digital Operator Instructions	TOBP S800000 01	Describes the operating methods of the JUSP-OP05A Digital Operator.
Machine Controller MP900/MP2000 Series User's Manual For Linear Servomotors	SIEP C880700 06	Describes the connection methods, setting methods, and other information for Linear Servomotors.
Machine Controller MP900/MP2000 Series New Ladder Editor Programming Manual	SIEZ-C887-13.1	Describes the programming instructions of the New Lad- der Editor, which assists MP900/MP2000 Series design and maintenance.
Machine Controller MP900/MP2000 Series New Ladder Editor User's Manual	SIEZ-C887-13.2	Describes the operating methods of the New Ladder Edi- tor, which assists MP900/MP2000 Series design and maintenance.

Copyrights

- Product names and company names are the trademarks or registered trademarks of the respective company. "TM" and the ${ }^{\circledR}$ mark do not appear with product or company names in this manual.

Safety Information

The following conventions are used to indicate precautions in this manual. These precautions are provided to ensure the safe operation of the Machine Controller and connected devices. Information marked as shown below is important for the safety of the user. Always read this information and heed the precautions that are provided.
The conventions are as follows:

MANDATORY

Indicates precautions that, if not heeded, could possibly result in loss of life, serious injury, or property damage.

Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or property damage.
If not heeded, even precautions classified under \lfloor CAUTION can lead to serious results depending on circumstances.

Indicates prohibited actions. Specific prohibitions are indicated inside
For example,
indicates prohibition of open flame.
Indicates mandatory actions. Specific actions are indicated inside
For example, - indicates mandatory grounding.

Safety Precautions

The following precautions are for checking products on delivery, storage, transportation, installation, wiring, operation, inspection, and disposal. These precautions are important and must be observed.

- General Precautions

\triangle WARNING

- Before connecting the machine and starting operation, ensure that an emergency stop procedure has been provided and is working correctly.
There is a risk of injury.
- Do not touch anything inside the Machine Controller. There is a risk of electrical shock.
- Always keep the front cover attached when power is being supplied. There is a risk of electrical shock.
- Observe all procedures and precautions given in this manual for trial operation. Operating mistakes while the servomotor and machine are connected may damage the machine or even cause accidents resulting in injury or death.
- Do not remove the front cover, cables, connectors, or options while power is being supplied. There is a risk of electrical shock.
- Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch cables. There is a risk of electrical shock, operational failure or burning of the Machine Controller.
- Do not attempt to modify the Machine Controller in any way. There is a risk of injury or device damage.
- Do not approach the machine when there is a momentary interruption to the power supply. When power is restored, the Machine Controller and the device connected to it may start operation suddenly. Provide safety measures in advance to ensure human safety in the event that operation restarts suddenly. There is a risk of injury.
- Do not allow installation, disassembly, or repairs to be performed by anyone other than specified personnel.
There is a risk of electrical shock or injury.

Storage and Transportation

\triangle CAUTION

- Do not store or install the Machine Controller in the following locations.

There is a risk of fire, electrical shock, or device damage.

- Direct sunlight
- Ambient temperature exceeds the storage or operating conditions
- Ambient humidity exceeds the storage or operating conditions
- Rapid changes in temperature or locations subject to condensation
- Corrosive or flammable gas
- Excessive dust, dirt, salt, or metallic powder
- Water, oil, or chemicals
- Vibration or shock
- Do not overload the Machine Controller during transportation.

There is a risk of injury or an accident.

- If disinfectants or insecticides must be used to treat packing materials such as wooden frames, pallets, or plywood, the packing materials must be treated before the product is packaged, and methods other than fumigation must be used.
Example: Heat treatment, where materials are kiln-dried to a core temperature of $56^{\circ} \mathrm{C}$ for 30 minutes or more.
If the electronic products, which include stand-alone products and products installed in machines, are packed with fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors.
- Installation

. CAUTION

- Never use the Machine Controller in locations subject to water, corrosive atmospheres, or flammable gas, or near burnable objects.
There is a risk of electrical shock or fire.
- Do not step on the Machine Controller or place heavy objects on the Machine Controller. There is a risk of injury.
- Do not block the air exhaust port or allow foreign objects to enter the Machine Controller. There is a risk of element deterioration inside, an accident, or fire.
- Always mount the Machine Controller in the specified orientation.

There is a risk of an accident.

- Do not subject the Machine Controller to strong shock. There is a risk of an accident.

. CAUTION

- Check the wiring to be sure it has been performed correctly.

There is a risk of motor overrun, injury, or an accident.

- Always use a power supply of the specified voltage. There is a risk of burning.
- In places with poor power supply conditions, take all steps necessary to ensure that the input power supply is within the specified voltage range.
There is a risk of device damage.
- Install breakers and other safety measure to provide protection against shorts in external wiring. There is a risk of fire.
- Provide sufficient shielding when using the Machine Controller in the following locations. There is a risk of device damage.
- Noise, such as from static electricity
- Strong electromagnetic or magnetic fields
- Radiation
- Near to power lines
- When connecting the battery, connect the polarity correctly.

There is a risk of battery damage or explosion.

- Only qualified safety-trained personnel should replace the battery.

If the battery is replaced incorrectly, machine malfunction or damage, electric shock, or injury may result.

- When replacing the battery, do not touch the electrodes.

Static electricity may damage the electrodes.

Selecting, Separating, and Laying External Cables

\triangle CAUTION

- Consider the following items when selecting the I/O signal lines (external cables) to connect the Machine Controller to external devices.
- Mechanical strength
- Noise interference
- Wiring distance
- Signal voltage, etc.
- Separate the I/O signal lines from the power lines both inside and outside the control box to reduce the influence of noise from the power lines.
If the I/O signal lines and power lines are not separated properly, malfunctioning may result.
Example of Separated External Cables

Maintenance and Inspection Precautions

4 CAUTION

- Do not attempt to disassemble the Machine Controller.

There is a risk of electrical shock or injury.

- Do not change wiring while power is being supplied. There is a risk of electrical shock or injury.
- When replacing the Machine Controller, restart operation only after transferring the programs and parameters from the old Module to the new Module.
If the data has not been transferred to the new module before the operation of the machine controller starts, damage to the device may result.

Disposal Precautions

\triangle CAUTION

- Dispose of the Machine Controller as general industrial waste.

General Precautions

Observe the following general precautions to ensure safe application.

- The products shown in illustrations in this manual are sometimes shown without covers or protective guards. Always replace the cover or protective guard as specified first, and then operate the products in accordance with the manual.
- The drawings presented in this manual are typical examples and may not match the product you received.
- If the manual must be ordered due to loss or damage, inform your nearest Yaskawa representative or one of the offices listed on the back of this manual.

Warranty

(1) Details of Warranty

Warranty Period

The warranty period for a product that was purchased (hereinafter called "delivered product") is one year from the time of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory, whichever is sooner.

- Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the warranty period above. This warranty does not cover defects caused by the delivered product reaching the end of its service life and replacement of parts that require replacement or that have a limited service life. This warranty does not cover failures that result from any of the following causes.

1. Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications
2. Causes not attributable to the delivered product itself
3. Modifications or repairs not performed by Yaskawa
4. Abuse of the delivered product in a manner in which it was not originally intended
5. Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from Yaskawa
6. Events for which Yaskawa is not responsible, such as natural or human-made disasters

(2) Limitations of Liability

1. Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product.
2. Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execution of the programs provided by the user or by a third party for use with programmable Yaskawa products.
3. The information described in product catalogs or manuals is provided for the purpose of the customer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a license.
4. Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or other proprietary rights of third parties as a result of using the information described in catalogs or manuals.

(3) Suitability for Use

1. It is the customer's responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products.
2. The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer.
3. Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to minimize hazards in the event of failure.

- Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to separate industry or government regulations
- Systems, machines, and equipment that may present a risk to life or property
- Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems that operate continuously 24 hours a day
- Other systems that require a similar high degree of safety

4. Never use the product for an application involving serious risk to life or property without first ensuring that the system is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa product is properly rated and installed.
5. The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the product.
6. Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent accidental harm to third parties.

(4) Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications before purchasing a product.

Contents

Using this Manual iii
Safety Information vi
Safety Precautions vii
Warranty xi
1 Overview 1－1
1．1 SVA－01 Module Overview and Features 1－2
1．1．1 Overview 1－2
1．1．2 Features 1－3
1．1．3 System Configuration Example 1－4
1．2 Specifications 1－5
1．2．1 Hardware Specifications 1－5
1．2．2 Functional Specifications 1－7
1．2．3 Performance Specifications 1－8
1．2．4 Applicable SERVOPACKs 1－9
2 Settings and Installation 2－1
2．1 External Appearance and LED Indicators 2－2
2．1．1 External Appearance 2－2
2．1．2 LED Indicators 2－2
2．1．3 SVA－01 Module Status Indication 2－3
2．2 Applicable Machine Controllers for SVA－01 Modules 2－4
2．3 Mounting／Removing SVA－01 Modules－ 2－5
2．3．1 Mounting a SVA－01 Module 2－5
2．3．2 Removing SVA－01 Modules for Replacement 2－7
2．4 SVA－01 Module Connections 2－9
2．4．1 Connectors 2－9
2．4．2 Connection Procedure for 24－V Input Cable 2－10
2．4．3 CN1 and CN2 Connector Pin Arrangement 2－11
2．5 Cable Specifications and Connections 2－12
2．5．1 Cables 2－12
2．5．2 JEPMC－W2040－ロロ－E Details 2－12
2．5．3 JEPMC－W2041－ロロ－E Details 2－14
2．6 Restrictions for Feedback Pulse Inputs 2－17
2．6．1 Restrictions for SERVOPACK Pulse Output Frequency－ 2－17
2．6．2 Restrictions in SVA－01 Module Pulse Input Frequency 2－18
3 Setup 3－1
3．1 Setting Items 3－2
3．2 Module Configuration Definition of Machine Controller 3－3
3．2．1 How to Execute Self－configuration 3－3
3．2．2 Opening the Module Configuration Window 3－4
3．2．3 Module Configuration Window 3－5
3．2．4 Manually Allocating Modules 3－6
3.3 SVA Definition 3-7
3.3.1 Opening the SVA Definition Window 3-7
3.3.2 Setting the SVA-01 Module Fixed Parameters 3-9
3.4 SERVOPACK Parameter Settings 3-10
3.4.1 SGDA SERVOPACK Parameter Settings 3-10
3.4.2 SGDB SERVOPACK Parameter Settings 3-11
3.4.3 SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACK Parameter Settings 3-12
3.5 SERVOPACK Reference Offset Adjustment 3-13
3.5.1 Automatic Adjustment of the Analog Reference Offset 3-13
3.5.2 Manual Servo Tuning of the Speed Reference Offset 3-14
4 Operation Modes 4-1
4.1 SVA-01 Module Operation Mode Selection 4-2
4.2 Normal Operation Mode 4-3
4.2.1 Motion Parameters That Can be Used in Normal Operation Mode 4-3
4.2.2 DI/DO Signals in Normal Operation Mode 4-3
4.3 Simulation Mode 4-4
4.3.1 Motion Parameters That Can be Used in Simulation Mode 4-4
4.3.2 Position and Speed in Simulation Mode 4-4
4.3.3 Torque in Simulation Mode 4-4
4.3.4 Functions That Cannot be Simulated 4-4
4.3.5 Output Signals in Simulation Mode- 4-5
4.4 General-purpose I/O Mode 4-6
4.4.1 Motion Parameters That Can be Used in General-purpose I/O Mode- 4-6
4.4.2 Correspondence Between Motion Parameter and Connector Pin Number 4-8
4.4.3 General-purpose I/O Signal Connection Example 4-9
4.4.4 Pulse Input Modes 4-10
4.4.5 Pulse Counter Connection Example 4-12
5 Motion Parameters 5-1
5.1 Motion Parameters Register Numbers 5-2
5.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers 5-2
5.2 Motion Parameters Setting Window 5-3
5.2.1 How to Open the Motion Parameter Setting Windows 5-3
5.2.2 Selecting a Motor Type 5-4
5.3 Motion Parameter Lists 5-5
5.3.1 Fixed Parameter List 5-5
5.3.2 Setting Parameter List- 5-8
5.3.3 Monitoring Parameter List 5-13
5.4 MP2000 Series Machine Controller Parameter Details 5-17
5.4.1 Motion Fixed Parameter Details 5-17
5.4.2 Motion Setting Parameter Details 5-25
5.4.3 Motion Monitoring Parameter Details 5-43
6 Motion Parameter Setting Examples 6-1
6.1 Example Setting of Motion Parameters for the Machine 6-2
6.1.1 Reference Unit 6-2
6.1.2 Electronic Gear 6-2
6.1.3 Axis Type Selection 6-4
6.1.4 Position Reference 6-5
6.1.5 Speed Reference 6-9
6.1.6 Acceleration/Deceleration Settings 6-11
6.1.7 Acceleration/Deceleration Filter Settings 6-13
6.1.8 Linear Scale Pitch and Rated Motor Speed 6-15
7 Motion Commands 7-1
7.1 Motion Commands 7-2
7.1.1 Motion Command Table 7-2
7.2 Motion Command Details 7-3
7.2.1 Positioning (POSING) 7-3
7.2.2 External Positioning (EX_POSING) 7-9
7.2.3 Zero Point Return (ZRET) 7-15
7.2.4 Interpolation (INTERPOLATE) 7-57
7.2.5 Latch (LATCH) 7-60
7.2.6 JOG Operation (FEED) 7-63
7.2.7 STEP Operation (STEP) 7-67
7.2.8 Zero Point Setting (ZSET) 7-71
7.2.9 Speed Reference (VELO) 7-73
7.2.10 Torque Reference (TRQ) 7-77
7.2.11 Phase References (PHASE) 7-81
7.3 Motion Subcommands 7-85
7.3.1 No Command (NOP) 7-85
7.3.2 Read Fixed Parameters (FIXPRM RD) 7-86
8 Switching Commands during Execution 8-1
8.1 Switchable Motion Commands 8-2
8.1.1 Switching Between Motion Commands 8-2
8.1.2 Switching from POSING 8-3
8.1.3 Switching from EX_POSING 8-7
8.1.4 Switching from ZRET 8-11
8.1.5 Switching from INTERPOLATE 8-13
8.1.6 Switching from ENDOF_INTERPOLATE or LATCH 8-16
8.1.7 Switching from FEED 8-17
8.1.8 Switching from STEP 8-21
8.1.9 Switching from ZSET 8-24
8.1.10 Switching from VELO 8-25
8.1.11 Switching from TRQ 8-30
8.1.12 Switching from PHASE 8-36
9 Control Block Diagram 9-1
9.1 SVA-01 Module Control Block Diagram 9-2
10 Absolute Position Detection 10-1
10.1 Absolute Position Detection Function 10-2
10.1.1 Outline of the Function 10-2
10.1.2 Reading Absolute Data 10-2
10.1.3 Finite Length/Infinite Length Axes and Absolute Position Detection 10-3
10.2 Setting Procedure of Absolute Position Detection Function- 10-4
10.2.1 System Startup Flowchart 10-4
10.2.2 Initializing the Absolute Encoder 10-5
10.3 Absolute Position Detection for Finite Length Axes 10-6
10.3.1 Parameter Settings for Finite Length Axes 10-6
10.3.2 Detailed Descriptions on Parameter Settings for Finite Length Axes 10-8
10.3.3 Setting the Zero Point for a Finite Length Axis 10-10
10.3.4 Turning ON the Power after Setting the Zero Point of Machine Coordinate System 10-13
10.4 Absolute Position Detection for Infinite Length Axes- 10-14
10.4.1 Simple Absolute Infinite Length Position Control 10-14
10.4.2 Parameters Setting for Simple Absolute Infinite Length Position Control 10-16
10.4.3 Detailed Descriptions on Parameter Settings for Simple Absolute Infinite Length Axes 10-18
10.4.4 Setting the Zero Point and Turning ON Power as Simple Absolute Positions 10-20
10.4.5 Turning ON the Power after Setting the Zero Point for Simple Absolute Infinite Length Axes 10-21
10.4.6 Infinite Length Position Control without Simple Absolute Positions 10-22
11 Utility Functions 11-1
11.1 Controlling Vertical Axes 11-2
11.1.1 Holding Brake Function of the SERVOPACK 11-2
11.1.2 Connections to $\Sigma-I I, \Sigma$-III, Σ-V, or $\Sigma-7$ Series SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACKs 11-2
11.1.3 Connections to Σ-I Series SGDB SERVOPACK 11-4
11.1.4 Connections to Σ-I Series SGDA SERVOPACK 11-6
11.2 Overtravel Function 11-8
11.2.1 Connections to Σ-II, Σ-III, Σ-V, or $\Sigma-7$ Series SGDH, SGDS, SGDV, and SGD7S SERVOPACKs 11-8
11.2.2 Connections to Σ-I Series SGDB or SGDA SERVOPACK 11-10
11.2.3 Rotation Direction Selection - 11-12
11.3 Software Limit Function 11-13
11.3.1 Parameter Settings 11-13
11.3.2 Software Limit Detection Function- 11-13
11.3.3 Axis Stopping Operation at Alarm Occurrence 11-14
11.3.4 Processing after an Alarm Occurs- 11-14
11.4 Other Utility Functions 11-15
11.4.1 Modal Latch Function 11-15
11.4.2 Reading Absolute Data After Power is Turned ON 11-16
11.4.3 Reading Absolute Data Online 11-16
11.4.4 General-purpose DO 2 Signal Selection 11-17
12 Troubleshooting 12-1
12.1 Troubleshooting 12-2
12.1.1 Basic Flow of Troubleshooting 12-2
12.1.2 MP2000 Series Machine Controller Error Check Flowchart 12-3
12.1.3 LED Indicators (MP2200/MP2300) 12-4
12.2 Troubleshooting System Errors 12-6
12.2.1 Outline of System Errors 12-6
12.2.2 Troubleshooting Flowchart for System Errors 12-9
12.2.3 Correcting User Program Errors 12-10
12.2.4 System Register Configuration and Error Status 12-11
12.3 Motion Program Alarms 12-27
12.3.1 Motion Program Alarm Configuration 12-27
12.3.2 Motion Program Alarm Code List 12-27
12.4 Troubleshooting Motion Errors 12-28
12.4.1 Overview of Motion Errors 12-28
12.4.2 Axis Alarm Details and Corrections 12-29
12.4.3 Analog Servo Alarm List 12-32
Appendices A-1
Appendix A System Registers Lists A-2
A. 1 System Service Registers A-2
A. 2 Scan Execution Status and Calendar A-4
A. 3 Program Software Numbers and Remaining Program Memory Capacity A-4
Appendix B Initializing the Absolute Encoder A-5
B. 1Σ-III, $\Sigma-\mathrm{V}$, or Σ - 7 Series SERVOPACK A-5
B. 2Σ-II Series SERVOPACKs A-6
B. 3Σ-I Series SERVOPACK A-8
Appendix C Fixed Parameter Setting According to Encoder Type and Axis Type A-10
Appendix D Terminology A-12
INDEX
Revision History

Overview

This chapter provides an overview and the features of the SVA-01 Module.
1.1 SVA-01 Module Overview and Features 1-2
1.1.1 Overview 1-2
1.1.2 Features 1-3
1.1.3 System Configuration Example 1-4
1.2 Specifications 1-5
1.2.1 Hardware Specifications 1-5
1.2.2 Functional Specifications 1-7
1.2.3 Performance Specifications 1-8
1.2.4 Applicable SERVOPACKs 1-9

1.1 SVA-01 Module Overview and Features

1.1.1 Overview

The SVA-01 Module is a motion control module with analog outputs. Each Module can control Servos or Inverters for up to 2 axes.
The Module has two connectors (CN1 and CN2) for connecting SERVOPACKs and external I/O. Each connector provides analog outputs for speed references and torque references, analog inputs for feedback speed monitoring and torque monitoring, pulse input phases A, B, and C ($5-\mathrm{V}$ differential), and general-purpose digital I/O interfaces.
The control cycle is fixed at $500 \mu \mathrm{~s}$.

1.1.2 Features

The SVA-01 Module has the following features.

- Servo control module with analog outputs to control up to two axes
- You can connect two axes with an Inverter or Analog Servo Drive (SGDA, SGDB, SGDM, SGDH, SGDS, SGDV, or SGD7S).
- The control cycle is fixed at $500 \mu \mathrm{~s}$, enabling high-precision control without being affected by the high-speed scan cycle.
- Position control, speed reference outputs, torque reference outputs, or phase control can be performed independently for each axis.

1.1.3 System Configuration Example

The following diagram shows a system configuration example.

- Use the specified cables and connectors. Refer to 2.5.1 Cables on page 2-12 to select appropriate cables and connectors to connect each device.

1.2 Specifications

1.2.1 Hardware Specifications

Item		Specifications
Model Number		JAPMC-MC2300 (-E)
Module Appearance		
Max. Number of Modules to be connected		MP2300: 2 Modules MP2200: 16 Modules
Indicators		RUN (green) ERR (red)
Connectors		CN1: Servo connector CN2: Servo connector CN3: 24-V power input connector
Servo Interfaces	Digital Inputs	6 inputs $\times 2$ channels (Sink mode input $24 \mathrm{~V} / 4.3 \mathrm{~mA}$) DI_0: General-purpose input (ALM) DI_1: General-purpose input (RDY) DI_2: General-purpose input (ZERO: External latch signal input) DI_3: General-purpose input DI_4: General-purpose input DI_5: General-purpose input (EXT: External latch signal input)
	Digital Outputs	6 outputs $\times 2$ channels (Sink mode output $24 \mathrm{~V} / 100 \mathrm{~mA}$) DO_0: General-purpose output (SV_ON) DO_1: General-purpose output (ALM_RST) DO_2: General-purpose output (PCON) Used for C-SEL (control mode switching signal) DO_3: General-purpose output DO_4: General-purpose output DO_5: General-purpose output (SEN signal), 5-V and 24-V outputs
	Pulse Inputs	1 input $\times 2$ channels, phase $\mathrm{A} / \mathrm{B} / \mathrm{C}, 5-\mathrm{V}$ differential input Pulse input rate: 4 Mpps (16 Mpps for $\times 4$) Phase-C latch input Response time: 95 to 125 ns , ON pulse width: 200 ns min.
	Analog Outputs	2 outputs $\times 2$ channels, -10 V to $10 \mathrm{~V}, \mathrm{D} / \mathrm{A} 16$-bit, load impedance: $10 \mathrm{k} \Omega \mathrm{min}$.
	Analog Inputs	2 outputs $\times 2$ channels, -10 V to 10 V (applicable: -9 V to 9 V), D/A 16-bit, input impedance: approx. $13 \mathrm{k} \Omega$

Item		Specifications
Environment Conditions	Ambient Operating Temperature	0 to $+55^{\circ} \mathrm{C}$
	Ambient Storage Temperature	-25 to $+85^{\circ} \mathrm{C}$
	Ambient Operating Humidity	30 to 95\% (with no condensation)
	Ambient Storage Humidity	5 to 95\% (with no condensation)
	Pollution Level	Pollution level 2 (conforming to JIS B 3502)
	Corrosive Gas	There must be no combustible or corrosive gas.
	Operating Altitude	$2,000 \mathrm{~m}$ above sea level or lower
Mechanical Operating Conditions	Vibration Resistance	Conforms to JIS B 3502. Vibration amplitude/acceleration: $10 \leq \mathrm{f}<57 \mathrm{~Hz}$, Single-amplitude of 0.075 mm $57 \leq \mathrm{f} \leq 150 \mathrm{~Hz}$, Fixed acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ 10 sweeps (1 sweep $=1$ octave per minute) each in the X, Y, and Z directions
	Shock Resistance	Conforms to JIS B 3502. Peak acceleration of $147 \mathrm{~m} / \mathrm{s}^{2}$ twice for 11 ms each in the X, Y, and Z directions
Electrical Operating Conditions	Noise Resistance	Conforming to EN 61000-6-2, EN 61000-6-4, EN 55011 (Group 1 Class A)
Installation Requirements	Ground	Ground to 100Ω max.
	Cooling Method	Natural cooling
Dimensions (mm)		$125 \times 95(\mathrm{H} \times \mathrm{D})$
Mass		80 g

1.2.2 Functional Specifications

Item		Details	
		Function	Remarks
	Torque Reference (Open-loop)	Torque Reference	According to the torque unit selection parameter
		Speed Limit at Torque Reference	Rated speed percentage designation [0.01\%]
	Speed Reference (Open-loop)	Speed Reference	According to the speed unit selection parameter
		Acceleration	According to the acceleration/deceleration unit selection parameter
		Deceleration	According to the acceleration/deceleration unit selection parameter
		Moving Average Filter Time Constant Setting	ms
		Torque Limit	According to the torque unit selection parameter
		Positive Speed Limit	Rated speed percentage designation [0.01\%]
		Negative Speed Limit	Rated speed percentage designation [0.01\%]
	Position Control	Position Reference	mm, inch, degree, pulse
		Speed Reference	According to the speed unit selection parameter
		Acceleration	According to the acceleration/deceleration unit selection parameter
		Deceleration	According to the acceleration/deceleration unit selection parameter
		Filter Type	Moving average or exponential acceleration/ deceleration
		Filter Time Constant	ms
		Position Compensation	mm, inch, degree, pulse
		Speed Compensation	According to the speed unit selection parameter
		Position Loop Gain	1/s
		Position Loop Integration Time Constant	ms
		Speed Feed Forward Gain	Position derivative percentage designation $[0.01 \%]$
		Primary Delay Time Constant	ms
		Torque Limit	Rated torque percentage designation [0.01\%]
		Positive Speed Limit	Rated speed percentage designation [0.01\%]
		Negative Speed Limit	Rated speed percentage designation [0.01\%]
	Phase Control	Speed Reference	According to the speed unit selection parameter
		Speed Compensation	According to the speed unit selection parameter
		Phase Compensation	mm , inch, degree, pulse
		Phase Control Proportional Gain	Same as position loop gain parameter
		Phase Control Integration Time Constant	Same as position loop integration time constant parameter
		Torque Limit	Rated torque percentage designation [0.01\%]
		Positive Speed Limit	Rated speed percentage designation [0.01\%]
		Negative Speed Limit	Rated speed percentage designation [0.01\%]

1.2.3 Performance Specifications

Item		Specifications	Remarks
Control Cycle		$500 \mu \mathrm{~s}$	-
D/A	Resolution	16 bits	PWM output
	Output Delay	$10 \mathrm{~ms} *$	-
	Accuracy	10 mV max.	-
	Temperature Drift	$200 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.	-
A/D	Resolution	16 bits	-
	Input Delay	1 ms	-
	Accuracy	10 mV max.	-
	Temperature Drift	$100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.	-
DO	OFF \rightarrow ON	1 ms	-
	ON \rightarrow OFF	1 ms	-
DI	OFF \rightarrow ON	1 ms	-
	ON \rightarrow OFF	1 ms	
Pulse Input Rage		4 Mpps	16 Mpps for input pulse multiplier of 4

* When changing full-scale from -10 V to +10 V

1．2．4 Applicable SERVOPACKs

SERVOPACK Model	Remarks
SGDA－$\square \square \square S$ SGDB－$\square \square A D \square-\square$ $-\square \square D D$	L－I series AC SERVOPACK
SGDM－पवपDA －\square AAD SGDH－םロDE －ロロAE	E－II series SERVOPACK
SGDS－ロロロ－01ロロ －ㅁㅁㅁㅇㅁㅁ －ㅁㅁㅁㅇㅁㅁ	Σ－III series SERVOPACK
SGDV－ロロロロ01 －ロロロロ05	Σ－V series SERVOPACK
SGD7S－पロロロ00	E－7 series SERVOPACK

Settings and Installation

This chapter explains the LED indicators of the SVA－01 Module，how to install or remove it，and how to connect SERVOPACKs to it．
2．1 External Appearance and LED Indicators 2－2
2．1．1 External Appearance 2－2
2．1．2 LED Indicators 2－2
2．1．3 SVA－01 Module Status Indication 2－3
2．2 Applicable Machine Controllers for SVA－01 Modules －2－4
2．3 Mounting／Removing SVA－01 Modules 2－5
2．3．1 Mounting a SVA－01 Module 2－5
2．3．2 Removing SVA－01 Modules for Replacement 2－7
2．4 SVA－01 Module Connections －2－9
2．4．1 Connectors 2－9
2．4．2 Connection Procedure for 24－V Input Cable 2－10
2．4．3 CN1 and CN2 Connector Pin Arrangement 2－11
2．5 Cable Specifications and Connections 2－12
2．5．1 Cables 2－12
2．5．2 JEPMC－W2040－ロロ－E Details 2－12
2．5．3 JEPMC－W2041－ロロ－E Details 2－14
2．6 Restrictions for Feedback Pulse Inputs 2－17
2．6．1 Restrictions for SERVOPACK Pulse Output Frequency 2－17
2．6．2 Restrictions in SVA－01 Module Pulse Input Frequency 2－18

2.1 External Appearance and LED Indicators

2.1.1 External Appearance

The following figure illustrates the external appearance of the SVA-01 Module.

2.1.2 LED Indicators

The following table shows the indicators that show the operating status of the SVA-01 Module and error information.

Indicators	Indicator Name	Color	Signification When Lit	Signification When Unlit
	Green	Lights during normal operation of the microprocessor used for control.	An error has occurred in the micro- processor for control.	
	ERR	Red	Lights/blinks for failures. Not lit during normal opera- tion.	Normally operating

2.1.3 SVA-01 Module Status Indication

The SVA-01 Module status is indicated by the combination of LED indicators as shown in the following table.

Status	Indication		SVA-01 Module Status	Description
	RUN	ERR		
	\bigcirc	\bigcirc	Hardware reset status	Indicates that the hardware is being reset by the Machine Controller.
	\bigcirc	\bigcirc	Not defined	Indicates that the SVA-01 Module has not been registered in Module Configuration. Refer to 3.2 Module Configuration Definition of Machine Controller on page 3-3 and make the settings to define the module configuration and the SVA Module.
	0	\bullet	Being initialized	- Maintains this status for 1 to 6 seconds after the power supply is turned ON or the Module is reset. - Maintains this status for 30 seconds per axis if fixed parameter No. 30 (Encoder Type) is set to 1 to enable an absolute encoder and if an error occurred in the interface with the absolute encoder. - This state continues if DWG A is caught in an infinite loop.
	*	\bigcirc	CPU being stopped	Indicates that the Machine Controller's CPU is being stopped. Execute a CPU RUN command to restore normal operation status.
	-	O	Operating normally	Indicates that the SVA-01 Module is operating normally.
흘	\bullet	\star	A CPU Module error is detected. 2: Watchdog time timeout error (Number indicates the number of times blinking.)	If a watchdog time timeout error is detected, the processing time for the user program may exceed the set scan time. Check the settings for the user program and the scan time.
	*	\star	Hardware error 1: - 2: ROM error 3: RAM error 4: CPU error 5: FPU error 6: Shared memory error 7: JL-045 error 8: Internal power supply error* (Number indicates the number of times blinking.)	Hardware failure of the SVA-01 Module occurred. Replace the Module.
	0	\star	Software error 1: - 2: - 3: Address error (reading) exception 4: Address error (writing) exception 5: FPU exception 6: General illegal instruction exception 7: Slot illegal instruction exception 8: General FPU suppression exception 9: Slot FPU suppression exception (Number indicates the number of times blinking.)	Software failure of the SVA-01 Module occurred. Replace the Module.
	\bullet	\bullet	Occurrence of alarm or warning	Use the following monitoring parameters to find out the details of alarm or warning. ILロロ02: Warning ILDD04: Alarm IW $\square 09$, bit 3: Command Error Completed Status (FAIL) IW \square 0B, bit 3: Command Error Completed Status (FAIL)

- : Lit

O : Unlit
\star : Blinking

- : Not specified
* Detection is possible only with the JAPMC-MC2300-E.

2.2 Applicable Machine Controllers for SVA-01 Modules

The following table lists the MP2000-series Machine Controllers on which the SVA-01 Module can be mounted.

Name		Model	Max. No. of Connectable Modules	Applicable Version		Remarks	
		CPU Module		MPE720			
MP2300			JEPMC-MP2300 (-E)	2 modules	Ver. 2.20 or later	Ver. 5.12 Ver. 6.01 Ver. 7.10 or later	-
MP23		JEPMC-MP2310 (-E)	3 modules	All versions	-		
MP23		JEPMC-MP2300S (-E)	1 module		-		
$\begin{aligned} & \text { MP } \\ & 2200 \\ & { }^{1} 1 \end{aligned}$	CPU-01	JAPMC-CP2200 (-E)	30 modules	Ver. 2.20 or later	The maximum number of connectable Modules is the total for the maximum expansion to four racks. ${ }^{*}$		
	CPU-02	JAPMC-CP2210 (-E)	31 modules	All versions			
	CPU-03	JAPMC-CP2220-E					
	CPU-04	JAPMC-CP2230-E					
MP2100M		JAPMC-MC2140 (-E)	14 modules	Ver. 2.20 or later	The maximum number of connectable Modules is the total for the maximum expansion to three racks. ${ }^{* 2}$		
MP2101M		JAPMC-MC2142-E				Ver. 5.54	
MP2101TM		JAPMC-MC2142T-E		All versions		Ver. 6.24 Ver. 7.10 or later	

* 1. Mount a CPU module on the following base units.

Name	Model	Remarks
MBU-01	JEPMC-BU2200 (-E)	$100 / 200-$ VAC input base unit (9 slots)
MBU-02	JEPMC-BU2210 (-E)	24-VDC input base unit (9 slots)
MBU-03	JEPMC-BU2220-E	24-VDC input base unit (4 slots)

* 2. The following module or board is required between racks.

Name	Model	Remarks
EXIOIF	JAPMC-EX2200 (-E)	Inter-rack connection module
MP2100MEX	JAPMC-EX2100 (-E)	I/F board for MP2100M, MP2101M, and MP2101TM

2.3 Mounting/Removing SVA-01 Modules

This section describes how to mount and remove a SVA-01 Module.

2.3.1 Mounting a SVA-01 Module

Mount a SVA-01 Module by using the following procedure.

- Remove the SVA-01 Module to be replaced, in advance of replacement, by referring to 2.3.2 Removing SVA-01 Modules for Replacement on page 2-7.

(1) Preparation

1. Create a backup file of the programs.

Use the MPE720 to save the Machine Controller programs to a personal computer.

- MPE720 Ver. 5. \square : Right-click the PLC folder and then select Transfer - All Files - From Controller to MPE720 from the main menu.
MPE720 Ver. 6.ㅁㅁ: Open the project file and then select Online - Transfer - Read from Controller from the main menu

2. Remove the Machine Controller and Expansion Racks.

Turn OFF the power supply, and then disconnect all cables from the Machine Controller and expansion racks (MP2200 base units). After disconnecting all the cables, remove the Machine Controller and expansion racks from the panel or mounting rack, and place them on a sufficiently wide and safe surface, such as working table.

(2) Removing an Optional Cover

Use the following procedure if the slot has an optional cover installed.

1. Remove the battery cover.

Insert a coin in the notch on the side of the Machine Controller and pry the battery cover off.

2. Remove the cover of the SVA-01 Module.

Insert the tab of the battery cover into the slot on the top of the cover of the SVA-01 Module to release it, as shown in the diagram. Turn the front of the battery cover towards you for this operation.

Release the bottom in the same way.

(3) Mounting SVA-01 Modules

1. Insert a SVA-01 Module.

Guide rails can be seen or are located at the top and bottom of the optional module mounting slot, as shown in the following diagram. While holding both the top and bottom of the Module, line up the Module with the guide rails inside the option slot, make sure the Module is straight and insert it.

- If the Module is not lined up with the guide rails, the FG bar on the bottom inside the slot may become damaged.

2. Mount onto the mounting base.

After the SVA-01 Module has been completely inserted, firmly push the front of the Module into the mountingbase connectors. If the SVA-01 Module has been installed correctly, the front of the SVA-01 Module and the hook will be aligned.
3. Mount the panel of the SVA-01 Module.

Line up the notch on the bottom of the panel with the tab on the bottom of the Machine Controller.

This completes the installation procedure.

2.3.2 Removing SVA-01 Modules for Replacement

Use the following procedure to remove a SVA-01 Module.
(1) Preparation

1. Create a backup file of the programs.

Use the MPE720 to save the programs of the Machine Controller to a personal computer.

- MPE720 Ver. 5. \square : Right-click the PLC folder and then select Transfer - All Files - From Controller to MPE720 from the main menu.
MPE720 Ver. 6.ㅁㅁ: Open the project file and then select Online - Transfer - Read from Controller from the main menu.

2. Remove the Machine Controller and Expansion Racks.

Turn OFF the power supply, and then disconnect all cables from the Machine Controller and expansion racks (MP2200 base units). After disconnecting all the cables, remove the Machine Controller and expansion racks from the panel or mounting rack, and place them on a sufficiently wide and safe surface, such as working table.

(2) Removing SVA-01 Modules

1. Remove the battery cover.

Insert a coin in the notch on the side of the Machine Controller and pry the battery cover off.

2. Remove the cover of the SVA-01 Module.

Insert the tab of the battery cover into the slot on the top of the panel of the SVA-01 Module to release it, as shown in the diagram. Turn the front of the battery cover towards you for this operation.

Release the bottom in the same way.
3. Remove the SVA-01 Module from the mounting base.

Pull the top of the panel of the SVA-01 Module towards you to remove it. A notch on the SVA-01 Module will be visible from the gap in the cover. Hook the round knob on the battery cover, shown in the diagram, into the notch in the SVA-01 Module.

While holding the battery cover as shown in the photograph, tilt the cover back with the knob as the pivot point to disconnect the Module. The Module should move forward out of the case.

4. Pull out the SVA-01 Module.

While holding both the top and bottom of the Module, pull the Module out straight towards you. Hold the Module by its edges and do not touch any components on the Module.

Place the Module in the bag provided with the initial shipment and store it in this bag.

- A optional cover (JEPMC-OP2300) must be installed on the empty slot.

2．4 SVA－01 Module Connections

2．4．1 Connectors

（1）Servo Interface Connectors CN1 and CN2

These connectors connect the SVA－01 Module to two SERVOPACKs．
Use the following standard cable to connect each SERVOPACK to the SVA－01 Module．
－JEPMC－W2040－ロロ－E（for SGDH，SGDM，SGDS，SGDV，and SGD7S SERVOPACKs）
－The user must provide cables for the SGDA and SGDB SERVOPACKs．

（ 2 ）24－V Input Connector CN3

This connector connects SVA－01 Module to +24 VDC as Servo I／O power supply．
CN3 is a screw type terminal connector model BL3．5／2F－AU manufactured by Weidmuller Inc．

Pin No．	Signal Name	Name
2	24 V	+24 VDC input
1	0 V	0 V

Refer to 2．4．2 Connection Procedure for 24－V Input Cable on page 2－10 to assemble the cable for +24 VDC power input．

（3）Connector Specifications

The following table shows the specifications of above three connectors．

Name	Connector Name	No．of Pins	Connector Model			Cable Model
			SVA－01 Module Side	Cable Side	Manufac－ turer	
Servo Interface Connectors CN1 and CN2	$\begin{aligned} & \text { CN1 } \\ & \text { CN2 } \end{aligned}$	36	10236－52A2PL	－Connector body： 10136－3000PE －Shell： 10336－52A0－008 （Screw locking） 10336－52F0－008 （One－touch lock－ ing）	3M Japan Limited	JEPMC－W2040－ロロ－E （for SGDH，SGDM，SGDS， SGDV，and SGD7S SERVOPACKs）
24－V Input Connector	CN3	2	－	－BL3．5／2F－AU	Weid－ muller Inc．	The CN3 connector is included with the SVA－01 Module，but a cable is not included．The user must connect the cable．

2.4.2 Connection Procedure for $24-\mathrm{V}$ Input Cable

Prepare a $0.2 \mathrm{~mm}^{2}$ to $0.51 \mathrm{~mm}^{2}$ (AWG24 to AWG20) twisted-pair cable. Use the following connection procedure.

1. Remove the sheath to approximately 6.5 mm from the cable end.

2. Remove the plug from the CN3 connector on the SVA-01 Module.
3. Insert the bare core of the cable into the opening of the plug and then tighten the screws to a tightening torque of approximately $0.2 \mathrm{~N} \cdot \mathrm{~m}$ to $0.25 \mathrm{~N} \cdot \mathrm{~m}$.

Pin No.	Signal Name	Name
2	24 V	+24 VDC input
1	0 V	0 V

2.4.3 CN1 and CN2 Connector Pin Arrangement

The following figures show the 36-pin arrangement, each pin name and assignment for connectors CN1 and CN2.

Pin Arrangement Viewing from the Cable-Side

					Ground						Ground
2	AO_0 (NREF)	General-purpose analog output 0 (Speed reference output)									
			3	PA	5-V differential phase-A pulse input (+)				21	Al_1	General-purpose analog input 1 (Torque reference monitor input)
4	PAL	5-V differential phase-A pulse input (-)				22	-	Not connected			
			5	PC	$\begin{aligned} & \text { 5-V differential } \\ & \text { phase-C } \\ & \text { pulse input (+) } \end{aligned}$						
						24	PBL	5-V differential phase-B pulse input (-)			pulse input (+)
		pulse input (-)							25	SG	
8	AI_0	General-purpose analog input 0 (Feedback speed monitor input)									Ground
			9	AO_1 (TREF)	General-purpose analog output 1 (Torque reference output)				27	AO-GND	Analog output ground
10	$\begin{gathered} \mathrm{OV} \\ (\text { For } 24 \mathrm{~V} \text {) } \end{gathered}$	0 V (for 24 V) output				28		$0 \mathrm{~V}($ for 24 V) output			
			11	$\begin{gathered} \mathrm{OV} \\ (\text { For } 24 \mathrm{~V}) \end{gathered}$	0 V (for 24 V) output					OV	
	DO 2	General-purpose				30	$\begin{gathered} \text { DO_1 } \\ \text { (ALMRST) } \end{gathered}$	General-purpose output DO_1 (Alarm reset output)			
\square		()		DO_4	General-purpose output DO_4	\square			31	$\begin{aligned} & \mathrm{DO} _0 \\ & (\mathrm{SV} \mathrm{ON}) \end{aligned}$	General-purpose output DO_0 (Servo ON output)
		General-purpose	\bigcirc			32	$\begin{gathered} \text { DO_5 } \\ (\mathrm{SEN}) \end{gathered}$	General-purpose output DO_5 (VS866 24-V SEN signal)	\square		
\bigcirc				DI_3	General-purpose input DI 3	\square			33	$\begin{gathered} \text { DI_4 } \\ (\mathrm{N}-\mathrm{OT}) \end{gathered}$	General-purpose input DI_4 (Negative overtravel input)
16	+24V	+24 V output		$\begin{gathered} \text { DI_0 } \\ \text { (SVALM) } \end{gathered}$	General-purpose input DI_0			+24 V output	35	$\begin{gathered} \text { DI_1 } \\ \text { (SRDY) } \end{gathered}$	General-purpose input DI_1 (Servo ready input)
18	DI 2 (zero/	General-purpose input DI_2			(Servo alarm input)	36\triangle	DI_5 (EXt/DEC)	General-purpose input DI_5 (EXT/DEC signal input)			
\triangle	HOME LS)	(ZERO/HOME LS input)									

- \square : Signal that can be used as a general-purpose I/O signal in the general-purpose I/O mode
- ■ : I/O signal exclusive for the system in the normal operation mode
- O : Signal that can be used as a general-purpose output signal in the normal operation mode
- \triangle : Signal that can be used as a general-purpose I/O signal as long as it is not used by the system for an exclusive function
- \quad : Input signal with latch function
- Either 5 V or 24 V can be selected for the SEN signal. Connect pin 20 or pin 32 according to the application. Pin $20(5 \mathrm{~V})$ is connected in the standard cable.

2.5 Cable Specifications and Connections

2.5.1 Cables

The following standard cables are available for use with the SVA-01 Module. These cables are used to connect the SVA-01 Module to SERVOPACKs, overtravel limit switches, and other machines.

Name	Model	Length	Appearance
Cable for SVA-01 Module	JEPMC-W2040-A5-E	0.5 m	
	JEPMC-W2040-01-E	1.0 m	
	JEPMC-W2040-03-E	3.0 m	
	JEPMC-W2041-A5-E	0.5 m	Loose wires on one end
	JEPMC-W2041-01-E	1.0 m	
	JEPMC-W2041-03-E	3.0 m	

2.5.2 JEPMC-W2040-ם口-E Details

The JEPMC-W2040-DD-E are the standard cables to connect to the following SERVOPACKs: SGDM, SGDH,

(1) Appearance

(2) Specifications

No. in Above Figure	Name	Model	Qty	Manufacturer	Remarks	
(1)	Plug on SVA-01 Module end	10136-3000PE	1	3M Japan Limited	Soldering type	
(2)	Shell on SVA-01 Module end	10336-52A0-008	1	3M Japan Limited	-	
(3)	Cable	$\begin{aligned} & \mathrm{HP}-\mathrm{SB} / 20276 \mathrm{SR} \\ & 26 \times 28 \mathrm{AWG} \end{aligned}$	-	Taiyo Electric Wire and Cable Co, Ltd.	Shielded wires	
(4)	Socket	DF11-4DS-2C	1	Hirose Electric Co., Ltd.	-	
(4)	Contact	DF11-2428SCF	1	Hirose Electric Co., Ltd.	-	
(5)	Marking tube	2 mm dia., white	11	-	Printing color: Black	
(6)	Wire	UL1061 28AWG	-	-	P-OT: Brown N-OT: Orange EXT: Black ZERO: Yellow	AI_GND: Black AI 1: White AI_0: Red BAT: Blue BAT0: Purple /BRK+: Gray /BRK-: White
(7)	Plug on SERVOPACK end	10150-3000PE	1	3M Japan Limited	Soldering type	
(8)	Shell on SERVOPACK end	10350-52Z0-008	1	3M Japan Limited		
(9)	Heat-shrinking tube	F2 (Z)	-	Sumitomo Electric Industries, Ltd.	F2 (Z) or the equivalent	

(3) Connections Diagram

2．5．3 JEPMC－W2041－■口－E Details

The JEPMC－W2041－ロロ－E are the standard cables to connect to servo drives from other companies and the following SERVOPACKs：SGDA－$\square \square \square S$ and SGDB－$\square \square$.
（1）Appearance

（ 2 ）Cable Specifications and Wiring Table

－Cable Specifications

No．in Above Figure	Name	Model	Qty	Manufacturer	Remarks
（1）	Plug on SVA－01 Module end	$10136-3000 \mathrm{PE}$	1	3 M Japan Limited	
（2）	Shell on SVA－01 Module end	$10336-52 A 0-008$	1	$3 M$ Japan Limited	
（3）	Cable	-	-	-	Equivalent to UL20276 AWG28．

－Wiring Table

Pin No．	Wire Color	Dot Marks		Pin No．	Wire Color		Dot Marks	
		Number			Number			
1	Orange	Red	1	19	Pink	Red	2	
2	Orange	Black	1	20	Pink	Black	2	
3	Gray	Red	1	21	Orange	Red	3	
4	Gray	Black	1	22	Orange	Black	3	
5	White	Red	1	23	Gray	Red	3	
6	White	Black	1	24	Gray	Black	3	
7	Yellow	Red	1	25	White	Red	3	
8	Yellow	Black	1	26	White	Black	3	
9	Pink	Red	1	27	Yellow	Red	3	
10	Pink	Black	1	28	Yellow	Black	3	
11	Orange	Red	2	29	Pink	Red	3	
12	Orange	Black	2	30	Pink	Black	3	
13	Gray	Red	2	31	Orange	Red	4	
14	Gray	Black	2	32	Orange	Black	4	
15	White	Red	2	33	Gray	Red	4	
16	White	Black	2	34	Gray	Black	4	
17	Yellow	Red	2	35	White	Red	4	
18	Yellow	Black	2	36	White	Black	4	

(3) SGDA-पПपS Connection Diagram

（4）SGDB－पロ Connection Diagram

2.6 Restrictions for Feedback Pulse Inputs

2.6.1 Restrictions for SERVOPACK Pulse Output Frequency

The upper limit to the SERVOPACK pulse output frequency is shown below.
Upper limit (actual value) of phase-A/B divided output pulse frequency for Σ-II, Σ-III, $\Sigma-\mathrm{V}$, or Σ - 7 SERVOPACK $=1.6 \mathrm{MHz}$ (before multiplication)

- However; Motor Speed at a Divided Output Pulse Frequency of $1.6 \mathrm{MHz}=1.6 \times 10^{6} \times 60 \div \mathrm{Pn} 212$ set value The following tables show the relationship between the number of encoder bits and the maximum speed for a pulse frequency of 1.6 MHz output by a $\Sigma-\mathrm{II}, \Sigma-\mathrm{III}, \Sigma-\mathrm{V}$, or $\Sigma-7$ SERVOPACK.
Application must be within the ranges shown in these tables when a Σ-II, Σ-III, Σ-V, or $\Sigma-7$ SERVOPACK is connected to the SVA-01 Module.
- When connecting a Σ-II SERVOPACK

Encoder Bits	Pn201 Setting Range	Pn201 Setting Example	Motor Speed $\left(\mathrm{min}^{-1}\right)$ at a Divided Output Pulse Frequency of 1.6 MHz
17 bits	16 to 16384 (in increments of pulses)	16384	6000
20 bits	16 to 16384 (in increments of pulses)	16384	6000

- When connecting a Σ-III or a Σ-V SERVOPACK

Encoder Bits	Pn212 Setting Range	Pn212 Setting Example	Motor Speed $\left(\mathrm{min}^{-1}\right)$ at a Divided Output Pulse Frequency of 1.6 MHz
	16 to 16384 (in increments of pulses)	16384	6000
	16386 to 32768 (in increments of pulses)	32768	3000
20 bits	16 to 16384 (in increments of pulses)	16384	6000
	16386 to 32768 (in increments of pulses)	32768	3000
	32772 to 65536 (in increments of pulses)	65536	1500
	65544 to 131072 (in increments of pulses)	131072	750
	131088 to 262144 (in increments of pulses)	262144	375

When connecting a $\Sigma-7$ SERVOPACK

Encoder Bits	Pn212 Setting Range	Pn212 Setting Example	Motor Speed (min ${ }^{-1}$) at a Divided Output Pulse Frequency of 1.6 MHz
	16 to 16384 (in increments of pulses)	16384	6000
	16386 to 32768 (in increments of pulses)	32768	3000
	32772 to 65536 (in increments of pulses)	65536	1500
	65544 to 131072 (in increments of pulses)	131072	750
	131088 to 262144 (in increments of pulses)	262144	375
	16 to 16384 (in increments of pulses)	16384	6000
	16386 to 32768 (in increments of pulses)	32768	3000
	32772 to 65536 (in increments of pulses)	65536	1500
	65544 to 131072 (in increments of pulses)	131072	750
	131088 to 262144 (in increments of pulses)	262144	375
	262176 to 524288 (in increments of pulses)	524288	187
	524352 to 1048576 (in increments of pulses)	1048576	93

(cont'd)

Encoder Bits	Pn212 Setting Range	Pn212 Setting Example	Motor Speed $\left(\mathrm{min}^{-1}\right)$ at a Divided Output Pulse Frequency of 1.6 MHz
24 bits	16 to 16384 (in increments of pulses)	16384	6000
	16386 to 32768 (in increments of pulses)	32768	3000
	32772 to 65536 (in increments of pulses)	65536	1500
	65544 to 131072 (in increments of pulses)	131072	750
	131088 to 262144 (in increments of pulses)	262144	375
	262176 to 524288 (in increments of pulses)	524288	187
	524352 to 1048576 (in increments of pulses)	1048576	93
	1048704 to 2097152 (in increments of pulses)	2097152	46
	2097408 to 4194304 (in increments of pulses)	4194304	23

2.6.2 Restrictions in SVA-01 Module Pulse Input Frequency

The upper limit to the SVA-01 Module pulse input frequency is shown below.
Upper Limit (actual value) to the SVA-01 Module Phase-A/B Input Pulse Frequency = 4 MHz (before multiplication)

Therefore,
Motor Speed at a Pulse Input Frequency of $4 \mathrm{MHz}=4 \times 10^{6} \times 60 \div$ Encoder resolution

The following table shows the relationship between the number of encoder bits and the maximum speed for a pulse input frequency of 4 MHz to the SVA- 01 Module. Application must be within the range shown in the table when inputting pulses to the SVA-01 Module.

Encoder Bits *	Encoder Resolution (before multiplication)	Motor Speed $\left(\mathrm{min}^{-1}\right)^{*}$ at a Pulse Input Frequency of 4 MHz
12Bit	1024	234375
13Bit	2048	117187
15Bit	8192	29296
16Bit	16384	14648
17Bit	32768	7324
18Bit	65536	3662
19Bit	131072	1831
20Bit	262144	915
21Bit	524288	457
$22 B i t$	1048576	228

* The above table is used to explain restrictions in the SVA-01 pulse input frequency. It contains some numbers of bits and motor speeds that do not actually exist on the products.

Setup

This chapter describes the items that must be set to use the SVA-01 Module.
3.1 Setting Items -3-2
3.2 Module Configuration Definition of Machine Controller 3-3
3.2.1 How to Execute Self-configuration 3-3
3.2.2 Opening the Module Configuration Window 3-4
3.2.3 Module Configuration Window 3-5
3.2.4 Manually Allocating Modules 3-6
3.3 SVA Definition 3-7
3.3.1 Opening the SVA Definition Window 3-7
3.3.2 Setting the SVA-01 Module Fixed Parameters 3-9
3.4 SERVOPACK Parameter Settings 3-10
3.4.1 SGDA SERVOPACK Parameter Settings 3-10
3.4.2 SGDB SERVOPACK Parameter Settings 3-11
3.4.3 SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACK Parameter Settings 3-12
3.5 SERVOPACK Reference Offset Adjustment 3-13
3.5.1 Automatic Adjustment of the Analog Reference Offset 3-13
3.5.2 Manual Servo Tuning of the Speed Reference Offset 3-14

3.1 Setting Items

The settings in the following definition files are required to control the SERVOPACKs by using the SVA- 01 Module mounted on the Machine Controller.

- Module Configuration Definition of Machine Controller
- SVA Definition of SVA-01 Module

Additionally, the parameters of the connected SERVOPACK must be set for the SVA-01 Module.

3.2 Module Configuration Definition of Machine Controller

Define the SVA-01 Module as an optional module of Machine Controller. The details of the definition can be checked in the Module Configuration Window.
Use the self-configuration function of Machine Controller to automatically allocate the SVA-01 Module, or manually allocate the SVA-01 Module in the Module Configuration Window.

3.2.1 How to Execute Self-configuration

There are two ways to execute the self-configuration:

- Turning ON the Power After Setting the DIP Switch "CNFG"

Set the DIP switch "CNFG" on the Machine Controller to ON, and then turn ON the power to execute self-configuration. After execution of self-configuration, be sure to execute Save to Flash to save the results of self-configuration in the Machine Controller.

- For MP2100M and MP2500MD Machine Controllers, the DIP switch is not commonly used for self-configuration. Use an MPE720 as described below to execute self-configuration.
- Using an MPE720

Start the Engineering Manager of MPE720 and open the Module Configuration Window. Select Order - Self Configure All Modules from the main menu of the Module Configuration Window, or select a module for which self-configuration is to be executed in the Module Configuration Window (see the next page for information how to open the Module Configuration Window) and then select Module Self-configuration.

3.2.2 Opening the Module Configuration Window

Use the following procedure to open the Module Configuration Window.

- When Using MPE720 Version 6

1. Start the MPE720 installed in the personal computer that is connected to the Machine Controller, and then open the target project file.

- Refer to Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User's Manual (Manual No.: SIEP C880700 30) for information on how to start the MPE720.

2. Select Setup - Module Configuration Definition from the Launcher.

The Module Configuration Window (see the next page) will open.

- When Using MPE720 Version 5

1. Start the MPE720 installed in the personal computer that is connected to the Machine Controller. Log on online to the application for the target Machine Controller in the File Manager Window.

- Refer to Machine Controller MP900/MP2000 Series MPE720 Software for Programming Device User's Manual (Manual No.: SIEP C880700 05) for information on how to start the MPE720 and how to log on to the Machine Controller online.

2. Double-click Module Configuration in the Definition folder.

The Module Configuration window (see the next page) will open.

3.2.3 Module Configuration Window

The Module Configuration Window slightly differs depending on the Machine Controller model.
<MP2300>

<MP2100M, MP2200, and MP2500MD>

After executing self-configuration, all the optional modules connected to the Machine Controller will be displayed in the Controller field. Click an optional module in the Controller field and its details will be displayed in the Module Details field.

The following table lists the items shown in the Module Configuration Window.

Item	Description	Modification
Select Rack (Only for MP2100M, MP2200, MP2500M, and MP2500MD)	Specifies whether the expansion rack (JEPMC-BU2200 and JEPMC- BU2210) is used or not. Rack 1 is reserved for the CPU Module and cannot be set to Not Use.	Possible
Slot Number	Slot number	Not possible
Module Type	Module detected in the slot	Possible
Controller Number (Only for MP2100, MP2300, MP2500, and MP2500D)	Fixed to 01	Not possible
Circuit Number	Module circuit number	Possible
I/O Start Register	For the SVA-01 Module, this item is reserved for system.	Not possible
I/O End Register	For the SVA-01 Module, this item is reserved for system.	Not possible
Disable Input	For the SVA-01 Module, this item is reserved for system.	Not possible
Disable Output	Start register number of the motion parameters (Automatically set according to the circuit number)	Not possible
Motion Start Register	Last register number of the motion parameters (Automatically set according to the circuit number)	Not possible
Motion End Register	Status of each module in online mode	Not possible
Status	Not possible	

"Possible" in the Modification column in the above table means that it is possible to change the setting of the item. Always save the setting to the flash memory after having changed the setting.

3.2.4 Manually Allocating Modules

In the Module Definition Window, click $\boldsymbol{\nabla}$ of the slot where the SVA-01 Module is to be allocated. Select $\boldsymbol{S V A} \boldsymbol{\operatorname { O L I }}$ from the combo box that will appear. The SVA-01 Module is allocated in the slot.
Always save the setting to the flash memory.

3.3 SVA Definition

The SVA definition file defines the motion parameters (motion fixed parameters, motion setting parameters, and motion monitoring parameters) to control the motion axes such as the SERVOPACK.

- Refer to 5 Motion Parameters on page 5-1 for details on the motion parameters.

3.3.1 Opening the SVA Definition Window

Open the SVA Definition Window by the following procedure.

1. Select SVA-01 in the Controller field in the Module Configuration Window (refer to 3.2.2 Opening the Module Configuration Window on page 3-4), and then double-click the slot number cell of the SVA-01 Module in the Module Details field.

The Create New Confirmation Dialog Box will open. Click OK to display the Fixed Parameters Tab of the SVA Definition Window.
2. Select the axis to be set or monitored from the Axis pull-down list, and select the connected motor type, rotary type or linear type, from the Servo Type pull-down list.

- If the setting in Servo Type is switched from Rotary to Linear, or vice-versa, some of the displayed parameters will change. Refer to 5 Motion Parameters on page 5-1 for details.

3. Click the Fixed Parameters, Setup Parameters, or Monitor tab to display the desired page.

Fig. 3.1 Fixed Parameters Tab

Fig. 3.2 Setup Parameters Tab

Fig. 3.3 Monitor Parameters Tab (read only)

3.3.2 Setting the SVA-01 Module Fixed Parameters

Set the SVA-01 Module fixed parameters according to the connected SERVOPACK model and parameters and the connected servomotor type as shown in the table below.

- With a Rotary Servomotor Connected

SVA-01 Fixed Parameter		Settings by Connected SERVOPACK Model			
No.	Name	SGDA	SGDB	SGDM, SGDH	$\begin{aligned} & \text { SGDS, SGDV, } \\ & \text { SGD7S } \end{aligned}$
23	D/A Output Voltage at 100\% Speed	Rated speed $\left(\mathrm{min}^{-1}\right) \div \mathrm{Cn}-03$ (Speed Reference Gain) $\times 1000$		Pn300 (Speed Reference Input Gain) $\times 0.01 \times$ 1000	
24	D/A Output Voltage at 100% Torque Limit	Cn-13 (Torque Reference Gain) $\times 0.01 \times 1000$		$\begin{aligned} & \text { Pn400 (Torque Reference Input Gain) } \times 0.01 \times \\ & 1000 \end{aligned}$	
26	A/D Input Voltage at 100\% Torque Monitor	Any	2000 (fixed)	1000 (fixed)	
28	Servo Driver Type Selection	0 ($\mathrm{\Sigma}$-I)		1 (Σ-II, Σ-III, Σ-V, or $\Sigma-7$)	
30	Encoder Selection	0 when $\mathrm{Cn}-01$, bit $\mathrm{F}=0$ (Incremental encoder) 1 or 2 when $\mathrm{Cn}-01$, bit $\mathrm{F}=1$ (Absolute encoder)		0 when using an incremental encoder 1 or 2 when using an absolute encoder and Pn002.2 = 0 0 when using an absolute encoder and Pn002.2 $=1$	
31	Rotation Direction Selection with an Absolute Encoder	0 when $\mathrm{Cn}-02$, bit $0=0$ (Forward rotation) 1 when $\mathrm{Cn}-02$, bit $0=1$ (Reverse rotation)		0 when $\operatorname{Pn} 000.0=0$ (Forward rotation) 1 when Pn000.0 = 1 (Reverse rotation)	
34	Rated Motor Speed	Rated speed (min^{-1})		Rated speed (min^{-1})	
36	Number of Pulses per Motor Rotation	Number of pulses per motor rotation before multiplication (pulse/rev)		The set value of Pn201 (PG Dividing Ratio) or Pn212 (PG Dividing Ratio (pulse/rev)	The set value of $\operatorname{Pn} 212$ (PG Dividing Ratio) (pulse/rev)
38	Maximum Number of Absolute Encoder Turns Rotation	99999 (fixed)		The set value of Pn205 (Multiturn Limit Setting)	
Servo Type		Rotary Type			

- With a Linear Servomotor Connected

SVA-01 Fixed Parameter		Settings by Connected SERVOPACK Model	
No.	Name	SGDM, SGDH	SGDS, SGDV, SGD7S
6	Linear Scale Pitch	The value converted from Pn280 (Linear Scale Pitch) $(\mu \mathrm{m})$ to UNIT*1	The value converted from Pn282 (Linear Scale Pitch $(0.01 \mu \mathrm{~m})$ to UNIT ${ }^{* 1}$
23	D/A Output Voltage at 100\% Speed	Pn300 (Speed Reference Input Gain) $\times 0.01 \times 1000$	
24	D/A Output Voltage at 100\% Torque Limit	Pn400 (Force Reference Input Gain) $\times 0.01 \times 1000$	
26	A/D Input Voltage at 100% Torque Moni- tor	1000 (fixed)	
28	Servo Driver Type Selection	$1(\Sigma$-II, Σ-III, Σ-V, or $\Sigma-7)$	
34	Rated Speed	Rated speed in units of $0.1 \mathrm{~m} / \mathrm{s}$	
36	Number of Pulses per Linear Scale Pitch	Pn281 (PG Dividing Ratio) $\div 4(\text { pulse/scale pitch })^{* 2}$	
Servo Type	Linear Type		

* 1. When converting the unit from $\mu \mathrm{m}$ to UNIT, multiply by 10^{n} and set the results in fixed parameter No. 6 so that fractions do not result.
*2. Multiply the calculated value by 10^{n} ($\mathrm{n}=\mathrm{n}$ in *1 above) and set the results in fixed parameter No. 36 so that fractions do not result.

3.4 SERVOPACK Parameter Settings

The SERVOPACK parameters must be set as described in this section when using a SERVOPACK in combination with an SVA-01 Module.

3.4.1 SGDA SERVOPACK Parameter Settings

Set the parameters as shown below.

Parameter No.	Name	Default Value	Set Value	Setting Contents	Remarks
Cn-01, bit 0	Servo ON input (S-ON) enable/ disable	0	0	Enables the Servo ON input (/S-ON).	
Cn-01, bit 1	SEN signal input enable/disable	0	0	Enables the SEN signal input (SEN).	
Cn-01, bit 2	Forward rotation prohibited in- put (P-OT) enable/disable	0	0	Enables the forward rotation prohibited input (P-OT).	This input can also be disabled.
Cn-01, bit 3	Reverse rotation prohibited in- put (N-OT) enable/disable	0	0	Enables the reverse rotation prohibited input (N-OT).	This input can also be disabled.
Cn-01, bit A	Control mode selection	0	1	Torque control II (Torque Control \leftrightarrow Speed Control)	
Cn-01, bit B	0	1	0	Disables the torque forward function.	$*$
Cn-01, bit F	Torque feed forward function	0	0	In speed control mode, TREF is used as the torque limit.	$*$
Cn-02, bit F	Torque reference input selection	0	1		

* Both $\mathrm{CN}-01$, bit B and $\mathrm{Cn}-02$, bit F cannot be turned ON . If they are both turned $\mathrm{ON}, \mathrm{Cn}-01$, bit F takes priority. If $\mathrm{Cn}-01$, bit F is set to 1 , the value of OLDด14 (Positive Side Limiting Torque/Thrust Setting at the Speed Reference) will be treated as the torque feed forward.

The I/O signals related to the SVA-01 are shown in the following connection diagram.

3.4.2 SGDB SERVOPACK Parameter Settings

Set the parameters as shown below.

Parameter No.	Name	Default Value	Set Value	Setting Contents	Remarks
Cn-01, bit 0	Servo ON input (/S-ON) enable/ disable	0	0	Enables the Servo ON input (/S- ON).	Used by SVA-01 system.
Cn-01, bit 1	SEN signal input enable/disable	0	0	Enables the SEN signal input (SEN).	Used by SVA-01 system.
Cn-01, bit 2	Forward rotation prohibited input (P-OT) enable/disable	0	0	Enables the forward rotation pro- hibited input (P-OT).	This input can also be disabled.
Cn-01, bit 3	Reverse rotation prohibited input (N-OT) enable/disable	0	0	Enables the reverse rotation pro- hibited input (N-OT).	This input can also be disabled.
Cn-02, bit 2	Analog speed limit function	0	1	In torque control mode, VREF is used as the analog speed limit.	
Cn-02, bit 6	TRQ-M analog monitor selection	0	0	Outputs torque to TRQ-M.	
Cn-02, bit 7	VTG-M analog monitor selection	0	0	Outputs torque to VTG-M.	
Cn-02, bit 8	Analog current limit function	0	1	In speed control mode, TREF is used as the analog current limit (torque limit).	$*$
Cn-02, bit 9	Torque feed-forward function	0	0	Disables the torque feed forward function.	$*$
Cn-2B	Control method selection	0	9	Torque control (analog refer- ence) \leftrightarrow Speed control (analog reference)	

* Both CN-02, bit 8 and Cn-02, bit 9 cannot be turned ON. If $\mathrm{Cn}-02$, bit 8 is set to 1 and $\mathrm{Cn}-02$, bit 9 is set to 0 , the value of OLDロ14 (Positive Side Limiting Torque/Thrust Setting at the Speed Reference) will be treated as the torque feed forward.

The I/O signals related to the SVA-01 are shown in the following connection diagram.

3.4.3 SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACK Parameter Settings

Set the parameters as shown below.

Parameter No.	Name	Default Value	Set Value	Setting Contents	Remarks
Pn000.1	Control method selection	0	9	Torque control (analog reference) Speed control (analog reference)	
Pn002.0	Speed control option	0	1	Use T-REF as external torque limit input.	*1
Pn002.1	Torque control option	0	1	Use V-REF as external speed limit input.	
Pn003.0	Analog monitor 1	2	2	Torque reference monitor	SGDM, SGDH, SGDS
Pn006.0					SGDV, SGD7S
Pn003.1	Analog monitor 2	0	0	Motor speed	SGDM, SGDH, SGDS
Pn007.0		Snput signal allocation Pn50A.0	0	1	Enables free allocation of input signals.

* 1. If Pn002.0 is set to 2 , T-REF can be used as the torque feed forward input. If this is done, the value of OLDD14 (Positive Side Limiting Torque/Thrust Setting at the Speed Reference) will be treated as the torque feed forward.
* 2. The user can freely allocate functions to the following input terminals: CN1-42, CN1-43, CN1-45, and CN1-46. Of these, CN1-42 and CN1-43 are for external input signals. Data is input into CN1-45 and CN1-46 as signals by the SVA-01 setting parameters.
* 3. Pn515.0 is for SGDS SERVOPACKs only.

The I/O signals related to the SVA-01 are shown in the following connection diagram.

3.5 SERVOPACK Reference Offset Adjustment

When the SVA-01 Module connected SERVOPACK is used for speed control mode, the servomotor may rotate slowly even if 0 V is specified as the analog reference. This happens if the SVA- 01 Module has a slight offset in the reference voltage. Adjustments can be done manually or automatically by using the panel operator or digital operator.

3.5.1 Automatic Adjustment of the Analog Reference Offset

The automatic adjustment of the analog (speed/torque) reference offset (Fn009) automatically measures the amount of the offset and adjusts the reference voltage.

After completion of the automatic adjustment, the amount of offset is stored in the SERVOPACK. The amount of offset can be checked in the speed reference offset manual servo tuning (Fn00A).

- When the SVA-01 Module is used to form a position loop, the automatic adjustment of analog reference offset (Fn009) cannot be used. In this case, use the speed reference offset manual servo tuning (Fn00A).
- SERVOPACKs are provided with the zero-clamp speed control function to force the motor to stop while the zero speed reference is given. Refer to the following manuals for details.
- AC Servo Drives Σ-III Series SGMDロ/SGDS User's Manual (Manual No. SIEP S800000 00)
- AC Servodrive $\Sigma-V$ Series SGMDD/SGDV User's Manual Design and Maintenance Rotational Motor Analog Voltage and Pulse Train Reference (Manual No. SIEP S800000 45)
- AC Servodrive E-I Series User's Manual Design and Maintenance Linear Motor Analog Voltage and Pulse Train Reference (Manual No. SIEP S800000 47)
- $\Sigma-7-$ Series AC Servo Drive $\Sigma-7 S$ SERVOPACK with Analog Voltage/Pulse Train References Product Manual (Manual No.: SIEP S800001 26)
- The speed reference offset must be automatically adjusted with servo OFF.

Adjust the speed reference offset automatically using the following procedures.

1. Make sure that the servo is OFF. Set the motion setting parameter OLD $\square 10$ (Speed Reference Setting) to 0 and then set the motion parameter OWDロ08 (Motion Command) to 23 to send the VELO (Speed Reference) command. Input 0-V reference voltage from the SVA-01 Module.

The servomotor will slightly turn.
2. Press the MODE/SET Key on the panel operator to select the utility function mode.
"Fn000" will be displayed.

3. Press the $\boldsymbol{\Delta}(\mathrm{UP})$ or $\boldsymbol{\nabla}$ (DOWN) Key to select Fn009 (Automatic tuning of analog (speed, torque) reference offset).

4. Press the DATA/ $<$ Key for a minimum of one second.
"rEF_o" will be displayed.

5. Press the MODE/SET Key.

The analog reference offset will be automatically adjusted and the display will change as shown below.

6. Press the DATA/ $<$ Key for a minimum of one second to return to the utility function mode.

The display will return to "Fn009".

3.5.2 Manual Servo Tuning of the Speed Reference Offset

Use the speed reference offset manual servo tuning (Fn00A) in the following cases:

- If a loop is formed with the SVA-01 Module and the error is zeroed when servolock is stopped.
- To deliberately set the offset to some value
- To check the offset data set in the speed reference offset automatic adjustment mode

This function operates in the same way as the reference offset automatic adjustment mode (Fn009), but the manual servo tuning (Fn00A), adjust inputting the amount of offset.
The offset adjustment range and setting units are as shown in the figure below.

Adjust the speed reference offset using the following procedures.

1. Press the MODE/SET Key on the panel operator to select the utility function mode.
"Fn000" will be displayed.

2. Press the $\boldsymbol{\Delta}(\mathrm{UP})$ or $\boldsymbol{\nabla}(\mathrm{DOWN})$ Key to select Fn00A (Manual servo tuning of speed reference offset).

3. Press the DATA/ $<$ Key for a minimum of one second.
" $=\mathrm{SPd}$ " will be displayed. The manual servo tuning mode for the speed reference offset will be entered.

4. Press the DATA/ $<$ Key for less than one second to display the speed reference offset amount.

5. Enter the offset amount by pressing the $\boldsymbol{\Delta}$ (UP) or $\boldsymbol{\nabla}$ (DOWN) Key.
6. Press the DATA/ $<$ Key for less than one second. The display shown on the left in the figure below will appear and then will change to "donE" in a instant. The offset amount is set.

7. Press the DATA/ \langle Key for a minimum of one second to return to the utility function mode. The display will return to "Fn00A".

Operation Modes

This chapter describes three operation modes available with the SVA-01 Module.
4.1 SVA-01 Module Operation Mode Selection 4-2
4.2 Normal Operation Mode 4-3
4.2.1 Motion Parameters That Can be Used in Normal Operation Mode 4-3
4.2.2 DI/DO Signals in Normal Operation Mode 4-3
4.3 Simulation Mode 4-4
4.3.1 Motion Parameters That Can be Used in Simulation Mode 4-4
4.3.2 Position and Speed in Simulation Mode 4-4
4.3.3 Torque in Simulation Mode 4-4
4.3.4 Functions That Cannot be Simulated 4-4
4.3.5 Output Signals in Simulation Mode 4-5
4.4 General-purpose I/O Mode 4-6
4.4.1 Motion Parameters That Can be Used in General-purpose I/O Mode 4-6
4.4.2 Correspondence Between Motion Parameter and Connector Pin Number 4-8
4.4.3 General-purpose I/O Signal Connection Example 4-9
4.4.4 Pulse Input Modes 4-10
4.4.5 Pulse Counter Connection Example 4-12

4.1 SVA-01 Module Operation Mode Selection

With the SVA-01, one of the following three operation modes can be selected.

- Normal Operation Mode
- Simulation Mode
- General I/O Mode

Select an operation mode by setting the fixed parameter No. 0 (Selection of Operation Modes) in the Fixed Parameter Tab Page of SVA Definition Window.

Fixed Parameter	Name	Setting	Default Setting
		0: Normal operation mode	
		No. Axis unused	
	Selection of Operation	2: Simulation mode	1: Axis unused
	Modes	4: General-purpose I/O mode	
		5: System reserved mode 1	
		6: System reserved mode 2	

SVA MP2200 MP2200-02 Offline Local			- - 미x
PT\#:- CPU\#:-		RACK\#01 Slot \#02 CIR\#02 8800-8FFF	
Axis 1 \square		Servo Type Rotary \quad	
Fixed Parameters \mid Setup Parameters \| Monitor			
No.	Name	Input Data Unit	
0	Selection of operation modes	Axis unused	
1	Function selection flag 1	Normal operation mode Δ of 00 H	
2	Function selection flag 2	Axis unused	
4	Reference unit selection	- Simulation mode ${ }^{\text {General-purpose I/O Mor }}$	
5	Number of digits below decimal point	System reserved mode -	
6	Travel distance per machine rotation	System reserved mode ${ }^{-1}$ - ser units	
8	Servo motor gear ratio	1 revs	
9	Machine gear ratio	1 revs	

- Refer to 3.3.1 Opening the SVA Definition Window on page 3-7 for information on how to open the SVA Definition Window.

4.2 Normal Operation Mode

Set the fixed parameter No. 0 (Selection of Operation Modes) to 0 to select the normal operation mode. In normal operation mode, the SVA-01 Module is used as an ordinary motion module.

4.2.1 Motion Parameters That Can be Used in Normal Operation Mode

Refer to 5.3 Motion Parameter Lists on page 5-5 for the motion parameters that can be used in normal operation mode.

4.2.2 DI/DO Signals in Normal Operation Mode

In normal operation mode, some of DI/DO signals can be used as general-purpose signals as shown below.

Pin No. 12 of CN1/CN2 can be used only when the General-purpose DO_2 Signal Selection bit (fixed parameter No.21, bit 5) is set to 1(Use as a general-purpose signal). Refer to 11.4.4 General-purpose DO_2 Signal Selection on page 1117 for details.

The input signals DI_2 to DI $_5$ can be used by the user unless they are already used by the system. These signals are referred to as shared signals.

4.3 Simulation Mode

Set the fixed parameter No. 0 (Selection of Operation Modes) to 2 to select the simulation mode.
In simulation mode, the normal operation can be simulated.
A simulation of operation processes using the feedback position and speed of the actual operation is carried out and the result will be written in the monitoring parameters. And, motion commands can be executed without actually connecting a SERVOPACK and servomotor.

4.3.1 Motion Parameters That Can be Used in Simulation Mode

Refer to 5.3 Motion Parameter Lists on page 5-5 for information on the motion parameters that can be used in simulation mode.

4.3.2 Position and Speed in Simulation Mode

Position and speed is simulated by converting the speed used immediately before D / A output into incremental pulses and returning the incremental pulses to the feedback pulse counter.
For all motion commands other than the TRQ command, the speed reference output will be returned.
For TRQ, the speed limit output will be returned.

4.3.3 Torque in Simulation Mode

Torque reference are not monitored in simulation mode.
Therefore, 0 (zero) is always stored in the following monitoring parameter.

Register No.	Name	Unit	Remarks
IL $\square \square 42$	Feedback Torque/Thrust	0.01%,	The unit depends on the setting of
		0.0001%	OW $\square 03$, bits C to F.

4.3.4 Functions That Cannot be Simulated

The following functions cannot be simulated.

- DI inputs
- AI inputs
- Latch detection
- Absolute Read Request
- OT processing
- PG disconnection detection

The details of the above functions in simulation mode are described below.

(1) DI Inputs

All DI inputs are treated as 0 (zero). Therefore, 0 (zero) will be always stored in all bits of the following monitoring parameter.

Register No.	Name	Description	
IW $\square \square 58$		Bit 0	General-purpose DI_0
		General-purpose DI_1	
		Bit 2	General-purpose DI_2
	Bit 3	General-purpose DI_3	
		Bit 4	General-purpose DI_4
		Bit 5	General-purpose DI_5

(2) Al Inputs

All AI inputs are treated as 0 (zero). Therefore, 0 (zero) will be always stored in the following monitoring parameters.

Register No.	Name	Range	Unit
IW $\square \square 59$	General-purpose AI monitor 1	-32768 to 32767	$1=0.001 \mathrm{~V}$
IW $\square \square 5$ A	General-purpose AI monitor 2	-32768 to 32767	$1=0.001 \mathrm{~V}$

(3) Latch Detection

The motion commands that use the latch function are disabled in simulation mode. Some operation examples are given below.
<Example 1: Zero Point Return (ZRET) command>
The zero point return operation will never complete since the Latch Completed signal will never turn ON.
<Example 2: External Positioning (EX_POSING) command>
Executed as Positioning (POSING) command since no latch operation will be implemented.
<Example 3: Latch (LATCH) command>
Executed as Interpolation (INTERPOLATE) command since no latch operation will be implemented.
<Example 4: Modal Latch Request>
The latch operation will never be completed.

- Refer to 11.4.1 Modal Latch Function on page 11-15 for information on modal latch.
(4) Absolute Read Request

The Absolute Read Request will be ignored.
(5) OT Processing

Disabled since DI inputs are disabled.
(6) PG Disconnection Detection
The PG disconnection detection processing is masked.

4.3.5 Output Signals in Simulation Mode

Both DO and AO output 0 (zero) in simulation mode.

4．4 General－purpose I／O Mode

Set the fixed parameter No． 0 （Selection of Operation Modes）to 4 to select the general－purpose I／O mode． In general－purpose I／O mode，the following functions are enabled．
－General－purpose DO outputs（6 points／axis）
－General－purpose AO outputs（ 2 channels／axis）
－General－purpose DI inputs（6 points／axis）
－General－purpose AI inputs（2 channels／axis）
－Counter input（1 channel／axis）

4．4．1 Motion Parameters That Can be Used in General－purpose I／O Mode

In general－purpose I／O mode，the following motion parameters can be used．
－Fixed Parameters

No．	Name	Description	Default Value
0	Selection of Operation Modes	4：General－purpose I／O mode	1
2	Function Selection Flag 2	Bit 3：Analog Adjust Not Ready Warning Mask （0：Disable／1：Enable）	0
		Bit 4：PG Wire Breaking Down Status Mask（0：Disable／1：Enable）	0
20	Hardware Signal Selection 1	Bit 0：A／B Pulse Input Signal Polarity Selection （0：Positive logic／1：Negative logic）	0
		Bit 1：C Pulse Input Signal Polarity Selection （0：Positive logic／1：Negative logic）	0
22	Pulse Counting Mode Selection	0 ：Sign mode＊1 1：Sign mode＊2 2：Up／Down mode＊1 3： $\mathrm{Up} /$ Down mode $* 2$ 4：A／B mode＊1 5：A／B mode＊2 6：A／B mode $* 4$	6

Setting Parameters

Register No．	Name	Description	Default Value
OWपロ00	Run Command Setting	Bit 4：Latch Detection Demand（0：OFF／1：ON） Used to set or cancel latch detection	0
		Bit F：Alarm Clear（0：OFF／1：ON）	0
OW口ロ04	Function Setting 2	Bits 0 to 3：Latch Detection Signal Selection 0：DI＿5（DEC／EXT） 1：DI＿2（ZERO／HOME LS） 2：Phase－C Pulse input signal	0
OWपロ1A	General－purpose AO1	Setting range：-32768 to 32767 Setting unit： $1=0.001 \mathrm{~V}$	0
OWपロ1B	General－purpose AO2	$\begin{aligned} & \text { Setting range: }-32768 \text { to } 32767 \\ & \text { Setting unit: } 1=0.001 \mathrm{~V} \\ & \hline \end{aligned}$	0
OLロロ48	Zero Point Position in Machine Coordinate System Offset	Used as the counter current position offset． Setting unit： $1=1$ reference unit（pulse only）	0
OWロロ5D	General－purpose DO	Bit 0：General－purpose DO＿0（0：OFF／1：ON）	0
		Bit 1：General－purpose DO＿1（0：OFF／1：ON）	0
		Bit 2：General－purpose DO＿2（0：OFF／1：ON）	0
		Bit 3：General－purpose DO＿3（0：OFF／1：ON）	0
		Bit 4：General－purpose DO＿4（0：OFF／1：ON）	0
		Bit 5：General－purpose DO＿5（0：OFF／1：ON）	0

Monitoring Parameters

Register No．	Name	Description
IWロロ00	Run Status	Bit 0：Motion Controller Operation Ready
IWロロ01	Parameter Number When Range Over is Generated	Setting parameters： 0 and onward Fixed parameters： 1000 and onward
ILロロ02	Warning	Bit B：Analog Adjust Not Ready Warning
ILロロ04	Alarm	Bit 14：PG Disconnection Error
IWロロ0C	Position Management Status	Bit 2：ON at Latch Completed（LCOMP）
ILDC16	Machine Coordinate System Feedback Position（APOS）	Used as the counter current position． Range：-2^{31} to $2^{31}-1$ Unit： $1=1$ reference unit（pulse only）
ILDロ18	Machine Coordinate System Latch Position （LPOS）	Used as the counter latch position． $\text { Range: }-2^{31} \text { to } 2^{31}-1$ Unit： $1=1$ reference unit（pulse only）
ILロロ1C	Target Position Difference Monitor	Used as the number of incremental pulses of feedback． Range：-2^{31} to $2^{31}-1$ Unit： $1=1$ reference unit（pulse only）
IWDप58	General－purpose DI Monitor	Bit 0：General－purpose DI＿0
		Bit 1：General－purpose DI＿1
		Bit 2：General－purpose DI＿2
		Bit 3：General－purpose DI＿3
		Bit 4：General－purpose DI＿4
		Bit 5：General－purpose DI＿5
		Bit 6：Reserved for system use
		Bit 7：PG Wire Breaking Down Status（ON：Connected／1：Disconnected）
IWロロ59	General－purpose AI Monitor 1	$\begin{aligned} & \text { Range: }-32768 \text { to } 32767 \\ & \text { Unit: } 1=0.001 \mathrm{~V} \end{aligned}$
IWDC5A	General－purpose AI Monitor 2	$\begin{aligned} & \text { Range: }-32768 \text { to } 32767 \\ & \text { Unit: } 1=0.001 \mathrm{~V} \end{aligned}$

4．4．2 Correspondence Between Motion Parameter and Connector Pin Number

Each motion parameter for general－purpose $\mathrm{DO} / \mathrm{DI}$ and $\mathrm{AO} / \mathrm{AI}$ corresponds to the connector pin number as shown below．
－General－purpose DO Outputs（6 Points／Axis）

Setting Parameter			
Register No．	Name		Description
OWDロ5D	General－purpose	Bit 0	General－purpose DO＿0
		Bit 1	General－purpose DO＿1
		Bit 2	General－purpose DO＿2
		Bit 3	General－purpose DO＿3
		Bit 4	General－purpose DO＿4
		Bit 5	General－purpose DO＿5

	CN1／CN2 Pin No．		
\rightarrow	31	\rightarrow	Output
\rightarrow	30	\rightarrow	Output
\rightarrow	12	\rightarrow	Output
\rightarrow	14	\rightarrow	Output
\rightarrow	13	\rightarrow	Output
\rightarrow	32	\rightarrow	Output

－General－purpose DI Inputs（6 Points／Axis）

Monitoring Parameter			
Register No．	Name		Description
IWロロ58	General－purpose DI	Bit 0	General－purpose DI＿0
		Bit 1	General－purpose DI＿1
		Bit 2	General－purpose DI＿2
		Bit 3	General－purpose DI＿3
		Bit 4	General－purpose DI＿4
		Bit 5	General－purpose DI＿5

General－purpose AO Outputs（2 Channels／Axis）

Setting Parameter			
Register No．	Name	Setting Range	Setting Unit
OWロロ1A	General－purpose AO1	-32768 to 32767	$1=0.001 \mathrm{~V}$
OWロロ1B	General－purpose AO2	-32768 to 32767	$1=0.001 \mathrm{~V}$

\rightarrow| CN1／CN2
 Pin No． | |
| :---: | :---: |
| | \rightarrow Output |
| 9 | \rightarrow Output |

General－purpose AI Inputs（2 Channels／Axis）

Setting Parameter			
Register No．	Name	Setting Range	Setting Unit
IWपロ59	General－purpose AI Monitor 1	-32768 to 32767	$1=0.001 \mathrm{~V}$
IWपロ5A	General－purpose Al Monitor 2	-32768 to 32767	$1=0.001 \mathrm{~V}$

4.4.3 General-purpose I/O Signal Connection Example

The following diagram illustrates an example of general-purpose I/O signal connection.

- The CH 2 pin assignment is the same as of CH 1 .
- The connector CN3 for external 24-V power supply is commonly used.

4.4.4 Pulse Input Modes

The following three pulse input modes are supported in general-purpose I/O mode of the SVA-01 Module.

- Sign mode
- Up/Down mode
- Pulse A/B mode

Each pulse input mode is explained below.

(1) Sign Mode

In sign mode, the counter counts pulses in the following manner.
Polarity: Positive logic
When pulse B is at High, the counter counts up upon pulse A input.
When pulse B is at Low, the counter counts down upon pulse A input.
Polarity: Negative logic
When pulse B is at Low, the counter counts up upon pulse A input.
When pulse B is at High, the counter counts down upon pulse A input.
The table below shows different pulse counting operations by combination of multiplier and polarity.

Pulse Counting Method	Polarity	Count Up (Forward Rotation)	Count Down (Reverse Rotation)
Sign mode (Input pulse multiplier: 1)	Positive logic		
	Negative logic		
Sign mode (Input pulse multiplier: 2)	Positive logic		
	Negative logic		

(2) Up/Down Mode

In up/down mode, the counter counts pulses in the following manner no matter whether the polarity is positive or negative logic.

The counter counts up upon pulse A input.
The counter counts down upon pulse B input.
The table below shows different pulse counting operations by combination of multiplier and polarity.

Pulse Counting Method	Polarity	Count Up (Forward Rotation)	Count Down (Reverse Rotation)
Up/Down mode (Input pulse multiplier: 1)	Positive logic	Pulse A \qquad \square Pulse B Fixed to LOW or HIGH	$\begin{array}{ll} \text { Pulse A } \\ \text { Pulse B to tow or HIGH } \end{array}$
	Negative logic		Pulse A Fixed to LOW or HIGH Pulse B
Up/Down mode (Input pulse multiplier: 2)	Positive logic	Pulse A	
	Negative logic		Pulse A Fixed to LOW or HIGH Pulse B

- When pulse A and B are input at the same time, the count will not change (± 0).

(3) Pulse A/B Mode

In pulse A / B mode, the counter counts pulses in the following manner.
Polarity: Positive logic
The counter counts up when the phase of pulse A input is delayed from pulse B.
The counter counts down when the phase of pulse A input is advanced to pulse B.
Polarity: Negative logic
The counter counts up when the phase of pulse A input is delayed from pulse B.
The counter counts down when the phase of pulse A input is advanced to pulse B.
The table below shows different pulse counting operations by combination of multiplier and polarity.

Pulse Counting Method	Polarity	Count Up (Forward Rotation)	Count Down (Reverse Rotation)
Pulse A/B mode (Input pulse multiplier: 1)	Positive logic		Pulse A Pulse B \qquad
	Negative logic	Pulse A Pulse B	Pulse A Pulse B
Pulse A/B mode (Input pulse multiplier: 2)	Positive logic		
	Negative logic	Pulse A Pulse B	Pulse A Pulse B
Pulse A/B mode (Input pulse multiplier: 4)	Positive logic		
	Negative logic		

4.4.5 Pulse Counter Connection Example

The following diagram illustrates an example of pulse counter connection.

Motion Parameters

This chapter explains each of the motion parameters.
5.1 Motion Parameters Register Numbers 5-2
5.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers 5-2
5.2 Motion Parameters Setting Window 5-3
5.2.1 How to Open the Motion Parameter Setting Windows 5-3
5.2.2 Selecting a Motor Type 5-4
5.3 Motion Parameter Lists 5-5
5.3.1 Fixed Parameter List 5-5
5.3.2 Setting Parameter List 5-8
5.3.3 Monitoring Parameter List 5-13
5.4 MP2000 Series Machine Controller Parameter Details 5-17
5.4.1 Motion Fixed Parameter Details 5-17
5.4.2 Motion Setting Parameter Details 5-25
5.4.3 Motion Monitoring Parameter Details 5-43

5.1 Motion Parameters Register Numbers

5.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers

The leading motion parameter register numbers (I or O register numbers) are determined by the module number and axis number.
The leading register numbers for each axis's motion parameters can be obtained using the following equation.

```
Leading motion parameter register number
=I (or O)W8000 + (module number - 1) }\times800\textrm{h}+(\mathrm{ axis number - 1) }\times80\textrm{h
```

The following tables lists the motion parameters register numbers.

Module No.	Axis No. 1	Axis No. 2
1	8000 to 807 F	8080 to 80FF
2	8800 to 887 F	8880 to 88 FF
3	9000 to 907 F	9080 to 90 FF
4	9800 to 987 F	9880 to 98 FF
5	A000 to A07F	A080 to A0FF
6	A800 to A87F	A880 to A8FF
7	B000 to B07F	B080 to B0FF
8	B800 to B87F	B880 to B8FF
9	C000 to C07F	C080 to C0FF
10	C800 to C87F	C880 to C8FF
11	D000 to D07F	D080 to D0FF
12	D800 to D87F	D880 to D8FF
13	E000 to E07F	E080 to E0FF
14	E800 to E87F	E880 to E8FF
15	F000 to F07F	F080 to F0FF
16	F800 to F87F	F880 to F8FF

5.2 Motion Parameters Setting Window

Set or monitor the motion parameters in the Fixed Parameters, Setup Parameters, and Monitor tabs of the SVA Definition Window.

Fig. 5.1 Fixed Parameters Tab Page

Fig. 5.2 Setup Parameters Tab Page

Fig. 5.3 Monitor Parameters Tab Page (Read-Only)

5.2.1 How to Open the Motion Parameter Setting Windows

Refer to 3.3.1 Opening the SVA Definition Window on page 3-7 for information on how to open motion parameter setting windows.

5.2.2 Selecting a Motor Type

The motor type, rotary or linear, can be selected from the Servo Type pull-down list in the SVA Definition Window. Some of the fixed parameters will differ and some of the setting parameters will be disabled depending on the selected motor type.

| SVA MP2300 MP2300 Offline Local | | | | - \|a|x |
| :---: | :---: | :---: | :---: | :---: |
| PT\#:- CPU\#:- RACK\#01 Slot \#02 CIR\#03 9000-97FF | | | | |
| Axis 1 | | Servo Type Rotary | | |
| Fixed Parameters \mid Setup Parameters \mid Monitor \mid | | | | |
| No. | Name | Input Data | Unit | |
| 0 | Selection of operation modes | Axis unused - | | |
| 1 | Function selection flag 1 | 0000000000000000000 | | |
| 2 | Function selection flag 2 | 0000000000000000000 | | |
| 4 | Reference unit selection | pulse - | | |
| 5 | Number of digits below decimal point | 3. | | |
| 6 | Travel distance per machine rotation | 10000 User | units | |
| 8 | Servo motor gear ratio | 1 revs | | |
| 9 | Machine gear ratio | 1 revs | | |
| 10 | Infinite length axis reset position(POSMAX) | 360000 User | units | |
| 12 | Positive software limit value | 2147483647 Use | units | |
| 14 | Negative software limit value | -2147483648 User | units | |

5.3 Motion Parameter Lists

5.3.1 Fixed Parameter List

The following table provides a list of SVA motion fixed parameters.

- The commands marked with \checkmark in the Normal Operation Mode, Simulation Mode, and General-purpose I/O Mode columns can be used in the corresponding operation mode. The operation mode can be selected by setting the fixed parameter No. 0 (Selection of Operation Modes) to 0 for normal operation mode, to 2 for simulation mode, or to 4 for general-purpose I/O mode.
- Refer to the pages listed in the Reference Page for details of each fixed parameter.

No.	Name	Description				Reference Page
0	Selection of Operation Modes	0: Normal Operation Mode	\checkmark	\checkmark	\checkmark	P.5-17
		1: Axis unused				
		2: Simulation Mode				
		3: Reserved for system use				
		4: General-purpose I/O Mode				
		5 to 7: Reserved for system use	-	-	-	
1	Function Selection Flag 1	Bit 0: Axis Selection (0 : Finite length axis/1: Infinite length axis) Set to 0 for linear type.	\checkmark	\checkmark		P.5-18
		Bit 1: Soft Limit (positive direction) (0: Disabled/1: Enabled)	\checkmark	\checkmark		
		Bit 2: Soft Limit (negative direction) (0 : Disabled/1: Enabled)	\checkmark	\checkmark		
		Bit 3: Overtravel Positive Direction (0: Disabled/1: Enabled)	\checkmark			
		Bit 4: Overtravel Negative Direction (0: Disabled/1: Enabled)	\checkmark			
		Bit 5: Deceleration LS Inversion Selection (0: Not invert/1: Invert)	\checkmark			
		Bit 6: Reserved for system use	-	-	-	
		Bit 7: Absolute Position Data Read-out at Power ON (0: Execute/1: Not execute)	\checkmark			
		Bit 8: Reserved for system use	-	-	-	
		Bit 9: Simple ABS Rotary Pos. Mode (Simple absolute infinite axis position control) (0: Disabled/1:Enabled) Set to 0 for linear type.	\checkmark			
		Bits A to F: Reserved for system use	-	-	-	
2	Function Selection Flag 2	Bits 0 to 2: Reserved for system use	-	-	-	P.5-19
		Bit 3: Analog Adjust Not Ready Warning Mask (0 : Disabled/1: Enabled)	\checkmark		\checkmark	
		Bit 4: PG Wire Breaking Down Status Mask (0: Disabled/1: Enabled)			\checkmark	
		Bits 5 to F: Reserved for system use	-	-	-	
3	-	Reserved for system use	-	-	-	-

No.	Name	Description				Reference Page
4	Reference Unit Selection	0: pulse 1: mm 2: deg 3: inch For linear type, either 0 (pulse) or 1 (mm) can be selected. If 2 (deg) or 3 (inch) is selected, the selected unit will be converted to mm .	\checkmark	\checkmark		P.5-19
5	Number of Digits Below Decimal Point	$1=1$ digit	\checkmark	\checkmark		
6	Travel Distance per Motor Revolution (rotary type)	$1=1$ user unit	\checkmark	\checkmark		
	Linear Scale Pitch (linear type)	$1=1$ user unit	\checkmark	\checkmark		
8	Servo Motor Gear Ratio	$1=1 \mathrm{rev}$ Invalid for linear type	\checkmark	\checkmark		
9	Machine Gear Ratio	$1=1 \mathrm{rev}$ Invalid for linear type	\checkmark	\checkmark		
10	Infinite Length Axis Reset Position (POSMAX)	$1=1$ user unit Invalid for linear type	\checkmark	\checkmark		P.5-20
12	Positive Software Limit Value	1 = 1 user unit	\checkmark	\checkmark		P.5-21
14	Negative Software Limit Value	$1=1$ user unit	\checkmark	\checkmark		
16	Backlash Compensation Amount	$1=1$ user unit	\checkmark	\checkmark		P.5-21
$\begin{gathered} 18 \text { to } \\ 19 \end{gathered}$	-	Reserved for system use	-	-	-	-
20	Hardware Signal Selection 1	Bit 0: A/B Pulse Input Signal Polarity Selection (0: Positive logic/1: Negative logic)	\checkmark		\checkmark	P.5-22
		Bit 1: C Pulse Input Signal Polarity Selection (0: Positive logic/1: Negative logic)	\checkmark		\checkmark	
		Bits 2 to F: Reserved for system use	-	-	-	
21	Hardware Signal Selection 2	Bit 0: Deceleration LS Signal Selection (0: Use the setting parameter./1: Use the DI signal.)	\checkmark	\checkmark		
		Bits 1 to 4: Reserved for system use	-	-	-	
		Bit 5: General-Purpose DO_2 Signal Selection (0: Use as a system exclusive signal./ 1: Use as a general-purpose signal.)	\checkmark			
		Bits 6 to F: Reserved for system use	-	-	-	
22	Pulse Counting Mode Selection	$\begin{aligned} & \text { 0: Sign mode } * 1 \\ & \text { 1: Sign mode } * 2 \\ & \text { 2: } \mathrm{Up} / \text { Down mode } * 1 \\ & \text { 3: } \mathrm{Up} / \text { Down mode } * 2 \\ & \text { 4: A/B mode } * 1 \\ & \text { 5: A/B mode } * 2 \\ & \text { 6: A/B mode } * 4 \end{aligned}$	\checkmark		\checkmark	P.5-22
23	D/A Output Voltage at 100\% Speed	$1=0.001 \mathrm{~V}$	\checkmark			P.5-22
24	D/A Output Voltage at 100\% Torque Limit	$1=0.001 \mathrm{~V}$	\checkmark			P.5-23
25	-	Reserved for system use	-	-	-	-
26	A/D Input Voltage at 100\% Torque Monitor	$1=0.001 \mathrm{~V}$	\checkmark			P.5-23

No.	Name	Description				Reference Page
27	-	Reserved for system use	-	-	-	-
28	Servo Driver Type Selection	0: Σ-I series 1: Σ-II, Σ-III, $\Sigma-\mathrm{V}$, or $\Sigma-7$ series 2: Reserved for system use	\checkmark			P.5-23
30	Encoder Selection	0: Incremental encoder 1: Absolute encoder 2: Absolute encoder (Incremental encoder is used.) 3: Reserved for system use	\checkmark	\checkmark		
31	Rotation Direction Selection with an Absolute Encoder	0: Forward 1: Reverse	\checkmark			
32	-	Reserved for system use	-	-	-	-
34	Rated Motor Speed (rotary type)	$1=1 \mathrm{~min}^{-1}$	\checkmark	\checkmark		P.5-24
	Rated Speed (linear type)	$1=0.1 \mathrm{~m} / \mathrm{s}$	\checkmark	\checkmark		
36	Number of Pulses per Motor Rotation (rotary type)	$1=1$ pulse/rev Set the value before multiplication.	\checkmark	\checkmark		
	Number of Pulses per Linear Scale Pitch (linear type)	$1=1$ pulse/linear scale pitch Set the value before multiplication.	\checkmark	\checkmark		P.5-24
38	Maximum Number of Absolute Encoder Turns Rotation	$1=1 \mathrm{rev}$ Set to 0 when using a direct drive motor. Invalid for linear type	\checkmark			
40	-	Reserved for system use	-	-	-	
42	Feedback Speed Movement Averaging Time Constant	$1=1 \mathrm{~ms}$	\checkmark	\checkmark		

5．3．2 Setting Parameter List

The following table provides a list of SVA motion setting parameters．
－The register number＂OWDO00＂indicates the leading output register number＋00．Refer to 5．1．1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers on page 5－2 for information on how to obtain the leading output register number．
－The commands marked with \checkmark in the Normal Operation Mode，Simulation Mode，and General－purpose I／O Mode columns can be used in the corresponding operation mode．The operation mode can be selected by setting the fixed parameter No． 0 （Selection of Operation Modes）to 0 for normal operation mode，to 2 for simulation mode，or to 4 for general－purpose I／O mode．
－Refer to the pages listed in the Reference Page for details of each setting parameter．

Register No．	Name	Description				Refer－ ence Page
OWDL00	Run Command Setting	Bit 0：Servo ON（0：OFF／1：ON）	\checkmark	\checkmark		P．5－25
		Bit 1：Machine Lock（0：Normal operation／1：Machine locked）	\checkmark	\checkmark		
		Bits 2 and 3：Reserved for system use	－	－	－	
		Bit 4：Latch Detection Demand（0：OFF／1：ON）	\checkmark		\checkmark	
		Bit 5 Absolute Position Reading Demand（0：OFF／1：ON）	\checkmark			
		Bit 6：POSMAX Turn Number Presetting Demand （0：OFF／1：ON） Set to 0 for linear type．	\checkmark	\checkmark		
		Bit 7：Request ABS Rotary Pos．Load （Absolute system infinite length position information LOAD） （0：OFF／1：ON） Set to 0 for linear type．	\checkmark	\checkmark		
		Bits 8 to A：Reserved for system use	－	－	－	
		Bit B：Integration Reset（0：OFF／1：ON）	\checkmark	\checkmark		
		Bits C to E：Reserved for system use	－	－	－	
		Bit F：Alarm Clear（0：OFF／1：ON）	\checkmark	\checkmark	\checkmark	
OWपロ01	Mode Setting 1	Bit 0：Excessive Deviation Error Level Setting （0：Alarm／1：Warning）	\checkmark	\checkmark		P．5－27
		Bit 1：Reserved for system use	－	－	－	
		Bit 2：Speed Compen．in Pos．Mode （Speed compensation in position mode） （0：Disabled／1：Enabled）	\checkmark	\checkmark		
		Bits 3 to F：Reserved for system use	－	－	－	
OWपロ02		Reserved for system use	－	－	－	－
OWपロ03	Function Setting 1	Bits 0 to 3：Speed Unit Selection 0 ：Reference unit／s 1： 10^{n} reference units $/ \mathrm{min}$ 2：Percentage of rated speed（1：0．01\％） 3：Percentage of rated speed（1： 0.0001% ）	\checkmark	\checkmark		P．5－27
		Bits 4 to 7：Acceleration／Deceleration Degree Unit Selection 0 ：Reference unit／s ${ }^{2}$ 1：ms	\checkmark	\checkmark		
		Bits 8 to B：Filter Type Selection 0：Filter none 1：Exponential acceleration／deceleration filter 2：Moving average filter	\checkmark	\checkmark		
		Bits C to F：Torque Unit Selection 0：Percentage of rated torque $(1: 0.01 \%)$ 1：Percentage of rated torque $(1: 0.0001 \%)$	\checkmark	\checkmark		

Register No．	Name	Description				Refer－ ence Page
OW口ロ04	Function Setting 2	Bits 0 to 3：Latch Detection Signal Selection 0：DI＿5（DEC／EXT） 1：DI＿2（ZERO／HOME LS） 2：Phase－C pulse input signal	\checkmark		\checkmark	P．5－28
		Bits 4 to 7：External Positioning Signal Setting $\begin{aligned} & \text { 0: DI_5 (DEC/EXT) } \\ & \text { 1: DI_2 (ZERO/HOME LS) } \\ & \text { 2: Phase-C pulse input signal } \end{aligned}$	\checkmark			
		Bits 8 to F：Reserved for system use	－	－	－	
OW口ロ05	Function Setting 3	Bit 0：Reserved for system use	－	－	－	P．5－28
		Bit 1：Phase Reference Creation Calculation Disable （0：Enabled／1：Disabled）	\checkmark	\checkmark		
		Bits 2 to 7：Reserved for system use	－	－	－	
		Bit 8：Zero Point Return Deceleration LS Signal （0：OFF／1：ON）	\checkmark	\checkmark		
		Bit 9：Zero Point Return Reverse Run Side Limit Signal （0：OFF／1：ON）	\checkmark	\checkmark		
		Bit A：Zero Point Return Forward Run Side Limit Signal （0：OFF／1：ON）	\checkmark	\checkmark		
		Bit B：Zero Point Return Input Signal （0：OFF／1：ON）	\checkmark	\checkmark		
		Bits C to F：Reserved for system use	－	－	－	
OLD口06	－	Reserved for system use	－	－	－	－
OW口ロ08	Motion Command	0：NOP（No Command） 1：POSING（Position Mode）（Positioning） 2：EX＿POSING（Latch Target Positioning） （External Positioning） 3：ZRET（Zero Point Return） INTERPOLATE（Interpolation） ：ENDOF＿INTERPOLATE（For system use） LATCH（Interpolation Mode with Latch Input） FEED（JOG Mode） STEP（Relative Position Mode）（Step Mode） 9：ZSET（Set Zero Point） 23：VELO（Speed Reference） 24：TRQ（Torque Reference） 25：PHASE（Phase Reference）	\checkmark	\checkmark		P．5－29
OW $\square \square 09$	Motion Command Control Flag	Bit 0：Holds a Command（0：OFF／1：ON）	\checkmark	\checkmark		P．5－29
		Bit 1：Interrupt a Command（0：OFF／1：ON）	\checkmark	\checkmark		
		Bit 2：Moving Direction（JOG／STEP） （0：Forward rotation／1：Reverse rotation）	\checkmark	\checkmark		
		Bit 3：Zero Point Return Direction Selection （0：Reverse rotation／1：Forward rotation）	\checkmark	\checkmark		
		Bit 4：Latch Zone Effective Selection（0：Disabled／1：Enabled）	\checkmark	\checkmark		
		Bit 5：Position Reference Type （0：Incremental value add method／1：Absolute value set method）	\checkmark	\checkmark		
		Bit 6：Phase Compensation Type （0：Incremental value add method／1：Absolute value set method））	\checkmark	\checkmark		
		Bits 7 to F：Reserved for system use	－	－	－	
OW $\square \square 0 \mathrm{~A}$	Motion Subcom－ mand	0：NOP（No Command） 1 to 4：Reserved for system use 5：FIXPRM＿RD（Read Fixed Parameter）	\checkmark	\checkmark		P．5－30
OW $\square \square 0 \mathrm{~B}$	－	Reserved for system use	－	－	－	－

Register No．	Name	Description				Refer－ ence Page
OLロロ0C	Torque／Thrust Reference Setting	Unit depends on OWD $\square 03$ ，bits C to F （Torque Unit Selection）．	\checkmark	\checkmark		
OWपロ0E	Speed Limit Setting at the Torque／Thrust Ref－ erence	$1=0.01 \%$（percentage of rated speed）	\checkmark	\checkmark		P．5－31
OWロロ0F	Torque Reference 1st－order Lag Filter	$1=1 \mathrm{~ms}$	\checkmark	\checkmark		
OLDप10	Speed Reference Setting	Unit depends on OWDロ03，bits 0 to 3 （Speed Unit Selection）．	\checkmark	\checkmark		
OWपロ12	Positive Side Speed Limiter Value	$1=0.01 \%$（percentage of rated speed）	\checkmark	\checkmark		P．5－32
OWपロ13	Negative Side Speed Limiter Value	$1=0.01 \%$（percentage of rated speed）	\checkmark	\checkmark		
OLDप14	Positive Side Limit－ ing Torque／Thrust Setting at the Speed Reference	Unit depends on OWD－03，bits C to F（Torque Unit Selection）．	\checkmark	\checkmark		P．5－32
OLDप16	Secondly Speed Compensation	Unit depends on OW■प03，bits 0 to 3 （Speed Unit Selection）．	\checkmark	\checkmark		P．5－32
OWपロ18	Override	1 ＝ 0.01%	\checkmark	\checkmark		P．5－33
OWपロ19	－	Reserved for system use	－	－	－	－
OWपロ1A	General－purpose AO1	$1=0.001 \mathrm{~V}$			\checkmark	
OWपロ1B	General－purpose AO2	$1=0.001 \mathrm{~V}$			\checkmark	P．5－33
OLDロ1C	Position Reference Setting	1 ＝ 1 reference unit	\checkmark	\checkmark		P．5－33
OLDप1E	Width of Position－ ing Completed	$1=1$ reference unit	\checkmark	\checkmark		P．5－34
OLDप20	NEAR Signal Output Width	$1=1$ reference unit	\checkmark	\checkmark		P．5－34
OLDप22	Error Count Alarm Detection	1 ＝ 1 reference unit	\checkmark	\checkmark		P．5－35
OLDप24	Position Correction Setting	1 ＝ 1 reference unit	\checkmark	\checkmark		P．5－35
OWपロ26	Position Completion Check Time	$1=1 \mathrm{~ms}$（No check when 0 is set）	\checkmark	\checkmark		P．5－35
OW口प27	－	Reserved for system use	－	－	－	－
OLDप28	Phase Correction Setting	1 ＝ 1 reference unit	\checkmark	\checkmark		P．5－35
OLDロ2A	Latch Zone Lower Limit Setting	1 ＝ 1 reference unit	\checkmark	\checkmark		
OLロロ2C	Latch Zone Upper Limit Setting	$1=1$ reference unit	\checkmark	\checkmark		P．5－36
OWDC2E	Position Loop Gain	$1=0.1 / \mathrm{s}$	\checkmark	\checkmark		
OWロロ2F	－	Reserved for system use	－	－	－	－

Register No．	Name	Description				Refer－ ence Page
OWपロ30	Speed Feedforward Amends	$1=0.01 \%$（percentage of distribution segment）	\checkmark	\checkmark		P．5－36
OWपロ31	Speed Compensa－ tion	$1=0.01 \%$（percentage of rated speed）	\checkmark	\checkmark		
OWपロ32	Position Integra－ tion Time Constant	$1=1 \mathrm{~ms}$	\checkmark	\checkmark		
OWपロ33	1st－order Lag Time Constant	$1=1 \mathrm{~ms}$	\checkmark	\checkmark		
$\begin{array}{\|l\|l\|} \hline \text { OW口ロ34 } \\ \text { OW口ロ35 } \end{array}$	－	Reserved for system use	－	－	－	－
OLDロ36	Straight Line Acceleration／ Acceleration Time Constant	Unit depends on OWD $\square 03$ ，bits 4 to 7 （Acceleration／Decelera－ tion Degree Unit Selection）．	\checkmark	\checkmark		P．5－37
OLDप38	Straight Line Decel－ eration／Decelera－ tion Time Constant	Unit depends on OWロロ03，bits 4 to 7 （Acceleration／Decelera－ tion Degree Unit Selection）．	\checkmark	\checkmark		
OWロロ3A	Filter Time Constant	$1=0.1 \mathrm{~ms}$	\checkmark	\checkmark		P．5－38
OWロロ3B	Bias Speed for In－ dex Acceleration／ Deceleration Filter	Unit depends on OW $\square \square 03$ ，bits 0 to 3 （Speed Unit Selection）．	\checkmark	\checkmark		
OWロロ3C	Zero Point Return Method	0：DEC1 and Phase C ：ZERO Signal 2：DEC1 and ZERO Signal 3：C－pulse 4：DEC2 and ZERO Signal 5：DEC1 and Limit and ZERO Signal 6：DEC2 and C－phase 7：DEC1 and Limit and C－phase 8 to 10：Reserved for system use 11：C－pulse Only 12：P－OT and C－pulse 13：P－OT Only 14：HOME LS and C－pulse 15：HOME Only 16：N－OT and C－pulse 17：N－OT Only 18：INPUT and C－pulse 19：INPUT Only	\checkmark	\checkmark		P．5－39
OWロロ3D	Width of Starting Point Position Output	$1=1$ reference unit	\checkmark	\checkmark		
OLDप3E	Approach Speed	Unit depends on OWप口03，bits 0 to 3 （Speed Unit Selection）．	\checkmark	\checkmark		
OLDप40	Creep Rate	Unit depends on OWप口03，bits 0 to 3 （Speed Unit Selection）．	\checkmark	\checkmark		
OLDप42	Zero Point Return Travel Distance	$1=1$ reference unit	\checkmark	\checkmark		
OLDロ44	STEP Travel Distance	$1=1$ reference unit	\checkmark	\checkmark		P．5－40
OLDロ46	External Position－ ing Final Travel Distance	$1=1$ reference unit	\checkmark	\checkmark		P．5－40

Register No．	Name	Description				Refer－ ence Page
OLロロ48	Zero Point Position in Machine Coordi－ nate System Offset	1 ＝ 1 reference unit	\checkmark	\checkmark	\checkmark	P．5－40
OLDप4A	Work Coordinate System Offset	$1=1$ reference unit	\checkmark	\checkmark		
OLDロ4C	Number of POSMAX Turns Presetting Data	$\begin{aligned} & \text { 1 }=1 \text { turn } \\ & \text {. Invalid for linear type } \end{aligned}$	\checkmark	\checkmark		P．5－40
$\begin{aligned} & \text { OWロप4E } \\ & \text { to } \\ & \text { OWロप5B } \end{aligned}$	－	Reserved for system use	－	－	－	－
OWपロ5C	Fixed Parameter Number	Set the number of the fixed parameter to read with the FIX－ PRM＿RD motion subcommand．	\checkmark	\checkmark		P．5－41
OWDप5D	General－purposeDO	Bit 0：General－purpose DO＿0（0：OFF／1：ON）			\checkmark	P．5－41
		Bit 1：General－purpose DO＿1（0：OFF／1：ON）			\checkmark	
		Bit 2：General－purpose DO＿2（0：OFF／1：ON） －In normal operation mode，a specific condition is required．	\checkmark		\checkmark	
		Bit 3：General－purpose DO＿3（0：OFF／1：ON）	\checkmark		\checkmark	
		Bit 4：General－purpose DO＿4（0：OFF／1：ON）	\checkmark		\checkmark	
		Bit 5：General－purpose DO＿5（0：OFF／1：ON）			\checkmark	
		Bits 6 to F：Reserved for system use	－	－	－	
OLDप5E	Encoder Position when Power is OFF （Lower 2 words）	$1=1$ pulse －For linear type，do not set this register．	\checkmark			P．5－42
OLロप60	Encoder Position when Power is OFF （Upper 2 words）	$1=1 \text { pulse }$ －For linear type，do not set this register．	\checkmark			P．5－42
OLDप62	Pulse Position when Power is OFF （Lower 2 words）	$1=1 \text { pulse }$ －For linear type，do not set this register．	\checkmark			
OLロप64	Pulse Position when Power is OFF （Upper 2 words）	$1=1$ pulse －For linear type，do not set this register．	\checkmark			
OLDप66	Monitor Data Com－ mand	Reserved for system use	－	－	－	P．5－42
OLロロ68	Writing Data Type	Reserved for system use	－	－	－	
OLDप6A	Monitor Address	Reserved for system use	－	－	－	
OLDप6C	Writing Data	Reserved for system use	－	－	－	
OLDप6E	System Reservation （Stop Distance）	Used in combination with MPOS as the software limit detection condition．	\checkmark	\checkmark		
$\begin{gathered} \text { OLロप70 } \\ \text { to } \\ \text { OLロロ7F } \end{gathered}$	－	Reserved for system use	－	－	－	－

5．3．3 Monitoring Parameter List

The following table provides a list of SVA motion monitoring parameters．
－The register number＂IWपロ00＂indicates the leading input register number＋00．Refer to 5．1．1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers on page 5－2 for information on how to obtain the leading input register number．
－The commands marked with \checkmark in the Normal Operation Mode，Simulation Mode，and General－purpose I／O Mode columns can be used in the corresponding operation mode．The operation mode can be selected by setting the fixed parameter No． 0 （Selection of Operation Modes）to 0 for normal operation mode，to 2 for simulation mode，or to 4 for general－purpose I／O mode．
－Refer to the pages listed in the Reference Page for details of each monitoring parameter．

Register No．	Name	Description				Refer－ ence Page
IW $\square \square 00$	RUN Status	Bit 0：Motion Controller Operation Ready	\checkmark	\checkmark	\checkmark	P．5－43
		Bit 1：Running（Servo ON）	\checkmark	\checkmark		
		Bit 2：Reserved for system use	－	－	－	
		Bit 3：Servo Ready	\checkmark	\checkmark		
		Bits 4 to F：Reserved for system use	－	－	－	
IW $\square \square 01$	Parameter Number when Range Over is Generated	Setting parameters： 0 or higher Fixed parameters： 1000 or higher	\checkmark	\checkmark	\checkmark	P．5－43
ILロロ02	Warning	Bit 0：Excessive Deviation	\checkmark	\checkmark		P．5－44
		Bit 1：Set Parameter Error（Setting parameter error）	\checkmark	\checkmark		
		Bit 2：Fixed Parameter Error	\checkmark	\checkmark		
		Bit 3：Reserved for system use	－	－	－	
		Bit 4：Motion Command Set Error	\checkmark	\checkmark		
		Bits 5 to A：Reserved for system use	－	－	－	
		Bit B：Analog Adjust Not Ready Warning	\checkmark		\checkmark	
		Bits C to 1F：Reserved for system use				
ILロロ04	Alarm	Bit 0：Servo Driver Error	\checkmark			P．5－45
		Bit 1：Positive Direction Overtravel	\checkmark			
		Bit 2：Negative Direction Overtravel	\checkmark			
		Bit 3：Positive Direction Software Limit	\checkmark	\checkmark		
		Bit 4：Negative Direction Software Limit	\checkmark	\checkmark		
		Bit 5：Servo OFF	\checkmark	\checkmark		
		Bit 6：Positioning Time Over	\checkmark			
		Bit 7：Reserved for system use	－	－	－	
		Bit 8：Excessive Speed	\checkmark	\checkmark		
		Bit 9：Excessive Deviation	\checkmark			
		Bits A to C：Reserved for system use	－	－	－	
		Bit D：Zero Point Unsetting －Invalid for linear type	\checkmark	\checkmark		
		Bit E to 12：Reserved for system use	－	－	－	
		Bit 13：Excessive ABS Encoder Rotations －Invalid for linear type	\checkmark			
		Bit 14：PG Disconnection Error	\checkmark		\checkmark	
		Bit 15：ABS Total Rev．Receive Error	\checkmark			
		Bits 16 to 1F：Reserved for system use	－	－	－	
ILロ口06	－	Reserved for system use	－	－	－	－
IWロロ08	Motion Command Re－ sponse Code	Same as OW $\square \square 08$（Motion Command）	\checkmark	\checkmark		P．5－46

Register No.	Name	Description				Reference Page
IW $\square \square 09$	Motion Command Status	Bit 0: Command Execution Flag (BUSY)	\checkmark	\checkmark		P.5-46
		Bit 1: Command Hold Completed (HOLD)	\checkmark	\checkmark		
		Bit 2: Reserved for system use	-	-	-	
		Bit 3: Command Error Completed Status (Command Error Occurrence) (FAIL)	\checkmark	\checkmark		
		Bits 4 to 7: Reserved for system use	-	-	-	
		Bit 8: Command Execution Completed (COMPLETE)	\checkmark	\checkmark		
		Bits 9 to F: Reserved for system use				
IW $\square \square 0 \mathrm{~A}$	Motion Subcommand Response Code	Same as OW $\square \square 0 \mathrm{~A}$ (Motion Subcommand)	\checkmark	\checkmark		P.5-47
IW $\square \square 0 \mathrm{~B}$	Subcommand Status	Bit 0: Command Execution Flag	\checkmark	\checkmark		P.5-47
		Bits 1 and 2: Reserved for system use	-	-	-	
		Bit 3: Command Error Completed Status (Command Error Occurrence)	\checkmark	\checkmark		
		Bits 4 to 7: Reserved for system use	-	-	-	
		Bit 8: Command Execution Completed	\checkmark	\checkmark		
		Bits 9 to F: Reserved for system use	-	-	-	
IW $\square \square 0 \mathrm{C}$	Position Management Status	Bit 0: Discharging Completed (DEN)	\checkmark	\checkmark		
		Bit 1: Positioning Completed (POSCOMP)	\checkmark	\checkmark		
		Bit 2: Latch Completed (LCOMP)	\checkmark	\checkmark	\checkmark	
		Bit 3: NEAR Position (NEAR)	\checkmark	\checkmark		
		Bit 4: Zero Point Position (ZERO)	\checkmark	\checkmark		
		Bit 5: Zero Point Return (Setting) Completed (ZRNC)	\checkmark	\checkmark		
		Bit 6: During Machine Lock (MLKL)	\checkmark	\checkmark		
		Bit 7: Absolute Position Read-out Completed	\checkmark	\checkmark		
		Bit 8: ABS Rotary Pos. LOAD Complete (ABS system infinite length position control information load completed) (ABSLDE) - Invalid for linear type	\checkmark	\checkmark		
		Bit 9: POSMAX Turn Preset Complete (TPRSE) - Invalid for linear type	\checkmark	\checkmark		
		Bit A: ABS Encoder Rotating Direction	\checkmark	\checkmark		
		Bits B to F: Reserved for system use	-	-	-	
IW $\square \square 0 \mathrm{D}$	-	Reserved for system use	-	-	-	-

Register No．	Name	Description				Refer－ ence Page
ILロロ0E	Target Position in Machine Coordinate System（TPOS）	$1=1$ reference unit	\checkmark	\checkmark		P．5－48
ILロロ10	Calculated Position in Machine Coordinate System（CPOS）	$1=1$ reference unit	\checkmark	\checkmark		
ILDप12	Machine Coordinate System Reference Position（MPOS）	$1=1$ reference unit	\checkmark	\checkmark		
ILDC14	CPOS for 32 bit （DPOS）	$1=1$ reference unit	\checkmark	\checkmark		
ILロロ16	Machine Coordinate System Feedback Position（APOS）	$1=1$ reference unit	\checkmark	\checkmark	\checkmark	
ILロロ18	Machine Coordinate System Latch Position（LPOS）	1 ＝ 1 reference unit	\checkmark	\checkmark	\checkmark	
ILDロ1A	Position Error（PERR）	$1=1$ reference unit	\checkmark	\checkmark		
ILロロ1C	Target Position Difference Monitor	$1=1$ reference unit	\checkmark	\checkmark	\checkmark	
ILロロ1E	Number of POSMAX Turns	$1=1 \text { turn }$ Invalid for linear type	\checkmark	\checkmark		
ILロロ20	Speed Reference Output Monitor	Unit depends on OWपप03，bits 0 to 3 （Speed Unit Selection）．	\checkmark	\checkmark		P．5－50
ILロロ22	－	Reserved for system use	－	－	－	－
ILDC24	Integral Output Monitor	Unit depends on OWपप03，bits 0 to 3 （Speed Unit Selection）．	\checkmark	\checkmark		P．5－50
ILロप26	Primary Lag Monitor	Unit depends on OWDप03，bits 0 to 3 （Speed Unit Selection）． Stores the result of＂ILDD24－（Output from primary delay element）＂．	\checkmark	\checkmark		
ILロロ28	Position Loop Output Monitor	Unit depends on OWDप03，bits 0 to 3 （Speed Unit Selection）．	\checkmark	\checkmark		P．5－50
$\begin{aligned} & \text { ILロप2A } \\ & \text { to } \\ & \text { IW } \square \square 3 F \end{aligned}$	－	Reserved for system use	－	－	－	－
ILロロ40	Feedback Speed	Unit depends on OWDप03，bits 0 to 3 （Speed Unit Selection）．	\checkmark	\checkmark		P．5－50
ILDC42	Feedback Torque／ Thrust	Unit depends on OWD 0 3，bits C to F（Torque Unit Selection）．	\checkmark			P．5－50
$\begin{gathered} \hline \text { IWロप44 } \\ \text { to } \\ \text { IWロप49 } \end{gathered}$	－	Reserved for system use	－	－	－	－
ILロロ4A	The Number of Accumulated Rota－ tions of Absolute Value Encoder	$1=1 \mathrm{rev}$	\checkmark			P．5－50
ILロロ4C	The Number Initial Incremental Pulses	$1=1$ pulse	\checkmark			P．5－50
$\begin{gathered} \text { IWロप4E } \\ \text { to } \\ \text { IWロロ55 } \end{gathered}$	－	Reserved for system use	－	－	－	－

Register No．	Name	Description				Refer－ ence Page
ILロप56	Fixed Parameter Monitor	Stores the result of execution of the motion subcommand FIXPRM RD．	\checkmark	\checkmark		P．5－51
IWप－558	General－purpose DI Monitor	Bit 0：General－purpose DI＿0	\checkmark		\checkmark	－
		Bit 1：General－purpose DI＿1	\checkmark		\checkmark	
		Bit 2：General－purpose DI＿2	\checkmark		\checkmark	
		Bit 3：General－purpose DI＿3	\checkmark		\checkmark	
		Bit 4：General－purpose DI＿4	\checkmark		\checkmark	
		Bit 5：General－purpose DI＿5	\checkmark		\checkmark	
		Bit 6：Reserved for system use	\checkmark		\checkmark	
		Bit 7：PG Wire Breaking Down status （ON：Normal／OFF：Disconnected）	\checkmark		\checkmark	
		Bits 8 to F：Reserved for system use	－	－	－	
IWロロ59	General－purpose AI Monitor 1	$1=0.001 \mathrm{~V}$	\checkmark		\checkmark	
IWロロ5A	General－purpose AI Monitor 2	$1=0.001 \mathrm{~V}$	\checkmark		\checkmark	
$\begin{aligned} & \text { IWロप5B } \\ & \text { to } \\ & \text { IW口प5C } \end{aligned}$	－	Reserved for system use	－	－	－	－
ILロロ5E	Encoder Position when Power is OFF （Lower 2 words）	$1=1$ pulse	\checkmark			
ILロロ60	Encoder Position when Power is OFF （Upper 2 words）	$1=1$ pulse	\checkmark			
ILロप62	Pulse Position when Power is OFF （Lower 2 words）	$1=1$ pulse	\checkmark			P．5－52
ILロロ64	Pulse Position when Power is OFF （Upper 2 words）	$1=1$ pulse	\checkmark			
ILロロ66	Monitor Data Status	Reserved for system use	－	－	－	－
ILロロ68	Monitor Data	Reserved for system use	－	－	－	－
$\begin{gathered} \hline \text { IWロप6A } \\ \text { to } \\ \text { IWवप7F } \end{gathered}$	－	Reserved for system use	－	－	－	－

5.4 MP2000 Series Machine Controller Parameter Details

This section provides details for each motion parameter (fixed parameters, setting parameters, and monitoring parameters).

5.4.1 Motion Fixed Parameter Details

The following tables provide details of motion fixed parameters.

- Refer to 5.3.1 Fixed Parameter List on page 5-5 for a list of motion fixed parameters.

(1) Run Mode

No.		Se	Se	Default Valu
Selection of Operation Modes		0 to		
Description	Specify the application method of the axis. 0: Normal Operation Mode Use this setting when actually using an axis. 1: Axis Unused (default) No control will be performed for an axis set to this mode, and monitoring parameters will not be updated. If an axis is changed from any other run mode to this mode, the monitoring parameters will be held at the current status except for the RUN Status (monitoring parameter IWDロ00), which will be cleared to zeros. Set any axis that is not being used to this mode (Axis Unused) to reduce the processing time. 2: Simulation Mode In Simulation Mode, position information will be stored in the monitoring parameters even if a Servo Driver is not connected. This mode is used to virtually check the operation of the applications program. 3: General-purpose I/O Mode In General-purpose I/O Mode, the following functions are enabled. - General-purpose DO output - General-purpose AO output - General-purpose DI input - General-purpose AI input - Counter input - Use the General-purpose I/O Mode when connecting SVA-01 Module to an inverter.			

- Terminology: Store

The use of "store" here refers to information that is automatically transferred by the CPU system without any action by the user. This term is mainly used with this meaning in describing motion monitoring parameters.

（ 2 ）Function Selection 1

No． 1 Function Selection Flag 1			Setting Range	Setting Unit	Default Value
				－	0000H
Description	Bit 0	Axis Selection Set whether or not there is a limit on controlled axis travel． 0 ：Finite length axis（default）；The axis will have limited movement．The software limit function is enabled． 1：Infinite length axis；The axis will have unlimited movement．The software limit function is disabled． If an infinite length axis is set，the position information will be reset each time the position exceeds the value set for the Infinite Length Axis Reset Position（fixed parameter 10）． －Set to 0 for linear type．			
	Bit 1	Soft Limit（Positive Direction）Enable／Disable Set whether or not to use the software limit function in the positive direction． Set the software limit as the Positive Software Limit Value（fixed parameter 12）． This setting is disabled if the axis is set as an infinite length axis． The software limit function is enabled only after completing a Zero Point Return or Zero Point Setting opera－ tion（IWロロ0C，bit 5 is ON ）． 0 ：Disabled（default） 1：Enabled －Refer to 11．3 Software Limit Function on page 11－13 for details of the software limit function．			
	Bit 2	Soft Limit（Negative Direction）Enable／Disable Set whether or not to use the software limit function in the negative direction． Set the software limit as the Negative Software Limit Value（fixed parameter 14）． This setting is disabled if the axis is set as an infinite length axis． The software limit function is enabled only after completing a Zero Point Return or Zero Point Setting opera－ tion（IWDロ0C，bit 5 is ON）． 0 ：Disabled（default） 1：Enabled －Refer to 11．3 Software Limit Function on page 11－13 for details of the software limit function．			
	Bit 3	Overtravel Positive Direction Enable／Disable Set whether or not to use the overtravel detection function in the positive direction．A setting must also be made in the SERVOPACK． 0：Disabled（default） 1：Enabled －Refer to 11.2 Overtravel Function on page 11－8 on details of the overtravel function．			
	Bit 4	Overtravel Negative Direction Enable／Disable Set whether or not to use the overtravel detection function in the negative direction．A setting must also be made in the SERVOPACK． 0：Disabled（default） 1：Enabled －Refer to 11．2 Overtravel Function on page 11－8 for details of the overtravel function．			
	Bit 5	Deceleration LS Inversion Selection Set whether or not to invert the polarity of DI＿5 signal that is used for DEC1． 0 ：Not invert（default） 1：Invert When it is set to 1 ，however，＂Zero Point Return Deceleration LS Signal＂（OW $\square \square 05$ ，bit 8 ）will not be inverted．			
	Bit 7	Absolute Position Data Read－out at Power ON Set whether or not to execute reading of the data from the absolute encoder when the power turns ON and when the fixed parameters are saved． 0：Execute 1：Not execute When this bit is set to 1 ，＂ABS Total Rev．Receive Error＂is stored in the bit 21 of IL $\square \square 04$ ．In this case，clear the alarm，and then read out the absolute data． －Refer to 11．4．2 Reading Absolute Data After Power is Turned ON on page 11－16 and 11．4．3 Reading Absolute Data Online on page 11－16 for details．			

No. 1			Setting Range	Setting Un	Default Va
Function Selection Flag 1 (cont'd)					0000H
Description	Bit 9	Simple ABS Rotary Pos. Mode Set whether or not the infinite length position control function is used, on the condition that the number of turns that the encoder can count is a multiple of the number of turns corresponding to the reference unit reset frequency. With this function, it is not necessary to save and load absolute infinite axis information, eliminating the need for a ladder program and thus simplifying handling. It is recommended that the ABS infinite length axis is set to Enabled. 0: Disabled (default) 1: Enabled - Refer to 10.4.1 Simple Absolute Infinite Length Position Control on page 10-14 and 10.4.2 Parameters Setting for Simple Absolute Infinite Length Position Control on page 10-16 for details. - Set to 0 for linear type.			

(3) Function Selection 2

(4) Reference Unit

No. 4 Reference Unit Selection

Set the unit for the reference.

The minimum reference unit is determined by this parameter and the Number of Digits Below Decimal Point setting (fixed parameter No.5). If pulse is selected, the Electronic Gear Ratio (fixed parameters 8 and 9) will be disabled.

0 : pulse (electronic gear disabled)
Description
1: mm
2: deg
3: inch

- Refer to 6.1.1 Reference Unit on page 6-2 for details.
- For linear type, either 0 (pulse) or 1 (mm) can be selected. If 2 (deg) or 3 (inch) is selected, the

No. 5		Setting Range	Setting Unit	Default Value
Number of Digits Below Decimal Point		0 to 5	-	3
Description	Set the number of digits below the decimal point in the reference unit. The minimum reference unit is determined by this parameter and the Reference Unit Selection (fixed parameter 4). Example: When the Reference Unit is set to mm and the Number of Digits Below Decimal Point is set to 3, a reference unit of 1 will be 0.001 mm . The setting of this parameter is disabled if the Reference Unit is set to pulse in fixed parameter 4. - Refer to 6.1.1 Reference Unit on page 6-2 for details.			
No. 6 (Rotary Motors) Travel Distance per Motor Revolution		Setting Range	Setting Unit	Default Value
		1 to $2^{31}-1$	user units	10000
Description	Specify the amount of travel in the load as the number of reference units for each turn of the load shaft. - Refer to 6.1.2 Electronic Gear on page 6-2 for details.			
No. 6 (Linear Motors) Linear Scale Pitch		Setting Range	Setting Unit	Default Value
		1 to $2^{31}-1$	user units	10000
Description	Set a value in accordance with the linear scale specifications. - Refer to 6.1.8 Linear Scale Pitch and Rated Motor Speed on page 6-15 for details.			
No. 8 Servo Motor Gear Ratio No. 9 Machine Gear Ratio		Setting Range	Setting Unit	Default Value
		1 to 65535	revs (revolutions)	1
Description	Set the gear ratio between the motor and the load. The following two values are set for a configuration in which the load shaft will turn n times in response to m turns of the motor shaft. - Gear ratio at Servomotor: m - Gear ratio at load: n The setting of this parameter is disabled if the Reference Unit is set to pulse in fixed parameter 4. - Refer to 6.1.2 Electronic Gear on page 6-2 for details. - Invalid for linear type.			

(5) Infinite Axis Reset Position

| No. 10
 Infinite Length Axis Reset Position | Setting Range | Setting Unit | Default Value |
| :--- | :--- | :---: | :---: | :---: |
| | 1 to $2^{31}-1$ | user units | 360000 |
| Description | Set the reset position when an infinite length axis is used.
 Enabled when bit 0 of the Function Selection Flag 1 (fixed param-
 eter 1) is set to infinite axis. The position data for infinite axes is
 controlled in the range from 0 to POSMAX. | Position | PosmAX |

（ 6 ）Software Limits

No． 12 Positive Software Limit Value		Setting Range	Setting Unit	Default Value
		-2^{31} to $2^{31}-1$	user units	$2^{31}-1$
Description	Set the position to be detected for the software limit in the positive direction at the Machine Controller． If an axis attempts to move in the positive direction past the position set here，a positive direction software limit alarm （ILDロ04，bit 3）will occur． Enabled when the Soft Limit（Positive Direction）bit（fixed parameter 1，bit 1）is set to 1 （enabled）．			
No． 14 Negative Software Limit Value		Setting Range	Setting Unit	Default Value
		-2^{31} to $2^{31}-1$	user units	-2^{31}
Description	Set the position to be detected for the software limit in the negative direction at the Machine Controller． If an axis attempts to move in the negative direction past the position set here，a negative direction software limit alarm （ILDC04，bit 4）will occur． Enabled when the Soft Limit（Negative Direction）bit（fixed parameter 1，bit 2）is set to 1 （enabled）．			

Outline of Software Limit

No．1：Function Selection Flag $1 \quad$ No．1：Function Selection Flag 1
Bit 2 0：Disabled
Bit 1 0：Disabled
1：Enabled
1：Enabled
－The software limit function is enabled only after completing a Zero Point Return or Zero Point Setting operation （IWロロ0C，bit 5 is ON）．
－For details，refer to 11．3 Software Limit Function on page 11－13．

（7）Backlash Compensation

No． 16

Backlash Compensation Amount

Setting Range	Setting Unit	Default Value
-2^{31} to $2^{31}-1$	user units	0

	Set the backlash compensation in reference units．Backlash compensation can not be performed by setting this parameter to 0. The backlash compensation is performed in the reverse direction of＂Zero Point Return Direction Selection（setting parameter OWDロ09，bit 3）＂． The backlash compensation is always performed in the direction determined by the setting of Zero Point Return Direction no matter if the zero point return method or zero point setting method that does not use the parameter＂Zero Point Return Direction Selection is selected． Note that the backlash compensation method of SVA－01 Module is slightly different from that of SVB Module． ＜Backlash Compensation Method＞
Machine	
Motor axis	

（ 8 ）Hardware Signal

No． 20			Setting Range	Setting Unit	Default Value
Hardware Signal Selection 1			－	－	0000H
Description	Bit 0	A／B Pulse Input Signal Polarity Selection 0 ：Positive logic（default） 1：Negative logic			
	Bit 1	C Pulse Input Signal Polarity Selection 0 ：Positive logic（default） 1：Negative logic			
No． 21 Hardware Signal Selection 2			Setting Range	Setting Unit	Default Value
			－	－	0000H
Description	Bit 0	Deceleration LS Signal Selection Select a signal to be used for DEC1． 0：Use the setting parameter Zero Point Return Deceleration LS Signal（OWDロ05，bit 8）．（default） 1：Use DI＿5 signal．			
	Bit 5	General－Purpose DO＿2 Signal Selection In normal operation mode，set whether or not to use a general－purpose DO＿2 signal as a general－purpose output signal．When setting this bit to 1 （Use as a general－purpose signal）and using the General－Purpose DO＿2 bit（set－ ting parameter OWDD5D，bit 2），the user can directly control the general－purpose DO＿2 signal（pin No． 12 of CN1／CN2）． 0 ：Use as a system exclusive signal（default）． 1：Use as a general－purpose signal． －The parameter settings of the SERVOPACK to be used are required when setting this bit to 1 ．Refer to 11．4．4 General－purpose DO＿2 Signal Selection on page 11－17 for details．			

（9）Pulse Count

No． 22 Pulse Counting Mode Selection		Setting Range	Setting Unit	Default Value
		0 to 6	－	6
Description	Select one of the following pulse count mode． 0 ：Sign mode $* 1$ 1：Sign mode $* 2$ 2：Up／Down mode＊1 3：Up／Down mode＊2 4：A／B mode＊1 5：A / B mode $* 2$ 6：A / B mode $* 4$ －Set to 6 ：A／B mode $(* 4)$ when connecting SVA－01 Module to a SERVOPACK．			

（ 10 ）D／A Output

No． 23		Setting Range	Setting Unit	Default Value
D／A Output Voltage at 100\％Speed		1 to 10000	0.001 V	6000
Description	Set the D／A output voltage at 100\％speed reference． Normally，set the servo drive input voltage at the rated speed．Set the value according to the specifications of servo drive to be used． D / A output value $=$ Speed Reference Setting（OLDロ10）\times D／A Output Voltage at 100% Speed（fixed parameter no．23）／10000 ＜Example＞ Where D／A Output Voltage at 100% Speed $=6 \mathrm{~V}$ ，and Speed Reference Setting（OLロロ10）$=100 \%$ $(10000 \times 6 \mathrm{~V}) / 10000=6 \mathrm{~V}$ ．Therefore， 6 V is output．			

No.
D/A Output Voltage at 100% Torque Limit

Setting Range	Setting Unit	Default Value
1 to 10000	0.001 V	3000

Description	Set the D/A output voltage at 100% torque limit reference (and torque limit at speed reference). Common for the positive and negative sides. Set the current limit value when using a SERVOPACK. D / A output value $=$ Positive Side Limiting Torque/Thrust Setting at the Speed Reference (OLDC14) \times D/A Output Voltage at 100% Torque Limit (fixed parameter no. 24)/10000 <Example> Where D/A Output Voltage at 100% Torque Limit $=3 \mathrm{~V}$, and Positive Side Limiting Torque/Thrust Setting at the Speed Reference $=200 \%$, $(20000 \times 3 \mathrm{~V}) / 10000=6 \mathrm{~V}$. Therefore, 6 V is output.

(11)A/D Input

No. 26 A/D Input Voltage at 100\% Torque Monitor		Setting Range	Setting Unit	Default Value
		1 to 10000	0.001 V	3000
Description	Set the scaling value in units of 1 value (\%). The torque monitor value is calcu (ILロロ42). Torque monitor value $=(\mathrm{A} / \mathrm{D}$ inp <Example> Where A/D input voltage at 100 $(1.5 \mathrm{~V} \times 10000) / 3 \mathrm{~V}=5000$. Th	through the A / D monitoring param age at 100% tor e actual A / D in 42.	onverter to Feedback T monitor (fixe voltage $=1$	orque monitor e/Thrust rameter No. 26)

(12)SERVOPACK Settings

No. 28		Setting Range	Setting Unit	Default Value
Servo Driver Type Selection		0 to 2	-	1
Description	Set the series of servo drive that is being used. 0: Σ-I series 1: Σ-II, Σ-III, Σ-V, or Σ - 7 series (default) 2: Reserved for system use			
No. 30 Encoder Selection		Setting Range	Setting Unit	Default Value
		0 to 3	-	0
Description	Set the type of encoder that is being used. 0 : Incremental encoder 1: Absolute encoder (default) 2: Absolute encoder (Incremental encoder is used.) 3: Reserved for system use - For linear motors, set the encoder type that matches the settings of the linear scale and SERVOPACK being used.			
No. 31 Rotation Direction Selection with an Absolute Encoder		Setting Range	Setting Unit	Default Value
		0 or 1	-	0
Description	Set the rotation direction of absolute encoder. 0 : Forward (default) 1: Reverse - Set to 1 when "Reverse Rotation Mode" is set in the SERVOPACK parameter* when using an absolute encoder applicable SERVOPACK. * For SGDA and SGDB SERVOPACKs, Cn02, bit $0=1$ (Reverse rotation mode) For SGDM, SGDH, SGDS, SGDV, or SGD7S SERVOPACKs, Pn-000.0 = 1 (Reverse rotation mode) - Refer to 11.2.3 Rotation Direction Selection on page 11-12 for details of reverse rotation setting of SERVOPACK parameter.			

(13) Encoder Settings

| No. 34 (Rotary Motor)
 Rated Motor Speed | Setting Range | Setting Unit | Default Value |
| :--- | :---: | :---: | :---: | :---: |
| | 1 to 32000 | $\min ^{-1}$ | 3000 |
| Description | Set the rated motor speed in $1 \mathrm{~min}^{-1}$ units.
 Set this parameter based on the specifications of the motor that is used. | | |
| No.34 (Linear Motor)
 Rated Speed | Setting Range | Setting Unit | Default Value |

Description	Set the rated speed. Set the rated speed in accordance with the specifications of the linear servomotor to be used. - Refer to 6.1.8 Linear Scale Pitch and Rated Motor Speed on page 6-15 for details.			
No. 36 (Rotary Motor) Number of Pulses per Motor Rotation		Setting Range	Setting Unit	Default Value
		1 to $2^{31}-1$	pulse	16384
Description	Set the number of feedback pulses per motor rotation. Set the value before multiplication to match the specifications of the motor used. (For example, if a 16 -bit encoder is used, set $2^{14}=16384$.) When using the SVA-01 Module in combination with a SGDM, SGDH, SGDS, SGDV, or SGD7S SERVOPACK, set the value in accordance with the SERVOPACK PG dividing ratio: Parameter Pn201 or Pn212 for SGDM, Pn201 for SGDH, and Pn212 for SGDS, SGDV, and SGD7S SERVOPACKs.			
No. 36 (Linear Motor) Number of Pulses per Linear Scale Pitch		Setting Range	Setting Unit	Default Value
		1 to $2^{31}-1$	pulses/scale pitch	65536

| Description | Set the number of pulses equivalent to the value set for No.6: Linear Scale Pitch.
 Set the value in accordance with the specifications of the linear motor to be used.
 Refer to 6.1.8 Linear Scale Pitch and Rated Motor Speed on page 6-15 for details. |
| :--- | :--- | :---: | :---: | :---: | | No. 38 |
| :--- |
| Maximum Number of Absolute Encoder Turns Rotation |

Description	Set the maximum number of rotations for the absolute encoder to the highest number that the encoder can manage. Set this parameter to match the settings of the encoder being used. - Σ-I series: Set to 99999 (fixed). - Σ-II, Σ-III, Σ-V, or $\Sigma-7$ Series: Set to the same value as the multiturn limit in the SERVOPACK. <Example> For axes set as infinite axes (bit 0 of fixed parameter Function Selection Flag 1 set to 1), set to 65534 max. (same value as Pn205).			
	Parameter 38 and Pn205 $=65535$	Parameter 38 and Pn205 $\neq 65535$		
		 absolute encoder is used as an infinite length axis.		
	This parameter is used to manage position information when an absolute encoder is used as an infinite length axis.			
No. 42 Feedback Speed Movement Averaging Time Constant		Setting Rang	Setting Unit	Default Value
		0 to 32	ms	10
Description	Set the moving average time constant for the feedback speed. The feedback speed is obtained by converting the unit of the difference between feedback pulse inputs in one control cycle and the next control cycle. To avoid the scattering of the values caused by quantization error, a moving average can be applied to the calculation of feedback speed. In the parameter Feedback Speed (monitoring parameter ILDロ40), the value obtained by applying the moving average for the time constant set in this parameter to the feedback position of each scan is stored.			

5．4．2 Motion Setting Parameter Details

The following tables provide details of motion setting parameters．
－Refer to 5．3．2 Setting Parameter List on page 5－8 for a list of the motion setting parameters．
－Register number＂OWロロ00＂indicates the leading output register number +00 ．Other register numbers listed below indicate output register numbers in the same way．Refer to 5．1．1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers on page 5－2 for information on how to find the leading output register number．
－Position Phase Speed Torque in the following descriptions indicate that parameter is enabled in position control， phase control，speed control，or torque control．Similarly，Position Phase Speed Torque in the following descriptions indicate that parameter is disabled in position control，phase control，speed control，or torque control． The table below shows the relationship between each control mode and motion command．

Control Mode	Motion Command（OWDロ08）	
	0：NOP	No command
	1：POSING	Positioning
	2：EX＿POSING	External positioning
	3：ZRET	Zero point return
Position Control	4： INTERPOLATE	Interpolation
	5：ENDOF＿INTERPOLATE	For system use
	6：LATCH	Interpolation with latch function
	7：FEED	JOG operation
	8：STEP	STEP operation
Phase Control	25：PHASE	Phase reference
Speed Control	23：VELO	Speed reference
Torque Control	24：TRQ	Torque reference

（1）RUN Commands

OW口ロ00			Position Phase	Setting Range	Setting Unit	Default Value
RUN Command Setting			Speed Torque	－	－	0000H
Description	Bit 0	Servo ON Sends a SERVO ON command to the SERVOPACK． 0：Servo OFF（default） 1：Servo ON				
	Bit 1	Machine Lock 0：OFF（default） 1：ON During the machine lock mode，the Calculated Position in Machine Coordinate System（CPOS）（monitoring parameter ILDD10）will be updated but no movement will occur on the axis． A change in the machine lock mode is valid after all pulses have been distributed．The machine lock mode can－ not be changed during speed or torque control．				

OW口口00			ition	Setting Range	Setting Unit	Default Value
RUN Command Setting（cont＇d）			Speed Torqu	－		0000H
Description	Bit 4	Latch Detection Demand 0：OFF（default） 1：ON When this bit is set to 1 （Latch Request ON），the position at the moment the latch signal turns ON will be reported to the monitoring parameter ILDप18＂Machine Coordinate System Latch Position．＂ When the position is detected and reported，bit 2 ＂Latch Completed＂of the monitoring parameter IWDD0C ＂Position Management Status＂will turn ON． To detect the position again，reset this bit to 0 （OFF）and then set to 1 （ON）again． Use bits 0 to 3 （Latch Detection Signal Selection）of the setting parameter OWDD04（Function Setting 2）to set the latch signal to be used． －Do not set this bit to 1 （ON）while the motion commands＂Zero Point Return，＂＂External Posi－ tioning，＂or＂Latch＂are being executed．Otherwise，a warning may occur in the SERVOPACK． －Refer to 11．4．1 Modal Latch Function on page 11－15 for details of the latch function．				
	Bit 5	Absolute Position Reading Demand $\begin{aligned} & \text { 0: OFF (default) } \\ & \text { 1: ON } \end{aligned}$ Setting this bit to $1(\mathrm{ON})$ allows the ladder program to start reading absolute data（at the rising edge）．Reading will be executed twice maximum，including one retry． －Refer to 11．4．3 Reading Absolute Data Online on page 11－16 for details．				
	Bit 6	POSMAX Turn Number Presetting Demand 0：OFF（default） 1：ON Preset the Number of POSMAX Turns（monitoring parameter ILDD1E）to the value set for the Number of POSMAX Turns Presetting Data（setting parameter OLDD4C）． －Set to 0 for linear type．				
	Bit 7	Request ABS Rotary Pos．Load When an infinite length axis is used with an absolute encoder，this bit can be set to 1 to reset the position infor－ mation with the data（encoder position and pulse position）that was set when the power was last turned OFF． When processing has been completed for this bit，the ABS Rotary Pos．LOAD Complete bit will be turned ON in the Position Management Status（monitoring parameter IWD $\square 0 \mathrm{C}$ ，bit 8）． 0 ：OFF（default） 1：ON －Refer to 10．4．6（ 4 ）［ b ］Turning the System Back ON（Turning the Servo Back ON）on page 10－26 for details． －Set to 0 for linear type．				
	Bit B	Integration Reset 0 ：OFF（default） 1：ON Setting this bit to 1 （ON）will reset the position loop integral items for the SERVOPACK．				
	Bit F	Alarm Clear $\begin{aligned} & \text { 0: OFF (default) } \\ & \text { 1: ON } \end{aligned}$ At the rising edge of this bit，an alarm is cleared．Additionally，turns ON the／ALMRST signal connected to the SERVOPACK to clear the SERVOPACK alarm． －The following alarm and warning cannot be cleared by Alarm Clear．Remove the cause of the alarm． IWロロ02，bit 2：Fixed Parameter Error IWロロ04，bit 15：ABS Total Rev．Receive Error －Do not execute Alarm Clear during axis movement using motion commands．Using Alarm Clear may affect axis movement．				

(2) Mode 1

(3) Function 1

OWロロ03 Position Phas			Setting Range	Setting Unit	Default Value
Function Setting 1 Speed Torque			-	-	0011H
Description	Bit 0 to Bit 3	Speed Unit Selection Set the unit for speed references. 0: Reference unit/s 1: 10^{n} reference unit/min (default) $(\mathrm{n}=$ number of decimal places/fixed parameter 5) 2: 0.01\% 3: 0.0001\% - Refer to 6.1.5 Speed Reference on page 6-9 for setting examples when also setting of the combination with the number of digits below the decimal point.			
	Bit 4 to Bit 7	Acceleration/Deceleration Unit Selection Set whether to specify acceleration/deceleration rates (ref stants (ms) for acceleration/deceleration commands. 0 : Reference units/s ${ }^{2}$ 1: ms (default)	rence unit/ s^{2}) o	eleration/dec	tion time con-
	Bit 8 to Bit B	Filter Type Selection Set the acceleration/deceleration filter type. 0 : Filter none (default) 1: Exponential acceleration/deceleration filter 2: Moving average filter			
	Bit C to Bit F	Torque Unit Selection Set the unit for torque reference as a percentage of rated tor $\begin{aligned} & 0: 0.01 \% \text { (default) } \\ & 1: 0.0001 \% \end{aligned}$ - The unit for torque reference indicates the tor torque accuracy.	rque. que reference	lution, but n	uarantees the

(4) Function 2

OWロロ04 Function Setting 2		Position Phase	Setting Range	Setting Unit	Default Value
		Speed Torque	-	-	0000H
Description	$\begin{gathered} \text { Bit } 0 \text { to } \\ \text { Bit } 3 \end{gathered}$	Latch Detection Signal Selection Set the latch signal type. 0: DI_5 (DEC/EXT) (default) 1: DI_2 (ZERO/HOMELS) 2: Phase-C pulse input signal - This setting is enabled when Latch command is executed.			
	Bit 4 to Bit 7	External Positioning Signal Setting Set the external signal for external positioning. 0: DI_5 (DEC/EXT) (default) 1: DI_2 (ZERO/HOMELS) 2: Phase-C pulse input signal			

(5) Function 3

(6) Motion Commands

(7) Motion Command Control Flags

OW口ロ09			Setting Range	Setting Unit	Default Value
Motion Command Control Flag（cont＇d）					0000H
Description	Bit 6	Phase Compensation Type（Valid with SVA－01 version 1.01 or later） Select a setting method for Phase Correct Setting（OLDD28）． 0 ：Incremental value add method（default） 1：Absolute value set method This bit is valid when the electronic cam function is enabled（setting：OWDC05，bit $1=1$ ）． If using an electronic shaft（OWDप05，bit $1=0$ ），the incremental value of Phase Correct Setting（OLDC28）， which is the difference between the values from the previous H scan and the current H scan，is added to the tar－ get position regardless of the setting of this bit． ■ Precautions if using as an electronic cam（OWD－05，bit $1=1$ ） －If Absolute value 1 is selected for the Phase Compensation Type when using an electronic cam，always take measures to prevent a sudden and extreme change in the target position before executing the move com－ mand．For example，set the Phase Correct Setting（OLDO28）to the same value as CPOS for 32 bit（DPOS） （ILDD14）．If preventive measures are not taken，the axis may abruptly move，resulting in a serious situa－ tion． －If using the electronic cam function，do not change the setting of this bit while the move command is being executed．Although the setting of this bit can be changed at any time，changing the setting while the move command is being executed may move the axis abruptly，resulting in serious situation． －Precautions if using as an electronic shaft（OWDロ05，bit $1=0$ ） －The setting method of Phase Correct Setting（OLDC28）for the SVA－01 Module and that for the SVB／SVB－ 01 Modules are different．For the SVA－01 Module，the set value of Phase Correct Setting（OLDD28）is sim－ ply added to the target position．			

（ 8 ）Motion Subcommands

（ 9 ）Torque Reference

OLDロ0C Position Torque／Thrust Reference Setting Speed		Setting Range		g Unit	Default Value
		-2^{31} to $2^{31}-1$	Depends on the torque unit set in Function Setting 1 （setting parameter OW口ロ03，bits C to F）．		0
Description	Set the torque reference for torque reference command（TRQ）． Refer to 7．2．10 Torque Reference（TRQ）on page 7－77 for details． －The setting unit for this parameter depends on the Torque Unit Selection（OWDロ03，bits C to F）， but the result of applying the torque unit setting is not shown here．				
OWDロ0E Speed Limit Setting at the Torque／		Setting Range		Setting Unit	Default Value
		－32768 to 32767		0．01\％	15000
Description	Set the speed limit for torque references as a percentage of the rated speed． Torque control is used to control the Servomotor to output the specified torque，so it does not control the motor speed． Therefore，when an excessive reference torque is set relative to the load torque of the machine，the machine＇s torque is overpowered by the torque reference and the motor speed rapidly increases． The torque reference speed limit functions to limit the Servomotor speed during torque control to protect the machine． －The setting is enabled when a torque reference command is executed． ＜No speed limit＞ －Related Parameters For SGDH，SGDM，SGDS，SGDV，and SGD7S SERVO－ PACKs Pn002．1 Pn407 Pn408．1 Pn300 ＜Speed limit used＞ For SGDA and SGDB SERVOPACKs： Cn－02，bit 2 Cn－14 － Cn－03				
OWDロ0F Torque Reference 1st－order Lag Filter		Setting Range		ting Unit	Default Value
Torque Reference 1st－order Lag Filter		0 to 32767		ms	0
Description	The primary lag filter can apply to the torque reference and torque limit． The torque reference primary lag filter set value can be cleared to 0 （zero）at the following timings． －When the command in execution is switched from a motion command to TRQ command． －When the command in execution is switched from TRQ command to another command．				

（ 10 ）Speed Reference

OLㅁㅁ밍 Speed Reference Setting			Setting Range	Setting Unit	Default Value
		Position Phase Speed Torque	-2^{31} to $2^{31}-1$	Depends on the speed unit set in Function Setting 1 （setting parameter OW $\square \square 03$ ， bits 0 to 3 ）．	3000
Description	Set the speed reference． This parameter is used by the following motion commands．Refer to Chapter 7 Motion Commands on page 7－1 for details． －The setting unit for this parameter depends on the Speed Unit Selection（OWDロ03，bits 0 to 3），but the result of applying the speed unit setting is not shown here．				
OW口ᄆ12 Positive Side Speed Limiter Value		Position Phase	Setting Range	Setting Unit	Default Value
			0 to 32767	0．01\％	15000
Description	Specify the positive speed upper limit as a percentage of rated speed．				
OW口ロ13 Position Phase Negative Side Speed Limiter Value Speed Torque					
			0 to 32767	0．01\％	15000
Description	Specify the negative speed upper limit as a percentage of rated speed				

（ 11 ）Torque／Thrust Limit Setting at the Speed Reference

		Setting Range	Setting Unit	Default Value
OLロロ14 Positive Setting a	Position Phase Speed Torque	-2^{31} to $2^{31}-1$	Depends on the torque unit set in Function Setting 1 （setting parameter OW $\square \square 03$ ，bits C to F ）．	30000
Description	The value set in this parameter is output as the torque limit except when Torque Reference command TRQ is ex－ ecuted． This parameter is used when a torque limit is required at specific timing during operation of the machine，such as applica－ tions for pushing a load to stop it or holding a workpiece． －The setting unit for this parameter depends on the Torque Unit Selection（OWDロ03，bits C to F），but the result of applying the torque unit setting is not shown here．			

（ 12 ）Secondly Speed Compensation

OLDㅁㅁ Secondly Speed Compensation			Setting Range	Setting Unit	Default Value
		Position Phase Speed Torque	-2^{31} to $2^{31}-1$	Depends on the speed unit set in Function Setting 1 （setting parameter OW口ロ03， bits 0 to 3 ）．	0
Description	Set the speed feed forward amount for execution of Positioning（POSING），External Positioning（EX＿POSING）， Latch（LATCH），Zero Point Return（ZRET），JOG operation（FEED），and STEP operation（STEP）motion com－ mands． The setting unit for Speed Compensation（setting parameter OWDप31）is 0.01% fixed．The unit for this parameter，how－ ever，can be selected using Speed Unit Selection． When used at the same time as OWロロ31，speed compensation can be performed twice． －The setting unit for this parameter depends on the Speed Unit Selection（OWロロ03，bits 0 to 3），but the result of applying the speed unit setting is not shown here．				

（ 13 ）Speed Override

（ 14 ）General－purpose AO

OWDロ1A General－purpose AO1		Position Phase	Setting Range	Setting Unit	Default Value
		Speed Torque	$\begin{gathered} -10000 \text { to } \\ +10000 \end{gathered}$	0.001 V	0
DescriptionThe analog data set in this parameter is output． This parameter is valid only in general－purpose I／O mode．					
OW口ロ1B General－purpose AO2		Phase	Setting Range	Setting Unit	Default Value
		Speed Torque	$\begin{gathered} -10000 \text { to } \\ +10000 \end{gathered}$	0.001 V	0
Description	The analog data set in this parameter is output． This parameter is valid only in general－purpose I／O mode．				

（ 15 ）Position Reference Setting

（ 16 ）Positioning Completed Width

OLD口1E		Setting Rang	Setting Unit	Default Value
Width of Positioning Completed		0 to 65535	Reference unit	100
Description	The Positioning Completed signal（IWDप0C，bit 1）turns ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here after completion of position refer－ ence distribution during position control． Set values that are appropriate for all machines in the system．If the value is too small，a long time will be required for positioning to complete． （IWロロOC，bit 1） ■ Related Parameters Fixed Parameter 4：Reference Unit Selection Fixed Parameter 5：Number of Digits Below Decimal Point Fixed Parameter 6：Travel Distance per Motor Revolution Fixed Parameter 8：Servo Motor Gear Ratio Fixed Parameter 9：Machine Gear Ratio OWDC2E：Position Loop Gain IWDD0C，bit 0：Discharging Completed（DEN） IWDロ0C，bit 1：Positioning Completed（POSCOMP）			

（ 17 ）NEAR Signal Output Width

OLDロ20	Position	Phase	Setting Range	Setting Unit	Default Value
NEAR Signal Output Width	Speed	Torque	0 to 65535	Reference unit	0

（ 18 ）Deviation Abnormal Detection Value

OLDロ22			Setting Range	Setting Unit	Default Value
Error Count Alarm Detection		Speed To	0 to 2^{31}	Reference unit	$2^{31}-1$
Description	Set the value to detect an excessively following error during position control． The Excessive Deviation bit（IWロप04，bit 9）turns ON if the result from subtracting the Machine Coordinate System Feedback Position（monitoring parameter ILDD16）from the Machine Coordinate System Reference Position（monitor－ ing parameter ILD－12）is greater than the NEAR Signal Output Width．An excessively following error will not be detected if this value is set to 0 ． ■ Related Parameters An excessively following error can be set to be treated either as a warning or as an alarm in the Excessive Deviation Error Level Setting in Mode Setting 1 （setting parameter OWDप01，bit 0 ）． OWDप 01 ，bit $0=0$ ：Alarm（default）（stops axis operation） OWDD 01 ，bit $0=1$ ：Warning（continues axis operation）				

（19）Position Compensation

OLDロ24		Position	Phase	Setting Range	Setting Unit	Default Value
Position Correction Setting		Speed	Torque	-2^{31} to $2^{31}-1$	Reference unit	0
Description	Set the position c	nce uni				

（ 20 ）Position Complete Timeout

OW口ロ26			Setting Range	Setting Unit	Default Value
Position Completion Check Time		Speed Torqu	0 to 65535	ms	0
Description	Set the time to detect a positioning time over error． If the Positioning Completed bit does not turn ON within the time set here after reference pulses have been distributed during position control，a Positioning Time Over alarm（monitoring parameter ILDD04，bit 6）will occur．The comple－ tion of positioning will not be checked if this parameter is set to 0 ．				

（ 21 ）Phase Compensation

OL口口2		ition	Setting Rang	Setting Unit	Default Value
Phase Correction Setting		Speed Torqu	-2^{31} to 2^{31}	Reference unit	0
Description	Set the phase compensation in reference units for phase reference commands． ＜Using as Electronic Shaft＞ Use this parameter to compensate for reference pulses in control systems without rigidity，in which higher gain cannot be applied． ＜Using as Electronic Cam＞ Use this parameter as the target position for the cam pattern with incremental addition． －Refer to 7．2．11 Phase References（PHASE）on page 7－81 for details on phase reference commands．				

（ 22 ）Latch

（ 23 ）Gain and Bias Settings

OW口口2		Position	Setting Range	Setting Unit	Default Value
Position Loop Gain		Speed Torque	0 to 32767	0．1／s	300
Description	Determine the responsiveness for the SERVOPACK＇s position loop． If the position loop gain is set high，the responsiveness is high and the positioning time is short．Set the optimum value for the machine rigidity，inertia，and type of Servomotor．				
OW口ロ30		Position Ph	Setting Range	Setting Unit	Default Value
Speed Feedforward Amends		Speed Torque	0 to 32767	0．01\％	0
Description	Reduces positioning time by applying feed forward compensation． This setting is effective for positioning control commands．Always set this parameter to 0 for phase control．				
OWロロ31 Speed Compensation		osition Phase	Setting Range	Setting Unit	Default Value
		Speed Torque	-32768 to 32767	0．01\％	0
Description	Set the speed feed forward gain as a percentage of the rated speed for the phase reference（PHASE）com－ mands． The setting unit for this parameter is 0.01%（fixed）． －Secondly Speed Compensation（OLロロ16）can be used with the phase reference command（PHASE），and the unit can be selected for OLロロ16．When used at the same time as OLDप16，speed compensation can be applied twice．				
OWロロ32 Position Integration Time Constant		Position Ph	Setting Range	Setting Unit	Default Value
		Speed Torque	0 to 32767	ms	0
Description	Set the position loop integration time constant． Use this parameter to improve the following precision in applications such as electronic cams or shafts． Setting this parameter to 0 clears the integral elements in the position control loop during position control and phase con－ trol．				
OWロロ33 1st－order Lag Time Constant		Position Phase	Setting Range	Setting Unit	Default Value
		Speed Torque	0 to 32767	ms	0
Description	Set the primary lag time constant（ $1=1 \mathrm{~ms}$ ）for position loop． When this parameter is set to 0 ，the primary lag calculation will not be performed． This parameter is used in position control mode or zero point return mode． －Setting the primary lag time constant may cause vibration．Set this parameter to 0 unless it is abso－ lutely necessary．				

（ 24 ）Acceleration／Deceleration Settings

			Setting Range	Setting Unit	Default Value
Straight Line Acceleration／Acceleration Time Constant		Position Phase Speed Torque	0 to $2^{31}-1$	Depends on the acceleration／ deceleration unit set in Function Setting 1 （setting parameter OW $\square \square 03$ ，bits 4 to 7 ）．	0
Description	Set the linear acceleration rate or linear acceleration time constant． －The setting unit for this parameter depends on the Acceleration／Deceleration Degree Unit Selection （OWDロ03，bits 4 to 7），but the result of applying the acceleration／deceleration unit setting is not shown here．				
OLロप38 OLraight Line Deceleration／Deceleration Position Phase Sime Constant Speed Torque			Setting Range	Setting Unit	Default Value
			0 to $2^{31}-1$	Depends on the acceleration／ deceleration unit set in Function Setting 1 （setting parameter OW $\square \square 03$ ，bits 4 to 7）．	0
Description	Set the linear deceleration rate or linear deceleration time constant． －The setting unit for this parameter depends on the Acceleration／Deceleration Degree Unit Selection （OWDロ03，bits 4 to 7 ），but the result of applying the acceleration／deceleration unit setting is not shown here．				

The following two methods can be used to specify the acceleration／deceleration speed．
1．Setting the acceleration／deceleration speed
Set the speed within the range from 0 to 2147483647 reference units／s s^{2} ．
When 0 or a negative value is set，the setting parameter warning will be generated and the axis will move at the minimum acceleration or minimum deceleration speed．

2．Setting the time to reach the rated speed from zero speed．
Set the time within the range from 0 to 32767 ms ．
When a negative value is set，the setting parameter warning will be generated and the axis will move as it does when 0 is set．

Acceleration／ Deceleration Degree Unit Selection （OWDロ03，bits 4 to 7 ）		
	0	
	1	

－For details on each acceleration／deceleration parameter，refer to 6．1．6 Acceleration／Deceleration Settings on page 6－11 and 6．1．7 Acceleration／Deceleration Filter Settings on page 6－13．
（ 25 ）Filter

		Setting Range	Setting Unit	Default Value
Filter Time Constant		0 to 65535	0.1 ms	0
Description	Set the acceleration／deceleration filter time constant． Always make sure that pulse distribution has been completed（i．e．，that monitoring parameter IW $\square \square 0 \mathrm{C}$ ，bit 0 is ON ） before changing the time constant． First，select the filter type by using the parameter Filter Type Selection（OW $\square \square 03$ ，bits 8 to B），and then change the filter time constant． Once the filter type is set using the motion command，the setting is held until the power is turned OFF or the filter type is changed．			
OWDロ3B Bias Speed		Setting Range	Setting Unit	Default Value
	Position Phase	0 to 32767	Depends on the speed unit set in Function Setting 1 （setting parameter OW口 $\square 03$ ，bits 0 to 3）	0
Description	Set the bias speed for the exponential acceleration／deceleration filter． －The setting unit for this parameter depends on the Speed Unit Selection（OWDロ03，bits 0 to 3），but the result of applying the speed unit setting is not shown here．			

－There are two types of acceleration／deceleration filter：an exponential acceleration／deceleration filter and a moving average filter．
－For details on each acceleration／deceleration parameter，refer to 6．1．6 Acceleration／Deceleration Settings on page 6－11 and 6．1．7 Acceleration／Deceleration Filter Settings on page 6－13．

（ 26 ）Zero Point Return

OWロロ3C Zero Point Return Method		tion	Setting Range	Setting Unit	Default Value
		Speed Torque	0 to 19	－	0
Description	Set the operation method when the Zero Point Return（ZRET）motion command is executed． With an incremental encoder，there are 17 different methods that can be performed for the Zero Point Return operation． －Refer to 7．2．3 Zero Point Return（ZRET）on page 7－15 for information on each method． With an absolute encoder，the axis is returned to the zero point of the machine coordinate system regardless of which method is being used．				
OWロロ3D Width of Starting Point Position Output			Setting Range	Setting Unit	Default Value
		Speed Torque	0 to 65535	Reference unit	100
OLロロ3E Approach Speed			Setting Range	Setting Unit	Default Value
		Position Phase Speed Torque	-2^{31} to $2^{31}-1$	Depends on the speed unit set in Function Setting 1 （setting parameter OWDD03，bits 0 to 3）	1000
Description	Set the approach speed for a zero point return operation after the deceleration LS is passed． －The setting unit for this parameter depends on the Speed Unit Selection（OWDD03，bits 0 to 3），but the result of applying the speed unit setting is not shown here．				
OLDप40 Creep Ra			Setting Range	Setting Unit	Default Value
		Position Phase Speed Torque	-2^{31} to $2^{31}-1$	Depends on the speed unit set in Function Setting 1 （setting parameter OWDロ03，bits 0 to 3）	500
Description	Set the creep speed for a zero point return operation after the ZERO signal is detected． －The setting unit for this parameter depends on the Speed Unit Selection（OWDロ03，bits 0 to 3），but the result of applying the speed unit setting is not shown here．				
OLㅁㅁㄴㄴ Zero Point Return Travel Distance		ion	Setting Range	Setting Unit	Default Value
		Speed Torque	-2^{31} to $2^{31}-1$	Reference unit	0

A typical example of a zero point return operation is shown below．
－Refer to 7．2．3 Zero Point Return（ZRET）on page 7－15 for details．

（ 27 ）Step Distance

（ 28 ）External Positioning Move Distance

OLDロ46		Setting Unit	Default Value
External Positioning Final Travel Distance		Reference unit	0
Description	Set the distance from the time the external signal is input for external positioning commands（EX －Refer to 7．2．2 External Positioning（EX＿POSING）on page 7－9 for details．		

（ 29 ）Coordinate System Settings

OLD口48			Setting Range	Setting Unit	Default Value
Zero Point Position in Machine Coordinate System Offset		Speed Torque	-2^{31} to $2^{31}-1$	Reference unit	0
Description	Set the offset to shift the machine coordinate system． －This parameter is always enabled，so be sure that the setting is correct．				
OLDロ4A Work Coordinate System Offset		Position	Setting Range	Setting Unit	Default Value
		Speed Torque	-2^{31} to $2^{31}-1$	Reference unit	0
Description	Set the offset to shift the work coordinate system． －This parameter is always enabled，so be sure that the setting is correct．				
OLDロ4C Number of POSMAX Turns Presetting Data		Position Phase	Setting Range	Setting Unit	Default Value
		Speed Torque	-2^{31} to $2^{31}-1$	turn	0
Description	When the POSMAX Turn Number Presetting Demand bit（setting parameter OWDD00，bit 6）is set to 1 ，the val－ ue set here will be preset as the Number of POSMAX Turns（monitoring parameter ILDO1E）． －This parameter is invalid for linear type．				

－For information on how to use these functions，refer to Chapter 10 Absolute Position Detection on page 10－1．

（ 30 ）Supplemental Setting

OWDロ5C		Position	Phase	Setting Range	Setting Unit	Default Value
Fixed Parameter Number		Speed	Torque	0 to 65535	－	0
Description	Set the fixed parameter number to be read out by executing the motion subcommand FIXPRM＿RD． The result of reading operation will be stored in the monitoring parameter Fixed Parameter Monitor（IWDD56．） －Refer to 7．3 Motion Subcommands on page 7－85 for details．					

（ 31 ）General－purpose DO

OWロロ5D Position Phase		Position Phase	Setting Range	Setting Unit	Default Value
General－purpose DO			－	－	0000H
Description	Bit 0	General－purpose DO＿0 Set the general－purpose DO－0 to OFF or ON． 0 ：OFF（default） 1：ON This bit can be used only in the general－purpose I／O mode．In the normal operation mode，it is used by the sys－ tem．			
	Bit 1	General－purpose DO＿1 Set the general－purpose DO－1 to OFF or ON． 0 ：OFF（default） 1：ON This bit can be used only in the general－purpose I／O mode．In the normal operation mode，it is used by the sys－ tem．			
	Bit 2	General－purpose DO＿2 Set the general－purpose DO－2 to OFF or ON． 0 ：OFF（default） 1：ON This bit can be used both in the normal operation mode and the general－purpose I／O mode． For use in normal operation mode，this bit must be set to 1 （Use as a general－purpose signal）in General－Purpose DO＿2 Signal Selection bit（fixed parameter No．21，bit 5）． Refer to 11．4．4 General－purpose DO＿2 Signal Selection on page 11－17 for details．			
	Bit 3	General－purpose DO＿3 Set the general－purpose DO－3 to OFF or ON． 0：OFF（default） 1：ON This bit can be used in the general－purpose I／O mode and in the normal operation mode．			
	Bit 4	General－purpose DO＿4 Set the general－purpose DO－4 to OFF or ON． 0 ：OFF（default） 1：ON This bit can be used in the general－purpose I／O mode and in the normal operation mode．			
	Bit 5	General－purpose DO＿5 Set the general－purpose DO－5 to OFF or ON． 0 ：OFF（default） 1：ON This bit can be used only in the general－purpose I／O mode．In the normal operation mode，it is used by the sys－ tem．			

（ 32 ）Absolute Infinite Length Axis Position Control Information

OLD口5E			Setting Range	Setting Unit	Default Value
Encoder Position when Power is OFF （Lower 2 words）			-2^{31} to 2^{31}	pulse	0
Description	This is the information for infinite length axis position control when an absolute encoder is used． The encoder position is stored in 4 words． If the Request ABS Rotary Pos．Load bit is set to 1 in the Run Command Setting（setting parameter OWDD00，bit 7），the position information will be recalculated with the values set here and the Pulse Position when Power is OFF（OLDD62 and OLDD64）． －Refer to 10．4 Absolute Position Detection for Infinite Length Axes on page 10－14 for details． －Set to 0 for linear type．				
OLDロ60 Encoder Position when Power is OFF （Upper 2 words）			etting Rang	Setting Unit	Default Value
		Speed Torque	2^{31} to $2^{31}-1$	pulse	0
Description	Same as for OLロप5E． －Refer to 10．4 Absolute Position －Set to 0 for linear type．	ion for Infinit	俍	10－14	
OLロロ62 Pulse Position when Power is OFF（Lower 2 words）		on	Setting Rang	Setting Unit	Default Value
		Speed Torque	2^{31} to $2^{31}-1$	pulse	0
Description	This is the information for infinite length axis position control when an absolute encoder is used． The axis position in pulses managed internally by the controller is stored in 4 words． If the Request ABS Rotary Pos．Load bit is set to 1 in the Run Command Setting（setting parameter OWD $\square 00$ ，bit 7），the position information will be recalculated with the values set here and the Encoder Position When Power is OFF （OLD口5E and OLD口60）． －Refer to 10．4 Absolute Position Detection for Infinite Length Axes on page 10－14 for details． －Set to 0 for linear type．				
OLD口64		ion Phase	Setting Rang	Setting Unit	Default Value
Pulse Position when Power is OFF（Upper 2 words）		Speed Torque	2^{31} to $2^{31}-1$	pulse	0
Description	Same as for OLDप62． －Refer to 10．4 Absolute Position Detection for Infinite Length Axes on page 10－14 for details． －Set to 0 for linear type．				

（ 33 ）Various Data

OLDロ66 Monitor Data Command		Position		Setting Range	Setting Unit	Default Value
		Speed	Torque	－	－	0
Description ${ }^{\text {Reserved for system use．Do not use this parameter．}}$						
OLロロ68 Writing Data Type		Position	Phase	Setting Range	Setting Unit	Default Value
		Speed	Torque	0 to 3	－	0
Description ${ }^{\text {R }}$ Reserved for system use．Do not use this parameter．						
OLDロ6A Monitor Address		Position	Phase	Setting Range	Setting Unit	Default Value
		Speed	Torque	-2^{31} to $2^{31}-1$	－	0
Description ${ }^{\text {R }}$ Reserved for system use．Do not use this parameter．						
OLロロ6C Writing Data		Position	Phase	Setting Range	Setting Unit	Default Value
		Speed	Torque	-2^{31} to $2^{31}-1$	－	0
Description	Reserved for s	meter．				

（ 34 ）Stop Distance

OL ㅁㅁㅌㅡ́ System Reservation（Stop Distance）		ition Phase	Setting Range	Setting Unit	Default Value
		Speed Torque	-2^{31} to $2^{31}-1$	－	0
Description	Used in combination with MPOS as the software limit detection condition． This parameter can be used in the normal operation mode and in the simulation mode． －Refer to11．3．2 Software Limit Detection Function on page 11－13 for details．				

5．4．3 Motion Monitoring Parameter Details

The following tables provide details of motion monitoring parameters．
－Refer to 5．3．3 Monitoring Parameter List on page 5－13 for a list of motion monitoring parameters．
－Register number IWDロ00 indicates the leading input register number +00 ．Other register numbers listed below indicate input register numbers in the same way．
－Refer to 5．1．1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers on page 5－2 for informa－ tion on how to find the leading input register number．

（1）Drive Status

IWDロ00 RUN Status			Range	Unit
			－	－
Description	Bit 0	Motion Controller Operation Ready 0 ：Operation not ready 1：Operation ready This bit turns ON when RUN preparations for the Motion Module have been completed． This bit will be OFF under the following conditions： －Major damage has occurred． －Axis that is not used was selected． －Motion fixed parameter setting error －Motion fixed parameters are being changed．		
	Bit 1	Running（Servo ON）0：Stopped1：Running（Servo ON）This bit is ON while the axis is in Servo ON status．		
	Bit 3	Servo Ready 0 ：Servo not ready 1：Servo ready This bit is ON when all of the following conditions are satisfied． －The main power supply for the SERVOPACK is ON． －There are no alarms in the SERVOPACK．		

－There are no alarms in the SERVOPACK．

（ 2 ）Over Range Parameter Number

| IWロロ01
 Parameter Number when Range Over is Generated | Range | Unit |
| :--- | :--- | :---: | :---: |
| | Stores the number of a parameter set outside the setting range．
 • Setting parameters： 0 or higher | |
| • Fixed Parameters： 1000 or higher | | |
| This parameter stores the number of the setting or fixed parameter that exceeds the setting range either individually or in | | |
| combination with the settings of other parameters． | | |
| When motion fixed parameters are used，the parameter stores the parameter number plus 1000. | | |

(3) Warning

ILDロ02 Warning			Range	Unit
			-	-
Description	Bit 0	Excessive Deviation 0 : In normal deviation range 1: Abnormal deviation detected This bit turns ON if the following error exceeds the value set for the Error Count Alarm Detection (setting parameter OLD $\square 22$) when Excessive Deviation is set to be treated as an warning by setting the Excessive Deviation Error Level Setting to 0 in Mode Setting 1 (setting parameter OWD口01, bit 0).		
	Bit 1	Set Parameter Error 0 : In setting range 1: Outside setting range This bit turns ON when one or more motion setting parameters is set outside the setting range. The number of the parameter for which the value is out of range is stored as the Parameter Number when Range Over is Generated (monitoring parameter IW $\square \square 01$).		
	Bit 2	Fixed Parameter Error 0 : In setting range 1: Outside setting range This bit turns ON when one or more motion setting parameters is set outside the motion fixed parameter setting range. The number of the parameter is stored as the Parameter Number when Range Over is Generated (monitoring parameter IW $\square \square 01$).		
	Bit 4	Motion Command Set Error 0 : Command setting normal 1: Command setting error This bit turns ON when a motion command that cannot be used is set.		
	Bit B	Analog Adjust Not Ready Warning 0 : Adjustment normally completed 1: Adjustment error This bit turns ON for warning when the SVA-01 Module has not been correctly adjusted before shipment.		

(4) Alarm

ILロロ04 Alarm（cont＇d）			Range	Unit
				－
Description	Bit D	Zero Point Unsetting 0 ：Zero point set 1：Zero point not set error This bit turns ON if a move command（except for JOG or STEP）is performed when an infinite length axis is set and the zero point has not been set．		
	Bit 13	Excessive ABS Encoder Rotations 0 ：In count range 1：Outside count range This bit turns ON if the number of turns from the absolute encoder exceeds the range that the SVA can handle． This bit is valid when using an absolute encoder and a finite－length axis． This bit also turns ON if the result of the operation converting the current position to reference units when the power is turned ON exceeds 32 bits． －This bit is invalid for linear type．		
	Bit 14	PG Disconnection Error 0：Connected（OFF） 1：Disconnected（ON） This bit turns ON when the PG disconnection is detected．		
	Bit 15	ABS Total Rev．Receive Error 0 ：Matched（OFF） 1：Unmatched（ON） This bit turns ON when the bit 7 of fixed parameter No． 1 （Absolute Position Data Read－out at Power ON）is set to 1 （Not execute）．		

（ 5 ）Motion Command Response Codes

| IW $\square \square 08$
 Motion Command Response Code | Range | Unit |
| :--- | :---: | :---: | :---: |
| Description | Stores the motion command code for the command that is currently being executed．
 This is the motion command code that is currently being executed and is the same as the Motion Command（setting
 parameter OWロロ08）． | |

（ 6 ）Motion Command Status

IWロロ09 Motion Command Status			Range	Unit
Description	Bit 0	Command Execution Flag（BUSY） 0 ：READY（completed） 1：BUSY（processing） This bit indicates the motion command status．This bit turns ON during execution of commands that have been completed or during abort processing． －Refer to Chapter 7 Motion Commands for details on command timing charts．		
	Bit 1	Command Hold Completed（HOLDL） 0 ：Command hold processing not completed 1：Command hold completed This bit turns ON when command hold processing has been completed． －Refer to Chapter 7 Motion Commands for details on command timing charts．		
	Bit 3	Command Error Completed Status（FAIL） 0 ：Normal completion 1：Abnormal completion This bit turns ON if motion command processing does not complete normally． If motion command execution ends in an error，the axis will stop any motion． －Refer to Chapter 7 Motion Commands for details on command timing charts．		
	Bit 8	Command Execution Completed（COMPLETE） 0 ：Normal execution not completed 1：Normal execution completed This bit turns ON when motion command processing was completed normally． －Refer to Chapter 7 Motion Commands for details on command timing charts．		

（ 7 ）Motion Subcommand Response Code

IW $\square \square 0 A$ Motion Subcommand Response Code	Range	Unit
Description	Stores the motion subcommand code for the command that is being executed． This is the motion subcommand code that is currently being executed and is the same as the Motion Subcommand（setting parameter OW口ロ0A）．	

（ 8 ）Motion Subcommand Status

IWDロ0B Subcommand Status			Range	$\begin{gathered} \hline \text { Unit } \\ \hline- \end{gathered}$
Description	Bit 0	Command Execution Flag（BUSY） This bit indicates the motion subcommand status． 0 ：READY（completed） 1：BUSY（processing） This bit turns ON during execution of commands that have been completed or during abort processing．		
	Bit 3	Command Error Completed Status（FAIL） 0 ：Normal completion 1：Abnormal completion This bit turns ON if motion subcommand processi	complet	
	Bit 8	Command Execution Completed（COMPLETE） 0 ：Normal execution not completed 1：Normal execution completed This bit turns ON when motion subcommand proc	complete	

（9）Position Management Status

IWロप0C Position Management Status			Range Unit	
			－－	
Description	Bit 0	Discharging Completed（DEN） 0 ：Distributing pulses． 1：Distribution completed． This bit turns ON when pulse distribution has been completed for a move command．		
	Bit 1	$\begin{array}{r} \hline \text { Positioning } \\ 0: \text { Out } \\ 1: \text { In } \mathrm{p} \\ \text { This bit } \mathrm{t} \\ \text { complete } \end{array}$	and the	thin the positioning
	Bit 2	Latch Com 0：Lat 1：Lat This bit The latch ILロロ18）	d turns m Latch	seen completed． g parameter
	Bit 3	NEAR Pos 0 ：Out 1：In p The oper －OLD IWロ －OLD Positi NEA	al Output as been cting the Reference not been	meter OLD口20）． ng parameter System Feedback ）is less than the
	Bit 4	Zero Poin 0 ：Out 1：In z This bit is within （Zero Po	rence Po paramete	rameter IL $\square \square 12$ ） Zero Point Return

（ 10 ）Position Information 1

ILロロ0E Target Position in Machine Coordinate System（TPOS）		Range	Unit
		-2^{31} to 2^{31}	Reference unt
Description	Stores the target position in the machine coordinate system managed by the Motion Module． This is the target position per scan for INTERPOLATE or LATCH commands． －This parameter will be set to 0 when the power supply is turned ON． －The data is refreshed even when the machine lock mode is enabled． －This parameter will not be reset even when an infinite length axis type is selected．		
ILロロ10 Calculated Position in Machine Coordinate System（CPOS）		Range	Unit
		-2^{31} to $2^{31}-1$	Reference unit
Description	Stores the calculated position in the machine coordinate system managed by the Motion Module． The position data stored in this parameter is the target position for each scan． －This parameter will be set to 0 when the power supply is turned ON． －The data is updated even when the machine lock mode is enabled． －When an infinite length axis type is selected，a range of 0 to（Maximum Value of Rotary Counter（POSMAX）－1）is stored．		

ILロロ12		Range	Unit
Machine Coordinate System Reference Position（MPOS）		-2^{31} to $2^{31}-1$	Reference unit
Description	Stores the reference position in the machine coordir －This parameter will be set to 0 when the power －This data is not updated when the machine lock tion reference data is not output externally．） －When the machine lock mode function is not used	managed by th ON． （When the mac is the same as th	Module． ode is enabled，the posi－ 110
ILロロ14 CPOS for 32 bit（DPOS）		Range	Unit
		-2^{31} to $2^{31}-1$	Reference unit
Description	Stores the reference position in the machine coordinate system managed by the Motion Module． For a finite length axis，this is the same as the calculated position（CPOS）． For both finite and infinite length axes，the value is refreshed between -2^{31} and $2^{31}-1$ ．		
ILロロ16 Machine Coordinate System Feedback Position（APOS）		Range	Unit
		-2^{31} to $2^{31}-1$	Reference unit
Description	Stores the feedback position in the machine coordinate system managed by the Motion Module． －This parameter will be set to 0 when a Zero Point Return（ZRET）is executed． －When an infinite length axis type is selected，a range of 0 to（Maximum Value of Rotary Counter（POSMAX）－ 1 ）is stored．		
ILロロ18 Machine Coordinate System Latch Position（LPOS）		Range	Unit
		-2^{31} to $2^{31}-1$	Reference unit
Description ${ }^{\text {S }}$ Stores the latch position when the latch has been completed．			
ILロロ1A Position Error（PERR）		Range	Unit
		-2^{31} to $2^{31}-1$	Reference unit
Description	Stores the following error（the result of Machine Coordinate System Reference Position（ILDD12）－Machine Co－ ordinate System Feedback Position（ILDD16）converted to reference unit）managed by the Motion Module．		
ILロロ1C Target Position Difference Monitor		Range	Unit
		-2^{31} to $2^{31}-1$	Reference unit
Description	Stores the distribution segment calculated each 500μ s cycle．		
IWロロ1E Number of POSMAX Turns		Range	Unit
		-2^{31} to $2^{31}-1$	rev
Description	This parameter is valid for an infinite length axis． The count stored in this parameter goes up and down every time the current position exceeds the Infinite Length Axis Reset Position（POSMAX）． －Invalid for linear type．		

－Terminology：Machine Coordinate System
The basic coordinate system that is set according to Zero Point Return（ZRET）command execution or Zero Point Setting （ZSET）command execution．The Machine Controller manages the positions using this machine coordinate system．

（ 11 ）Speed Information

ILロロ20		Range	Unit
Speed Reference Output Monitor		-2^{31} to $2^{31}-1$	Depends on the speed unit set in Function Setting 1 （setting parameter $\mathrm{OW} \square \square 03$ ，bits 0 to 3 ）
Description ${ }^{\text {Stores }}$ the speed reference that is being output．			
ILロロ24 Integral Output Monitor		Range	Unit
		-2^{31} to $2^{31}-1$	Depends on the speed unit set in Function Setting 1 （setting parameter $\mathrm{OW} \square \square 03$ ，bits 0 to 3 ）
Description	Stores the output value of PI control operation in the control loop for position control and phase control． This bit is valid in position control mode and phase control mode． －Refer to 9．1 SVA－01 Module Control Block Diagram on page 9－2 for information on control loop．		
ILロロ26 Primary Lag Monitor		Range	Unit
		-2^{31} to $2^{31}-1$	Depends on the speed unit set in Function Setting 1 （setting parameter $\mathrm{OW} \square \square 03$ ，bits 0 to 3 ）
Description	Stores the result of subtraction＂Integral output（ILDC24）－Primary lag element output＂． This bit is valid in position control mode and phase control mode．		
ILロロ28 Position Loop Output Monitor		Range	Unit
		-2^{31} to $2^{31}-1$	Depends on the speed unit set in Function Setting 1 （setting parameter OWDप03，bits 0 to 3 ）
Description	Stores the position loop output value（value without adding the position feedforward calculated value）． This bit is valid in position control mode and phase control mode．		

（ 12 ）Servo Driver Information

ILロロ40 Feedback Speed		Range	Unit
		-2^{31} to $2^{31}-1$	Depends on the speed unit set in Function Setting 1 （setting parameter OW $\square \square 03$ ， bits 0 to 3 ）
Description	Stores the feedback speed． The value is determined by the Feedback Speed Movement Averaging Time Constant（fixed parameter 42）and unit set from the difference with the Machine Coordinate System Feedback Position（monitoring parameter ILDロ16）in each scan． －The setting unit for this parameter depends on the Speed Unit Selection（OWDD03，bits 0 to 3），but the result of applying the speed unit setting is not shown here．		
ILロロ42 Feedback Torque／Thrust		Range	Unit
		-2^{31} to $2^{31}-1$	Depends on the torque unit set in Function Setting 1 （setting parameter OW $\square \square 03$ ，bits C to F ）
Description	Stores the value of General－purpose AI Monitor 2 （IWDप5A）converted in the selected torque units． －The setting unit for this parameter depends on the Torque Unit Selection（OWロロ03，bits C to F），but the result of applying the torque unit setting is not shown here．		

（ 13 ）Position Information 2

ILロロ4A The Number of Accumulated Rotations of Absolute Value Encoder		Range	Unit
		-2^{31} to $2^{31}-1$	rev
Description	Stores the accumulated number of rotations read out from the absolute encoder when the power supply is turned ON or when the online absolute data read function is executed．		
ILロロ4C The Number of Initial Incremental Pulses		Range	Unit
		-2^{31} to $2^{31}-1$	pulse
Description	Stores the initial incremental pulses read out from the absolute encoder when the power supply is turned ON or when the online absolute data read function is executed．		

（ 14 ）Supplemental Information 1

ILDロ56 Fixed Parameter Monitor	Range	Unit
Description	Stores the data of the specified fixed parameter number． This parameter stores the data of the fixed parameter when the Read Fixed Parameter（FIXPRM－RD）is selected in the Motion Subcommand（setting parameter OWロロ0A）．	

（ 15 ）Supplemental Information 2

IW $\square \square 58$			Range	Unit
General－purpose DI Monitor				
Description	Bit 0	General－purpose DI＿0 This bit turns ON when the general－purpose DI＿0 signal is being input． The user can use the general－purpose DI＿0 signal in general－purpose I／O mode．However，the system uses the signal for Servo Alarm input signal in normal operation mode and the Servo Alarm signal input is stored in this bit．		
	Bit 1	General－purpose DI＿1 This bit turns ON when the general－purpose DI＿1 signal is being input． The user can use the general－purpose DI＿1 signal in general－purpose I／O mode．However，the system uses the signal as Servo Ready input signal in normal operation mode and the Servo Ready signal input is stored in this bit．		
	Bit 2	General－purpose DI＿2 This bit turns ON when the general－purpose DI＿2 signal is being input． The user can always use the general－purpose DI＿2 signal in general－purpose I／O mode，however，the user can use the signal only when the system does not use it in normal operation mode．When the system is using the sig－ nal in normal operation mode，the ZERO／HOME LS signal input is stored in this bit．		
	Bit 3	General－purpose DI＿3 This bit turns ON when the general－purpose DI＿3 signal is being input． The user can always use the general－purpose DI＿3 signal in general－purpose I／O mode，however，the user can use the signal only when the system does not use it in normal operation mode．When the system is using the sig－ nal in normal operation mode，the Positive Overtravel（OT）signal input is stored in this bit．		
	Bit 4	General－purpose DI＿4 This bit turns ON when the general－purpose DI＿4 signal is being input． The user can always use the general－purpose DI＿4 signal in general－purpose I／O mode，however，the user can use the signal only when the system does not use it in normal operation mode．When the system is using the sig－ nal in normal operation mode，the Negative Overtravel（OT）signal input is stored in this bit．		
	Bit 5	General－purpose DI＿5 This bit turns ON when the general－purpose DI＿5 signal is being input． The user can always use the general－purpose DI＿5 signal in general－purpose I／O mode，however，the user can use the signal only when the system does not use it in normal operation mode．When the system is using the sig－ nal in normal operation mode，the EXT／DEC signal input is stored in this bit．		
	Bit 7	PG Wire Breaking Down Status Stores the status of PG disconnection signal． 0 ：Normal 1：Disconnected		

＜DI Block Diagram in Normal Operation Mode＞

（ 16 ）Supplemental Information 3

IWロロ59		Range	Unit
General－purpose AI Monitor 1		$\begin{gathered} -32768 \text { to } \\ 32768 \end{gathered}$	0.001 V
Description	Stores the general－purpose analog input． Stores the value of Analog Speed Monitor of SERVOPACK when using a SERVOPACK standard cable．		
IWDロ5A General－purpose AI Monitor 2		Range	Unit
		$\begin{gathered} -32768 \text { to } \\ 32768 \end{gathered}$	0.001 V
Description	Stores the general－purpose analog input． Stores the value of Analog Torque Monitor of SERVOPACK when using a SERVOPACK standard cable．		

（ 17 ）Absolute Infinite Length Axis Position Control Information

ILロロ5E Encoder Position when Power is OFF（Lower 2 words）		Range	Unit
		-2^{31} to $2^{31}-1$	pulse
Description	Stores information used for infinite length axis position control when an absolute encoder is used． The encoder position is normally stored in 4 words．		
ILロロ60 Encoder Position when Power is OFF（Upper 2 words）		Range	Unit
		-2^{31} to $2^{31}-1$	pulse
Description Same as for ILD口5E．			
ILロप62 Pulse Position when Power is OFF（Lower 2 words）		Range	Unit
		-2^{31} to $2^{31}-1$	pulse
Description	Stores information used for infinite length axis position control when an absolute encoder is used． These parameters store the axis position managed by the Machine Controller in pulses in 4 words．		
ILロロ64 Pulse Position when Power is OFF（Upper 2 words）		Range	Unit
		-2^{31} to $2^{31}-1$	pulse
Description	Same as for ILロप62．		

（ 18 ）Monitor Data

ILロロ66 Monitor Data Status		Range	Unit
		-2^{31} to $2^{31}-1$	－
Description ${ }^{\text {R }}$ Reserved for system use．Do not use this parameter．			
ILロロ68 Monitor Data		Range	Unit
		-2^{31} to $2^{31}-1$	－
Description	Reserved for system use．Do not use this parameter．		

Motion Parameter Setting Examples

This chapter gives setting examples of the motion parameters for each machine.
6.1 Example Setting of Motion Parameters for the Machine 6-2
6.1.1 Reference Unit 6-2
6.1.2 Electronic Gear 6-2
6.1.3 Axis Type Selection 6-4
6.1.4 Position Reference 6-5
6.1.5 Speed Reference 6-9
6.1.6 Acceleration/Deceleration Settings 6-11
6.1.7 Acceleration/Deceleration Filter Settings 6-13
6.1.8 Linear Scale Pitch and Rated Motor Speed 6-15

6.1 Example Setting of Motion Parameters for the Machine

Set the following eight motion parameters to enable motion control that suits the machine's specifications.

- Reference unit
- Electronic gear
- Axis Type selection
- Position Reference
- Speed Reference
- Acceleration/Deceleration Settings
- Acceleration/Deceleration Filter Settings
- Linear Scale Pitch/Rated Speed (when using a linear motor)

The following tables provide details of setting examples for the above items.

6.1.1 Reference Unit

Pulses, millimeters, degrees, or inches can be used as the reference unit for motion control. The reference unit is specified in Reference Unit Selection (motion fixed parameter 4).
The minimum reference unit that can be specified is determined by the setting of Number of Digits below Decimal Point (motion fixed parameter 5).

Motion Fixed Parameter 5: Number of Digits below Decimal Point	Motion Fixed Parameter 4: Reference Unit Selection			
	$0:$ pulse	$1: \mathrm{mm}$	$2: \mathrm{deg}$	3: inch
$0: 0$ digits	1 pulse	1 mm	1 deg	1 inch
$1: 1$ digits	1 pulse	0.1 mm	0.1 deg	0.1 inch
$2: 2$ digits	1 pulse	0.01 mm	0.01 deg	0.01 inch
$3: 3$ digits	1 pulse	0.001 mm	0.001 deg	0.001 inch
$4: 4$ digits	1 pulse	0.0001 mm	0.0001 deg	0.0001 inch
$5: 5$ digits	1 pulse	0.00001 mm	0.00001 deg	0.0001 inch

6.1.2 Electronic Gear

In contrast to the reference unit input to the Machine Controller, the moving unit in the mechanical system is called the "output unit." The electronic gear converts position or speed units from reference units to output units for the mechanical system without going through an actual mechanism, such as a gear.
When the axis at the motor has rotated m times and the mechanical configuration allows the axis at the load to rotate n times, this electronic gear function can be used to make the reference unit equal to the output unit.
The electronic gear function is enabled when the following settings are made:

- Fixed Parameter 6: Travel distance per machine rotation
- Fixed Parameter 8: Servo motor gear ratio
- Fixed Parameter 9: Machine gear ratio
- The electronic gear is disabled when pulse is specified as the Reference Unit.

The following setting example uses ball screw and rotating table workpieces.

(1) Parameter Setting Example Using Ball Screw

- Machine specifications: Ball screw axis rotates 5 times for each 7 rotations of the motor axis (Refer to the following figure.)
- Reference unit: 0.001 mm

To move the workpiece 0.001 mm for 1 reference unit input under the conditions outlined above, i.e., for 1 reference unit $=1$ output unit, make the following settings for fixed parameters 6,8 , and 9 .

- Fixed Parameter 6: Travel distance per machine rotation $=6 \mathrm{~mm} / 0.001 \mathrm{~mm}=6000$ (reference units)
- Fixed Parameter 8: Servo motor gear ratio $=\mathrm{m}=7$
- Fixed Parameter 9: Machine gear ratio $=\mathrm{n}=5$

(2) Parameter Setting Example Using Rotating Table

- Machine specifications: Rotating table axis rotates 10 times for each 30 rotations of the motor axis (Refer to the following figure.)
- Reference unit: 0.1°

To rotate the table 0.1° for 1 reference unit input under the conditions outlined above, i.e., for 1 reference unit $=1$ output unit, make the following settings for fixed parameters 6,8 , and 9 .

- Fixed Parameter 6: Travel distance per machine rotation $=360^{\circ} / 0.1^{\circ}=3600$ (reference units)
- Fixed Parameter 8: Servo motor gear ratio $=m=30$
- Fixed Parameter 9: Machine gear ratio $=n=10$
- The gear ratio for fixed parameters 8 and $9(\mathrm{~m} / \mathrm{n})$ may be constant, e.g., $\mathrm{m}=3$ and $\mathrm{n}=1$.

6.1.3 Axis Type Selection

There are two types of position control: finite length position control for return and other operations that are performed only within a specified range, and infinite length position control, which is used for moving in one direction only. Infinite length position control can reset the position to 0 after one rotation, e.g, belt conveyors, or move in one direction only, without resetting position after one rotation. The axis type selection sets which of these types of position control is to be used.
The details of the Axis Type Selection are listed in the following table.

Parameter Type	Parameter No. (Register No.)	Name	Description	Default Value
Motion Fixed Parameters	No. 1, bit 0	Function Selection Flag 1, Axis Selection	Specify the position control method for the controlled axis. 0: Finite Length Axis Set a finite length axis if control is performed within a limited length or for an axis that uses infinite length control in one moving direction only without resetting the position every rotation. 1: Infinite Length Axis Set an infinite length axis for an axis that uses infinite length control while resetting the position every rotation.	0
	No. 10	Infinite Length Axis Reset Position (POSMAX)	Set the reset position of the position data using the reference unit when an infinite length axis has been set for the axis type.	360000

6．1．4 Position Reference

The target position value for position control is set for the Position Reference Setting（motion setting parameter OLDD1C）．There are two methods that can be set for using the Position Reference Setting：directly setting the coordi－ nate of the target position value as an absolute value or adding the moving amount from the previous command posi－ tion as a incremental value．
The following table lists the parameter details relating to position references．

Parameter Type	Parameter No． （Register No．）	Name	Description	Default Value
	OWDO09，bit 5	Position Reference Type	Specify the type of position data． 0：Incremental Addition Mode Adds the present moving amount value to the previ－ ous value of OLDD1C and sets the result in OLD믿． 1：Absolute Mode Sets the coordinate of the target position in OLD믿． －Always set to 0 when using a motion program．	0
Motion Setting Parameters	OLDC1C	Position Reference Setting	Set the position data． －Incremental Addition Mode（OWDロ09，bit 5 ＝ 0） The moving amount（incremental distance）specified this time will be added to the previous value of OLDロ1C． OLDD1C \leftarrow Previous OLD $\square 1 \mathrm{C}+$ Incremental dis－ tance Example： If a travel distance of 500 is specified and the previ－ ous value of OLDप1C is 1000 ，the following will occur： OLDप $1 \mathrm{C} \leftarrow 1000+500=1500$ －Absolute Mode（OWDप09，bit $5=1$ ） The coordinate value of the target position is set． Example： Set 10000 to move to a coordinate value of 10000 ． OLロロ $1 \mathrm{C} \leftarrow 10000$	0

The following table compares the advantage and disadvantage of incremental addition mode and absolute mode．

Position Reference Type	Advantage	Disadvantage
Incremental Addition Mode	It is not necessary to consider the relationship between OLDロ1C and the current position when canceling a move． Incremental addition mode can be used for finite or infinite length axis type．	OLDロ1C does not necessarily equal the coordinate value of the target position，so the position reference can be difficult to understand intuitively．
Absolute Mode	The coordinate of the target position is specified directly，making it easy to understand intuitively．	The current position must be set in OLDप1C when－ ever the power supply is turned ON or a move is can－ celed．If this is not done，the axis may move suddenly when a move command is started．

Setting of the target position when using an infinite length axis is described below．
（1）Setting the Target Position When Using an Infinite Length Axis：Method 1 Executing a POSING command while no command（NOP）is being executed
－When the incremental addition mode is selected for the Position Reference Setting（OWDロ09，bit $5=0$ ），execute a POSING command in distribution completed status（IWDDOC，bit $0=1$ ）．
When the absolute mode is selected for the Position Reference Setting（OWDC09，bit $5=1$ ），a POSING command can be executed if the distribution is not completed（IWロロ0C，bit $0=0$ ）．
－Incremental Addition Mode（OWロロ09，bit $5=0$ ）
Incremental value $=$ Target position（a value between 0 and POSMAX $)-\operatorname{ILD\square 10(CPOS)+POSMAX} \times \mathrm{n}$ OLDロ1C＝OLDロ1C＋Incremental value
－ n refers to the number of POSMAX complete turns needed to move from the current position（CPOS）to the tar－ get position．When the distance between the target position and the current position is within the first turn， n is 0.

－Absolute Mode（OWD口09，bit $5=1$ ）

Incremental value $=$ Target position（a value between 0 and POSMAX $)-$ ILD $\square 10(C P O S)+$ POSMAX $\times \mathrm{n}$ OLDロ1C＝ILロᄆ 14 （DPOS）+ Incremental value
－ n refers to the number of POSMAX complete turns needed to move from the current position（CPOS）to the tar－ get position．When the distance between the target position and the current position is within the first turn， n is 0.
＜Example when $\mathrm{n}=2$＞

（ 2 ）Setting the Target Position When Using an Infinite Length Axis：Method 2
Changing the target position while a POSING command is being executed by specifying another target position on the base of the original target position
－When the absolute mode has been set for the Reference Position Setting（OWDD09，bit $5=1$ ），the absolute mode must also be set after having changed the target position．
－Incremental Addition Mode（OWロロ09，bit $5=0$ ）
Incremental value $=$ New target position（a value between 0 and POSMAX）- Original target position before change（a value between 0 and POSMAX）+ POSMAX $\times n$
OLDด1C＝OLロロ1C＋Incremental value
－Original target position before change：The value that was directly designated or the value that was stored in M register，etc．
－n refers to the number of POSMAX complete turns needed to move from the current position（CPOS）to the tar－ get position．When the distance between the target position and the current position is within the first turn， n is 0.
－Absolute Mode（OWロप09，bit $5=1$ ）
Incremental value $=$ New target position（a value between 0 and POSMAX）- Original target position before change（a value between 0 and POSMAX）+ POSMAX $\times n$
OLDロ1C＝OLDD1C＋Incremental value
－Original target position before change：The value that was directly designated or the value that was stored in M register，etc．
－ n refers to the number of POSMAX complete turns needed to move from the current position（CPOS）to the tar－ get position．When the distance between the target position and the current position is within the first turn， n is 0.
＜Example when $\mathrm{n}=-2>$
（ 3 ）Setting the Target Position When Using an Infinite Length Axis：Method 3 Changing the target position while a POSING command is being executed by specifying another target position on the base of the current position

> - When the incremental addition mode is selected for Position Reference Setting (OWDロ09, bit $5=0$), execute aPOSING command in distribution completed status (IWDロOC, bit $0=1$).
> When the absolute mode is selected for Position Reference Setting (OWDロ 09 , bit $5=1$), a POSING command can be executed if the distribution is not completed (IWロロ0C, bit $0=0$.

The method is the same as for（1）Setting the Target Position When Using an Infinite Length Axis：Method 1.
（ 4 ）Setting the Target Position When Using an Infinite Length Axis：Method 4 Switching a command that is being executed to a POSING command

[^0]The method is the same as for（1）Setting the Target Position When Using an Infinite Length Axis：Method 1.

6．1．5 Speed Reference

There are two methods of setting the speed reference for the feed speed or other speeds．One method involves using reference units and the other method involves setting the percentage（\％）of the rated speed．The settings method depends on the related parameter settings．

（1）Related Parameters

The parameters related to speed references are listed in the following table．

Parameter Type	Parameter No． （Register No．）	Name	Description	Default Value
Motion Fixed Parameters	No． 5	Number of Digits below Decimal Point	Set the number of digits below the decimal point in the refer－ ence unit being input．The minimum reference unit is deter－ mined by this parameter and the Reference Unit Selection （fixed parameter 4）． Example： Reference Unit＝mm，Number of Digits below Decimal Point $=3$ 1 reference unit $=0.001 \mathrm{~mm}$	3
	No． 34	Rated Motor Speed	Set the number of rotations when the motor is rotated at the rated speed（ 100% speed）．Confirm the motor specifications before setting this parameter．	3000
	No． 36	Number of Puls－ es per Motor Rotation	Set the number of pulses（the value before multiplication） per motor rotation． Example： For a 16－bit encoder，set $2^{(16-2)}=16384$ ．	16384
Motion Setting Parameters	OW口ロ03 Bits 0 to 3	Speed Unit Selection	```Set the unit for reference speeds. 0: Reference unit/s 1:10}\mp@subsup{0}{}{\textrm{n}}\mathrm{ reference units/min (n: Number of Digits below Decimal Point) 2: 0.01% 3: 0.0001%```	1
	OLDロ10	Speed Reference Setting	Set the feed speed．The unit for this parameter is set in OW $\square \square 03$ ，bits 0 to 3 ． Example： When the Number of Digits below Decimal Point is set to 3， units are as follows for the setting of the Speed Unit： －Speed Unit Set to 0：Reference units／s pulse unit： $1=1 \mathrm{pulse} / \mathrm{s}$（regardless of the value n ） mm unit： $1=0.001 \mathrm{~mm} / \mathrm{s}$ deg unit： $1=0.001 \mathrm{deg} / \mathrm{s}$ inch unit： $1=0.001 \mathrm{inch} / \mathrm{s}$ －Speed Unit Set to $1: 10^{n}$ reference units／min pulse unit： $1=1000$ pulse $/ \mathrm{min}$ （regardless of the value n ） mm unit： $1=1 \mathrm{~mm} / \mathrm{min}$ deg unit： $1=1 \mathrm{deg} / \mathrm{min}$ inch unit： $1=1 \mathrm{inch} / \mathrm{min}$ －Speed Unit Set to 2：0．01\％ Set as a percentage of the rated speed $(1=0.01 \%)$ unre－ lated to the reference unit setting．	3000
	OWロロ18	Override	Setting an output ratio（\％）for the setting allows the posi－ tioning speed to be changed without changing the Speed Ref－ erence setting． Setting unit： $1=0.01 \%$	10000

（ 2 ）Speed Reference（OLDD10）Setting Examples

－Fixed parameter No．5：Number of digits below decimal point $=3$
－Fixed parameter No．34：Rated motor speed $=3000 \mathrm{R} / \mathrm{min}$
－Fixed parameter No．36：Number of pulses per motor rotation $=16384$ pulse $/ \mathrm{R}$（the value before multiply by 4） The following table shows examples of settings for Speed Reference Setting（OLDD10）to obtain the target feed speed （reference speed）．

OWDप03，bits 0 to 3： Speed Unit Selection	Fixed Parame－ ter No．4：Refer－ ence Unit Setting	Setting Unit for OLDロ10 Speed Reference Setting	Target Feed Speed Example	Set Value for OLロप10 Speed Reference Setting （Unit Conversion Method）
（Reference unit／s）	pulse	pulse／s	50 （R／s）	$\begin{aligned} & =50(\mathrm{R} / \mathrm{s}) \times 65536(\mathrm{pulses} / \mathrm{R}) \\ & =3276800(\mathrm{pulse} / \mathrm{s}) \end{aligned}$ Set value： 3726800
			$\begin{aligned} & 1500 \\ & (\mathrm{R} / \mathrm{min}) \end{aligned}$	$\begin{aligned} & =1500(\mathrm{R} / \mathrm{min}) \div 60 \times 65536(\text { pulses } / \mathrm{R}) \\ & =1638400(\mathrm{pulse} / \mathrm{s}) \end{aligned}$ Set value： 1638400
	mm （1 reference unit $=0.001$ mm ）	Reference unit／ s（＝ 0.001 mm / s ）	500 （mm／s）	$=500(\mathrm{~mm} / \mathrm{s}) \times 1000($ reference units $/ \mathrm{mm})$ $=500000($ reference units $/ \mathrm{s}(=0.001 \mathrm{~mm} / \mathrm{s}))$ Set value： 500000
			$\begin{aligned} & 900 \\ & (\mathrm{~mm} / \mathrm{min}) \end{aligned}$	```= 900 (mm/min) \div 60 < 1000 (reference units/ mm) = 15000 (reference units/s) (=0.001 mm/s))``` Set value： 15000
（ 10^{n} reference units／min） $\mathrm{n}=$ Number of dig－ its below decimal point（＝3）	pulse	1000 pulses／ min （Fixed to 1000 regardless of value n ）	50 （R／s）	$\begin{aligned} & =50(\mathrm{R} / \mathrm{s}) \times 60 \times 65536(\mathrm{pulses} / \mathrm{R}) \div 1000(\text { fixed }) \\ & =19600(\mathrm{pulse} / \mathrm{min}) \end{aligned}$ Set value： 196608
			$\begin{aligned} & 1500 \\ & (\mathrm{R} / \mathrm{min}) \end{aligned}$	$\begin{aligned} & =1500(\mathrm{R} / \mathrm{min}) \times 65536(\text { pulses } / \mathrm{R}) \div 1000 \\ & (\text { fixed }) \\ & =98304(\text { pulses } / \mathrm{min}) \end{aligned}$ Set value： 98304
	```mm (1 reference unit = 0.001 mm)```	$\mathrm{mm} / \mathrm{min}$ （ $=10^{3}$ refer－ ence units／min）	500 （mm／s）	$\begin{aligned} & \quad=500(\mathrm{~mm} / \mathrm{s}) \times 60 \\ &=30000\left(\mathrm{~mm} / \mathrm{min}\left(=10^{3} \text { reference units } / \mathrm{min}\right)\right. \\ & \text { Set value: } 30000 \end{aligned}$
			$\begin{aligned} & 900 \\ & (\mathrm{~mm} / \mathrm{min}) \end{aligned}$	$=900(\mathrm{~mm} / \mathrm{min})$   Set value： 900
$\begin{gathered} 2 \\ 0.01 \% \end{gathered}$	－	0．01\％	50 （R／s）	$\begin{aligned} & =50(\mathrm{R} / \mathrm{s}) \times 60 \div 3000(\mathrm{R} / \mathrm{min}) \times 10000(0.01 \%) \\ & =10000(0.01 \%) \end{aligned}$   Set value： 10000
			$\begin{aligned} & 1500 \\ & (\mathrm{R} / \mathrm{min}) \end{aligned}$	$\begin{aligned} & =1500(\mathrm{R} / \mathrm{min}) \div 3000(\mathrm{R} / \mathrm{min}) \times 10000(0.01 \%) \\ & =5000(0.01 \%) \end{aligned}$   Set value： 5000

## （ 3 ）Override（OWपロ18）Setting Example

The Override parameter（OWDロ18）can set the speed as a percentage（output ratio）of the target feed speed，in $0.01 \%$ units．Override is set independently of Reference Unit，Number of Digits below Decimal Point，and other parameters． A typical example of a Override setting is shown below．

## Setting Example

Output ratio $25 \%: 25 \div 0.01=2500$

$$
50 \%: 50 \div 0.01=5000
$$

$$
75 \%: 75 \div 0.01=7500
$$

$$
100 \%: 100 \div 0.01=10000
$$

## 6．1．6 Acceleration／Deceleration Settings

The acceleration／deceleration can be set to either the rate of acceleration／deceleration or the time required to reach the rated speed from 0 ．The settings method depends on the related parameter settings．

## （1）Related Parameters

The parameters related to acceleration／deceleration settings are listed in the following table．

Parameter Type	Parameter No．   （Register No．）	Name	Description	Default Value
Motion Fixed Parameters	No． 5	Number of Dig－ its below Deci－ mal Point	Set the number of digits below the decimal point in the input reference unit．The minimum reference unit is determined by this parameter and the Reference Unit（fixed parameter 4）．   Example：   Reference Unit＝mm，Number of Digits below Decimal Point $=3$   1 reference unit $=0.001 \mathrm{~mm}$	3
	No． 34	Rated Motor Speed	Set the number of rotations when the motor is rotated at the rated speed（ $100 \%$ speed）．Confirm the motor specifications before setting this parameter．	3000
	No． 36	Number of Puls－ es per Motor Rotation	Set the number of pulses（the value before multiplication）per motor rotation．   Example：   For a 16 －bit encoder，set $2^{(16-2)}=16384$ ．	16384
Motion Setting Parameters	OW口ᄆ03   Bits 4 to 7	Acceleration／ Deceleration Degree Unit Selection	Set the unit for acceleration／deceleration．   0 ：Reference units／s ${ }^{2}$   1：ms	1
	OLD $\square 36$	Straight Line Acceleration／ Acceleration Time Constant	Set the rate of acceleration or acceleration time constant according to the setting of OWD口03，bits 4 to 7 ．   －Acceleration／Deceleration Units is set to 0 （Reference units／s ${ }^{2}$ ）：   Set the rate of acceleration．   pulse unit： $1=1 \mathrm{pulse} / \mathrm{s}^{2}$   mm unit： $1=1$ reference unit $/ \mathrm{s}^{2}$   deg unit： $1=1$ reference unit $/ \mathrm{s}^{2}$   inch unit： $1=1$ reference unit $/ \mathrm{s}^{2}$   Example：Number of Decimal Places $=3$   mm unit： $1=0.001 \mathrm{~mm} / \mathrm{s}^{2}$   deg unit： $1=0.001 \mathrm{deg} / \mathrm{s}^{2}$   inch unit： $1=0.001 \mathrm{inch} / \mathrm{s}^{2}$   －When Acceleration／Deceleration Units is set to 1 （ms）：   Set the time constant to go from 0 to the rated speed with－ out relation to the reference unit．	0
	OLロロ38	Straight Line   Deceleration／   Deceleration   Time Constant	Set the rate of deceleration or deceleration time constant according to the setting of OWD口03，bits 4 to 7 ．   －Acceleration／Deceleration Units is set to 0 （Reference units／s ${ }^{2}$ ）：   Set the rate of deceleration．   pulse unit： $1=1 \mathrm{pulse} / \mathrm{s}^{2}$   mm unit： $1=1$ reference unit $/ \mathrm{s}^{2}$   deg unit： $1=1$ reference unit $/ \mathrm{s}^{2}$   inch unit： $1=1$ reference unit／s ${ }^{2}$   －When Acceleration／Deceleration Units is set to 1 （ms）：   Set the time constant to go from the rated speed to 0 with－ out relation to the reference unit．	0

## ( 2 ) Acceleration/Deceleration Units and Speed Changes Over Time

The Straight Line Acceleration /Acceleration Time Constant (OLDD36) and Straight Line Deceleration /Deceleration Time Constant (OLDD38) settings change depending on the Acceleration/Deceleration Degree Unit Selection (OWDप03, bits 4 to 7 ) setting as shown in the following figure.

- When the Acceleration/Deceleration Degree Unit Selection (OWDロ03, Bits 4 to 7) Set to 0: Reference Unit/s ${ }^{2}$

Set value of OLDC36 and OLDC38 are handled as the linear acceleration rate and linear deceleration rate.


When the Acceleration/Deceleration Degree Unit Selection (OWDロ03, Bits 4 to 7 ) Set to 1: ms
Set value of OLDप36 is handled as the linear acceleration time constant required to reach rated speed from zero using linear acceleration. Set value of OLDप38 is handled as the linear deceleration time constant required to reach zero from the rated speed using linear deceleration.


## 6．1．7 Acceleration／Deceleration Filter Settings

There are two types of acceleration／deceleration filter：The exponential acceleration／deceleration filter and the moving average filter．These filter settings can be used to set non－linear acceleration／deceleration curves． The table below shows the applicable filter for each motion command．

Motion Command	Exponential   Accel／Decel   Filter	Moving   Average Fil－   ter	Description
POSING	Applicable	Applicable	The filter can be continuously used for a motion command other than   VELO and TRQ．
EX＿POSING	Applicable	Applicable	Same as the above
ZRET	N／A	N／A	-
INTERPOLATE	Applicable	Applicable	The filter can be continuously used for a motion command other than   VELO and TRQ．
ENDOF＿INTERPOLATE	Applicable	Applicable	Same as the above
LATCH	Applicable	Applicable	Same as the above
FEED	Applicable	Applicable	Same as the above
STEP	Applicable	Applicable	Same as the above
VELO	Applicable	Applicable	The filter can be continuously used for only a motion command VELO．
TRQ	Applicable	N／A	OWDロ0F（Torque Reference 1st－order Lag Filter）is used instead of   OWロロ3A（Filter Time Constant）．
PHASE	N／A	N／A	-

The parameters related to the acceleration／deceleration filter settings are listed in the following table．

Parameter Type	Parameter No． （Register No．）	Name	Description	Default Value
Motion Setting   Parameters	OWDロ03   Bits 8 to B	Filter Type Selection	Set the acceleration／deceleration filter type．   0 ：Filter none   1：Exponential acceleration／deceleration filter   2：Moving average filter	0
	OWDロ0F	Torque   Reference   1st－order Lag   Filter	Set the primary lag filter for the torque／thrust reference and the torque／thrust limit．	0
	OWロロ3A	Filter Time Constant	Sets the acceleration／deceleration filter time constant for a command other than Torque／Thrust Reference（TRQ）   －Always make sure that pulse distribution has been completed（i．e．，that monitoring parameter IWDロ0C，bit 0 is set to 1 ）before changing the time constant．	0

The following figure shows the relationship between acceleration／deceleration patterns and each parameter．

	Filter Type		
	OWDロ03，bits 8 to $B=0$ （No filter）	OWपロ03，bits 8 to $\mathrm{B}=1$   （Exponential acceleration／deceleration filter）	OWDロ03，bits 8 to $B=2$   （Moving average filter）
No Acceleration／ Deceleration $\widehat{O L \square \square 36=0}$ $\text { OLロロ38 = } 0$	＊Step input		
With Acceleration／ Deceleration		  Curvature depends on relationship between OWロप3A，OLDロ36，and OLDC38	

### 6.1.8 Linear Scale Pitch and Rated Motor Speed

When using a linear motor, set the number of digits below decimal point (fixed parameter No. 5), the linear scale pitch (fixed parameter No. 6), the rated motor speed (fixed parameter No. 34), and the number of pulses per linear scale pitch (fixed parameter No. 36) according to the linear motor specifications.

## (1) Setting Example 1

The following tables give setting examples for these linear motor, linear scale, and SERVOPACK specifications.

- Linear Motor Specifications
- Rated motor speed $\quad: 1.5(\mathrm{~m} / \mathrm{s})$
- Linear Scale and SERVOPACK Specifications
- Linear scale pitch
: 20 ( $\mu \mathrm{m}$ )
- Serial converter resolution: :256 (division)
- For SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACKs, the set value of SERVOPACK parameter Pn281 (Encoder Output Resolution) is actually used in place of the serial converter resolution.
- Pn281 (Encoder Output Resolution): 128 (pulses/(scale pitch $\times 4$ )
- Set Pn281 to a value of multiples of 4 .
[ a ] Setting Example when Fixed Parameter No. 4 (Reference Unit Selection) is set to 1: mm

Fixed Parameter		Setting Unit	Set Value	Description
No. 4	Reference Unit   Selection	-	mm	The actual reference unit is determined by settings of this   parameter and the number of digits below decimal point (fixed   parameter 5).   When Number of Digits below Decimal Point $=3$,   1 reference unit $=0.001(\mathrm{~mm})=1(\mu \mathrm{~m})$
No. 5	Number of Digits   below Decimal   Point	-	3	When Number of Digits below Decimal Point $=3$ or more, the   linear scale pitch 20 $(\mu \mathrm{m})$ can be expressed in an integral num-   ber. Therefore, set to 3.
No. 6	Linear Scale   Pitch	user units $(\mu \mathrm{m})$	20	1 reference unit $=1(\mu \mathrm{~m})$ because Number of Digits below Dec-   imal Point $=3$. Therefore, set to 20 $(\mu \mathrm{m})$
No. 34	Rated Speed	$0.1 \mathrm{~m} / \mathrm{s}$	15	Set to 15: The value of linear motor rated speed $1.5(\mathrm{~m} / \mathrm{s})$ con-   verted in units of $0.1 \mathrm{~m} / \mathrm{s}$.
No. 36	Number of   Pulses per   Linear Scale   Pitch	pulse/ linear   scale pitch	32	Set to the result of division: Pn281 (Encoder Output Resolution)   $\div 4$   $($ In this example, $128 \div 4=32)$

[b] Setting Example when Fixed Parameter No. 4 (Reference Unit Selection) is set to 0: pulse

Fixed Parameter		Setting Unit	Set Value	Description
No. 4	Reference Unit   Selection	-	pulse	-
No. 5	Number of Digits   below Decimal   Point	-	-	This parameter is invalid when "pulse" is selected for Reference   Unit.
No. 6	Linear Scale   Pitch	$\mu \mathrm{m}$	256	When "pulse" is selected for Reference Unit, the setting unit of   this parameter is fixed to " $\mu \mathrm{m} "$. Therefore, set to 20.
No. 34	Rated Speed	$0.1 \mathrm{~m} / \mathrm{s}$	15	Set to $15:$ The value of linear motor rated speed 1.5 (m/s) con-   verted in units of $0.1 \mathrm{~m} / \mathrm{s}$.
No. 36	Number of   Pulses per   Linear Scale   Pitch	pulse/ linear   scale pitch	Set to the result of division: Pn281 (Encoder Output Resolution)   $\div 4$	
$($ In this example, $128 \div 4=32)$				

## ( 2 ) Setting Example 2

The following tables give setting examples for these linear motor, linear scale, and SERVOPACK specifications.
Linear Motor Specifications

- Rated motor speed
- Linear Scale and SERVOPACK Specifications
- Linear scale pitch : 25.6 ( $\mu \mathrm{m}$ )
- Serial converter resolution
: 256 (division)
- For SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACKs, the set value of SERVOPACK parameter Pn281 (Encoder Output Resolution) is actually used in place of the serial converter resolution.
- Pn281 (Encoder Output Resolution): 8 (pulses/(scale pitch $\times 4$ )
- Set Pn281 to a value of multiples of 4 .
[ a ] Setting Example when Fixed Parameter No. 4 (Reference Unit Selection) is Set to 1: mm

Fixed Parameter		Setting Unit	Set Value	Description
No. 4	Reference Unit Selection	-	mm	The actual reference unit is determined by settings of this parameter and the number of digits below decimal point (fixed parameter 5).   When Number of Digits below Decimal Point $=4$,   1 reference unit $=0.0001(\mathrm{~mm})=0.1(\mu \mathrm{~m})$
No. 5	Number of Digits below Decimal Point	-	4	When Number of Digits below Decimal Point $=4$ or more, the linear scale pitch $25.6(\mu \mathrm{~m})$ can be expressed in an integral number. Therefore, set to 4 .
No. 6	Linear Scale Pitch	user units ( $0.1 \mu \mathrm{~m}$ )	256	1 reference unit $=0.1(\mu \mathrm{~m})$ because Number of Digits below Decimal Point $=4$. Therefore, set to $256(0.1 \mu \mathrm{~m})$
No. 34	Rated Speed	0.1 m/s	15	Set to 15: The value of linear motor rated speed $1.5(\mathrm{~m} / \mathrm{s})$ converted in units of $0.1 \mathrm{~m} / \mathrm{s}$.
No. 36	Number of Pulses per Linear Scale Pitch	pulse/ linear scale pitch	2	Set to the result of division: Pn281 (Encoder Output Resolution) $\div 4$   (In this example, $8 \div 4=2$ )

[ b ] Setting Example when Fixed Parameter No. 4 (Reference Unit Selection) is Set to 0: pulse

Fixed Parameter		Setting Unit	Set Value	Description
No. 4	Reference Unit Selection	-	pulse	-
No. 5	Number of Digits below Decimal Point	-	-	This parameter is invalid when "pulse" is selected for Reference Unit.
No. 6	Linear Scale Pitch	$\mu \mathrm{m}$	256	When "pulse" is selected for Reference Unit, the setting unit of this parameter is fixed to " $\mu \mathrm{m}$ ". However, the linear scale pitch $25.6(\mu \mathrm{~m})$ cannot be expressed in an integral number in this setting unit.   Therefore, adjust the linear scale pitch by multiplying by 10 and set to the result of multiplication: 256.
No. 34	Rated Speed	$0.1 \mathrm{~m} / \mathrm{s}$	150	The value of the linear motor rated speed $1.5(\mathrm{~m} / \mathrm{s})$ converted in $0.1 \mathrm{~m} / \mathrm{s}$ is 15 . However, the actual linear scale pitch multiplied by 10 is set for Linear Scale Pitch. To keep equivalence, set to the value of the actual rated speed multiplied by $10: 150$.
No. 36	Number of Pulses per Linear Scale Pitch	pulse/ linear scale pitch	2	Set to the result of division: Pn281 (Encoder Output Resolution) $\div 4$   (In this example, $8 \div 4=2$ )

## 7

## Motion Commands

This chapter describes each motion command parameters and the parameter setting examples.
7.1 Motion Commands ..... 7-2
7.1.1 Motion Command Table ..... 7-2
7.2 Motion Command Details ..... 7-3
7.2.1 Positioning (POSING) ..... 7-3
7.2.2 External Positioning (EX_POSING) ..... 7-9
7.2.3 Zero Point Return (ZRET) ..... 7-15
7.2.4 Interpolation (INTERPOLATE) ..... 7-57
7.2.5 Latch (LATCH) ..... 7-60
7.2.6 JOG Operation (FEED) ..... 7-63
7.2.7 STEP Operation (STEP) ..... 7-67
7.2.8 Zero Point Setting (ZSET) ..... 7-71
7.2.9 Speed Reference (VELO) ..... 7-73
7.2.10 Torque Reference (TRQ) ..... 7-77
7.2.11 Phase References (PHASE) ..... 7-81
7.3 Motion Subcommands ..... 7-85
7.3.1 No Command (NOP) ..... 7-85
7.3.2 Read Fixed Parameters (FIXPRM_RD) ..... 7-86

### 7.1 Motion Commands

### 7.1.1 Motion Command Table

The SVA-01 Module supports the following motion commands provided for the MP2000 series Machine Controllers. Refer to Reference Page in the Table for details on each motion command.

Command   Code	Command	Name	Description	Reference   Page
0	NOP	No command	-	-
1	POSING	Positioning	Positions to the specified position using the specified   acceleration/deceleration time constants and the specified   speed.	$7-3$
2	EX_POSING	External Positioning	Positions by moving the external positioning travel dis-   tance from the point an external positioning signal was   input when already performing a positioning operation.	$7-9$
3	ZRET	Zero Point Return	Returns to the zero point in the machine coordinate sys-   tem. When using an incremental encoder, there are 17 dif-   ferent zero point return methods that can be used.	$7-15$
4	INTERPOLATE	Interpolation	Performs interpolation feeding using positioning data dis-   tributed consecutively from the CPU Module.	$7-57$
7	FEED	Latch	Memorizes the current position when the latch signal is   input during an interpolation feed operation.	$7-60$
8	STEP	JOG Operation	Moves the axis at the specified speed in the specified   direction until the command is canceled.	$7-63$
9	ZSET	STEP Operation	Positions the specified travel distance in the specified   direction at the specified speed.	$7-67$
23	VELO	Speed Reference	Sets the zero point in the machine coordinate system and   enables the software limit function.	$7-71$
24	TRQ	Operates with speed control mode.	$7-73$	
25	PHASE	Phase Reference	Operat Setting	Operates with phase control mode.

## 7．2 Motion Command Details

The following describes the procedure for executing motion commands．

## 7．2．1 Positioning（POSING）

The POSING command positions the axis to the target position using the specified target position and speed．Parame－ ters related to acceleration and deceleration are set in advance．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	There are no alarms．	IL $\square \square 04$ is 0.
2	The Servo ON condition．	IW $\square 00$, bit 1 is ON．
3	Motion command execution has been completed．＊	IW $\square \square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF．

＊This condition is a basic execution condition．Refer to Chapter 8 Switching Commands during Execution on page 8－1 when changing the command that is being executed to a POSING command．

2．Set the following motion setting parameters．
Speed Reference Setting：OLDD10
Filter Type Selection：OWDD03，bits 8 to B
－The speed reference can be changed during operation．
－An override of between $0 \%$ to $327.67 \%$ can be set for the speed reference．
3．Set OWDロ08 to 1 to execute the POSING motion command．
－When the bit 5 of OWDप09（Position Reference Type）is set to 1 （Absolute Mode），set the parameter OLDㅁㅁㅣ（Position Reference Setting）before or at the same scan timing as sending the POSING command．

4．Set the target position（OLロロ1C）．
Positioning will start．IW $\square \square 08$ will be 1 during the positioning．
IW $\square \square 0 \mathrm{C}$ ，bit 3 will turn ON when the axis approaches the target position．
IWロロ0C，bit 1 will turn ON when the axis reaches the target position and the positioning has been completed．
－If the Position Reference Type（OWDロ09，bit 5）is set for an absolute mode，the target position can be set before executing the command．
－The target position can be changed during operation．
－When the target position is changed so that there is not sufficient deceleration distance or after the new target position has already been passed，the system will first decelerate to a stop and then reposition according to the new target position．

5．Set OWロロ08 to 0 to execute the NOP motion command to complete the positioning operation．
POSING Operation Pattern


Terminology：Command execution
When a command code is stored in the motion command register（OW $\square \square 08$ ），execution of the motion command correspond－ ing to that code is started．Used in describing motion command operations．

## （2）Holding

Axis travel can be stopped during command execution and then the remaining travel can be restarted．A command is held by setting the Holds A Command bit（OWD $\square 09$ ，bit 0 ）to 1 ．
－Set the Holds A Command bit（OWDロ09，bit 0）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the Command Hold Completed bit（IWDC09，bit 1）will turn ON．
－Reset the Holds A Command bit（OWロロ09，bit 0 ）to 0 ．The command hold status will be cleared and the remaining portion of the positioning will be restarted．

## （3）Aborting

Axis travel can be stopped during command execution and the remaining travel canceled by aborting execution of a command．A command is aborted by setting the Interrupt A Command bit（OWDD09，bit 1）to 1 ．
－Set the Interrupt A Command bit（OWDロ09，bit 1）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the remain travel will be canceled and the Positioning Completed bit（IWロロ0C， bit 1）will turn ON．
－The positioning will restart if the Interrupt A Command bit（OWDD09，bit 1 ）is reset to 0 during abort pro－ cessing．
－This type of operation will also be performed if the motion command is changed to NOP during axis move－ ment．

## （ 4 ）Related Parameters

## ［ a ］Setting Parameters

Parameter	Name	Setting
$\begin{aligned} & \text { OWロロ00 } \\ & \text { Bit } 0 \end{aligned}$	Servo ON	Turn the power to the Servomotor ON and OFF．   1：Power ON to Servomotor，0：Power OFF to Servomotor   Set this bit to 1 before setting the Motion Command（OWDO08）to 1 ．
OWपロ03	Function Setting 1	Set the speed unit，acceleration／deceleration unit，and filter type．
OWपロ08	Motion Command	The positioning starts when this parameter is set to 1 ．   The operation will be canceled if this parameter is set to 0 during POSING command execution．
OWロロ09   Bit 0	Holds A Command	The axis will decelerate to a stop if this bit is set to 1 during POSING command execu－ tion．   The positioning will restart if this bit is reset to 0 when a command is being held．
OWロロ09 Bit 1	Interrupt A Command	The axis will decelerate to a stop if this bit is set to 1 during POSING command execu－ tion．   When this bit is reset to 0 after decelerating to a stop，the operation depends on the set－ ting of the Position Reference Type（OWDD09，bit 5）．
OWロロ09   Bit 5	Position Reference Type	Select the type of position reference．   0 ：Incremental addition mode，1：Absolute mode   Set this bit before setting the Motion Command（OWपロ08）to 1.
OLDロ10	Speed Reference Setting	Specify the speed for the positioning．   This setting can be changed during operation．The unit depends on the Function Setting 1 setting（OWDप03，bits 0 to 3 ）．
OWपロ18	Override	This parameter allows the positioning speed to be changed without changing the Speed Reference Setting（OLDD10）．Set the speed as a percentage of the Speed Reference Setting．This setting can be changed during operation．   Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$   Example：Setting for $50 \%$ ： 5000
OLDロ1C	Position Reference Setting	Set the target position for positioning．This setting can be changed during operation． The meaning of the setting depends on the status of the Position Reference Type bit （OWDロ09，bit 5）．
OLDロ1E	Width of Positioning Completion	Set the width in which to turn ON the Positioning Completed bit（IWCOOC，bit 1）．
OLDO20	NEAR Signal Output Width	Set the range in which the NEAR Position bit（IWDC0C，bit 3）will turn ON．The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here．
OLDロ36	Straight Line Acceleration／ Acceleration Time Constant	Set the rate of acceleration or acceleration time constant for positioning．
OLDロ38	Straight Line Deceleration／ Deceleration Time Constant	Set the rate of deceleration or deceleration time constant for positioning．
OWDロ3A	Filter Time Constant	Set the acceleration／deceleration filter time constant．Exponential acceleration／decelera－ tion or a moving average filter can be selected in the Function Setting 1 bit（OWDD03， bits 8 to $B$ ）．   Change the setting only after pulse distribution has been completed for the command （IWロロ0C，bit 0 is ON ）．

## －Terminology：Pulse distribution

Pulse distribution transfers reference values from the Machine Controller registers to the SERVOPACK registers every scan． Used in describing motion command operation．
［b］Monitoring Parameters

Parameter	Name	Monitor Contents
$\begin{aligned} & \hline \text { IWपロ00 } \\ & \text { Bit } 1 \end{aligned}$	Running （At Servo ON）	Indicates the Servo ON status．   ON：Power supplied to Servomotor，OFF：Power not supplied to Servomotor
ILロロ02	Warning	Stores the most current warning．
ILロロ04	Alarm	Stores the most current alarm．
IWロロ08	Motion Command Response Code	Indicates the motion command that is being executed． The response code is 1 during POSING command execution．
$\begin{aligned} & \hline \text { IWपロ09 } \\ & \text { Bit } 0 \end{aligned}$	Command Execution Flag	Turns ON when abort processing is being performed for POSING command． Turns OFF when abort processing has been completed．
$\begin{aligned} & \text { IWपロ09 } \\ & \text { Bit1 } \end{aligned}$	Command Hold Completed	Turns ON when a deceleration to a stop has been completed as the result of setting the Holds A Command bit（OW $\square \square 09$ ，bit 0 ）to 1 during POSING command execution．
IWロロ09   Bit 3	Command Error Completed Status	Turns ON if an error occurs during POSING command execution． The axis will decelerate to a stop if it is moving．Turns OFF when another command is exe－ cuted．
IWロロ09   Bit 8	Command Execution Completed	Always OFF for POSING command．   Use the Positioning Completed bit（IW $\square \square 0 \mathrm{C}$ ，bit 1 ）to confirm completion of this com－ mand．
$\begin{aligned} & \hline \text { IWロप0C } \\ & \text { Bit } 0 \end{aligned}$	Discharging Completed	Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of the move command．
$\begin{aligned} & \hline \text { IWロपOC } \\ & \text { Bit } 1 \end{aligned}$	Positioning Completed	Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases．
IWロロ0C   Bit 3	NEAR Position	The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLD $\square 20$ ）．   OLD口20 $=0$ ：Turns ON when pulse distribution has been completed $(\mathrm{DEN}=\mathrm{ON})$ ．Other－ wise，it turns OFF．   OLロロ20 $\neq 0$ ：Turns ON when the absolute value of the difference between MPOS （ILロロ12）and APOS（ILロロ16）is less than the NEAR Position Setting even if pulse distribution has not been completed． OFF in all other cases．

## （5）Timing Charts

## ［a］Normal Execution


[b] Execution when Aborted

[ c ] Execution when Aborting by Changing the Command

[d] Command Hold

[e] Execution when an Alarm Occurs


## 7．2．2 External Positioning（EX＿POSING）

The EX＿POSING command positions the axis to the target position using the specified target position and speed． Parameters related to acceleration and deceleration are set in advance．
If the external positioning signal turns ON during axis movement，the axis will move the distance specified for the External Positioning Move Distance from the point at which the external positioning signal turned ON，and then stop． If the external positioning signal does not turn ON ，positioning will be completed to the original target position．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	There are no alarms．	ILD $\square 04$ is 0 ．
2	The Servo ON condition．	IW $\square \square 00$ ，bit 1 is ON．
3	Motion command execution has been completed．＊	IW $\square \square 08$ is 0 and IW $\square \square 09$ ，bit 0 is OFF．

＊This condition is a basic execution condition．Refer to Chapter 8 Switching Commands during Execution on page 8－1 when changing the command that is being executed to an EX＿POSING command．

2．Set the following motion setting parameters．
External Positioning Final Travel Distance：OLDप46
External Positioning Signal Setting：OWDロ04
Speed Reference Setting：OLDロ10
Filter Type Selection：OWDロ03，bits 8 to B
Position Reference Setting：OLDD1C
－The Speed Reference can be changed during operation．
－An override of between $0 \%$ to $327.67 \%$ can be set for the speed reference．
－A latch zone can be set．
3．Set OWDप08 to 2 to execute the EX＿POSING motion command to use the preceding settings in the same scan．

4．Turn $O N$ the external positioning signal．
The axis will move for the External Positioning Final Travel Distance and decelerate to a stop．
IW $\square 09$ ，bit 8 will turn ON when the axis stops and external positioning has been completed．
5．Set OWロロ08 to 0 to execute the NOP motion command to complete the external positioning opera－ tion．

EX＿POSING Operation Pattern


When the sign of the External Positioning Final Travel Distance is opposite to the direction of positioning to the target position, the axis will be decelerated to a stop and then starts moving in the reverse direction as illustrated below.


While the latch zone setting is enabled, any external input signal out of the latch enabled zone is ignored.
In this case, the position is latched when the first external signal is input in the latch enabled zone, and the axis moves from this latched position for the external positioning move distance for positioning.


## (2) Holding

Axis travel can be stopped during command execution and then the remaining travel can be restarted. A command is held by setting the Holds A Command bit (OWDD09, bit 0 ) to 1.

- Set the Holds A Command bit (OWDロ09, bit 0) to 1 . The axis will decelerate to a stop.
- When the axis has stopped, the Command Hold Completed bit (IWDप09, bit 1) will turn ON.
- Reset the Holds A Command bit (OWD $\square 09$, bit 0 ) to 0 .

The command hold status will be cleared and the remaining portion of the operation will be restarted.

## (3) Aborting

Axis travel can be stopped during command execution and the remaining travel canceled by aborting execution of a command. A command is aborted by setting the Interrupt A Command bit (OWDロ09, bit 1) to 1.

- Set the Interrupt A Command bit (OWDप09, bit 1 ) to 1 . The axis will decelerate to a stop.
- When the axis has stopped, the remain travel will be canceled and the Positioning Completed bit (IW $\square \square 0 \mathrm{C}$, bit 1) will turn ON.
- The positioning will restart if the Interrupt A Command bit (OWDD09, bit 1 ) is reset to 0 during abort processing.
- This type of operation will also be performed if the motion command is changed to NOP during axis movement.


## （ 4 ）Related Parameters

## ［a］Setting Parameters

Parameter	Name	Setting
$\begin{aligned} & \text { OWロप00 } \\ & \text { Bit } 0 \end{aligned}$	Servo ON	Turn the power to the Servomotor ON and OFF．   1：Power ON to Servomotor，0：Power OFF to Servomotor   Set this bit to 1 before setting the Motion Command（OWDO08）to 2.
OWDロ03	Function Setting 1	Set the speed unit，acceleration／deceleration unit，and filter type．
OWDロ04	Function Setting 2	Set the external positioning signal．   0 ：EXT（DI 5），1：ZERO（DI 2），2：Phase－C pulse signal
OWDロ08	Motion Command	The positioning starts when this parameter is set to 2 ．   The operation will be canceled if this parameter is set to 0 during EX＿POSING com－ mand execution．
OWロロ09   Bit 0	Holds A Command	The axis will decelerate to a stop if this bit is set to 1 during execution of EX＿POSING command execution．   The positioning will restart if this bit is reset to 0 when a command is being held．
OWDC09 Bit 1	Interrupt A Command	The axis will decelerate to a stop if this bit is set to 1 during EX＿POSING command execution．
OWDロ09 Bit 4	Latch Zone Effective Selection	Enable or disable the area where the external positioning signal is valid． If the latch zone is enabled，the external positioning signal will be ignored if it is input outside of the latch zone．   0 ：Disable，1：Enable
OWロロ09   Bit 5	Position Reference Type	Select the type of position reference．   0 ：Incremental addition mode，1：Absolute mode   Set this bit before setting the Motion Command（OWप्र०8）to 2
OLDロ10	Speed Reference Setting	Specify the speed for the positioning．   This setting can be changed during operation．The unit depends on the Function Set－ ting 1 setting（OWDロ03，bits 0 to 3 ）．
OWDロ18	Override	This parameter allows the positioning speed to be changed without changing the Speed Reference Setting（OLDロ10）．   Set the speed as a percentage of the Speed Reference Setting．This setting can be changed during operation．   Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$
OLDロ1C	Position Reference Set－ ting	Set the target position for positioning．   The meaning of the setting depends on the status of the Position Reference Type bit （OWDロ09，bit 5）．
OLDロ1E	Width of Positioning Completion	Set the width in which to turn ON the Positioning Completed bit（IWCD0C，bit 1）．
OLDप20	NEAR Signal Output Width	Set the range in which the NEAR Position bit（IWDC0C，bit 3）will turn ON．The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here．
OLD－2A	Latch Zone Lower Limit	Set the boundary in the negative direction of the area in which the external positioning signal is to be valid．
OLD－2C	Latch Zone Upper Limit	Set the boundary in the positive direction of the area in which the external positioning signal is to be valid．
OLDロ36	Straight Line Acceleration／ Acceleration Time Constant	Set the rate of acceleration or acceleration time constant for positioning．
OLDロ38	Straight Line   Deceleration／   Deceleration Time Constant	Set the rate of deceleration or deceleration time constant for positioning．
OWDロ3A	Filter Time Constant	Set the acceleration／deceleration filter time constant．Exponential acceleration／decel－ eration or a moving average filter can be selected in OWDप03，bits 8 to B． Change the setting only after pulse distribution has been completed for the command （IWロロ0C，bit 0 is ON ）．
OLDロ46	External Positioning Final Travel Distance	Set the moving amount after the external positioning signal is input．

## ［ b ］Monitoring Parameters

Parameter	Name	Monitor Contents
IWपロ00   Bit 1	Running （At Servo ON）	Indicates the Servo ON status．   ON：Power supplied to Servomotor，OFF：Power not supplied to Servomotor
ILロロ02	Warning	Stores the most current warning．
ILロロ04	Alarm	Stores the most current alarm．
IWロロ08	Motion Command Response Code	Indicates the motion command that is being executed．   The response code is 2 during EX＿POSING command execution．
$\begin{aligned} & \text { IWपप09 } \\ & \text { Bit } 0 \end{aligned}$	Command Execution Flag	Turns ON during EX＿POSING command execution． Turns OFF when command execution has been completed．
IWロロ09   Bit 1	Command Hold Completed	Turns ON when a deceleration to a stop has been completed as the result of setting the Holds A Command bit（OWDロ09，bit 1）to 1 during EX＿POSING command execution（IW $\square \square 08$ $=2$ ）．
IWロロ09   Bit 3	Command Error Completed Status	Turns ON if an error occurs during EX＿POSING command execution． The axis will decelerate to a stop if it is moving．Turns OFF when another command is exe－ cuted．
IWロロ09   Bit 8	Command Execution Completed	Turns ON when EX＿POSING command execution has been completed．
$\begin{aligned} & \hline \text { IWロप0C } \\ & \text { Bit } 0 \end{aligned}$	Discharging Completed	Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command．
IWロロ0C   Bit 1	Positioning Completed	Turns ON when pulse distribution has been completed and the current position is within the Positioning Completed Width．OFF in all other cases．
IWロロ0C   Bit 2	Latch Completed	Turns OFF when a new latch command is executed and turns ON when the latch has been completed．The latched position is stored as the Machine Coordinate System Latch Position （monitoring parameter ILD口18）．
IWロロ0C   Bit 3	NEAR Position	The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLD $\square 20$ ）．   OLDप20 $=0$ ：Turns ON when pulse distribution has been completed $(\mathrm{DEN}=\mathrm{ON})$ ．Other－ wise，it turns OFF．   OL $\square 20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS （ILDロ12）and APOS（ILDロ16）is less than the NEAR Position Setting even if pulse distribution has not been completed． OFF in all other cases．
ILロロ18	Machine Coordinate System Latch Position	Stores the current position in the machine coordinate system when the latch signal turned ON．

## (5) Timing Charts

## [ a ] Normal Execution


[b] Execution when Aborted

[ c ] Execution when Aborting by Changing the Command

[d] Execution when an Alarm Occurs


## 7．2．3 Zero Point Return（ZRET）

When the Zero Point Return command（ZRET）is executed，the axis will return to the zero point of the machine coordi－ nate system．
The operation to detect the position of the zero point is different between an absolute encoder and an incremental encoder．
With an absolute encoder，positioning is performed to the zero point of the machine coordinate system，the machine coordinate system is constructed using the zero point as the value set for OLDD48（Zero Point Position in Machine Coordinate System Offset），and then the command execution is completed．
－When using an absolute encoder，use POSING（positioning）command instead of ZRET（zero point return）com－ mand unless ZRET command is absolutely necessary．
With an incremental encoder，there are 17 different methods（see below）that can be performed for the zero point return operation．

## （1）Selecting the Zero Point Return Method（with an Incremental Encoder）

When an incremental encoder is selected for the Encoder Selection by fixed parameter No． 30 to 0，the coordinate sys－ tem data will be lost when the power supply is turned OFF．This command must be executed when the power supply is turned ON again to establish a new coordinate system．
The following table lists the 17 zero point return methods that are supported by the MP2000 Series Machine Controller． Select the best method for the machine according to the setting parameters．Refer to the page in the Table for additional command information．

Setting Parameter OWDロ3C	Name	Method	Signal Meaning	Reference Page
0	DEC1＋Phase－C	Applies a 3－step deceleration method using the deceleration limit switch and phase－C pulse．	DEC1 signal：DI＿5 or OWD－05，bit 8	7－21
1	ZERO signal	Uses the ZERO signal．	ZERO signal：DI＿2	7－22
2	DEC1＋ZERO signals	Applies a 3－step deceleration method using the deceleration limit switch and ZERO signal．	DEC1 signal：DI＿5 or OWDCD 05 ，bit 8 ZERO signal：DI＿2	7－23
3	Phase－C	Uses the phase－C pulse．	－	7－24
4	DEC2＋ZERO signals	Uses the deceleration limit switch（LS） signal as the zone signal，and ZERO sig－ nal as the zero point signal．	DEC2 signal：DI 5 or OWDD05，bit 8 ZERO signal：DI＿2	7－25
5	DEC1＋LMT＋ ZERO signals	Uses the deceleration limit switch（LS） signal and two limit signals（LMT）for zero point return as the zone signals，and ZERO signal as the zero point signal．	DEC1 signal：DI＿5 or OWDप05，bit 8 Reverse LMT signal：OWDロ05，bit 9 Forward LMT signal：OWDロ05，bit 10 ZERO signal：DI＿2	7－28
6	$\begin{aligned} & \text { DEC2 + Phase-C } \\ & \text { signals } \end{aligned}$	Uses the deceleration limit switch（LS） signal as the zone signal，and the phase－ C signal as the zero point signal．	DEC2 signal：DI＿5 or OWDD05，bit 8	7－34
7	DEC1＋LMT＋ Phase－C signals	Uses the deceleration limit switch（LS） signal and two limit signals（LMT）for zero point return as the zone signals，and the phase－C signal as the zero point sig－ nal．	DEC1 signal：DI 5 or OWDCD，bit 8 Reverse LMT signal：OWDロ05，bit 9 Forward LMT signal：OWDD 05 ，bit 10	7－37
11	C pulse Only	Uses only the phase－C pulse．	$\begin{aligned} & \hline \text { P-OT: DI_3 } \\ & \text { N-OT: DI_4 } \end{aligned}$	7－43
12	P－OT \＆C pulse	Uses the positive overtravel signal and phase－C pulse．	P－OT：DI＿3	7－44
13	P－OT Only	Uses only the positive overtravel signal．	P－OT：DI＿3   This method must not be used if repeat accuracy is required．	7－45
14	Home LS \＆C pulse	Uses the home signal and phase－C pulse．	P－OT：DI＿3，N－OT：DI＿4 HOME：DI＿2	7－47
15	Home LS Only	Uses only the home signal．	P－OT：DI＿3，N－OT：DI＿4 HOME：DI 2	7－49


Setting   Parameter   OWDロ3C	Name	Method	Signal Meaning   Page	
16	N－OT \＆C pulse	Uses the negative overtravel signal and   phase－C pulse．	N－OT：DI＿4	$7-51$
17	N－OT Only	Uses only the negative overtravel signal．	N－OT：DI＿4   This method must not be used if repeat   accuracy is required．	$7-52$
18	INPUT \＆C pulse	Uses the INPUT signal and phase－C   pulse．	INPUT：OWD口05，bit B	$7-53$
19	INPUT Only	Uses only the INPUT signal．	INPUT：OWDロ05，bit B．   This method must not be used if repeat   accuracy is required．	$7-55$

## （ 2 ）Signals Used for Zero Point Return

The following table shows the details on the signals used for zero point return operation．

Signal Name	Signal Allocation	Polarity Inversion Function	Latch Function	Description	Zero Point Return Methods（OWDロ3C） That Use the Signal
Phase－C	5－6 pin（Differen－ tial input）	Valid ${ }^{*}$	Valid	Used as the zero point signal for zero point return	$\begin{aligned} & 0,3,6,7,11,12,14, \\ & 16, \text { and } 18 \end{aligned}$
ZERO	General－purpose DI＿2（pin No．18）	Valid ${ }^{* 2}$	Valid	Used as the zero point signal for zero point return	1，2，4，and 5
HOME LS			Valid	Used as the deceleration limit switch （LS）signal for zero point return	14
				Used as the zero point signal for zero point return	15
P－OT	General－purpose DI＿3（pin No．14）	Invalid	Invalid	Used as the deceleration limit switch （LS）signal for zero point return．	12
				Used as the deceleration limit switch （LS）signal and the zero point signal for zero point return．	13
N－OT	General－purpose DI＿4（pin No．13）	Invalid	Invalid	Used as the deceleration limit switch （LS）signal for zero point return．	16
				Used as the deceleration limit switch （LS）signal and the zero point signal for zero point return．	17
DEC1	General－purpose DI＿5（pin No．36）or OW口ロ05，bit 8	Valid ${ }^{*}$	Invalid	Used as the deceleration limit switch （LS）signal for zero point return．	0，2，5，and 7
DEC2			Invalid	Used as the zone signal and the deceler－ ation limit switch（LS）signal for zero point return．	4 and 6
EXT	General－purpose DI＿5（pin No．36）		Valid	Used as the external input signal for the external positioning command．Also used as the input signal for the modal latch function．	－
Reverse LMT	OW口ロ05，bit 9	Invalid	Invalid	Used as the zone signal for zero point return．	5 and 7
Forward LMT	OW口ロ05，bit 10	Invalid	Invalid	Used as the zone signal for zero point return．	5 and 7
INPUT	OW $\square \square 05$ ，bit 11	Invalid	Invalid	Used as the deceleration limit switch （LS）signal for zero point return．	18
				Used as the zero point signal for zero point return．	19

＊1．The polarity can be inversed by setting the fixed parameter No．20，bit 1 （C Pulse Input Signal Polar－ ity Selection）．
＊2．The polarity can be inversed by setting the fixed parameter No．1，bit 5 （Deceleration LS Inversion Selection）．

## （3）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	There are no alarms．	IL $\square \square 04$ is 0.
2	The Servo ON condition．	IW $\square \square 00$, bit 1 is ON．
3	Motion command execution has been completed．	

＊This condition is a basic execution condition．Refer to Chapter 8 Switching Commands during Execution on page 8－1 when changing the command that is being executed to a ZRET command．

2．When an incremental encoder is selected for the Encoder Selection by setting fixed parameter No． 30 to 0 ，set the zero point return method that will be used in the Zero Point Return Method（motion setting parameter OWロロ3C）as described on the previous page．
－The software limit function will be enabled after the zero point return operation has been completed．
3．Refer to 7．2．3（ 8 ）Zero Point Return Operation and Parameters on page 7－21 and set the required parameters．

4．Set OWपロ08 to 3 to execute the ZRET motion command．
The zero point return operation will start．IWD口 08 will be 3 during the operation．
IB $\square \square 0 \mathrm{C}$ ，bit5 will turn ON when the axis reaches the zero point and zero point return has been completed．
5．Set OWロロ08 to 0 to execute the NOP motion command and then complete the zero point return operation．

## （ 4 ）Holding

Holding execution is not possible during zero point return operation．The Holds A Command bit（OWDD09，bit 0 ）is ignored．
（5）Aborting
The zero point return can be canceled by aborting execution of a command．A command is aborted by setting the Inter－ rupt A Command bit（OWDロ09，bit 1）to 1.
－Set the Interrupt A Command bit（OWDD09，bit 1）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the remain travel will be canceled and the Positioning Completed bit（IWDロ0C， bit 1）will turn ON ．
－This type of operation will also be performed if the motion command is changed to NOP during axis move－ ment．

## （ 6 ）Related Parameters

［a］Setting Parameters

Parameter	Name	Setting
$\begin{aligned} & \text { OWवप00 } \\ & \text { Bit } 0 \end{aligned}$	Servo ON	Turns the power to the Servomotor ON and OFF．   1：Power ON to Servomotor，0：Power OFF to Servomotor   Set this bit to 1 before setting the Motion Command（OW口ロ08）to 3 ．
OW口ロ03	Function Setting 1	Set the speed unit．
OW口ロ08	Motion Command	Zero point return operation starts when this parameter is set to 3 ．   The operation will be canceled if this parameter is set to 0 during ZRET command exe－ cution．
OW口ロ09 Bit 1	Interrupt A Command	The axis will decelerate to a stop if this bit is set to 1 during ZRET command execution．
OWロロ09   Bit 5	Position Reference Type	Select the type of position reference．   0 ：Incremental addition mode，1：Absolute mode   Set this bit before setting the Motion Command（OW口ロ08）to 3 ．
OLD $\square 36$	Straight Line Acceleration／Accelera－ tion Time Constant	Set the rate of acceleration or acceleration time constant for positioning．
OLD $\square 38$	Straight Line Deceleration／Decelera－ tion Time Constant	Set the rate of deceleration or deceleration time constant for positioning．
OWロロ3D	Width of Starting Point Position Output	Set the width in which the Zero Point Position bit（IWDロ0C，bit 4）will turn ON．

［b］Monitoring Parameters

Parameter	Name	Monitor Contents
$\begin{aligned} & \hline \text { IWロप00 } \\ & \text { Bit } 1 \end{aligned}$	Running（At Servo ON）	Indicates the Servo ON status．   ON：Power supplied to Servomotor，OFF：Power not supplied to Servomotor
ILロロ02	Warning	Stores the most current warning．
ILDロ04	Alarm	Stores the most current alarm．
IWロロ08	Motion Command Response Code	Indicates the motion command that is being executed． The response code is 3 during ZRET command execution．
$\begin{aligned} & \hline \text { IWロप09 } \\ & \text { Bit } 0 \end{aligned}$	Command Execution Flag	Turns ON during ZRET command execution． Turns OFF when command execution has been completed．
$\begin{aligned} & \hline \text { IWロप09 } \\ & \text { Bit } 1 \end{aligned}$	Command Hold Completed	Always OFF for ZRET command．
$\begin{aligned} & \hline \text { IWDロ09 } \\ & \text { Bit } 3 \end{aligned}$	Command Error Completed Status	Turns ON if an error occurs during ZRET command execution．   The axis will decelerate to a stop if it is moving．Turns OFF when another command is executed．
$\begin{aligned} & \text { IWロप09 } \\ & \text { Bit } 8 \end{aligned}$	Command Execution Completed	Turns ON when ZRET command execution has been completed．
$\begin{aligned} & \hline \text { IWロロ0C } \\ & \text { Bit } 0 \end{aligned}$	Discharging Completed	Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command．
IWロロ0C   Bit 3	NEAR Position	The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLDप20）．   OLDロ20 $=0$ ：Turns ON when pulse distribution has been completed（ $\mathrm{DEN}=\mathrm{ON}$ ）．Other－ wise，it turns OFF．   OLDロ $20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS （ILDロ12）and APOS（ILDロ16）is less than the NEAR Position Setting even if pulse distribution has not been completed． OFF in all other cases．
$\begin{aligned} & \text { IWロロ0C } \\ & \text { Bit } 4 \end{aligned}$	Zero Point Position	Turns ON if the current position after the zero point return operation has been completed is within the Width of Starting Point Position Output from the zero point position．Otherwise，it turns OFF．
$\begin{aligned} & \hline \text { IWロロ0C } \\ & \text { Bit } 5 \end{aligned}$	Zero Point Return （Setting）Completed	Turns ON when the zero point return has been completed．

## (7) Timing Charts

[ a ] Normal Execution

[b] Execution when Aborted

[c] Execution when Aborting by Changing the Command

［d］Execution when an Alarm Occurs
$=3$（ZRET）
IWDロ08＝ 3 （ZRET）
IWDD09，bit 0 （BUSY）
IWDC09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）
IWロロ0C，bit 0 （DEN）
IWロロ0C，bit 1 （POSCOMP）
IWロロ0C，bit 5 （ZRNC）


## （ 8 ）Zero Point Return Operation and Parameters

With an incremental encoder，there are 17 different methods that can be performed for the zero point return operation． This section explains the operation that occurs after starting a zero point return and the parameters that need to be set before executing the command．
［ a ］DEC1＋Phase－C Method（OWDC3C＝0）

## －Operation after Zero Point Return Starts

Travel is started at the zero point return speed in the direction specified in the parameters．
When the rising edge of the DEC1 signal is detected，the speed is reduced to the approach speed．
When the first phase－C pulse is detected after passing the $\mathrm{DEC1}$ signal at the approach speed，the speed is reduced to the creep speed and positioning is performed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the phase－C pulse is detected is set in the Zero Point Return Travel Distance，（OLDC42）．
－If an OT signal is detected during the zero point return operation，an OT alarm will occur．


Parameters to be Set

Parameter	Name	Setting
Fixed Parameter No．1，Bit 5	Deceleration LS Inversion Selection	Set whether or not to invert the polarity of DI＿5 signal used as DEC1 signal． However，the Zero Point Return Deceleration LS Signal（OWDC05，bit 8） will not be inverted even if this bit is set to 1 （invert）．
Fixed Parameter No．21，Bit 0	Deceleration LS Signal Selection	Select the signal to be used as DEC1． 0：OWDD 05 ，bit 8，1：DI＿5
OWपロ05，Bit 8	Zero Point Return Deceleration LS Signal （DEC1）	Used to input DEC1 signal from the ladder program when the bit 0 of fixed parameter No． 21 is 0 ．
OWDL09，Bit 3	Zero Point Return Direction Selection	Set the zero point return direction．   0 ：Reverse rotation（default），1：Forward rotation
OLDロ10	Speed Reference Setting	Set the speed to use when starting a zero point return． Only a positive value can be set；a negative value will result in an error．
OWDロ18	Override	This parameter allows the Zero Point Return speed to be changed without changing the Speed Reference Setting（OLDD10）．Set the speed as a per－ centage of the Speed Reference Setting．This setting can be changed during operation．   Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$ Example：Setting for 50\％： 5000
OWロロ3C	Zero Point Return Method	0：DEC1＋Phase－C
OLDロ3E	Approach Speed	Set the speed to use after detecting the DEC 1 signal． Only a positive value can be set；a negative value will result in an error．
OLDロ40	Creep Rate	Set the speed to use after detecting the first phase－C pulse after passing the DEC1 signal．Only a positive value can be set；a negative value will result in an error．
OLD－42	Zero Point Return Travel Distance	Set the travel distance from the point where the first phase－C pulse is detected after passing the DEC 1 signal．   If the sign is positive，travel will be toward the zero point return direction；if the sign is negative，travel will be away from the zero point return direction．

## ［ b ］ZERO Signal Method（OWDC3C＝1）

## Operation after Zero Point Return Starts

Travel is started at the approach speed in the direction specified in the parameters．
When the rising edge of the ZERO signal is detected，the speed is reduced to the creep speed and positioning is per－ formed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the ZERO signal is detected is set in the Zero Point Return Travel Distance（OLD－42）．
－If an OT signal is detected during the zero point return operation，an OT alarm will occur．

－Parameters to be Set

Parameter	Name	Setting
OWロロ3C	Zero Point Return   Method	1：ZERO Signal Method
OWロロ09，Bit 3	Zero Point Return   Direction Selection	Set the zero point return direction．   0：Reverse rotation（default），1：Forward rotation
OLロロ3E	Approach Speed	Set the speed to use when starting a zero point return．   Only a positive value can be set；a negative value will result in an error．
OLロप40	Creep Rate	Set the speed to use after detecting the ZERO signal．   Only a positive value can be set；a negative value will result in an error．
OLロप42	Zero Point Return Travel   Distance	Set the travel distance from the point where the ZERO signal is detected．   If the sign is positive，travel will be toward the zero point return direction；if   the sign is negative，travel will be away from the zero point return direction．

## ［ c ］DEC1＋ZERO Signal Method（OWDロ3C＝2）

Operation after Zero Point Return Starts
Travel is started at the zero point return speed in the direction specified in the parameters．
When the rising edge of the DEC 1 signal is detected，the speed is reduced to the approach speed．
When the rising edge of the ZERO signal is detected after passing the DEC1 signal at the approach speed，the speed is reduced to the creep speed and positioning is performed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the ZERO signal is detected is set in the Zero Point Return Travel Distance（OLD－42）．
－If an OT signal is detected during the zero point return operation，an OT alarm will occur．


Parameters to be Set

Parameter	Name	Setting
Fixed Parameter No．1，Bit 5	Deceleration LS Inversion Selection	Set whether or not to invert the polarity of DI 5 signal used as DEC1 signal． However，the Zero Point Return Deceleration LS Signal（OWDC05，bit 8） will not be inverted even if this bit is set to 1 （invert）．
Fixed Parameter No．21，Bit 0	Deceleration LS Signal Selection	Select the signal to be used as DEC1． 0：OWD $\square 05$ ，bit 8，1：DI＿5
OWD－05，Bit 8	Zero Point Return Deceleration LS Signal （DEC1）	Used to input DEC1 signal from the ladder program when the bit 0 of fixed parameter No． 21 is 0 ．
OWDL09，Bit 3	Zero Point Return Direction Selection	Set the zero point return direction． 0 ：Reverse rotation（default），1：Forward rotation
OLDロ10	Speed Reference Setting	Set the speed to use when starting a zero point return． Only a positive value can be set；a negative value will result in an error．
OWDロ18	Override	This parameter allows the Zero Point Return speed to be changed without changing the Speed Reference Setting（OLDD10）．Set the speed as a per－ centage of the Speed Reference Setting．This setting can be changed during operation．   Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$ Example：Setting for $50 \%$ ： 5000
OWロロ3C	Zero Point Return Method	2：DEC1＋ZERO Signal Method
OLDL3E	Approach Speed	Set the speed to use after detecting the DEC 1 signal． Only a positive value can be set；a negative value will result in an error．
OLD－40	Creep Rate	Set the speed to use after detecting the ZERO signal after passing the DEC1 signal．   Only a positive value can be set；a negative value will result in an error．
OLD－42	Zero Point Return Travel Distance	Set the travel distance from the point where the ZERO signal is detected after passing the DEC 1 signal．   If the sign is positive，travel will be toward the zero point return direction；if the sign is negative，travel will be away from the zero point return direction．

## ［ d ］Phase－C Method（OWDC3C＝3）

## －Operation after Zero Point Return Starts

Travel is started at the approach speed in the direction specified in the parameters．
When the rising edge of the phase－C pulse is detected，the speed is reduced to the creep speed and positioning is per－ formed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the phase－C pulse is detected is set in the Zero Point Return Travel Distance（OLDC42）．
－If an OT signal is detected during the zero point return operation，an OT alarm will occur．


Parameters to be Set

Parameter	Name	Setting
OWロロ09，Bit 3	Zero Point Return   Direction Selection	Set the zero point return direction．   0：Reverse rotation（default），1：Forward rotation
OWロロ3C	Zero Point Return   Method	3：Phase－C Method
OLロロ3E	Approach Speed	Set the speed to use when starting a zero point return．   Only a positive value can be set；a negative value will result in an error．
OLロロ40	Creep Rate	Set the speed to use after detecting the phase－C pulse．   Only a positive value can be set；a negative value will result in an error．
OLロप42	Zero Point Return Travel   Distance	Set the travel distance from the point where a phase－C pulse is detected．   If the sign is positive，travel will be toward the zero point return direction；if   the sign is negative，travel will be away from the zero point return direction．

[ e ] DEC2 + ZERO Signal Method (OW3口DC = 4)
With this method, the machine's position is confirmed by the ON/OFF status of the DEC2 signal and the retracting operation is performed automatically, so the zero point return is always performed with the same conditions.

- Starting the Zero Point Return in the High Region

1. Travel is started in the forward direction at the speed specified by the Speed Reference Setting (setting parameter OLDD10).
2. When the falling edge of the DEC2 signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, the axis travels in the reverse direction at the Approach Speed (setting parameter OLDC3E).
4. When the rising edge of the DEC2 signal is detected, the axis decelerates to a stop.
5. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
6. After the falling edge of the DEC2 signal is detected, the position is latched when the rising edge of the ZERO signal is detected.
7. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLDロ42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during zero point return operation, an OT alarm will occur.

Starting the Zero Point Return in the Low Region

1. The axis travels in the reverse direction at the Approach Speed (setting parameter OLDロ3E).
2. When the rising edge of the DEC2 signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
4. After the falling edge of the DEC2 signal is detected, the position is latched when the rising edge of the ZERO signal is detected.
5. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLD口42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during zero point return operation, an OT alarm will occur.

Related Parameters

Parameter	Name	Setting
Fixed Parameter No．1，Bit 5	Deceleration LS Inversion Selection	Set whether or not to inverse the polarity of DI＿5 signal used as DEC2 sig－ nal．   0 ：Do not invert   1：Invert   However，the deceleration limit signal for zero point return（OWDD05，bit 8）will not be invert even if this bit is set to 1 （invert）．
Fixed Parameter No．21，Bit 0	Deceleration LS Signal Selection	Select the signal to be used as DEC2． 0 ：Setting parameter OWDD 05 ，bit 8 1：DI＿5
OWपロ03， Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDD10（Speed Reference Setting），OLDप3E （Approach Speed），and OLDD40（Creep Rate．）   0：Reference unit／s   1： $10^{\mathrm{n}}$ reference units $/ \mathrm{min}$   2：Percentage of rated speed（ $1=0.01 \%$ ）   3：Percentage of rated speed（ $1=0.0001 \%$ ）
OWDL05，Bit 8	Zero Point Return Deceleration LS Signal （DEC2）	Used to input DEC2 signal from the ladder program when the bit 0 of fixed parameter No． 21 is 0 ． $\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
OLDロ10	Speed Reference Setting	Set the speed to use when starting a zero point return． Only a positive value can be set；a negative value will result in an error．
OWDロ18	Override	This parameter allows the Zero Point Return speed to be changed without changing the Speed Reference Setting（OLDD10）．Set the speed as a per－ centage of the Speed Reference Setting．This setting can be changed during operation．   Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）   Setting unit： $1=0.01 \%$（Example）Setting for 50\％： 5000
OWロロ3C	Zero Point Return Method	4：DEC2＋ZERO Signal Method
OLDロ3E	Approach Speed	Set the approach speed． Only a positive value can be set； 0 or a negative value will result in an error．
OLDロ40	Creep Rate	Set the creep speed．   Only a positive value can be set； 0 or a negative value will result in an error．
OLD－42	Zero Point Return Travel Distance	Set the travel distance from the point where the ZERO signal is detected after passing the DEC2 signal．   If the sign is positive，travel will be toward the zero point return direction；if the sign is negative，travel will be away from the zero point return direction．

## [ f ] DEC1 + LMT + ZERO Signal Method (OWDC3C = 5)

With this method, the machine's position is confirmed by the ON/OFF status of the DEC1, Reverse Limit, and Forward Limit signals and the retracting operation is performed automatically, so the zero point return is always performed with the same conditions.

- Starting the Zero Point Return in Region A

1. Travel is started in the positive direction at the speed specified by the Speed Reference Setting (setting parameter OLDD10).
2. When the falling edge of the DEC1 signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, the axis travels in the reverse direction at the Approach Speed (setting parameter OLDप3E).
4. When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop.
5. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
6. After the falling edge of the DEC1 signal is detected, the position is latched when the rising edge of the ZERO signal is detected.
7. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLD口42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during the zero point return operation, an OT alarm will occur.
- The command will end in an error at the start of the Zero Point Return operation if the status of the DEC1, Forward Limit, and Reverse Limit signals is not the same as the status shown in the diagram above.


## Starting the Zero Point Return in Region B

1．The axis travels in the reverse direction at the Approach Speed（setting parameter OLDロ3E）．

2．When the falling edge of the Reverse Limit signal is detected，the axis decelerates to a stop．

3．After decelerating to a stop，travel starts in the forward direction at the speed specified by the Speed Reference Setting（setting parameter OLDप10）．

4．When the falling edge of the DEC1 signal is detected，the axis decelerates to a stop．
5．After decelerating to a stop，the axis travels in the reverse direction at the Approach Speed（setting parameter OLDप3E）．

6．When the rising edge of the DEC1 signal is detected，the axis decelerates to a stop．

7．After decelerating to a stop，the axis travels in the forward direction at the Creep Rate（setting parame－ ter OLDप40）．

8．After the falling edge of the DEC1 signal is detected，the position is latched when the rising edge of the ZERO signal is detected．

9．The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance （setting parameter OLロロ42）and stops．The machine coordinate system is established with this final position as the zero point．

－If an OT signal is detected during zero point return operation，an OT alarm will occur．

## Starting the Zero Point Return in Region C

1. The axis travels in the reverse direction at the Creep Rate (setting parameter OLDप40).
2. When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
4. After the falling edge of the DEC1 signal is detected, the position is latched when the rising edge of the ZERO signal is detected.
5. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLD口42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during the zero point return operation, an OT alarm will occur.

Starting the Zero Point Return in Region D

1. The axis travels in the reverse direction at the Approach Speed (setting parameter OLDロ3E).
2. When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
4. After the falling edge of the DEC1 signal is detected, the position is latched when the rising edge of the ZERO signal is detected.
5. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLD口42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during the zero point return operation, an OT alarm will occur.


## Starting the Zero Point Return in Region E

1. The axis travels in the reverse direction at the Approach Speed (setting parameter OLDप3E).
2. When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
4. After the falling edge of the DEC1 signal is detected, the position is latched when the rising edge of the ZERO signal is detected.
5. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLD口42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during the zero point return operation, an OT alarm will occur.

Related Parameters

Parameter	Name	Setting
Fixed Parameter No．1，Bit 5	Deceleration LS Inversion Selection	Set whether or not to inverse the polarity of DI＿5 signal used as DEC1 sig－ nal．   0 ：Do not invert   1：Invert   However，the deceleration limit signal for zero point return（OWDD05，bit 8）will not be inverted even if this bit is set to 1 （invert）．
Fixed Parameter No．21，Bit 0	Deceleration LS Signal Selection	Select the signal to be used as DEC2． 0 ：Setting parameter OWDD 05 ，bit 8 1：DI＿5
OWपロ03， Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDD10（Speed Reference Setting），OLDप3E （Approach Speed），and OLDD40（Creep Rate．）   0：Reference unit／s   1： $10^{\mathrm{n}}$ reference units $/ \mathrm{min}$   2：Percentage of rated speed（ $1=0.01 \%$ ）   3：Percentage of rated speed（ $1=0.0001 \%$ ）
OWDL05，Bit 8	Zero Point Return Deceleration LS Signal （DEC1）	Used to input DEC1 signal from the ladder program when the bit 0 of fixed parameter No． 21 is 0 ． $\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
OLDロ10	Speed Reference Setting	Set the speed to use when starting a zero point return． Only a positive value can be set；a negative value will result in an error．
OWDロ18	Override	This parameter allows the Zero Point Return speed to be changed without changing the Speed Reference Setting（OLDD10）．Set the speed as a per－ centage of the Speed Reference Setting．This setting can be changed during operation．   Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）   Setting unit： $1=0.01 \%$（Example）Setting for 50\％： 5000
OWロロ3C	Zero Point Return Method	5：DEC1＋LMT＋ZERO Signal Method
OLDロ3E	Approach Speed	Set the approach speed． Only a positive value can be set； 0 or a negative value will result in an error．
OLDロ40	Creep Rate	Set the creep speed．   Only a positive value can be set； 0 or a negative value will result in an error．
OLD－42	Zero Point Return Travel Distance	Set the travel distance from the point where the ZERO signal is detected after passing the DEC 1 signal．   If the sign is positive，travel will be toward the zero point return direction；if the sign is negative，travel will be away from the zero point return direction．

## [ g ] DEC2 + Phase-C Signal Method (OWDC3C = 6)

With this method, the machine's position is confirmed by the ON/OFF status of the DEC2 signal and the retracting operation is performed automatically, so the zero point return is always performed with the same conditions.

- Starting the Zero Point Return in the High Region

1. Travel is started in the positive direction at the speed specified by the Speed Reference Setting (setting parameter OLDD10).
2. When the falling edge of the DEC2 signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, the axis travels in the reverse direction at the Approach Speed (setting parameter OLDप3E).
4. When the rising edge of the DEC2 signal is detected, the axis decelerates to a stop.
5. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
6. After the falling edge of the DEC2 signal is detected, the position is latched when the rising edge of the first phase-C pulse is detected.
7. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLDロ42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during the zero point return operation, an OT alarm will occur.

Starting the Zero Point Return in the Low Region

1. The axis travels in the reverse direction at the Approach Speed (setting parameter OLDロ3E).
2. When the rising edge of the DEC2 signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
4. After the falling edge of the DEC2 signal is detected, the position is latched when the rising edge of the first phase-C pulse is detected.
5. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLDD42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during the zero point return operation, an OT alarm will occur.

Related Parameters

Parameter	Name	Setting
Fixed Parameter No．1，Bit 5	Deceleration LS Inversion Selection	Set whether or not to invert the polarity of DI＿5 signal used as DEC2 signal．   0 ：Do not invert   1：Invert   However，the deceleration limit signal for zero point return（OWDロ05，bit 8 ）will not be inverted even if this bit is set to 1 （invert）．
Fixed Parameter   No．21，Bit 0	Deceleration LS Signal Selection	Select the signal to be used as DEC2． 0 ：Setting parameter OWDD05，bit 8 1：DI＿5
OWロロ03，   Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDD10（Speed Reference Setting），OLDD3E （Approach Speed），and OLDロ40（Creep Rate．）   0 ：Reference unit／s   1： $10^{\mathrm{n}}$ reference units $/ \mathrm{min}$   2：Percentage of rated speed（ $1=0.01 \%$ ）   3：Percentage of rated speed（ $1=0.0001 \%$ ）
OWपロ05，Bit 8	Zero Point Return Deceleration LS Signal （DEC2）	Used to input DEC2 signal from the ladder program when the bit 0 of fixed parameter No． 21 is 0 ． $\begin{aligned} & \text { 0: OFF } \\ & 1: \mathrm{ON} \\ & \hline \end{aligned}$
OLDロ10	Speed Reference Setting	Set the speed to use when starting a zero point return． Only a positive value can be set；a negative value will result in an error．
OWDロ18	Override	This parameter allows the Zero Point Return speed to be changed without changing the Speed Reference（OLDD10）．Set the speed as a percentage of the Speed Reference Setting．This setting can be changed during operation．   Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）   Setting unit： $1=0.01 \%$（Example）Setting for 50\％：5000
OWDロ3C	Zero Point Return Method	6：DEC2＋Phase－C Signal Method
OLDロ3E	Approach Speed	Set the approach speed． Only a positive value can be set； 0 or a negative value will result in an error．
OLD－40	Creep Rate	Set the creep speed．   Only a positive value can be set； 0 or a negative value will result in an error．
OLDC42	Zero Point Return Travel Distance	Set the travel distance from the point where the ZERO signal is detected after passing the DEC 2 signal．   If the sign is positive，travel will be toward the zero point return direction；if the sign is negative，travel will be away from the zero point return direction．

［ h ］DEC1＋LMT＋Phase－C Signal Method（OWDC3C＝7）
With this method，the machine＇s position is confirmed by the ON／OFF status of the DEC1，Reverse Limit，and Forward Limit signals and the retracting operation is performed automatically，so the zero point return is always performed with the same conditions．
－Starting the Zero Point Return in Region A
1．Travel is started in the positive direction at the speed specified by the Speed Reference Setting（setting parameter OLDD10）．

2．When the falling edge of the DEC1 signal is detected，the axis decelerates to a stop．
3．After decelerating to a stop，the axis travels in the reverse direction at the Approach Speed（setting parameter OLDप3E）．

4．When the rising edge of the DEC1 signal is detected，the axis decelerates to a stop．
5．After decelerating to a stop，the axis travels in the forward direction at the Creep Rate（setting parame－ ter OLDप40）．

6．After the falling edge of the DEC1 signal is detected，the position is latched when the rising edge of the first phase－C pulse is detected．

7．The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance （setting parameter OLD口42）and stops．The machine coordinate system is established with this final position as the zero point．
（DI＿5 or OWDप05，bit 8）
Zero Point Return Reverse Run Side Limit Signal （OWDロ05，bit 9）
Zero Point Return Forward Run Side Limit Signal （OWロロ05，bit 10）

－If an OT signal is detected during the zero point return operation，an OT alarm will occur．

## Starting the Zero Point Return in Region B

1. The axis travels in the reverse direction at the Approach Speed (setting parameter OLDप3E).
2. When the falling edge of the Reverse Limit signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, travel starts in the forward direction at the speed specified by the Speed Reference Setting (setting parameter OLDD10).
4. When the falling edge of the DEC1 signal is detected, the axis decelerates to a stop.
5. After decelerating to a stop, the axis travels in the reverse direction at the Approach Speed (setting parameter OLDप3E).
6. When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop.
7. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
8. After the falling edge of the DEC1 signal is detected, the position is latched when the rising edge of the first phase-C pulse is detected.
9. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLDロ42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during the zero point return operation, an OT alarm will occur.

Starting the Zero Point Return in Region C

1. The axis travels in the reverse direction at the Creep Rate (setting parameter OLDप40).
2. When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
4. After the falling edge of the DEC1 signal is detected, the position is latched when the rising edge of the first phase-C pulse is detected.
5. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLD口42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during the zero point return operation, an OT alarm will occur.


## Starting the Zero Point Return in Region D

1. The axis travels in the reverse direction at the Approach Speed (setting parameter OLDロ3E).
2. When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
4. After the falling edge of the DEC1 signal is detected, the position is latched when the rising edge of the first phase-C pulse is detected.
5. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLD口42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during the zero point return operation, an OT alarm will occur.

Starting the Zero Point Return in Region E

1. The axis travels in the reverse direction at the Approach Speed (setting parameter OLDप3E).
2. When the rising edge of the DEC1 signal is detected, the axis decelerates to a stop.
3. After decelerating to a stop, the axis travels in the forward direction at the Creep Rate (setting parameter OLDप40).
4. After the falling edge of the DEC1 signal is detected, the position is latched when the rising edge of the first phase-C pulse is detected.
5. The axis moves from the latched position by the distance set in the Zero Point Return Travel Distance (setting parameter OLD口42) and stops. The machine coordinate system is established with this final position as the zero point.


- If an OT signal is detected during the zero point return operation, an OT alarm will occur.

Related Parameters

Parameter	Name	Setting
Fixed Parameter No．1，Bit 5	Deceleration LS Inversion Selection	Set whether or not to invert the polarity of DI＿5 signal used as DEC1 signal．   0：Do not invert   1：Invert   However，the deceleration limit signal for zero point return（OWDD05，bit 8 ）will not be inverted even if this bit is set to 1 （invert）．
Fixed Parameter   No．21，Bit 0	Deceleration LS Signal Selection	Select the signal to be used as DEC1． 0 ：Setting parameter OWDC05，bit 8 1：DI＿5
OWDロ03，   Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDD10（Speed Reference Setting），OLDD3E （Approach Speed），and OLDロ40（Creep Rate．）   0 ：Reference unit／s   1： $10^{\mathrm{n}}$ reference units $/ \mathrm{min}$   2：Percentage of rated speed（ $1=0.01 \%$ ）   3：Percentage of rated speed（ $1=0.0001 \%$ ）
OWपロ05，Bit 8	Zero Point Return Deceleration LS Signal （DEC1）	Used to input DEC1 signal from the ladder program when the bit 0 of fixed parameter No． 21 is 0 ． $\begin{aligned} & \text { 0: OFF } \\ & 1: \mathrm{ON} \\ & \hline \end{aligned}$
OLDロ10	Speed Reference Setting	Set the speed to use when starting a zero point return． Only a positive value can be set；a negative value will result in an error．
OWDロ18	Override	This parameter allows the Zero Point Return speed to be changed without changing the Speed Reference Setting（OLDD10）．Set the speed as a per－ centage of the Speed Reference Setting．This setting can be changed during operation．   Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）   Setting unit： $1=0.01 \%$（Example）Setting for 50\％：5000
OWDロ3C	Zero Point Return Method	7：DEC1＋LMT＋Phase－C Signal Method
OLD－3E	Approach Speed	Set the approach speed．   Only a positive value can be set； 0 or a negative value will result in an error．
OLD－40	Creep Rate	Set the creep speed．   Only a positive value can be set； 0 or a negative value will result in an error．
OLDロ42	Zero Point Return Travel Distance	Set the travel distance from the point where the ZERO signal is detected after passing the DEC 1 signal．   If the sign is positive，travel will be toward the zero point return direction；if the sign is negative，travel will be away from the zero point return direction．

## [ i ] C Pulse Only Method (OWDC3C = 11)

## - Operation after Zero Point Return Starts

Travel is started at the creep speed in the direction specified by the sign of the creep speed. When the rising edge of the phase-C pulse is detected, positioning is performed at the positioning speed.
When the positioning has been completed, a machine coordinate system is established with the final position as the zero point.

- The moving amount after the phase-C pulse is detected is set in the Zero Point Return Travel Distance. The positioning speed is set in the Speed Reference Setting.
- If an OT signal is detected during creep speed operation, an OT alarm will not occur, the direction will be reversed, and a search will be made for the phase-C pulse.
- If an OT signal is detected during positioning speed operation, an OT alarm will occur.


N-OT (DI_4)
<OT Signal Detected during Creep Speed Operation>


N-OT (DI_4)

- The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters.

Parameters to be Set

Parameter	Name	Setting
OWDロ03， Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDप10（Speed Reference Setting）and OLDप40（Creep Rate）．   0 ：Reference unit／s   1： $10^{\mathrm{n}}$ reference units／min   2：Percentage of rated speed（ $1=0.01 \%$ ）   3：Percentage of rated speed（ $1=0.0001 \%$ ）
OLD－10	Speed Reference Setting	Set the positioning speed to use after detecting the phase－C pulse．The sign is ignored．   The travel direction will depend on the sign of the Zero Point Return Travel Distance．   Setting to 0 or a negative value will result in an error．
OWDロ18	Override	This parameter allows the travel speed to be changed without changing the Speed Reference Setting（OLDD10）．The setting can be changed during operation．   Setting range： 0 to 32767 （ 0 to $327.67 \%$ ）   Setting unit： $1=0.01 \% \quad$（Example）Setting for $50 \%$ ： 5000
OWロロ3C	Zero Point Return Method	11：C Pulse Only Method
OLDㅁ40	Creep Rate	Set the speed and travel direction（sign）to use when starting a zero point return．   The setting cannot be changed during operation．The speed and travel direc－ tion（sign）at the operation start is applied．   Setting to 0 will result in an error．
OLDロ42	Zero Point Return Travel Distance	Set the travel distance from the point where a phase－C pulse is detected． The travel direction will depend on the sign．

## ［j］P－OT \＆Phase－C Pulse Method（OWDप3C＝12）

## Operation after Zero Point Return Starts

Travel is started at the approach speed in the positive direction until the stroke limit is reached．
When the P－OT signal is detected，the direction is reversed to return at creep speed．
When the phase－C pulse is detected during the return after passing the P－OT signal，the positioning is performed． When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the phase－C pulse is detected is set in the Zero Point Return Travel Distance．The posi－ tioning speed is set in the Speed Reference Setting．
－If a negative value is set for the approach speed，the command will end in an error．
－If an OT signal is detected during the positioning speed operation，an OT alarm will occur．

$\xrightarrow{\text { N－OT（DI＿4）}}$
－The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters．

## Parameters to be Set

Parameter	Name	Setting
OWपロ03， Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDप10（Speed Reference Setting），OLDC3E （Approach Speed），and OLDロ40（Creep Rate）．   0 ：Reference unit／s   1： $10^{\mathrm{n}}$ reference units $/ \mathrm{min}$   2：Percentage of rated speed（ $1=0.01 \%$ ）   3：Percentage of rated speed（ $1=0.0001 \%$ ）
OLDロ10	Speed Reference Setting	Set the positioning speed to use after detecting the phase－C pulse．The sign is ignored．   The travel direction will depend on the sign of the Zero Point Return Travel Distance．   Setting to 0 or a negative value will result in an error．
OWDロ18	Override	This parameter allows the travel speed to be changed without changing the Speed Reference Setting（OLDD10）．The setting can be changed during operation．   Setting range： 0 to 32767 （ 0 to $327.67 \%$ ）   Setting unit： $1=0.01 \% \quad$（Example）：Setting value for 50\％： 5000
OWロロ3C	Zero Point Return Method	12：P－OT \＆Phase－C Pulse Method
OLDロ3E	Approach Speed	Set the speed to be used at zero point return start．Only a positive value can be set． 0 or a negative value will result in an error．
OLDप40	Creep Rate	Set the speed to return in the reverse direction after detecting the P－OT sig－ nal．The sign is ignored，and the axis moves in the negative direction． Setting to 0 will result in an error．
OLDप42	Zero Point Return Travel Distance	Set the travel distance from the point where a phase－C pulse is detected． The travel direction will depend on the sign．

## ［ k ］P－OT Signal Method（OWロロ3C＝13）

## －Operation after Zero Point Return Starts

Travel is started at the approach speed in the positive direction until the stroke limit is reached．
When the P－OT signal is detected，the direction is reversed to return at positioning speed．
When a change in the P－OT signal status from ON to OFF is detected during the return，the positioning is performed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after a change in the P－OT signal status is detected is set in the Zero Point Return Travel Dis－ tance．The positioning speed is set in the Speed Reference Setting．
－If a negative value is set for the approach speed，the command will end in an error．
－If an OT signal is detected during the positioning speed operation，an OT alarm will occur．
－Detecting the change in the OT signal status is performed using software processing．The position where positioning is completed will depend on the high－speed scan setting，positioning speed，etc．Do not use this method if repeat accuracy is required in the position where the zero point return operation is completed．

＜Starting on the Positive Stroke Limit（P－OT）＞

－The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters．
－Parameters to be Set

Parameter	Name	Setting
OW口ロ03   Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDロ10（Speed Reference Setting）and OLD口3E（Approach Speed）．   0：Reference unit／s   1： $10^{\mathrm{n}}$ reference units／min   2：Percentage of rated speed $(1=0.01 \%)$   3：Percentage of rated speed $(1=0.0001 \%)$
OLDロ10	Speed Reference Setting	Set the positioning speed to use after detecting the P－OT signal．The sign is ignored．   The travel direction will depend on the sign of the Zero Point Return Travel Distance．   Setting to 0 or a negative value will result in an error．
OWロロ18	Override	This parameter allows the travel speed to be changed without changing the Speed Reference（OLDロ10）．The setting can be changed during operation moving．   Setting range： 0 to 32767 （ 0 to $327.67 \%$ ）   Setting unit： $1=0.01 \%$
OW口ロ3C	Zero Point Return Method	13：P－OT Only Method
OLD口3E	Approach Speed	Set the speed to be used at zero point return start．Only a positive value can be set． 0 or a negative value will result in an error．
OLD $\square 42$	Zero Point Return Travel Distance	Set the travel distance from the point where P－OT signal is detected． The travel direction will depend on the sign．Always set to a negative value when using P－OT Only Method．

## [ I ] HOME LS \& Phase-C Pulse Method (OWDロ3C = 14)

## Operation after Zero Point Return Starts

Travel is started at the approach speed in the direction specified by the sign of the approach speed.
When the rising edge of HOME signal is detected, the speed is reduced to the creep speed. And, the travel direction depends on the sign of the creep speed.
When the first phase-C pulse is detected after the falling edge of HOME signal, the positioning is performed at positioning speed.
When the positioning has been completed, a machine coordinate system is established with the final position as the zero point.

- The moving amount after the phase-C pulse is detected is set in the Zero Point Return Travel Distance. The positioning speed is set in the Speed Reference Setting.
- If an OT signal is detected during approach speed operation, an alarm will not occur, the direction will be reversed, and a search will be made for the HOME signal.
- If an OT signal is detected during creep-speed and positioning speed operation, an OT alarm will occur.

<Detecting the OT Signal during Approach Speed Movement>

- The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters.


## Parameters to be Set

Parameter	Name	Setting
Fixed Parameter No．1，Bit 5	Deceleration LS Inversion Selection	Set whether or not to invert the polarity of DI＿2 signal that is used for HOME signal．   0 ：Do not invert   1：Invert   However，the deceleration limit switch signal for zero point return （OWDप05，bit 8 ）will not be inverted even if this bit is set to 1 （Invert）．
OWロロ03，   Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDD10（Speed Reference Setting），OLDD3E （Approach Speed），and OLDप40（Creep Rate）．   0 ：Reference unit／s   1： $10^{\mathrm{n}}$ reference units／min   2：Percentage of rated speed（ $1=0.01 \%$ ）   3：Percentage of rated speed（ $1=0.0001 \%$ ）
OLDC10	Speed Reference Setting	Set the positioning speed to use after detecting the phase－C pulse．The sign is ignored．   The travel direction will depend on the sign of the Zero Point Return Travel Distance．   Setting to 0 or a negative value will result in an error．
OWDロ18	Override	This parameter allows the travel speed to be changed without changing the Speed Reference Setting（OLDD10）．The setting can be changed during operation．   Setting range： 0 to 32767 （ 0 to $327.67 \%$ ）   Setting unit： $1=0.01 \%$
OWDロ3C	Zero Point Return Method	14：HOME LS \＆Phase－C Pulse Method
OLD－3E	Approach Speed	Set the speed to be used at zero point return start． The travel direction depends on the sign of the approach speed． Setting to 0 will result in an error．
OLD－40	Creep Rate	Set the speed and travel direction after the HOME signal is detected． Setting to 0 will result in an error．
OLD－42	Zero Point Return Travel Distance	Set the travel distance from the point where a phase－C pulse is detected． The travel direction will depend on the sign．

## [ m ] HOME LS Signal Method (OWDD3C = 15)

## - Operation after Zero Point Return Starts

Travel is started at the creep speed in the direction specified by the sign of the creep speed.
When the rising edge of the HOME signal is detected, positioning is performed at the positioning speed.
When the positioning has been completed, a machine coordinate system is established with the final position as the zero point.

- The moving amount after the rising edge of the HOME signal is detected is set in the Zero Point Return Travel Distance. The positioning speed is set in the Speed Reference Setting.
- If an OT signal is detected during creep speed operation, an alarm will not occur, the direction will be reversed, and a search will be made for the HOME signal.
- If an OT signal is detected during positioning speed operation, an OT alarm will occur.


$$
\stackrel{\mathrm{N}-\mathrm{OT}\left(\mathrm{DI} _4\right)}{ }
$$

<Detecting the OT Signal during Creep Speed Movement>


- The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters.


## Parameters to be Set

Parameter	Name	Setting
Fixed Parameter No．1，Bit 5	Deceleration LS Inversion Selection	Set whether or not to invert the polarity of DI＿2 signal that is used for HOME signal．   0：Do not invert   1：Invert   However，the deceleration limit switch signal for zero point return （OWDロ05，bit 8）will not be inverted even if this bit is set to 1 （Invert）．
OWㅁㅁㅇ，   Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDロ10（Speed Reference Setting）and OLDप40（Creep Rate）．   0：Reference unit／s   1： $10^{\mathrm{n}}$ reference units／min   2：Percentage of rated speed $(1=0.01 \%)$   3：Percentage of rated speed $(1=0.0001 \%)$
OLロロ10	Speed Reference Setting	Set the positioning speed to use after detecting the HOME signal．The sign is ignored．   The travel direction will depend on the sign of the Zero Point Return Travel Distance．   Setting to 0 or a negative value will result in an error．
OWपロ18	Override	This parameter allows the travel speed to be changed without changing the Speed Reference Setting（OLDロ10）．The setting can be changed during operation．   Setting range： 0 to 32767 （ 0 to $327.67 \%$ ）   Setting unit： $1=0.01 \%$
OWロロ3C	Zero Point Return Method	15：HOME LS Only Method
OLDロ40	Creep Rate	Set the speed and travel direction（sign）to be used at zero point return start． Setting to 0 will result in an error．
OLD口42	Zero Point Return Travel Distance	Set the travel distance from the point where the HOME signal is detected． The travel direction will depend on the sign．

## ［ n ］N－OT \＆Phase－C Pulse Method（OWDロ3C＝16）

## Operation after Zero Point Return Starts

Travel is started at the approach speed in the negative direction until the stroke limit is reached．
When the N－OT signal is detected，the direction is reversed to return at the creep speed．
When the phase－C pulse is detected during the return after passing the $\mathrm{N}-\mathrm{OT}$ signal，the positioning is performed． When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the phase－C pulse is detected is set in the Zero Point Return Travel Distance．The posi－ tioning speed is set in the Speed Reference Setting．
－If a positive value is set for the approach speed，the command will end in an error．
－If an OT signal is detected during the positioning speed operation，an OT alarm will occur．

－The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters．
Parameters to be Set

Parameter	Name	Setting
OWロロ03， Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDप10（Speed Reference Setting），OLDप3E （Approach Speed），and OLDD40（Creep Rate）．   0：Reference unit／s   1： $10^{\mathrm{n}}$ reference units／min   2：Percentage of rated speed（ $1=0.01 \%$ ）   3：Percentage of rated speed（ $1=0.0001 \%$ ）
OLロロ10	Speed Reference Setting	Set the positioning speed to use after detecting a phase－C pulse．The sign is ignored．   The travel direction will depend on the sign of the Zero Point Return Travel Distance．   Setting to 0 or a negative value will result in an error．
OWDロ18	Override	This parameter allows the travel speed to be changed without changing the Speed Reference Setting（OLDO10）．The setting can be changed during operation．   Setting range： 0 to 32767 （ 0 to $327.67 \%$ ）   Setting unit： $1=0.01 \%$
OWロロ3C	Zero Point Return Method	16：N－OT \＆Phase－C Pulse Method
OLDロ3E	Approach Speed	Set the speed to be used at zero point return start． Only a negative value can be used．Setting to 0 or a positive value will result in an error．
OLロロ40	Creep Rate	Set the speed after the N －OT signal is detected．The sign is ignored． The axis travels in the forward direction． Setting to 0 will result in an error．
OLDロ42	Zero Point Return Travel Distance	Set the travel distance from the point where a phase－C pulse is detected． The travel direction will depend on the sign．

［ o ］N－OT Signal Method（OWDロ3C＝17）

## Operation after Zero Point Return Starts

Travel is started at the approach speed in the negative direction until the stroke limit is reached．
When the N－OT signal is detected，the direction is reversed to return at the positioning speed．
When a change in the N－OT signal status from ON to OFF is detected during the return，the positioning is performed． When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the change of the N－OT signal status is detected is set in the Zero Point Return Travel Dis－ tance．The positioning speed is set in the Speed Reference Setting．
－If a positive value is set for the approach speed，the command will end in an error．
－If an OT signal is detected during the positioning speed operation，an OT alarm will occur．
－Detecting the change in the OT signal status is performed using software processing．The position where positioning is completed will depend on the high－speed scan setting，positioning speed，etc．Do not use this method if repeat accuracy is required in the position where the zero point return operation is completed．

－The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters．

## Parameters to be Set

Parameter	Name	Setting		
OWロロ03，				
Bits 0 to 3			$\quad$ Speed Unit Selection	Select the setting unit for OLDロ10（Speed Reference Setting）and
:---				
OLロप3E（Approach Speed）．				
$0:$ Reference unit／s				
$1: 10^{\text {n }}$ reference units／min				
2：Percentage of rated speed $(1=0.01 \%)$				
$3:$ Percentage of rated speed $(1=0.0001 \%)$				

## [ p ] INPUT \& Phase-C Pulse Method (OWDC3C = 18)

## - Operation after Zero Point Return Starts

Travel is started at the approach speed in the direction specified by the sign of the approach speed.
When the rising edge of the INPUT signal is detected, the speed is reduced to the creep speed. And, the travel direction depends on the sign of the creep speed.
When the first phase-C pulse is detected after the falling edge of the INPUT signal, the positioning is performed at positioning speed.
When the positioning has been completed, a machine coordinate system is established with the final position as the zero point.

- The moving amount after the phase-C pulse is detected is set in the Zero Point Return Travel Distance. The positioning speed is set in the Speed Reference Setting
- If an OT signal is detected during approach speed operation, an OT alarm will not occur, the direction will be reversed, and a search will be made for the INPUT signal.
- If an OT signal is detected during creep speed or positioning speed operation, an OT alarm will occur.

<Detecting the OT Signal during Approach Speed Movement>

- The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters.


## Parameters to be Set

Parameter	Name	Setting
OWDC03，   Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDD10（Speed Reference Setting），OLDप3E （Approach Speed），and OLDD40（Creep Rate）．   0 ：Reference unit／s   1： $10^{\mathrm{n}}$ reference units $/ \mathrm{min}$   2：Percentage of rated speed（ $1=0.01 \%$ ）   3：Percentage of rated speed（ $1=0.0001 \%$ ）
OWCD05，Bit B	Zero Point Return Input Signal	This signal must be turned ON by using the ladder program．
OLDロ10	Speed Reference Setting	Set the positioning speed to use after detecting a phase－C pulse．The sign is ignored．   The travel direction will depend on the sign of the Zero Point Return Travel Distance．   Setting to 0 or a negative value will result in an error．
OWDロ18	Override	This parameter allows the travel speed to be changed without changing the Speed Reference Setting（OLDD10）．The setting can be changed during operation．   Setting range： 0 to 32767 （ 0 to $327.67 \%$ ）   Setting unit： $1=0.01 \%$
OWDロ3C	Zero Point Return Method	18：INPUT \＆Phase－C Pulse Method
OLDロ3E	Approach Speed	Set the speed to be used at zero point return start． The travel direction depends on the sign of the approach speed． Setting to 0 will result in an error．
OLD－40	Creep Rate	Set the speed and travel direction（sign）after the INPUT signal is detected． Setting to 0 will result in an error．
OLD－42	Zero Point Return Travel Distance	Set the travel distance from the point where a phase－C pulse is detected． The travel direction will depend on the sign．

[ q ] INPUT Signal Method (OWDD3C = 19)

- Operation after Zero Point Return Starts

Travel is started at the creep speed in the direction specified by the sign of the creep speed.
When the rising edge of the INPUT signal is detected, the positioning is performed at the positioning speed.
When the positioning has been completed, a machine coordinate system is established with the final position as the zero point.

- The moving amount after the rising edge of the INPUT signal is detected is set in the Zero Point Return Travel Distance. The positioning speed is set in the Speed Reference Setting.
- If an OT signal is detected during creep speed operation, an OT alarm will not occur, the direction will be reversed, and a search will be made for the INPUT signal.
- If an OT signal is detected during positioning speed operation, an OT alarm will occur.
- The INPUT signal is allocated to the motion setting parameter OWDO05 bit B, allowing the zero point return operation to be performed without actually wiring a signal. This method can thus be used to temporarily set the zero point during trial operation.
- Detecting the rising edge of the INPUT signal is performed using software processing. The position where positioning is completed will depend on the high-speed scan setting, positioning speed, etc. Do not use this method if repeat accuracy is required in the position where the zero point return operation is completed.

<Detecting the OT Signal during Creep Speed Movement>

- The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters.


## Parameters to be Set

Parameter	Name	Setting
OWDC03，   Bits 0 to 3	Speed Unit Selection	Select the setting unit for OLDロ10（Speed Reference Setting）and OLDC40（Creep Rate）．   0 ：Reference unit／s   1： $10^{\mathrm{n}}$ reference units $/ \mathrm{min}$   2：Percentage of rated speed（ $1=0.01 \%$ ）   3：Percentage of rated speed（ $1=0.0001 \%$ ）
OWDC05，Bit B	Zero Point Return Input Signal	This signal must be turned ON by using the ladder program．
OLD－10	Speed Reference Setting	Set the positioning speed to use after detecting the INPUT signal．The sign is ignored．   The travel direction will depend on the sign of the Zero Point Return Travel Distance．   Setting to 0 or a negative value will result in an error．
OWDロ18	Override	This parameter allows the travel speed to be changed without changing the Speed Reference Setting（OLロロ10）．The setting can be changed during operation．   Setting range： 0 to 32767 （ 0 to $327.67 \%$ ）   Setting unit： $1=0.01 \%$
OWロロ3C	Zero Point Return Method	19：INPUT Only Method
OLD－40	Creep Rate	Set the speed and travel direction（sign）to be used at zero point return start． Setting to 0 will result in an error．
OLD－42	Zero Point Return Travel Distance	Set the travel distance from the point where the INPUT signal is detected． The travel direction will depend on the sign．

## 7．2．4 Interpolation（INTERPOLATE）

The INTERPOLATE command positions the axis according to the target position that changes in sync with the high－ speed scan．The positioning data is generated by a ladder program．
－Speed feed forward compensation can be applied．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	There are no alarms．	ILD $\square 04$ is 0.
2	The Servo ON condition．	IW口ロ00，bit 1 is ON．
3	Motion command execution has been completed．	IW $\square \square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF．

2．Set the following motion setting parameters．
Position Reference Setting：OLDD1C
Filter Type Selection：OWD $\square 03$ ，bits 8 to B
Speed Feedforward Amends：OWDD30
3．Set the parameter OWपロ08 to 4 to execute an INTERPOLATE command．
The positioning starts．The travel speed is automatically calculated．
4 is stored in IWロロ08 during positioning．
The target position will be refreshed every high－speed scan．Set the target position to be refreshed in OLDロ1C （Position Reference Setting）．
When the axis reaches the target position，the bit 1 of IWロロ0C turns ON and the positioning is completed．
4．Set OWDप08 to 0 to execute the NOP motion command to complete the positioning operation． INTERPOLATE Operation Pattern


## （2）Holding and Aborting

The axis will decelerate to a stop if there is no change in the target position each high－speed scan． The Holds A Command bit（OW $\square \square 09$ ，bit 0 ）and the Interrupt A Command bit（OW $\square \square 09$ ，bit 1 ）cannot be used． Change a motion command to NOP to stop the interpolation execution．

## （3）Related Parameters

## ［ a ］Setting Parameters

Parameter	Name	Setting
OWDC00 Bit 0	Servo ON	Turns the power to the Servomotor ON and OFF．   1：Power ON to Servomotor， 0 ：Power OFF to Servomotor   Set this bit to 1 before setting the Motion Command（OWDロ08）to 4.
OWDロ03	Function Setting 1	Select the filter type．
OWロロ08	Motion Command	The positioning starts when this parameter is set to 4 ．
OWDロ09 Bit 5	Position Reference Type	Select the type of position reference．   0 ：Incremental addition mode，1：Absolute mode   Set this bit before setting the Motion Command（OWDC08）to 4.
OLDロ1C	Position Reference Type	Set the target position for positioning．The setting can be updated every high－speed scan．
OLDロ1E	Width of Positioning Completion	Set the width in which to turn ON the Positioning Completed bit（IWロロ0C，bit 1）．
OLDप20	NEAR Signal Output Width	Set the range in which the NEAR Position bit（IWDप0C，bit 3 ）will turn ON． The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here．
OWDロ3A	Filter Time Constant	Set the acceleration／deceleration filter time constant．   Exponential acceleration／deceleration or a moving average filter can be selected in the Function Setting 1 （OWDロ03，bits 8 to B）．Change the setting only after pulse distribu－ tion has been completed for the command（IWD－0C，bit 0 is ON ）．

［b］Monitoring Parameters

Parameter	Name	Monitor Contents
$\begin{array}{\|l\|} \hline \text { IWロロ00 } \\ \text { Bit } 1 \end{array}$	Running （At Servo ON）	Indicates the Servo ON status．   ON：Power supplied to Servomotor，OFF：Power not supplied to Servomotor
ILロロ02	Warning	Stores the most current warning．
ILDロ04	Alarm	Stores the most current alarm．
IWロロ08	Motion Command Response Code	Indicates the motion command that is being executed． The response code is 4 during INTERPOLATE command execution．
$\begin{array}{\|l\|} \hline \text { IWロロ09 } \\ \text { Bit } 0 \end{array}$	Command Execution Flag	Always OFF for INTERPOLATE command．
IWロロ09 Bit 1	Command Hold Completed	Always OFF for INTERPOLATE command．
IWロロ09   Bit 3	Command Error Completed Status	Turns ON if an error occurs during INTERPOLATE command execution． The axis will decelerate to a stop if it is moving．Turns OFF when another command is exe－ cuted．
$\begin{array}{\|l\|} \hline \text { IWロロ09 } \\ \text { Bit } 8 \\ \hline \end{array}$	Command Execution Completed	Always OFF for INTERPOLATE command．
$\begin{array}{\|l} \hline \text { IWロप0C } \\ \text { Bit } 0 \end{array}$	Discharging Completed	Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command．
IWロロ0C Bit 1	Positioning Completed	Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases．
IWロロ0C   Bit 3	NEAR Position	The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLDC20）．   OLDD20 $=0:$ Turns ON when pulse distribution has been completed（ （DEN $=0 N$ ）． Otherwise，it turns OFF．   OLDप $20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS （ILDC12）and APOS（ILD마）is less than the NEAR Position Set－ ting even if pulse distribution has not been completed． OFF in all other cases．

## (4) Timing Charts

## [ a ] Normal Execution


[b] Execution when an Alarm Occurs


## 7．2．5 Latch（LATCH）

The LATCH command saves in a register the current position when the latch signal is detected during interpolation positioning．
The latch signal type is set in setting register OWDロ04 and can be set to the EXT，ZERO，or phase－C signal．
－Speed feed forward compensation can be applied．
－When executing the LATCH command more than once after latching the current position by the LATCH command， change the Motion Command to NOP for at least one scan before executing LATCH again．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	There are no alarms．	IL $\square \square 04$ is 0.
2	The Servo ON condition．	IW $\square 00$, bit 1 is ON．
3	Motion command execution has been completed．	IW $\square 08$ is 0 and IW $\square 09$, bit 0 is OFF．

2．Set the following motion setting parameters．
Position Reference Setting：OLDD1C
Filter Type Selection：OWD $\square 03$ ，bits 8 to B
Speed Feedforward Amends：OWDロ30
Latch Detection Signal Selection：OWDロ04
3．Set OWDप08 to 6 （Latch）to execute a LATCH motion command．
The positioning starts．The travel speed is automatically calculated．
6 is stored in IWप्प08 during positioning．
The target position is refreshed every high－speed scan．Set the target position to be refreshed in OLDD1C（Posi－ tion Reference Setting）．
When the latch signal turns ON，the current position is latched and stored in ILD口18．
When the axis reaches the target position，the bit 1 of IWロロ0C turns ON and the positioning is completed．
4．Set OWDप08 to 0 to execute the NOP motion command and then complete the positioning operation．
LATCH Operation Pattern


## （2）Holding and Aborting

The axis will decelerate to a stop if there is no change in the target position each high－speed scan． The Holds A Command bit（OWDロ09，bit 0）and the Interrupt A Command bit（OWDロ09，bit 1）cannot be used． Change a motion command to NOP to stop the interpolation execution．

## （3）Related Parameters

## ［ a ］Setting Parameters

Parameter	Name	Setting
OWDロ00 Bit 0	Servo ON	Turns the power to the Servomotor ON and OFF．   1：Power ON to Servomotor，0：Power OFF to Servomotor   Set this bit to 1 before setting the Motion Command（OWDO08）to 6 ．
OWपロ03	Function Setting 1	Select the filter type．
OWロロ04	Function Setting 2	Select the latch signal type．   0：EXT（DI＿5），1：ZERO（DI＿2），2：Phase－C pulse signal
OWपロ08	Motion Command	The positioning starts when this parameter is set to 6 ．
OWDロ09   Bit 5	Position Reference Type	Select the type of position reference．   0 ：Incremental addition mode，1：Absolute mode   Set this bit before setting the Motion Command（OWDD08）to 6 ．
OLDロ1C	Position Reference Setting	Set the target position for positioning．The setting can be updated every high－speed scan．
OLDロ1E	Width of Positioning Completion	Set the width in which to turn ON the Positioning Completed bit（IWCD0C，bit 1）．
OLDC20	NEAR Signal Output Width	Set the range in which the NEAR Position bit（IWDC0C，bit 3）will turn ON． The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here．
OWDロ3A	Filter Time Constant	Set the acceleration／deceleration filter time constant．Exponential acceleration／deceler－ ation or a moving average filter can be selected in the Function Setting 1 （OWDD03， bits 8 to $B$ ）．   Change the setting only after pulse distribution has been completed for the command （IWロロ0C，bit 0 is ON ）．

## ［b］Monitoring Parameters

Parameter	Name	Monitor Contents
IWロロ00   Bit 1	Running （At Servo ON）	Indicates the Servo ON status．   ON：Power supplied to Servomotor，OFF：Power not supplied to Servomotor
ILロ口02	Warning	Stores the most current warning．
ILロロ04	Alarm	Stores the most current alarm．
IWロロ08	Motion Command Response Code	Indicates any alarms that have occurred during execution． The response code is 6 during LATCH command operation．
$\begin{aligned} & \hline \text { IWपロ09 } \\ & \text { Bit } 0 \end{aligned}$	Command Execution Flag	Always OFF for LATCH command．
IWロロ09   Bit 1	Command Hold Completed	Always OFF for LATCH command．
$\begin{aligned} & \text { IWDप09 } \\ & \text { Bit } 3 \end{aligned}$	Command Error Completed Status	Turns ON if an error occurs during LATCH command operation．The axis will decelerate to a stop if it is moving．Turns OFF when another command is executed．
IWロロ09   Bit 8	Command Execution Completed	Always OFF for LATCH command．
$\begin{aligned} & \text { IWDप0C } \\ & \text { Bit } 0 \end{aligned}$	Discharging Completed	Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command．
IWDC0C   Bit 1	Positioning Completed	Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases．
IWロロ0C   Bit 2	Latch Completed	Turns OFF when a new latch command is executed and turns ON when the latch has been completed．The latched position is stored as the Machine Coordinate System Latch Position （monitoring parameter ILD口18）．
$\begin{aligned} & \text { IWロロ0C } \\ & \text { Bit3 } \end{aligned}$	NEAR Position	The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLD $\square 20$ ）．   OLD口20 $=0$ ：Turns ON when pulse distribution has been completed（ $\mathrm{DEN}=\mathrm{ON}$ ）．Other－ wise，it turns OFF．   OL $\square 20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS （ILロロ12）and APOS（ILロロ16）is less than the NEAR Position Setting even if pulse distribution has not been completed． OFF in all other cases．


Parameter	Name	Monitor Contents
ILロロ18	Machine Coordi-	nate System Latch
	Stores the current position in the machine coordinate system when the latch signal turned   ON.	

## (4) Timing Charts

## [ a ] Normal Execution


[b] Execution when an Alarm Occurs


## 7．2．6 JOG Operation（FEED）

The FEED command starts movement in the specified travel direction at the specified travel speed．Execute the NOP motion command to stop the operation．
Parameters related to acceleration and deceleration are set in advance．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	There are no alarms．	ILD $\square 04$ is 0.
2	The Servo ON condition．	IW $\square \square 00$ ，bit 1 is ON．
3	Motion command execution has been completed．＊	IW $\square \square 08$ is 0 and IW $\square \square 09$ ，bit 0 is OFF．

＊This condition is a basic execution condition．Refer to Chapter 8 Switching Commands during Execution on page 8－1 when changing the command being executed to a FEED command．

2．Set the following motion setting parameters．
Moving Direction：OWロロ09，bit 2
Speed Reference Setting：OLDロ10
Filter Type Selection：OWप口03，bits 8 to B
－The speed reference can be changed during operation．
3．Set OWपロ08 to 7 to execute the FEED motion command．
JOG operation will start．IWDD 08 will be 7 during the execution．
4．Set OWDロ08 to 0 to execute the NOP motion command．
IW $\square \square 0 \mathrm{C}$ ，bit 1 turns ON and the JOG operation has been completed．

（2）Holding
Holding execution is not possible during FEED command execution．The Holds A Command bit（OWDD09，bit 0 ）is ignored．

## （3）Aborting

Axis travel can be stopped during FEED command execution by aborting execution of a command．A command is aborted by setting the Interrupt A Command bit（OWDप09，bit 1 ）to 1 ．
－Set the Interrupt A Command bit（OWDロ09，bit 1）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the Positioning Completed bit（IWロロ0C，bit 1 ）will turn ON．
－The JOG operation will restart if the Interrupt A Command bit（OWDप09，bit 1 ）is reset to 0 during abort processing．
－This type of operation will also be performed if the motion command is changed to NOP during axis move－ ment．

## （4）Related Parameters

## ［a］Setting Parameters

Parameter	Name	Setting
OWDロ00 Bit 0	Servo ON	Turns the power to the Servomotor ON and OFF．   1：Power ON to Servomotor， 0 ：Power OFF to Servomotor   Set this bit to 1 before setting the Motion Command（OWDD08）to 7 ．
OWDロ03	Function Setting 1	Set the speed unit，acceleration／deceleration unit，and filter type．
OWDロ08	Motion Command	The JOG operation starts when this parameter is set to 7 ．   The axis is decelerated to a stop and the JOG operation is completed if this parameter is set to 0 during the execution of a FEED command．
OWDC09 Bit 1	Interrupt A Command	The axis is decelerated to a stop if this bit is set to 1 during JOG operation．
OWDD09 Bit 2	Moving Direction	Set the travel direction for JOG operation． 0 ：Positive direction， 1 ：Negative direction
OLDC10	Speed Reference Setting	Specify the speed for the positioning．This setting can be changed during operation． The unit depends on the Function Setting 1 （OWDロ03，bits 0 to 3 ）．
OWDロ18	Override	This parameter allows the feed speed to be changed without changing the Speed Refer－ ence（OLDロ10）．   Set the speed as a percentage of the Speed Reference Setting．This setting can be changed during operation．   Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$   Example：Setting for $50 \%$ ： 5000
OLDロ1E	Width of Positioning Completion	Set the width in which to turn ON the Positioning Completed bit（IWCD0C，bit 1）．
OLDL20	NEAR Signal Output Width	Set the range in which the NEAR Position bit（IWपप0C，bit 3）will turn ON． The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here．
OLロロ36	Straight Line Acceleration／ Acceleration Time Constant	Set the feed acceleration in acceleration rate or acceleration time．
OLDロ38	Straight Line Deceleration／ Deceleration Time Constant	Set the feed deceleration in deceleration rate or deceleration time．
OWDロ3A	Filter Time Constant	Set the acceleration／deceleration filter time constant．Exponential acceleration／decel－ eration or a moving average filter can be selected in the Function Setting 1 （OWDD03，bits 8 to B ）．   Change the setting only after pulse distribution has been completed for the command （IWロロ0C，bit 0 is ON ）．

［ b ］Monitoring Parameters

Parameter	Name	Monitor Contents
$\begin{aligned} & \hline \text { IWपロ00 } \\ & \text { Bit } 1 \end{aligned}$	Running （At Servo ON）	Indicates the Servo ON status．   ON：Power supplied to Servomotor，OFF：Power not supplied to Servomotor
ILロロ02	Warning	Stores the most current warning．
ILロ口04	Alarm	Stores the most current alarm．
IWロロ08	Motion Command Response Code	Indicates the motion command that is being executed． The response code is 7 during FEED command execution．
$\begin{aligned} & \hline \text { IWपロ09 } \\ & \text { Bit } 0 \end{aligned}$	Command Execution Flag	Turns ON when abort processing is being performed for FEED command． Turns OFF when abort processing has been completed．
IWロロ09   Bit 1	Command Hold Completed	Always OFF for FEED command．
$\begin{aligned} & \hline \text { IWपロ09 } \\ & \text { Bit } 3 \end{aligned}$	Command Error Completed Status	Turns ON if an error occurs during FEED command execution．The axis will decelerate to a stop if it is moving．Turns OFF when another command is executed．
IWロロ09   Bit 8	Command Execution Completed	Always OFF for FEED command．
$\begin{aligned} & \hline \text { IWロप0C } \\ & \text { Bit } 0 \end{aligned}$	Discharging Completed	Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command．
IWDロ0C   Bit 1	Positioning Completed	Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases．
IWロロ0C   Bit 3	NEAR Position	The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLD $\square 20$ ）．   OLDD20 $=0$ ：Turns ON when pulse distribution has been completed $(\mathrm{DEN}=\mathrm{ON})$ ．Oth－ erwise，it turns OFF．   OLD $\square 20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS （ILロロ12）and APOS（ILロロ16）is less than the NEAR Position Setting even if pulse distribution has not been completed． OFF in all other cases．

（5）Timing Charts

## ［ a ］Normal Execution

OWपロ0 08 ＝ 7 （FEED）
IWロロ08＝ 7 （FEED）
IWDロ09，bit 0 （BUSY）
IWロロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）
IWロロ0C，bit 0 （DEN）

[b] Execution when Aborted

[ c ] Execution when an Alarm Occurs


## 7．2．7 STEP Operation（STEP）

The STEP command executes a positioning for the specified travel direction，moving amount，and travel speed． Parameters related to acceleration and deceleration are set in advance．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	There are no alarms．	ILロ $\square 04$ is 0.
2	The Servo ON condition．	IW $\square \square 00$, bit 1 is ON．
3	Motion command execution has been completed．	IW $\square \square 08$ is 0 and IW $\square 09$, bit 0 is OFF．

2．Set the following motion setting parameters．
STEP Travel Distance：OLDロ44
Moving Direction：OWDD09，bit 2
Speed Reference Setting：OLDD10
Filter Type Selection：OWD $\square 03$ ，bits 8 to B
－The speed reference bit OLDप10 can be changed during operation．
－An override of between $0 \%$ to $327.67 \%$ can be set for the travel speed．
3．Set OWपᄆ08 to 8 to execute the STEP motion command．
STEP operation will start．IWD 08 will be 8 during execution．
IWDC0C，bit 3 will turn ON when the axis reaches the target position．
IW $\square \square 0 \mathrm{C}$ ，bit 1 will turn ON when the axis reaches the target position and the positioning has been completed．
4．Set OWDロ08 to 0 to execute the NOP motion command and then complete the STEP operation． STEP Operation Pattern


## （2）Holding

Axis travel can be stopped during command execution and then the remaining travel can be restarted．A command is held by setting the Holds A Command（OWロロ09，bit 0 ）to 1.
－Set the Holds A Command bit（OWDロ09，bit 0 ）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the Command Hold Completed bit（IWDC09，bit 1）will turn ON．
－Reset the Holds A Command bit（OWDD09，bit 0）to 0 ．
The command hold status will be cleared and the remaining portion of the positioning will be restarted．

## （3）Aborting

Axis travel can be stopped during command execution and the remaining travel canceled by aborting execution of a command．A command is aborted by setting the Interrupt A Command bit（OWDロ09，bit 1）to 1.
－Set the Interrupt A Command bit（OWDロ09，bit 1）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the remain travel will be canceled and the Positioning Completed bit（IW $\square \square 0 \mathrm{C}$ ， bit 1）will turn ON．
－This type of operation will also be performed if the motion command is changed to NOP during axis move－ ment．

## （4）Related Parameters

## ［a］Setting Parameters

Parameter	Name	Setting
OWロロ00 Bit 0	Servo ON	Turns the power to the Servomotor ON and OFF．   1：Power ON to Servomotor，0：Power OFF to Servomotor   Set this bit to 1 before setting the Motion Command（OWDO08）to 8.
OWपロ03	Function Setting 1	Set the speed unit，acceleration／deceleration unit，and filter type．
OWDロ08	Motion Command	The STEP operation starts when this parameter is set to 8 ．   The axis will decelerate to a stop and the STEP operation is completed if this parameter is set to 0 during STEP command execution．
$\begin{aligned} & \hline \text { OWपロ09 } \\ & \text { Bit } 0 \end{aligned}$	Holds A Command	The axis will decelerate to a stop if this bit is set to 1 during STEP operation． The operation will restart if this bit is reset to 0 when a command is being held．
OWDC09   Bit 1	Interrupt A Command	The axis will decelerate to a stop if this bit is set to 1 during the positioning．When this bit is reset to 0 after decelerating to a step，the operation depends on the setting of the Position Reference Type（OWDD09，bit 5）．
OWDC09 Bit 2	Moving Direction	Set the travel direction for STEP operation． 0 ：Positive direction， 1 ：Negative direction
OWロロ09 Bit 5	Position Reference Type	Select the type of position reference．   0 ：Incremental addition mode，1：Absolute mode   Set this bit before setting the Motion Command（OWDC08）to 8.
OLDロ10	Speed Reference Setting	Specify the speed for the positioning．This setting can be changed during operation．The unit depends on the setting of the Function Setting 1 （OWDप03，bits 0 to 3 ）．
OWDロ18	Override	This parameter allows the positioning speed to be changed without changing the Speed Reference Setting（OLDロ10）．   Set the speed as a percentage of the Speed Reference Setting．This setting can be changed during operation．   Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$   Example：Setting for $50 \%$ ： 5000
OLDロ1E	Width of Positioning Completion	Set the width in which to turn ON the Positioning Completed bit（IWCD0C，bit 1）．
OLDप20	NEAR Signal Output Width	Set the range in which the NEAR Position bit（IWDC0C，bit 3 ）will turn ON． The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here．
OLDロ36	Straight Line Acceleration／ Acceleration Time Constant	Set the positioning acceleration in acceleration rate or acceleration time．
OLDロ38	Straight Line   Deceleration／   Deceleration Time Constant	Set the positioning deceleration in deceleration rate or deceleration time．
OWDロ3A	Filter Time Constant	Set the acceleration／deceleration filter time constant．Exponential acceleration／decelera－ tion or a moving average filter can be selected in the Function Setting 1 （OWDप03， bits 8 to B ）．   Change the setting only after pulse distribution has been completed for the command （IWDD0C，bit 0 is ON ）．
OLDप44	STEP Travel Distance	Set the moving amount for STEP operation．

［b］Monitoring Parameters

Parameter	Name	Monitor Contents
IWロロ00 Bit 1	Running （At Servo ON）	Indicates the Servo ON status．   ON：Power supplied to Servomotor，OFF：Power not supplied to Servomotor
ILロロ02	Warning	Stores the most current warning．
ILロロ04	Alarm	Stores the most current alarm．
IWロロ08	Motion Command Response Code	Indicates the motion command that is being executed． The response code is 8 during STEP command execution．
$\begin{array}{\|l\|} \hline \text { IWपロ09 } \\ \text { Bit } 0 \end{array}$	Command Execution Flag	Turns ON during STEP command execution and then turns OFF when STEP command execution has been completed．
IWロロ09   Bit 1	Command Hold Completed	Turns ON when a deceleration to a stop has been completed as the result of setting the Holds A Command bit（OWDप09，bit 1）to 1 during STEP command execution （IWDC08＝8）．
IWロロ09 Bit 3	Command Error Completed Status	Turns ON if an error occurs during STEP command execution． The axis will decelerate to a stop if it is moving．Turns OFF when another command is exe－ cuted．
IWロロ09   Bit 8	Command Execution Completed	Turns ON when STEP command execution has been completed．
$\begin{array}{\|l} \hline \text { IWロロOC } \\ \text { Bit } 0 \end{array}$	Discharging Completed	Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command．
IWDC0C Bit 1	Positioning Completed	Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases．
IWロロ0C Bit 3	NEAR Position	The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLD $\square 20$ ）．   OLDD20 $=0$ ：Turns ON when pulse distribution has been completed（ $D E N=O N$ ）．Oth－ erwise，it turns OFF．   OLDप20 $=0$ ：Turns ON when the absolute value of the difference between MPOS （ILDロ12）and APOS（ILDロ16）is less than the NEAR Position Setting even if pulse distribution has not been completed． OFF in all other cases．

## （5）Timing Charts

## ［a］Normal Execution


[b] Execution when Aborted

[ c ] Execution when Aborting by Changing the Command

[d] Execution when an Alarm Occurs


## 7．2．8 Zero Point Setting（ZSET）

The ZSET command sets the current position as the zero point of the machine coordinate system．This enables setting the zero point without performing a zero point return operation．
－When using software limits，always execute the zero point setting or zero point return operation．The software limit function will be enabled after the zero point setting operation has been completed．

## （ 1 ）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	There are no alarms．	ILD $\square 04$ is 0.
2	Motion command execution has been completed．	IW $\square \square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF．

2．Set OWDप08 to 9 to execute the ZSET motion command．
A new machine coordinate system will be established with the current position as the zero point．IWDD08 will be 9 during the zero point setting operation．IWロロ0C，bit 5 will turn ON when zero point setting has been com－ pleted．

3．Set OWDप08 to 0 to execute the NOP motion command and then complete the zero point setting．

## （2）Holding and Aborting

The Holds A Command bit（OW $\square \square 09$ ，bit 0 ）and the Interrupt A Command bit（OW $\square \square 09$ ，bit 1 ）cannot be used．

## （ 3 ）Related Parameters

［ a ］Setting Parameters

Parameter	Name	Setting
OW口ロ08	Motion Command	Set to 9 for ZSET command．
$\begin{aligned} & \text { OWपロ09 } \\ & \text { Bit } 0 \end{aligned}$	Holds A Command	This parameter is ignored for ZSET command．
OW口ロ09   Bit 1	Interrupt A Command	This parameter is ignored for ZSET command．
OLDᄆ48	Zero Point Position in Machine Coordinate System Offset	Sets the position offset from the zero point in the machine coordinate system after the setting of the zero point has been completed．

［ b ］Monitoring Parameters

Parameter	Name	Monitor Contents
ILロ口02	Warning	Stores the most current warning．
ILロロ04	Alarm	Stores the most current alarm．
IW $\square \square 08$	Motion Command Response Code	Indicates the motion command that is being executed． The response code is 9 during ZSET command execution．
$\begin{aligned} & \text { IWपロ09 } \\ & \text { Bit } 0 \end{aligned}$	Command Execution Flag	Turns ON during ZSET command execution and turns OFF when ZSET command exe－ cution has been completed．
IWロप09   Bit 1	Command Hold Completed	Always OFF for ZSET command．
$\begin{aligned} & \hline \text { IWपロ09 } \\ & \text { Bit } 3 \end{aligned}$	Command Error Completed Status	Turns ON if an error occurs during ZSET command execution． Turns OFF when another command is executed．
$\begin{aligned} & \text { IWपव09 } \\ & \text { Bit } 8 \end{aligned}$	Command Execution Completed	Turns ON when ZSET command execution has been completed．
$\begin{aligned} & \text { IWपロ0C } \\ & \text { Bit } 5 \end{aligned}$	Zero Point Return （Setting）Completed	Turns ON when the setting of the zero point has been completed．

（4）Timing Charts
［a］Normal Execution
OWDप08 $=9$（ZSET）
IWロロ08＝ 9 （ZSET）
IWロロ09，bit 0 （BUSY）
IWDロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）
IWロロ0C，bit 5 （ZRNC）


## 7．2．9 Speed Reference（VELO）

The VELO command is used to operate the SERVOPACK in the speed control mode．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	There are no alarms．	ILロ $\square 04$ is 0.
2	Motion command execution has been completed．*	IW $\square \square 08$ is 0 and IW口ロ09，bit0 is OFF．

＊This condition is a basic execution condition．Refer to Chapter 8 Switching Commands during Execution on page 8－1 when changing the command being executed to a VELO command．

2．Set the following motion setting parameters．
Speed Reference Setting：OLDD10
Positive Side Limiting Torque／Thrust Setting at the Speed Reference：OLDD14
Filter Type Selection：OWD $\square 03$ ，bits 8 to B
－The Speed Reference can be changed during operation．
－An override of between $0 \%$ to $327.67 \%$ can be set for the reference speed．
3．Set OWロロ08 to 23 to execute the VELO motion command．
The control mode in the SERVOPACK will be switched to speed control．
IWDC 08 will be 23 during command execution．
－This command can be executed even when the Servo is OFF．
－Position management using the position feedback is possible during operation with speed control mode．
4．Execute another motion command to cancel the speed control mode．
VELO Operation Pattern


## （2）Holding

Axis travel can be stopped during command execution and then the remaining travel can be restarted．A command is held by setting the Holds A Command bit（OWロロ09，bit 0 ）to 1.
－Set the Holds A Command bit（OWD $\square 09$ ，bit 0 ）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the Command Hold Completed bit（IWDC09，bit 1）will turn ON．
－Reset the Holds A Command bit（OWDD09，bit 0）to 0 ．
The command hold status will be cleared and the remaining portion of the operation will be restarted．

## （3）Aborting

The VELO command can be canceled by aborting execution of a command．A command is aborted by setting the Inter－ rupt A Command bit（OWDロ09，bit 1）to 1.
－Set the Interrupt A Command bit（OWロロ09，bit 1）to 1 ．The axis will decelerate to a stop in the speed control mode．Once the axis stops，the control mode will change to the position control mode and the abort processing will be completed．
－The VELO command will restart if the Interrupt A Command bit（OWDロ09，bit 1 ）is reset to 0 during abort processing．
－Setting the Interrupt A Command bit（OWDロ09，bit 1 ）to 0 after the abort processing has been completed will not restart the execution of VELO command．
－This type of operation will also be performed if the motion command is changed to NOP during operation with speed control mode．

## （4）Related Parameters

## ［a］Setting Parameters

Parameter	Name	Setting
$\begin{aligned} & \text { OWロロ00 } \\ & \text { Bit } 0 \end{aligned}$	Servo ON	Turn the power to the Servomotor ON and OFF．   1：Power ON to Servomotor，0：Power OFF to Servomotor   The motor will start to rotate when this bit is set to 1 under the speed control data mode．
OWपロ03	Function Setting 1	Set the speed unit，acceleration／deceleration unit，and filter type．
OWロロ08	Motion Command	The mode is changed to speed control mode when this parameter is set to 23 ．
OWロロ09   Bit 0	Holds A Command	The axis will decelerate to a stop if this bit is set to 1 during speed command opera－ tion．   The operation will restart if this bit is set to 0 while the command is being held．
OWDロ09 Bit 1	Interrupt A Command	The axis will decelerate to a stop if this bit is set to 1 during operation．
OLDロ10	Speed Reference Setting	Specify the speed．This setting can be changed during operation． The unit depends on the Function Setting 1 （OWDप03，bits 0 to 3）．
OLDロ14	Positive Side Limiting Torque／Thrust Setting at the Speed Reference	Set the torque limit for the speed reference．The same value is used for both the posi－ tive and negative directions．
OW－ロ18	Override	This parameter allows the motor speed to be changed without changing the Speed Reference Setting（OLDD10）．   Set the speed as a percentage of the Speed Reference Setting．This setting can be changed during operation．   Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$   Example：Setting for $50 \%$ ： 5000
OLDロ36	Straight Line Acceleration／ Acceleration Time Constant	Set the linear acceleration rate or acceleration time．
OLDロ38	Straight Line Deceleration／ Deceleration Time Constant	Set the linear deceleration rate or deceleration time．
OWロロ3A	Filter Time Constant	Set the acceleration／deceleration filter time constant．Exponential acceleration／decel－ eration or a moving average filter can be selected in the Function Setting 1 （OWDロ03，bits 8 to B）．   Change the setting only after pulse distribution has been completed for the command （IWロロ0C，bit 0 is ON ）．

［ b ］Monitoring Parameters

Parameter	Name	Monitor Contents
IWロप00 Bit 1	Running （At Servo ON）	Indicates the Servo ON status．   ON：Power supplied to Servomotor，OFF：Power not supplied to Servomotor
ILDロ02	Warning	Stores the most current warning．
ILロロ04	Alarm	Stores the most current alarm．
IWロロ08	Motion Command Response Code	Indicates the motion command that is being executed． The response code is 23 during VELO command execution．
$\begin{aligned} & \hline \text { IWロप09 } \\ & \text { Bit } 0 \end{aligned}$	Command Execution Flag	Turns ON when abort processing is being performed for VELO command． Turns OFF when abort processing has been completed．
IWロロ09 Bit 1	Command Hold Completed	Always OFF for VELO command．
IWロロ09 Bit 3	Command Error Completed Status	Turns ON if an error occurs during VELO command execution． The axis will decelerate to a stop if it is operating．Turns OFF when another command is executed．
IWपロ09 $\text { Bit } 8$	Command Execution Completed	Alway OFF for VELO command．
$\begin{aligned} & \text { IWपロ0C } \\ & \text { Bit } 0 \end{aligned}$	Discharging Completed	Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command．
$\begin{array}{\|l} \hline \text { IWロロ0C } \\ \text { Bit } 1 \end{array}$	Positioning Completed	Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases．
IWロロ0C Bit 3	NEAR Position	The operation depends on the setting of NEAR Signal Output Width（setting parameter OLDप20）．   OLDC20 $=0$ ：Turns ON when pulse distribution has been completed $($ DEN $=O N)$ ． Otherwise，it turns OFF．   OLDㅁㅁ $20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS （ILDD12）and APOS（ILDD16）is less than the NEAR Position Set－ ting，even if pulse distribution has not been completed． OFF in all other cases．

## （5）Timing Charts

## ［ a ］Normal Execution

OWロロ08＝23（VELO）
IWロロ08＝23（VELO）
IWロロ09，bit 0 （BUSY）
IWロロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）
IWロロ0C，bit 0 （DEN）

［b］Execution when Aborted


## ［ c ］Command Hold

OWロロ08＝23（VELO）
OWロロ09，bit 0（HOLD）
IWロロ08＝23（VELO）
IWロロ09，bit 0 （BUSY）
IWロロ09，bit 1 （HOLDL）
IWपロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）
IWロロ0C，bit 0 （DEN）

［d］Execution when an Alarm Occurs


## 7．2．10 Torque Reference（TRQ）

The TRQ command is used to operate the SERVOPACK in the torque control mode．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	There are no alarms．	ILロ $\square 04$ is 0.
2	Motion command execution has been completed．${ }^{*}$	IW $\square \square 08$ is 0 and IW口口09，bit 0 is OFF．

＊This condition is a basic execution condition．Refer to Chapter 8 Switching Commands during Execution on page 8－1 when changing the command being executed to a TRQ command．

2．Set the following motion setting parameters．
Torque／Thrust Reference Setting：OLDロ0C
Speed Limit Setting at the Torque／Thrust Reference：OLDロ0E
Torque Unit Selection：OW口ロ03，bits C to F
－The Torque／Thrust Reference Setting（OLDD0C）can be changed during operation．
3．Set OWDロ08 to 24 to execute the TRQ motion command．
The control mode in the SERVOPACK will be changed to torque control．
IWपロ 08 will be 24 during command execution．
－This command can be executed even when the Servo is OFF．
－Position management using the position feedback is possible during operation with torque control mode．
4．Execute another motion command to cancel the torque control mode．
TRQ Operation Pattern


## （2）Holding

Axis travel can be stopped during command execution and then the remaining travel can be restarted．A command is held by setting the Holds A Command bit（OWロप09，bit 0 ）to 1.
－Set the Holds A Command bit（OWDロ09，bit 0 ）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the Command Hold Completed bit（IWロप09，bit 1）will turn ON．
－Reset the Holds A Command bit（OWDロ09，bit 0 ）to 0 ．
The command hold status will be cleared and the remaining portion of the operation will be restarted．

## （3）Aborting

The TRQ command can be canceled by aborting execution of a command．A command is aborted by setting the Inter－ rupt A Command bit（OWDロ09 bit1）to 1.
－Set the Interrupt A Command bit（OWDロ09，bit 1 ）to 1 ，the axis will decelerate to a stop in the speed mode． Once the axis stops，the control mode will change to the position control mode and the abort processing will be completed．
－The TRQ command will restart if the Interrupt A Command bit（OWDD09，bit 1 ）is reset to 0 during abort processing．
－Setting the Interrupt A Command bit（OWロロ09，bit 1 ）to 0 after the abort processing has been completed will not restart the execution of TRQ command．
－This type of operation will also be performed if the motion command is changed to NOP during operation with torque control mode．

## （4）Related Parameters

## ［a］Setting Parameters

Parameter	Name	Setting
$\begin{aligned} & \text { OWवप00 } \\ & \text { Bit } 0 \end{aligned}$	Servo ON	Turn the power to the Servomotor ON and OFF．   1：Power ON to Servomotor，0：Power OFF to Servomotor   Motor will start to rotate when the Servo is turned ON after switching to Torque Control Mode．
OW口ロ03	Function Setting 1	Set the unit for torque reference．
OW口ロ08	Motion Command	The mode is changed to torque control mode when this parameter is set to 24.
$\begin{aligned} & \hline \text { OWDप09 } \\ & \text { Bit } 0 \end{aligned}$	Holds A Command	The axis will stop if this bit is set to 1 during torque reference operation． The operation will restart if this bit is set to 0 while the command is being held．
OWDロ09 Bit 1	Interrupt A Command	An axis will decelerate to a stop if this bit is set to 1 during operation．
OLDロ0C	Torque／Thrust Reference Setting	Set the torque reference．This setting can be changed during operation． The unit depends on the Function Setting 1 （OWD $\square 03$ ，bits C to F）．
OLDロ0E	Speed Limit Setting at the Torque／Thrust Reference	Set the speed limit for torque references．The speed limit is set as a percentage of the rated speed．
OLDロ38	Straight Line   Deceleration／   Deceleration Time Constant	Set the rate of deceleration or deceleration time for aborting the command．

［b］Monitoring Parameters

Parameter	Name	Monitor Contents
IWDC00 Bit 1	Running （At Servo ON）	Indicates the Servo ON status．   ON：Power supplied to Servomotor，OFF：Power not supplied to Servomotor
ILDO02	Warning	Stores the most current warning．
ILDロ04	Alarm	Stores the most current alarm．
IWロロ08	Motion Command Response Code	Indicates the motion command that is being executed． The response code is 24 during TRQ command execution．
IWDC09 Bit 0	Command Execution Flag	Turns ON when abort processing is being performed for TRQ command． Turns OFF when abort processing has been completed．
IWロロ09 Bit 1	Command Hold Completed	Always OFF for TRQ command．
IWロロ09 Bit 3	Command Error Completed Status	Turns ON if an error occurs during TRQ command execution．   The axis will decelerate to a stop if it is operating．Turns OFF when another command is executed．
IWDC09 Bit 8	Command Execution Completed	Always OFF for TRQ command．
$\begin{array}{\|l} \hline \text { IWDCOC } \\ \text { Bit } 0 \end{array}$	Discharging Completed	Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command．
IWDロ0C Bit 1	Positioning Completed	Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases．
IWロロ0C Bit 3	NEAR Position	The operation bit depends on the setting of NEAR Signal Output Width（setting param－ eter OLDप20）．   OLDC20 $=0$ ：Turns ON when pulse distribution has been completed $(\mathrm{DEN}=\mathrm{ON})$ ． Otherwise，it turns OFF．   OLD $\square 20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS （ILDロ12）and APOS（ILDロ16）is less than the NEAR Position Set－ ting，even if pulse distribution has not been completed． OFF in all other cases．

## （5）Timing Charts

## ［ a ］Normal Execution

OWपロ08 $=24$（TRQ）
IWDC08＝ 24 （TRQ）
IWDC09，bit 0 （BUSY）
IWロロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE） IWロロ0C，bit 0 （DEN）

［b］Execution when Aborted

［ c ］Command Hold

OWDロ08＝ 24 （TRQ） OWपロ09，bit 0 （HOLD） IWDロ08＝ 24 （TRQ） IWロロ09，bit 0 （BUSY） IWロロ09，bit 1 （HOLDL） IWロロ09，bit 3 （FAIL） IWロロ09，bit 8 （COMPLETE） IWロロ0C，bit 0 （DEN）

［d］Execution when an Alarm Occurs


## 7．2．11 Phase References（PHASE）

The PHASE command is used for the synchronized operation of multiple axes under phase control mode，using the specified speed，phase bias，and speed compensation value．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	There are no alarms．	ILロ $\square 04$ is 0.
2	The Servo ON condition．	IW $\square \square 00$, bit 1 is ON．
3	Motion command execution has been completed．	IW $\square \square 08$ is 0 and IW $\square 09$, bit 0 is OFF．

2．Set the following motion setting parameters．
Speed Reference Setting：OLDD10
Phase Correction Setting：OLDD28
Speed Compensation：OWDप31
3．Set OWロロ08 to 25 to execute the PHASE motion command．
Synchronized operation using phase control will start．
IW $\square \square 08$ will be 25 during the execution．
4．Execute another motion command to cancel the phase control mode．


## （2）Holding and Aborting

The Holds A Command bit（OW $\square \square 09$ ，bit 0 ）and the Interrupt A Command bit（OW $\square \square 09$ ，bit 1 ）cannot be used． When the motion command is changed from PHASE to NOP during execution of PHASE command，the axis will decelerate to a stop in the speed control mode．Once the axis stops，the control mode will change from the speed control mode to the position control mode．

## （3）Related Parameters

［a］Setting Parameters

Parameter	Name	Setting
OWロロ00   Bit 0	Servo ON	Turns the power to the Servomotor ON and OFF．   1：Power ON to Servomotor，0：Power OFF to Servomotor   Set this bit to 1 before setting the Motion Command（OWDO08）to 25.
OWपロ03	Function Setting 1	Sets the speed unit，acceleration／deceleration unit，and filter type．
OWロロ05   Bit 1	Phase   Reference Creation Calculation Disable	Disables／enables phase reference generation processing when executing phase reference commands．This bit enables setting processing appropriate to an electronic shaft or elec－ tronic cam．   －Enable this processing when an electronic shaft is being used，and disable it when an electronic cam is being used．
OWDロ08	Motion Command	Phase control operation starts when this parameter is set to 25.
OLDロ10	Speed Reference Setting	Set the speed reference．The setting can be changed during operation． The unit depends on the Function Setting 1 setting（OWD $\square 03$ ，bits 0 to 3 ）．
OLDC16	Secondly Speed Compensation	Set the speed feed forward amount for PHASE command．   The setting unit for Speed Compensation（setting parameter OWDD31）is $0.01 \%$（fixed）． The unit for this parameter，however，can be selected by the user．When used at the same time as OWDC31，speed compensation can be performed twice．
OLDC28	Phase Correction Setting	Set the phase compensation in reference units．   －Set the number of pulses for phase compensation in pulses when an electronic shaft is being used．   －Use the incremental addition mode to calculate the cam pattern target position when an electronic cam is being used．
OWDL31	Speed Compensation	Set the speed feed forward gain as a percentage of the rated speed． The setting units for this parameter is $0.01 \%$（fixed）．
OLDロ38	Straight Line   Deceleration／   Deceleration Time   Constant	Specify the deceleration rate when the motion command is changed from PHASE to NOP．

［b］Monitoring Parameters

Parameter	Name	Monitor Contents
IWロロ00   Bit 1	Running（At Servo ON）	Indicates the Servo ON status．   ON：Power supplied to Servomotor，OFF：Power not supplied to Servomotor
ILロロ02	Warning	Stores the most current warning．
IL口ロ04	Alarm	Stores the most current alarm．
IWDロ08	Motion Command Response Code	Indicates the motion command that is being executed． The response code is 25 during PHASE command execution．
$\begin{aligned} & \text { IWपロ09 } \\ & \text { Bit } 0 \end{aligned}$	Command Execution Flag	Always OFF for PHASE command．
$\begin{aligned} & \text { IWपロ09 } \\ & \text { Bit } 1 \end{aligned}$	Command Hold Completed	Always OFF for PHASE command．
IWロロ09   Bit 3	Command Error Completed Status	Turns ON if an error occurs during PHASE command execution． The axis will decelerate to a stop if it is moving．Turns OFF when another command is executed．
$\begin{aligned} & \text { IWपロ09 } \\ & \text { Bit } 8 \end{aligned}$	Command Execution Completed	Always OFF for PHASE command．
$\begin{aligned} & \text { IWपロ0C } \\ & \text { Bit } 0 \end{aligned}$	Discharging Completed	Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command．
IWロロ0C   Bit 1	Positioning Completed	Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases．


Parameter	Name	Monitor Contents
$\begin{aligned} & \text { IWロロOC } \\ & \text { Bit } 3 \end{aligned}$	NEAR Position	The operation depends on the setting of NEAR Signal Output Width (setting parameter OLDप20).   OLDC20 $=0$ :Turns ON when pulse distribution has been completed ( $\mathrm{DEN}=$ ON). Otherwise, it turns OFF.   OLDD $20 \neq 0$ :Turns ON when the absolute value of the difference between MPOS (ILDD12) and APOS (ILDC16) is less than the NEAR Position Setting, even if pulse distribution has not been completed. OFF in all other cases.

## (4) Timing Charts

## [ a ] Normal Execution


[b] Execution when Aborted

[ c ] Execution when an Alarm Occurs


## 7．3 Motion Subcommands

With the SVA－01 Module，two motion subcommands can be used：NOP and FIXPRM＿RD．
The following provides a detailed description of these two subcommands．

## 7．3．1 No Command（NOP）

Set this command when a subcommand is not being specified．

## （1）Related Parameters

［ a ］Setting Parameters

Parameter	Name	Setting Contents
OW口ロ0A	Motion Subcommand	Set to 0 to specify no command（NOP）．

## ［b］Monitoring Parameters

Parameter	Name	Monitoring Contents
IW $\square \square 0 \mathrm{~A}$	Motion Subcommand Response Code	Indicates the motion subcommand that is being executed． The response code is 0 during NOP command execution．
$\begin{aligned} & \text { IWपロ0B } \\ & \text { Bit } 0 \end{aligned}$	Command Execution Flag	Turns ON during NOP command execution． Turns OFF when execution has been completed．
IW口ロ0B   Bit 3	Command Error Completed Status	Turns ON if an error occurs during NOP command execution． Turns OFF when another command is executed．
IW口ロ0B   Bit 8	Command Execution Completed＊	Turns ON when NOP command execution has been completed．

＊The NOP command＇s subcommand status stored in Command Execution Completed（COMPLETE）is not defined．

## 7．3．2 Read Fixed Parameters（FIXPRM＿RD）

The FIXPRM＿RD command reads the current value of the specified fixed parameter and stores the value in the moni－ toring parameter ILDप56（Fixed Parameter Monitor）．
（1）Executing／Operating Procedure
1．Check to see if all the following conditions are satisfied．

No．	Execution Conditions	Confirmation Method
1	Motion subcommand execution has been completed．	IW $\square 0 \mathrm{~A}$ is 0 and IW $\square 0 \mathrm{~B}$, bit 0 is OFF．

2．Set OWDDOA to 5 to execute the FIXPRM＿RD motion subcommand．
The FIXPRM＿RD will read the specified fixed parameter＇s current value and store the code in the monitoring parameter．
IWロロ0A will be 5 during command execution．
IWDD0B，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWDपOA to 0 to execute the NOP motion command and then complete the monitoring operation．

## （2）Related Parameters

［a］Setting Parameters

Parameter	Name	Setting
OW口ロ0A	Motion Subcommand	The Read Fixed Parameter subcommand is executed when this parameter is set to   5.
OW口ᄆ5C	Fixed Parameter Number	Set the parameter number of the fixed parameter to be read．

［b］Monitoring Parameters

Parameter	Name	Monitor Contents
IWDロ0A	Motion Subcommand Response Code	Indicates the motion subcommand that is being executed．   The response code is 5 during FIXPRM＿RD command execution．
IWロロ0B Bit 0	Command Execution Flag	Turns ON during FIXPRM＿RD command execution． Turns OFF when execution has been completed．
IWロロ0B Bit 3	Command Error Completed Status	Turns ON if an error occurs during FIXPRM＿RD command execution． Turns OFF when another command is executed．
IWロロ0B Bit 8	Command Execution Completed	Turns ON when FIXPRM＿RD command execution has been completed．
ILロロ56	Fixed Parameter Monitor	Stores the data of the specified fixed parameter number．

## (3) Timing Charts

[ a ] Normal End

[ b ] Error End


## Switching Commands during Execution

This chapter describes motion commands that can be switched during execution and how the axis will move when they are switched.
8.1 Switchable Motion Commands ..... 8-2
8.1.1 Switching Between Motion Commands ..... 8-2
8.1.2 Switching from POSING ..... 8-3
8.1.3 Switching from EX_POSING ..... 8-7
8.1.4 Switching from ZRET ..... 8-11
8.1.5 Switching from INTERPOLATE ..... 8-13
8.1.6 Switching from ENDOF_INTERPOLATE or LATCH ..... 8-16
8.1.7 Switching from FEED ..... 8-17
8.1.8 Switching from STEP ..... 8-21
8.1.9 Switching from ZSET ..... 8-24
8.1.10 Switching from VELO ..... 8-25
8.1.11 Switching from TRQ ..... 8-30
8.1.12 Switching from PHASE ..... 8-36

### 8.1 Switchable Motion Commands

### 8.1.1 Switching Between Motion Commands

The following table shows motion commands that can be switched during execution.


- O: Available
$X$ : The command in execution is aborted (the axis will be decelerated to a stop), and the newly set command will be executed.

The details of motion changes enacted when the command in execution is switched to another command are described in the following sections.

## 8．1．2 Switching from POSING

Switched From	Switched To	Operation
POSING	NOP	POSING will switch to NOP when the axis stops after deceleration．
	POSING	POSING operation will continue．
	EX＿POSING	POSING will immediately switch to EX＿POSING，and the moving amount stored in the accel／decel filter will be maintained．   The value of the Position Reference Setting（OLDD1C）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWロロ09，bit $5=0$ ）＞   Incremental value $=$ Target position - ILDロ14 $($ DPOS $)$   OLDロ1C＝OLDロ1C＋Incremental value   $<\ln$ Absolute Mode（OWD口09，bit $5=1$ ）＞   OLD口1C＝Target position
	ZRET	POSING will switch to ZRET when the axis stops after deceleration．


Switched From	Switched To	Operation
POSING	INTERPOLATE	POSING will immediately switch to INTERPOLATE．The moving amount stored in the accel／decel filter will be reset to 0 ．   The value of Position Reference Setting（OLD $\square 1 \mathrm{C}$ ）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWDロ09，bit 5 ＝0）＞   Incremental value $=$ Position incremental value per high－speed scan   OLD口1C＝OLD口1C＋Incremental value   ＜In Absolute Mode（OW口ロ09，bit 5 ＝1）＞   OLDロ1C＝ILDロ14（DPOS）＋Position incremental value per high－speed scan   －INTERPOLATE switched from POSING starts its operation with the empty accel／decel filter．Therefore，when the accel／decel filter is set for INTERPO－   LATE command，the speed will not smoothly change，and the distribution will be started from the state Speed $=0$（see（1）．）To change the speed smoothly， do not set the filter for INTERPOLATE command（see（2）．）   （1）When Using the Accel／Decel Filter for INTERPOLATE Command   （2）When Not Using the Accel／Decel Filter for INTERPOLATE Command
	ENDOF＿INTER POLATE	Same as INTERPOLATE
	LATCH	Same as INTERPOLATE
	FEED	POSING will immediately switch to FEED，and the moving amount stored in the accel／ decel filter will be maintained．


Switched From	Switched To	Operation
POSING	STEP	POSING will immediately switch to STEP, and the moving amount stored in the accel/ decel filter will be maintained.
	ZSET	POSING will switch to ZSET when the axis stops after deceleration.
	VELO	POSING will immediately switch to VELO and the control mode will be changed from position control mode to speed control mode. The moving amount stored in the accel/ decel filter will be reset to 0 .   - VELO switched from POSING starts its operation with the empty accel/decel filter. Therefore, when the accel/decel filter is set for VELO command, the speed will not smoothly change, and the distribution will be started from the state Speed $=0$ (see (1).) To change the speed smoothly, do not set the filter for VELO command (see (2).)   (1) When Using the Accel/Decel Filter for VELO Command


Switched From	Switched To	Operation
	VELO   (cont'd)	(2) When Not Using the Accel/Decel Filter for VELO Command
POSING	TRQ	POSING will immediately switch to TRQ and the control mode will be changed from position control mode to torque control mode. The moving amount stored in the accel/ decel filter will be reset to 0 .   - After POSING has switched to TRQ, the TRQ command will be executed without the accel/decel filter. This is because TRQ is a motion command for which the accel/decel filter is disabled.
	PHASE	POSING will immediately switch to PHASE, and the control mode will be changed from position control mode to phase control mode.   The moving amount stored in the accel/decel filter will be reset to 0 .   - After POSING has switched to PHASE, the PHASE command will be executed without the accel/decel filter. This is because PHASE is a motion command for which the accel/decel filter is disabled.

## 8．1．3 Switching from EX＿POSING

Switched From	Switched To	Operation
EX＿POSING	NOP	EX＿POSING will switch to NOP when the axis stops after deceleration．
	POSING	EX＿POSING will immediately switch to POSING．The moving amount stored in the accel／decel filter will be reset to 0 ．   The value of Position Reference Setting（OLDロ1C）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OW口ロ09，bit $5=0$ ）＞   Incremental value $=$ Target position $-\operatorname{ILD\square } 14($ DPOS $)$   OL $\square \square 1 \mathrm{C}=\mathrm{OL} \square \square 1 \mathrm{C}+$ Incremental value   ＜In Absolute Mode（OW口ロ09，bit 5 ＝1）＞   OLD口1C＝Target position
	EX＿POSING	EX＿POSING operation will continue．
	ZRET	EX＿POSING will switch to ZRET when the axis stops after deceleration．   Motion command   Motion command response


Switched From	Switched To	Operation
EX＿POSING	INTERPOLATE	EX＿POSING will immediately switch to INTERPOLATE．The moving amount stored in the accel／decel filter will be reset to 0 ．   The value of Position Reference Setting（OLDD1C）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞   Incremental value $=$ Position incremental value per high－speed scan   OLD口1C＝OLDロ1C＋Incremental value   ＜In Absolute Mode（OWDロ09，bit $5=1$ ）＞   OLDロ1C $=$ ILDप14（DPOS）+ Position incremental value per high－speed scan   －INTERPOLATE switched from EX＿POSING starts its operation with the empty accel／decel filter．Therefore，when the accel／decel filter is set for INTERPOLATE command，the speed will not smoothly change，and the distri－ bution will be started from the state Speed $=0$（see（1）．）To change the speed smoothly，do not set the filter for INTERPOLATE command（see（2）．）   （1）When Using the Accel／Decel Filter for INTERPOLATE Command   （2）When Not Using the Accel／Decel Filter for INTERPOLATE Command
	ENDOF INTER POLATE	Same as INTERPOLATE
	LATCH	Same as INTERPOLATE
	FEED	EX＿POSING will be immediately switch to FEED，and the moving amount stored in the accel／decel filter will be maintained．



Switched From	Switched To	Operation
EX_POSING	TRQ	EX_POSING will immediately switch to TRQ, and the control mode will be changed from position control mode to torque control mode.   The moving amount stored in the accel/decel filter will be reset to 0 .   - After EX_POSING has switched to TRQ, the TRQ command will be executed without the accel/decel filter. This is because TRQ is a motion command for which the accel/decel filter is disabled.
	PHASE	EX_POSING will immediately switch to PHASE, and the control mode will change from the position control mode to phase control mode.   The moving amount stored in the accel/decel filter will be reset to 0 .   - After EX_POSING has switched to PHASE, the PHASE command will be executed without accel/decel filter. This is because PHASE is a motion command for which the accel/decel filter is disabled.

## 8．1．4 Switching from ZRET

Switched From	Switched To	Operation
ZRET	NOP	ZRET will switch to NOP when the axis stops after deceleration．
	POSING	ZRET will switch to POSING when the axis stops after deceleration．   ＜Change in Position Reference Setting（OLDC1C）during Deceleration＞   －In Incremental Addition Mode（OWDロ09，bit $5=0$ ）   Any change in the Position Reference Setting（OLDO1C）will be ignored．   －In Absolute Mode（OWDप09，bit $5=1$ ）   The value of the Position Reference Setting（OLDD1C）when POSING execution starts will be the target position．   －Do not change the Position Reference Setting during deceleration unless it is absolutely necessary．
	EX＿POSING	Same as POSING
	ZRET	ZRET operation will continue．
	INTERPOLATE	ZRET will switch to INTERPOLATE when the axis stops after deceleration．   ＜Change in Position Reference Setting（OLDC1C）during Deceleration＞   －In Incremental Addition Mode（OWDロ09，bit $5=0$ ）   Any change in the Position Reference Setting（OLDロ1C）will be ignored．   －In Absolute Mode（OW $\square \square 09$ ，bit $5=1$ ）   The change in the Position Reference Setting（OLD $\square 1 \mathrm{C}$ ）will be output as soon as the first high－speed scan after INTERPOLATE execution starts．   －Do not change the Position Reference Setting during deceleration unless it is absolutely necessary．
	ENDOF＿INTER POLATE	Same as INTERPOLATE
	LATCH	Same as INTERPOLATE
	FEED	ZRET will switch to FEED when the axis stops after deceleration．


Switched From	Switched To	Operation
	STEP	ZRET will switch to STEP when the axis stops after deceleration.
	ZSET	ZRET will switch to ZSET when the axis stops after deceleration.
ZRET	VELO	ZRET will switch to VELO when the axis stops after deceleration.   Motion command   Motion command response
	TRQ	ZRET will switch to TRQ when the axis stops after deceleration.
	PHASE	ZRET will switch to PHASE when the axis stops after deceleration.

## 8．1．5 Switching from INTERPOLATE

Switched From	Switched To	Operation
INTERPOLATE	NOP	INTERPOLATE will immediately switch to NOP，and the moving amount stored in the accel／decel filter will be maintained．
	POSING	INTERPOLATE will immediately switch to POSING，and the moving amount stored in the accel／decel filter will be maintained．   The value of Position Reference Setting（OLD $\square 1 \mathrm{C}$ ）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞   Incremental value $=$ Target position - ILDロ14（DPOS）   OLD $\square 1 \mathrm{C}=$ OLD $\square 1 \mathrm{C}+$ Incremental value   $<\ln$ Absolute Mode（OWD口09，bit $5=1$ ）＞   OLD口1C＝Target position
	EX＿POSING	Same as POSING
	ZRET	INTERPOLATE will immediately switch to ZRET and the moving amount stored in the accel／decel filter will be reset to 0 ．
	INTERPOLATE	INTERPOLATE operation will continue．


Switched From	Switched To	Operation
INTERPOLATE	$\underset{\substack{\text { ENDOF_INTER } \\ \text { POLATE }}}{\text {. }}$	INTERPOLATE will immediately switch to ENDOF_INTERPOLATE, and the moving amount stored in the accel/decel filter will be maintained.
	LATCH	Same as ENDOF_INTERPOLATE
	FEED	INTERPOLATE will immediately switch to FEED, and the moving amount stored in the accel/decel filter will be maintained.
	STEP	INTERPOLATE will immediately switch to STEP, and the moving amount stored in the accel/decel filter will be maintained.


Switched From	Switched To	Operation
INTERPOLATE	ZSET	INTERPOLATE will immediately switch to ZSET, and the moving amount stored in the accel/decel filter will be reset to 0 .
	VELO	INTERPOLATE will immediately switch to VELO, and the control mode will be changed from position control mode to speed control mode.   The moving amount stored in the accel/decel filter will be reset to 0 .   - VELO switched from INTERPOLATE starts its operation with the empty accel/ decel filter. Therefore, when the accel/decel filter is set for VELO command, the speed will not smoothly change, and the distribution will be started from the state Speed $=0$ (see (1).) To change the speed smoothly, do not set the filter for VELO command (see (2).)   (1) When Using the Accel/Decel Filter for VELO Command   (2) When Not Using the Accel/Decel Filter for VELO Command


Switched From	Switched To	Operation
INTERPOLATE	TRQ	INTERPOLATE will immediately switch to TRQ, and the control mode will be changed from position control mode to torque control mode.   The moving amount stored in the accel/decel filter will be reset to 0 .   - After INTERPOLATE has switched to TRQ, the TRQ command will be executed without the accel/decel filter. This is because TRQ is a motion command for which the accel/decel filter is disabled.
	PHASE	INTERPOLATE will immediately switch to PHASE, and the control mode will be changed from position control mode to phase control mode.   The moving amount stored in the accel/decel filter will be reset to 0 .   - After INTERPOLATE has switched to PHASE, the PHASE command will be executed without the accel/decel filter. This is because PHASE is a motion command for which the accel/decel filter is disabled.

### 8.1.6 Switching from ENDOF_INTERPOLATE or LATCH

The operations are the same as are described in 8.1.5 Switching from INTERPOLATE on page 8-13.

### 8.1.7 Switching from FEED



Switched From	Switched To	Operation
	ZRET	FEED will switch to ZRET when the axis stops after deceleration．
FEED	INTERPOLATE	FEED will immediately switch to INTERPOLATE，and the moving amount stored in the accel／decel will be reset to 0 ．   The value of Position Reference Setting（OLD $\square 1 \mathrm{C}$ ）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）   Incremental value $=$ Position incremental value per high－speed scan   OL $\square \square 1 C=$ OLD $\square 1 C+$ Incremental value   ＜In Absolute Mode（OW口ロ09，bit $5=1$ ）＞   OLDด1C＝ILロロ14（DPOS）＋Position incremental value per high－speed scan   －INTERPOLATE switched from FEED starts its operation with the empty accel／ decel filter．Therefore，when the accel／decel filter is set for INTERPOLATE command，the speed will not smoothly change，and the distribution will be started from the state Speed $=0$（see（1）．）To change the speed smoothly，do not set the filter for INTERPOLATE command（see（2）．）   （1）When Using the Accel／Decel Filter for INTERPOLATE Command   （2）When Not Using the Accel／Decel Filter for INTERPOLATE Command
	ENDOF＿INTER POLATE	Same as INTERPOLATE
	LATCH	Same as INTERPOLATE
	FEED	FEED operation will continue．



Switched From	Switched To	Operation
FEED	VELO   (cont'd)	(2) When Not Using the Accel/Decel Filter for VELO Command   The speed will smoothly change.   The speed at the time the motion command is switched will increase/decrease until it reaches the VELO target speed. The accel/decel filter for FEED command will be cancelled.   Motion command   Motion command response
	TRQ	FEED will immediately switch to TRQ, and the control mode will be changed from position control mode to torque/thrust control mode.   The moving amount stored in the accel/decel filter will be reset to 0 .   - After FEED has switched to TRQ, the TRQ command will be executed without the accel/decel filter. This is because TRQ is a motion command for which the accel/decel filter is disabled.
	PHASE	FEED will immediately switch to PHASE, and the control mode will be changed from position control mode to phase control mode.   The moving amount stored in the accel/decel filter will be reset to 0 .   - After FEED has switched to PHASE, the PHASE command will be executed without the accel/decel filter. This is because PHASE is a motion command for which the accel/decel filter is disabled.

## 8．1．8 Switching from STEP

Switched From	Switched To	Operation
STEP	NOP	STEP will switch to NOP when the axis stops after deceleration．
	POSING	STEP will immediately switch to POSING，and the moving amount stored in the accel／ decel filter will be maintained．   The value of Position Reference Setting（OLD $\square 1 \mathrm{C}$ ）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞   Incremental value $=$ Target position - ILDロ14 $($ DPOS $)$   OLDロ1C＝OLD口1C＋Incremental value   ＜In Absolute Mode（OW口ロ09，bit 5 ＝1）＞   OLD $\square 1 \mathrm{C}=$ Target position
	EX＿POSING	STEP will immediately switch to EX＿POSING，and the moving amount stored in the accel／decel filter will be maintained．   The value of Position Reference Setting（OLDロ1C）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞   Incremental value $=$ Target position - ILD口14（DPOS）   OLD口1C＝OLD口1C＋Incremental value   ＜In Absolute Mode（OWDロ09，bit $5=1$ ）＞   OLD口1C＝Target position


Switched From	Switched To	Operation
STEP	ZRET	STEP will switch to ZRET when the axis stops after deceleration．
	INTERPOLATE	STEP will immediately switch to INTERPOLATE，and the moving amount stored in the accel／decel filter will be reset to 0 ．   The value of Position Reference Setting（OLD $\square 1 \mathrm{C}$ ）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞   Incremental value $=$ Position incremental value per high－speed scan   OL $\square \square 1 C=$ OLD $\square 1 C+$ Incremental value   ＜In Absolute Mode（OWDロ09，bit $5=1$ ）＞   OLDロ1C＝ILDロ14（DPOS）＋Position incremental value per high－speed scan   －INTERPOLATE switched from FEED starts its operation with the empty accel／ decel filter．Therefore，when the accel／decel filter is set for INTERPOLATE command，the speed will not smoothly change，and the distribution will be started from the state Speed $=0$（see（1）．）To change the speed smoothly，do not set the filter for INTERPOLATE command（see（2）．）   （1）When Using the Accel／Decel Filter for INTERPOLATE Command   （2）When Not Using the Accel／Decel Filter for INTERPOLATE Command   Motion command   Motion command response
	ENDOF＿INTER POLATE	Same as INTERPOLATE
	LATCH	Same as for INTERPOLATE


Switched From	Switched To	Operation
	FEED	STEP will immediately switch to FEED, and the moving amount stored in the accel/decel filter will be maintained.   The speed will smoothly change. The speed at the time the motion command is switched will increase/decrease until it reaches the FEED target speed.   The accel/decel filter will remain valid.   Motion command   Motion command response
	STEP	STEP operation will continue.
	ZSET	STEP will switch to ZSET when the axis stops after deceleration.
STEP	VELO	STEP will immediately switch to VELO, and the control mode will be changed from position control mode to speed control mode.   The moving amount stored in the accel/decel filter will be reset to 0 .   - VELO switched from STEP starts its operation with the empty accel/decel filter. Therefore, when the accel/decel filter is set for VELO command, the speed will not smoothly change, and the distribution will be started from the state Speed $=0$ (see (1).) To change the speed smoothly, do not set the filter for VELO command (see (2).)   (1) When Using the Accel/Decel Filter for VELO Command   (2) When Not Using the Accel/Decel Filter for VELO Command   The speed will smoothly change. The speed at the time the motion command is switched will increase/decrease until it reaches the VELO target speed.   Cancelled STEP operation The accel/decel filter for STEP command will be cancelled.   Motion command   Motion command response


Switched From	Switched To	Operation
STEP	TRQ	STEP will immediately switch to TRQ, and the control mode will be changed from position control mode to torque/thrust control mode.   The moving amount stored in the accel/decel filter will be reset to 0 .   - After STEP has switched to TRQ, the TRQ command will be executed without the accel/decel filter. This is because TRQ is a motion command for which the accel/decel filter is disabled.
	PHASE	STEP will immediately switch to PHASE, and the control mode will be changed from position control mode to phase control mode.   The moving amount stored in the accel/decel filter will be reset to 0 .   - After STEP has switched to PHASE, the PHASE command will be executed without the accel/decel filter. This is because PHASE is a motion command for which the accel/decel filter is disabled.

### 8.1.9 Switching from ZSET

The execution of the ZSET command is completed in one scan if neither Absolute Mode nor infinite length axis are selected. So, a motion command that is set to be executed while the ZSET command is being carried out will be executed as soon as it is issued.

## 8．1．10 Switching from VELO

Switched From	Switched To	Operation
	NOP	VELO will switch to NOP when the axis stops after deceleration，and the control mode will be changed from speed control mode to position control mode．
VELO	POSING	VELO will immediately switch to POSING，and the control mode will be changed from speed control mode to position control mode．The moving amount stored in the accel／ decel filter will be reset to 0 ．   The value of the Position Reference Setting（OLDロ1C）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWロロ09，bit $5=0$ ）＞   Incremental value $=$ Target position - IL $\square \square 14$（DPOS）   OLD $\square 1 \mathrm{C}=\mathrm{OL} \square \square 1 \mathrm{C}+$ Incremental value   ＜In Absolute Mode（OWD口09，bit 5 ＝1）＞   OLDロ1C＝Target position   －POSING switched from VELO starts its operation with the empty accel／decel filter．Therefore，when the accel／decel filter is set for POSING command，the speed will not smoothly change，and the distribution will be started from the state Speed $=0$（see（1）．）To change the speed smoothly，do not set the filter for POSING command（see（2）．）   （1）When Using the Accel／Decel Filter for POSING Command   （2）When Not Using the Accel／Decel Filter for POSING Command   Motion command   Motion command response



| Switched From | Switched To |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


Switched From	Switched To	Operation
VELO	STEP	VELO will immediately switch to STEP, and the control mode will be changed from speed control mode to position control mode. The moving amount stored in the accel/decel filter will be reset to 0 .   - STEP switched from VELO starts its operation with the empty accel/decel filter. Therefore, when the accel/decel filter is set for STEP command, the speed will not smoothly change, and the distribution will be started from the state Speed $=0$ (see (1).) To change the speed smoothly, do not set the filter for STEP command (see (2).)   (1) When Using the Accel/Decel Filter for STEP Command   (2) When Not Using the Accel/Decel Filter for STEP Command   VELO will switch to ZSET when the axis stops after deceleration.
	ZSET	
	VELO	VELO operation will continue.


Switched From	Switched To	Operation
VELO	TRQ	VELO will immediately switch to TRQ, and the control mode will be changed from speed control mode to torque/thrust control mode. The moving amount stored in the accel/decel filter will be reset to 0 .   - After VELO has switched to TRQ, the TRQ command will be executed without the accel/decel filter. This is because TRQ is a motion command for which the accel/decel filter is disabled.
	PHASE	VELO will immediately switch to PHASE, and the control mode will be changed from speed control mode to phase control mode. The moving amount stored in the accel/decel filter will be reset to 0 .   - After VELO has switched to PHASE, the PHASE command will be executed without the accel/decel filter. This is because PHASE is a motion command for which the accel/decel filter is disabled.

### 8.1.11 Switching from TRQ



Switched From	Switched To	Operation
TRQ	EX＿POSING	TRQ will immediately switch to EX＿POSING，and the control mode will be changed from torque／thrust control mode to position control mode．The moving amount stored in the accel／decel filter will be reset to 0 ．   The value of Position Reference Setting（OLDD1C）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWロロ09，bit $5=0$ ）＞   Incremental value $=$ Target position - ILDロ14（DPOS）   OLDロ1C＝OLDㅁㅁ $1 \mathrm{C}+$ Incremental value   ＜In Absolute Mode（OWDロ09，bit $5=1$ ）＞   OLDप1C＝Target position   －EX＿POSING switched from TRQ starts its operation with the empty accel／ decel filter．Therefore，when the accel／decel filter is set for EX＿POSING com－ mand，the speed will not smoothly change，and the distribution will be started from the state Speed＝ 0 （see（1）．）To change the speed smoothly，do not set the filter for EX＿POSING command（see（2）．）   （1）When Using the Accel／Decel Filter for EX＿POSING Command   （2）When Not Using the Accel／Decel Filter for EX＿POSING Command
	ZRET	The axis will decelerate to a stop in speed control mode，and the control mode will be changed from speed control mode to position control mode when the axis stops． TRQ will switch to ZRET when the axis stops after deceleration．


Switched From	Switched To	Operation
TRQ	INTERPOLATE	The axis will decelerate to a stop in speed control mode, and the control mode will be changed from speed control mode to position control mode when the axis stops. TRQ will switch to INTERPOLATE when the axis stops after deceleration.   <Change in Position Reference Setting (OLD-1C) during Deceleration>   - In Incremental Addition Mode (OWDロ09, bit $5=0$ )   Any change in the Position Reference Setting (OLDC1C) will be ignored.   - In Absolute Mode (OWDD09, bit $5=1$ )   The change in the Position Reference Setting (OLDD1C) will be output as soon as the first high-speed scan after INTERPOLATE execution starts.   - Do not change the Position Reference Setting during deceleration unless it is absolutely necessary.
	ENDOF_INTER POLATE	Same as INTERPOLATE
	LATCH	Same as INTERPOLATE
	FEED	TRQ will immediately switch to FEED, and the control mode will be changed from torque/thrust control mode to position control mode.   - FEED switched from TRQ starts its operation with the empty accel/decel filter. Therefore, when the accel/decel filter is set for FEED command, the speed will not smoothly change, and the distribution will be started from the state Speed $=0$ (see (1).) To change the speed smoothly, do not set the filter for FEED command (see (2).)   (1) When Using the Accel/Decel Filter for FEED Command



Switched From	Switched To	Operation
	ZSET	The axis will decelerate to a stop in speed control mode, and the control mode will be changed from speed control mode to position control mode when the axis stops. TRQ will switch to ZSET when the axis stops after deceleration.
TRQ	VELO	TRQ will immediately switch to VELO, and the control mode will be changed from torque/thrust control mode to speed control mode.   - VELO switched from TRQ starts its operation with the empty accel/decel filter. Therefore, when the accel/decel filter is set for VELO command, the speed will not smoothly change, and the distribution will be started from the state Speed = 0 (see (1).) To change the speed smoothly, do not set the filter for VELO command (see (2).)   (1) When Using the Accel/Decel Filter for VELO Command   (2) When Not Using the Accel/Decel Filter for VELO Command
	TRQ	TRQ operation will continue.


Switched From	Switched To	Operation
TRQ	PHASE	TRQ will immediately switch to PHASE, and the control mode will be changed from torque/thrust control mode to phase control mode. The moving amount stored in the accel/ decel filter will be reset to 0 .   - After TRQ has switched to PHASE, the PHASE command will be executed without the accel/decel filter. This is because PHASE is a motion command for which the accel/decel filter is disabled.

## 8．1．12 Switching from PHASE

Switched From	Switched To	Operation
	NOP	The axis will decelerate to a stop in speed control mode，and the control mode will be changed from speed control mode to position control mode when the axis stops． PHASE will switch to NOP when the axis stops after deceleration．
PHASE	POSING	PHASE will immediately switch to POSING，and the control mode will be changed from phase control mode to position control mode．The moving amount stored in the accel／ decel filter will be reset to 0 ．   The value of the Position Reference Setting（OLDD1C）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞   Incremental value $=$ Target position - ILD口14（DPOS）   OLDロ1C＝OLD口1C＋Incremental value   ＜In Absolute Mode（OW口ロ09，bit 5 ＝1）＞   OLD口1C＝Target position   －POSING switched from PHASE starts its operation with the empty accel／decel filter．Therefore，when the accel／decel filter is set for POSING command，the speed will not smoothly change，and the distribution will be started from the state Speed＝ 0 （see（1）．）To change the speed smoothly，do not set the filter for POSING command（see（2）．）   （1）When Using the Accel／Decel Filter for POSING Command   （2）When Not Using the Accel／Decel Filter for POSING Command


Switched From	Switched To	Operation
PHASE	EX＿POSING	PHASE will immediately switch to EX＿POSING，and the control mode will be changed from phase control mode to position control mode．   The value of the Position Reference Setting（OLDD1C）when the motion command is switched will be as follows．   ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞   Incremental value $=$ Target position - ILDD14（DPOS）   OL $\square \square 1 \mathrm{C}=\mathrm{OL} \square \square 1 \mathrm{C}+$ Incremental value   ＜In Absolute Mode（OWDロ09，bit $5=1$ ）＞   OLD口1C＝Target position   －EX＿POSING switched from PHASE starts its operation with the empty accel／ decel filter．Therefore，when the accel／decel filter is set for EX＿POSING com－ mand，the speed will not smoothly change，and the distribution will be started from the state Speed＝ 0 （see（1）．）To change the speed smoothly，do not set the filter for EX＿POSING command（see（2）．）   （1）When Using the Accel／Decel Filter for EX＿POSING Command   （2）When Not Using the Accel／Decel Filter for EX＿POSING Command   The speed will smoothly change．   The speed at the time the motion command is switched will increase／decrease until it reaches the EX＿POSING target speed．   The accel／decel filter will be cancelled．   Motion command   Motion command response
	ZRET	The axis will decelerate to a stop in speed control mode，and the control mode will be changed from speed control mode to position control mode when the axis stops． PHASE will switch to ZRET when the axis stops after deceleration．


Switched From	Switched To	Operation
PHASE	INTERPOLATE	The axis will decelerate to a stop in speed control mode，and the control mode will be changed from speed control mode to position control mode when the axis stops． PHASE will switch to INTERPOLATE when the axis stops after deceleration．   ＜Change in Position Reference Setting（OLDロ1C）during Deceleration＞   －In Incremental Addition Mode（OW口ロ09，bit $5=0$ ）   Any change in the Position Reference Setting（OLDロ1C）will be ignored．   －In Absolute Mode（OW $\square \square 09$ ，bit $5=1$ ）   The change in the Position Reference Setting（OLDD1C）will be output as soon as the first high－speed scan after INTERPOLATE execution starts．   －Do not change the Position Reference Setting during deceleration unless it is absolutely necessary．
	ENDOF＿INTER POLATE	Same as INTERPOLATE
	LATCH	Same as INTERPOLATE
	FEED	PHASE will immediately switch to FEED，and the control mode will be changed from phase control mode to position control mode．   －FEED switched from PHASE starts its operation with the empty accel／decel filter．Therefore，when the accel／decel filter is set for FEED command，the speed will not smoothly change，and the distribution will be started from the state Speed $=0$（see（1）．）To change the speed smoothly，do not set the filter for FEED command（see（2）．）   （1）When Using the Accel／Decel Filter for FEED Command


Switched From	Switched To	Operation
	FEED   (cont'd)	(2) When Not Using the Accel/Decel Filter for FEED Command   The speed will smoothly change. The speed at the time the motion command is switched will increase/decrease until it reaches the FEED target speed.   The accel/decel filter will be cancelled.   Motion command   Motion command response
PHASE	STEP	PHASE will immediately switch to STEP, and the control mode will be changed from phase control mode to position control mode.   - STEP switched from PHASE starts its operation with the empty accel/decel filter. Therefore, when the accel/decel filter is set for STEP command, the speed will not smoothly change, and the distribution will be started from the state Speed $=0$ (see (1).) To change the speed smoothly, do not set the filter for STEP command (see (2))   (1) When Using the Accel/Decel Filter for STEP Command   (2) When Not Using the Accel/Decel Filter for STEP Command   The speed will smoothly change.   The speed at the time the motion command is switched will increase/decrease until it reaches the STEP target speed.   The accel/decel filter will be cancelled.   Motion command   Motion command response


Switched From	Switched To	Operation
	ZSET	The axis will decelerate to a stop in speed control mode, and the control mode will be changed from speed control mode to position control mode when the axis stops. PHASE will switch to ZSET when the axis stops after deceleration.
PHASE	VELO	PHASE will immediately switch to VELO, and the control mode will be changed from phase control mode to speed control mode.   - VELO switched from PHASE starts its operation with the empty accel/decel filter. Therefore, when the accel/decel filter is set for VELO command, the speed will not smoothly change, and the distribution will be started from the state Speed = 0 (see (1).) To change the speed smoothly, do not set the filter for VELO command (see (2).)   (1) When Using the Accel/Decel Filter for VELO Command   (2) When Not Using the Accel/Decel Filter for VELO Command   The speed will smoothly change.   The speed at the time the motion command is switched will increase/decrease until it reaches the VELO target speed.   The accel/decel filter will be cancelled.   Motion command   Motion command response


Switched From	Switched To	Operation
PHASE	TRQ	PHASE will immediately switched to TRQ, and the control mode will be changed from phase control mode to torque/thrust control mode.
	PHASE	PHASE operation will continue.

# Control Block Diagram 

This chapter explains the SVA-01 Module control block diagram.
9.1 SVA-01 Module Control Block Diagram --------------------------9-2

### 9.1 SVA-01 Module Control Block Diagram




## Absolute Position Detection

> This chapter explains an absolute position detection system that uses an absolute encoder. Be sure to read this chapter carefully when using a Servomotor equipped with an absolute encoder.
10.1 Absolute Position Detection Function ..... 10-2
10.1.1 Outline of the Function ..... 10-2
10.1.2 Reading Absolute Data ..... 10-2
10.1.3 Finite Length/Infinite Length Axes and Absolute Position Detection ..... 10-3
10.2 Setting Procedure of Absolute Position Detection Function ..... 10-4
10.2.1 System Startup Flowchart ..... 10-4
10.2.2 Initializing the Absolute Encoder ..... 10-5
10.3 Absolute Position Detection for Finite Length Axes ..... 10-6
10.3.1 Parameter Settings for Finite Length Axes ..... 10-6
10.3.2 Detailed Descriptions on Parameter Settings for Finite Length Axes ..... 10-8
10.3.3 Setting the Zero Point for a Finite Length Axis ..... 10-10
10.3.4 Turning ON the Power after Setting the Zero Point of Machine Coordinate System ..... 10-13
10.4 Absolute Position Detection for Infinite Length Axes ..... 10-14
10.4.1 Simple Absolute Infinite Length Position Control ..... 10-14
10.4.2 Parameters Setting for Simple Absolute Infinite Length Position Control ..... 10-16
10.4.3 Detailed Descriptions on Parameter Settings for Simple Absolute Infinite Length Axes ..... 10-18
10.4.4 Setting the Zero Point and Turning ON Power as Simple Absolute Positions ..... 10-20
10.4.5 Turning ON the Power after Setting the Zero Point for Simple Absolute Infinite Length Axes ..... 10-21
10.4.6 Infinite Length Position Control without Simple Absolute Positions ..... 10-22

### 10.1 Absolute Position Detection Function

This section explains the Absolute Position Detection Function in the SVA-01 Module.

- Refer to Appendix C Fixed Parameter Setting According to Encoder Type and Axis Type on page A-10 together with this section.


### 10.1.1 Outline of the Function

The Absolute Position Detection Function detects the position of the machine (axis) even if the power is turned OFF. This allows it to establish the machine coordinate system automatically and to begin operating automatically without having to execute the zero point return (ZRET) command after power is turned ON.
Absolute position detection is performed using an absolute encoder built into a Servomotor.
The following are features of the system for detection of the absolute position.

- If eliminates the need for a zero point return after the power is turned ON.
- If eliminates the need for a zero point dog and overtravel limit switch.


## - Terminology: Absolute Encoder

There are two types of encoders available. An incremental encoder detects position by calculating the zero point difference. An absolute encoder detects the absolute position relative to a reference position.
The absolute encoder uses a battery connected to the battery terminals of the SERVOPACK to maintain absolute data at all times even though power is turned OFF. It also updates absolute data if the position changes while the power is OFF.
The absolute encoder is comprised of a detector that is used to detect absolute position within one rotation and a counter that is used to count the number of rotations.

- After the automatic operation starts, the absolute encoder operates in the same way as an incremental encoder.


### 10.1.2 Reading Absolute Data

Turn ON the Machine Controller and the SERVOPACK at the same time or turn ON the SERVOPACK first to read the absolute data loaded from the absolute encoder to the Machine Controller.
The following diagram shows an overview of the absolute data read operation.

(1) The SVA-01 Module requests SERVOPACK to initialize the sensor when the power supply turns ON.
(2) SERVOPACK obtains the multiturn data (N) and initial incremental pulses (PO) at reception of the sensor initialization request from the SVA-01 Module.
(3) The SVA-01 Module reads out the position data or absolute data from SERVOPACK.
(4) The SVA-01 Module automatically sets a machine coordinate system* according to the electronic gear ratio converted from the absolute value calculated on the base of the read information and the data of Zero Point Position in Machine Coordinate System Offset (OL $\square \square 48$ ).

* Refer to 10.3.3 (1) Calculating the Zero Point of the Machine Coordinate System on page 10-10 for information on how to calculate the zero point of machine coordinate system.

This way the absolute machine position can be detected and automatic operation can begin immediately after power is turned ON with an automatic position detection system.

## ■ Terminology: Absolute Data

Absolute data that is stored in an absolute encoder has two types of data: the absolute reference position (initial incremental pulses; PO ) and the number of rotations (multi-turn data; N ) from the absolute reference position.
The absolute reference position is the phase-C position when the absolute encoder is initialized and is the reference position for absolute-position detection.
Only the number of rotations $(\mathrm{N})$ can be cleared when the absolute encoder is initialized, and the initial incremental pulses will not change.

- Information: Calculation of Absolute Position

We can determine the absolute position $(\mathrm{P})$ using the following data.
Data stored in an absolute encoder

- Absolute reference position (initial incremental pulses): PO
- Number of rotations from the absolute reference position (multi-turn data): N

Parameter determined according to the number of bits of servomotor

- Feedback pulses per motor rotation: RP

Equation to calculate the absolute position

- Absolute position $(\mathrm{P})=\mathrm{N} \times \mathrm{RP}+\mathrm{PO}$


### 10.1.3 Finite Length/Infinite Length Axes and Absolute Position Detection

There are two types of axes. An infinite length axis resets the current position to a specified value every rotation, and the finite length axis does not.
Set a finite length axis if return and other operations are performed only within a specified range or for an axis that moves in one direction only without resetting the position every rotation.
Set an infinite length axis for conveyor belts and other operations that require the position to be reset every rotation. There are two types of position control available with an infinite length axis. Simple Absolute Infinite Length Position Control and Infinite Length Position Control without Simple Absolute Positions.
An absolute encoder performs absolute position detection with a finite or infinite length axis depending on the Axis Selection (fixed parameter 1, bit 0) of the Machine Controller.
Set the Machine Controller fixed parameters and SERVOPACK parameters to select the absolute position detection function with an absolute encoder. The setting procedures are different for finite and infinite length axes. Refer to 10.2.1 System Startup Flowchart on page 10-4 for details.

### 10.2 Setting Procedure of Absolute Position Detection Function

This section explains the procedure for setting the Absolute Position Detection Function.

### 10.2.1 System Startup Flowchart

Start up the system using the following procedure.

1	Check Devices		
$\downarrow$			
2	Initialize the Absolute Encoder   Follow the setup procedure to set the absolute encoder to default values.   $(\rightarrow$ 10.2.2 Initializing the Absolute Encoder on page 10-5, and Appendix B Initializing the Absolute Encoder on page A5)		
$\downarrow$			
3	Setting Parameters Related to the Machine Controller and the SERVOPACKs   Set all parameters related to the Absolute Position Detection Function of the Machine Controller and SERVOPACKs. The setting procedure for a finite length axis is different from that for an infinite length axis.		
	When using the axis as a Finite Length Axis   $\rightarrow$ 10.3.1 Parameter Settings for   Finite Length Axes on page 10-6   $\rightarrow$ 10.3.2 Detailed Descriptions on Parameter Settings for Finite Length Axes on page 10-8	When using the axis as an Infinite $\rightarrow$ 10.4.1 (2) Conditions to Enable the Control on page 10-14*	ength Axis   Simple Absolute Infinite Axis Position
		With simple absolute infinite length position control   $\rightarrow$ 10.4.2 Parameters Setting for Simple Absolute Infinite Length Position Control on page 10-16	Without simple absolute infinite length position control ${ }^{*}$   $\rightarrow$ 10.4.6 Infinite Length Position Control without Simple Absolute Positions on page 10-22
$\downarrow$			
	Zero Point Setting   Set the zero point as well as the absolute zero point, that is, the machine coordinate zero point. The setting procedure for a finite length axis is different from that of an infinite length axis.		
4	When using the axis as a Finite Length Axis   $\rightarrow$ 10.3.3 Setting the Zero Point for a Finite Length Axis on page 10-10	With simple absolute infinite length position control   $\rightarrow$ 10.4.4 Setting the Zero Point and Turning ON Power as Simple Absolute Positions on page 10-20	Without simple absolute infinite length position control ${ }^{*}$   $\rightarrow$ 10.4.6 (3) Setting the Zero Point for an Infinite Length Axis without Simple Absolute Positions on page 10-22

* If the system does not satisfy the conditions described in 10.4.1 (2) Conditions to Enable the Simple Absolute Infinite Axis Position Control on page 10-14 when using the axis as an infinite length axis, the Machine Controller carries out the operation without using simple absolute length position control.
After the steps 2 to 4 described above are successfully completed, the absolute position detection system will be ready for operation.
- Always perform the startup procedure of the absolute position detection system in the following situations.
- When starting up the absolute position detection system for the first time
- When the Servomotor is changed
- When an absolute encoder-related alarm occurs


### 10.2.2 Initializing the Absolute Encoder

Absolute encoders can be initialized as follows:

- SERVOPACK Procedure
- Refer to the manual for the SERVOPACK for details.
- Panel Operator or Digital Operator Procedure
- Refer to the manual for the SERVOPACK for details.

For details on the procedure for initializing SERVOPACKs, refer to Appendix B Initializing the Absolute Encoder on page A-5.

- Initialize the absolute encoder in the following situations.
- When the absolute position detection system is started up for the first time
- When number of rotations from the absolute reference position needs to be initialized to 0
- When a Servomotor has been left with no battery connected to the absolute encoder
- When an alarm which is related the absolute position detection system occurs


### 10.3 Absolute Position Detection for Finite Length Axes

This section describes the procedure for setting parameters and precautions on setting zero-point and turning ON the power supply when using the axis as a finite length axis.

### 10.3.1 Parameter Settings for Finite Length Axes

The following parameters must be set to enable the absolute position detection function when using an axis as a finite length axis.

! CAUTION	The parameters for which precautions are provided must be set referring to   10.3.2 Detailed Descriptions on Parameter Settings for Finite Length Axes on   page 10-8. Set these parameters carefully. If they are not set correctly, the cur-   rent position may not be correct after the power is turned ON. Machine damage   may occur.

( 1 ) Machine Controller Fixed Parameters for Absolute Position Detection

Fixed Parameter No.	Name	Setting/Range	Units	Reference	Caution
1, bit 0	Axis Selection	0: Finite length axis,   1: Infinite length axis	-	10.3.2 (1)	
22	Pulse Counting Mode Selection	0: Sign mode * 1   1: Sign mode *2   2: Up/Down mode *1   3: Up/Down mode *2   4: A/B mode *1   5: A/B mode *2   6: A/B mode *4	-	10.3.2 (3)	(1)
30	Encoder Selection	- Incremental encoder   - Absolute encoder   - Absolute encoder (used as incremental encoder)	-	10.3.2 ( 2 )	(1)
36	Number of Pulses per Motor Rotation	$1 \text { to } 2^{31}-1$   Set the value after multiplication. (For a 16 -bit encoder, set $2^{14}=16384$.)	pulse	10.3.2 (3)	(1)
38	Maximum Number of Absolute Encoder Turns Rotation	0 to $2^{31}-1$	$\begin{aligned} & 1=1 \text { rota- } \\ & \text { tion } \end{aligned}$	10.3.2 ( 4)	(1)

## ( 2 ) SERVOPACK Parameters for Absolute Position Detection

SERVOPACK Model	Parameter	Name	Setting Range	Units	Reference	Caution
$\Sigma$-III Series (SGDS), $\Sigma$-V Series (SGDV), इ-7 Series (SGD7S)	Pn000.0	Direction Selection	0: Sets counterclockwise (CCW) rotation as forward direction.   1: Sets clockwise (CW) rotation as forward direction (reverse rotation mode).	-	-	-
	Pn205	Multiturn Limit Setting	0 to 65535	Rev	10.3.2 ( 4 )	(
	Pn212	PG Dividing Pulse	16 to 1073741824	P/Rev	10.3.2 ( 3 )	l
	Pn002.2	Absolute Encoder Usage	0 : Uses absolute encoder as an absolute encoder.   1: Uses absolute encoder as an incremental encoder.	-	10.3.2 ( 2 )	$\square$
$\Sigma$-II Series (SGDM, SGDH)	Pn000.0	Direction Selection	0: Sets counterclockwise (CCW) rotation as forward direction.   1: Sets clockwise (CW) rotation as forward direction (reverse rotation mode).	-	-	-
	Pn201	PG Divider	16 to 16384	P/Rev	10.3.2 ( 3 )	1
	Pn205	Multiturn Limit Setting	0 to 65535	Rev	10.3.2 ( 4 )	V
	Pn002.2	Absolute Encoder Usage	0 : Uses absolute encoder as an absolute encoder.   1: Uses absolute encoder as an incremental encoder.	-	10.3.2 ( 2 )	$\square$
$\Sigma$-I Series   (SGDA, SGDB)	Cn-0001,   Bit E	Encoder Selection	0: Incremental encoder   1: Absolute encoder	-	10.3.2 ( 2 )	V
	$\begin{aligned} & \text { Cn-0002, } \\ & \text { bit } 0 \end{aligned}$	Rotation Direction Selection	0: Sets counterclockwise (CCW) rotation as forward rotation.   1: Sets clockwise (CW) rotation as forward rotation (reverse rotation mode).	-	-	-

### 10.3.2 Detailed Descriptions on Parameter Settings for Finite Length Axes

## (1) Axis Selection (Machine Controller Fixed Parameter No.1, Bit 0)

This setting is used to select either an finite or infinite length axis.
Set to 0 when using the axis as a finite length axis.

## (2) Encoder Selection and Absolute Encoder Usage

For an axis performing absolute position detection, set the parameters as shown in the following table.

Model	Parameter	Setting
SVA-01 Module	Fixed parameter 30   (Encoder Selection)	1: Absolute encoder
$\Sigma$-II, $\Sigma$-III, $\Sigma$-V, or $\Sigma-7$   Series	Parameter: Pn002.2   (Absolute Encoder Usage)	0: Uses absolute encoder as an absolute encoder.
$\Sigma$-I Series	Parameter: Cn-0001 Bit E   (Encoder Selection)	1: Absolute encoder

- If the above settings are not used, correct motion control will not be performed. Set the parameters carefully. - Be sure to set both the SVA-01 Module and SERVOPACK parameters.


## (3) Encoder Resolution

The methods to set the fixed parameter No. 36 and No. 22 differs depending on the connected SERVOPACK model.
■ When a $\Sigma$-I Series SERVOPACK is Connected

Number of Bits	Fixed Parameter No. 36   Number of Pulses per Motor Rotation	Fixed Parameter No. 22   Pulse Counting Mode Selection
12	1024	6: Pulse A/B mode (Input pulse multiplier: 4)
15	8192	6: Pulse A/B mode (Input pulse multiplier: 4)

- When a $\Sigma$-II Series SERVOPACK is Connected

Number of Bits	Fixed Parameter No. 36   Number of Pulses per Motor Rotation	Fixed Parameter No. 22   Pulse Counting Mode Selection
13	$2048^{* 1}$	6: Pulse A/B mode (Input pulse multiplier: 4)
16	$16384^{* 1}$	6: Pulse A/B mode (Input pulse multiplier: 4)
17	$16384^{* 1, * 2}$	6: Pulse A/B mode (Input pulse multiplier: 4)

* 1. The actual value depends on the value of Pn201 (PG Divider). The values shown here are the max. values that can be set for each encoder.
* 2. The set value when using a 17-bit encoder is limited to 16384 max. since the max. value that can be set for Pn201 (PG Divider) is 16384.
- When a $\Sigma$-III or $\Sigma$-V Series SERVOPACK is Connected

Number of Bits	Fixed Parameter No. 36   Number of Pulses per Motor Rotation	Fixed Parameter No. 22   Pulse Counting Mode Selection
17	$16384^{*}$	6: Pulse A/B mode (Input pulse multiplier: 4)
20	$262144^{*}$	6: Pulse A/B mode (Input pulse multiplier: 4)

[^1]When a $\Sigma-7$ Series SERVOPACK is Connected

Number of Bits	Fixed Parameter No. 36   Number of Pulses per Motor Rotation	Fixed Parameter No. 22   Pulse Counting Mode Selection
20	$262144^{*}$	6: Pulse A/B mode (Input pulse multiplier: 4)
22	$1048576^{*}$	$6:$ Pulse A/B mode (Input pulse multiplier: 4)
24	$4194304^{*}$	$6:$ Pulse A/B mode (Input pulse multiplier: 4)

* The actual value depends on the value of Pn212 (PG Dividing Pulse). The values shown here are the max. values that can be set.
- If the above settings are not used, correct motion control will not be performed. Set the parameters carefully.


## ( 4 ) Maximum Number of Absolute Encoder Turns Rotation/Multiturn Limit Setting

These parameters determine the maximum value of the number of encoder turns managed by the SERVOPACK and Machine Controller.
The setting is determined by the SERVOPACK that is used and the type of axis (Machine Controller fixed parameter 1, bit 0). Set the parameters as shown in the following table when using an axis as a finite length axis.

Applicable   SERVOPACK	Machine Controller   Fixed Parameter 38   (Maximum Number of Absolute Encoder   Turns Rotation)	SERVOPACK   Parameter Pn205   (Multiturn Limit Setting)
$\Sigma$-II, $\Sigma$-III, $\Sigma$-V, or   $\Sigma-7$ Series	65535	65535
$\Sigma$-I Series	99999	-

- If the above settings are not used, correct motion control will not be performed resulting in position error. Set the parameters carefully.


## 10．3．3 Setting the Zero Point for a Finite Length Axis

This section describes the procedure for setting the zero point（i．e．，the absolute zero point or the zero point of the machine coordinate system）for a finite length axis．It also describes the procedures for storing the zero point offset．

## （1）Calculating the Zero Point of the Machine Coordinate System

The Machine Controller calculates the axis position（i．e．，current position for the machine coordinate system）as fol－ lows when power is turned ON if an absolute encoder is used for positioning．
Calculated Position in Machine Coordinate System（monitoring parameter ILD口10＊1 or ILD口16 ${ }^{* 1}$ ）＝ Encoder position when servo power is turned $\mathrm{ON}^{\star 2}+$ Zero Point Position in Machine Coordinate System Offset（setting parameter OLDロ48）
To make the current position of the machine coordinate system the zero position，set OLDप48（encoder position when servo power turns ON）to a negative value．In other words，set OLDप48 to the difference between OLDप48 and ILDロ10（or ILDC16）．
＊1．Use the ILDD10 to make the machine coordinate reference position as a standard，and ILDD16 to make the machine coordinate current position as a standard．
＊2．The encoder position when servo power is turned ON is as follows：Multiturn data $\times$ Number of encoder pulses＋ initial increment pulses．Refer to your SERVOPACK manual for information on the initial increment pulses．

Example： $\operatorname{IL} \square \square 10=10,000$ and OLDप48 $=100$
Set the encoder position when servo power is turned ON to a negative value as shown below．

$$
\begin{aligned}
\text { OLDप48-ILロप10 } & =100-10000 \\
& =-9900
\end{aligned}
$$

Set OLDप48 to－9900 to make the current position in the machine coordinate system the zero point．
（2）Setting the Zero Point of the Machine Coordinate System

！CAUTION	OLDロ48 is always valid for a finite length axis．Do not change the Zero Point   Position in Machine Coordinate System Offset（OLDロ48）during the operation   of a machine with a finite length axis．Otherwise the machine may be damaged or   an accident may occur．

Set the zero point after initializing the absolute encoder to set the zero point of the machine coordinate system and to create the machine coordinate system．The following illustration shows the procedure for setting the zero point for a finite length axis．


## （ 3 ）Saving OLDप48 Values before Power OFF

After having set the zero point，save the value of OLDप48 before turning OFF the power of Machine Controller so that the value will be written in OLDप48 the next time the power is turned ON．
There are two ways to save the Zero Point Position in Machine Coordinate System Offset（OLDप48）value．It can be saved through a ladder program in an M Register backed up by battery or from the MPE720 Parameter Window．These ways are described below．
－Method 1：Saving the Zero Point Position in Machine Coordinate System Offset（OLDप48）from the MPE720 Parameter Window

Open the Parameter Window for the specified axis on the MPE720 and use the following procedure to save the Zero Point Position in Machine Coordinate System Offset．

1．Check the value in ILロロ10 in the Monitor Tab Page．


2．Check the current value in OLDप48 in the Setup Parameters Tab Page．Subtract the Calculated Posi－ tion（ILDロ10）from the Zero Point Position in Machine Coordinate System Offset（OLDप48）and save the result in OLDप48．


3．Check to see if the setting and current value in OLDप48 are the same．If they are the same，select File－Save and save the setting to the Machine Controller．

4．Return to Module Configuration Window and select Save－Save to Flash to save the setting in the flash memory．

5．Execute the setting with the ZSET command．
When the power is turned ON，the value that was saved will be stored automatically for Zero Point Position in Machine

## - Method 2: Saving in an M Register with a Ladder Program

Saves the value of the zero point offset for the machine coordinate system when the zero point is set in an M register backed up by a battery. When the power to the Machine controller is turned ON, saves the value of the M register in the Zero Point Position in Machine Coordinate System Offset for the Machine Coordinate System.
Create a ladder program that automatically executes the following sequence.

## Program Example

The following diagram shows an example of a ladder program used to store the offset value of axis 1 of line number 1 . In a ladder program for an actual application, select a register with a different address for each axis. The ladder program shown here is used to carry out the following processing.

- Subtracts the Calculated Position in Machine Coordinate System (ILDप10) from the Zero Point Position in Machine Coordinate System Offset (OLDロ48) for the Machine Coordinate System and saves the result in OLDप48 after setting the zero point. This value is also saved in an M register at the same time.
- Saves the offset value saved in the M register and in OLDप48 after setting the zero point position.


Execute every scan in high-speed drawing.

## 10．3．4 Turning ON the Power after Setting the Zero Point of Machine Coordinate System

The Zero Point Return（Setting）Completed bit（IWロप0C，bit 5）will turn OFF when the power supply to the Machine Controller is turned OFF and ON or the communication is interrupted by turning OFF and ON the power supply to the SERVOPACK after the zero point has been set．The Zero Point Return（Setting）Completed bit must therefore be turned ON when the power supply is restored．
Use the following procedure．
1．Turn ON the power supply to the Machine Controller．
The offset saved in the M register is stored to OLDप48．
2．Check the Motion Controller Operation Ready（SVCRDY）bit．
Check to see if the Motion Controller Operation Ready（SVCRDY）bit（IWDロ00，bit 0 ）is ON．
3．Execute the Zero Point Setting（ZSET）motion command by setting OWDप08 to 9 ．
－Use this procedure only to turn ON the Zero Point Return（Setting）Completed bit（IWロロ0C，bit 5）．It cannot be used to set the zero point of the machine coordinate system（OLDC48）．

### 10.4 Absolute Position Detection for Infinite Length Axes

Infinite length axis positioning is a function that automatically resets the machine position, program position (absolute values in the program coordinate system), and current position at regular intervals according to the Infinite Length Axis Reset Position (POSMAX) (fixed parameter 10). This function can be used for repeated positioning in one direction.


### 10.4.1 Simple Absolute Infinite Length Position Control

## (1) Overview

The Simple Absolute Infinite Length Position Control is a position control method that can be used for infinite length axes and has the following features.

- The coordinate system can be created simply by setting the machine coordinate system zero point position offset when the power is turned ON (when the communication is restarted).
- No ladder program for position control is required.

For the system that satisfies the conditions to enable the Simple Absolute Infinite Length Position Control (described in the following section), select the Simple Absolute Infinite Length Position Control.

## ( 2 ) Conditions to Enable the Simple Absolute Infinite Axis Position Control

Set the Maximum Number of Absolute Encoder Turns Rotation (fixed parameter 38) to a value that satisfies the following equation to enable the Simple Absolute Infinite Axis Position Control.
$\frac{(\text { No.38: Maximum Number of Absolute Encoder Turns Rotation }+1 \text { ) }}{\text { Reset number of turns }}=$ An integer (remainder $=0$ )

The reset number of turns will differ depending on whether the command unit is set to pulse or millimeters/degrees/ inches as shown below.

When the Reference Unit is Pulses	When the Reference Unit is mm, deg, or inch
No. 10: Infinite length axis rest position	No. 10: Infinite length axis reset position $\times$   No. 8: Servo motor gear ratio
No.36: Number of pulses per motor   rotation	No. 6: Travel Distance per Machine Rotation $\times$   No. 9 Machine gear ratio

The settings above can be used to enable Simple Absolute Infinite Axis Position Control with a $\Sigma$-II, $\Sigma-\mathrm{III}, \Sigma-\mathrm{V}$, or $\Sigma-7$ SERVOPACK.

- Simple Absolute Infinite Length Position Control cannot be used by the $\sum$-I SERVOPACK.

System That Does Not Satisfy the Above Condition
The system that does not satisfy the above condition cannot use the Simple Absolute Infinite Length Position Control. Prepare the ladder program for position control. Refer to 10.4.6 Infinite Length Position Control without Simple Absolute Positions on page 10-22 for details.

## System That Satisfies the Above Condition

The following example shows the system that can use the Simple Absolute Infinite Length Position Control function.

Fixed Parameter   No.	Name	Setting Value
4	Reference Unit Selection	$2(\mathrm{deg})$
6	Travel Distance per Machine Rotation	360000
8	Servo Motor Gear Ratio	6
9	Machine Gear Ratio	5
10	Infinite Length Axis Reset Position   (POSMAX)	360000
36	Number of Pulses per Motor Rotation	16384
38	Maximum Number of Absolute   Encoder Turns Rotation	59705

Reset number of turns $=(360000 \times 6) /(360000 \times 5)=6 / 5$
Criterion to use Simple Absolute Infinite Length Position Control: $(59705+1) /(6 / 5)=49755$
The Simple Absolute Infinite Length Position Control can be used since the result of the above equation is an integer (remainder 0 ).

### 10.4.2 Parameters Setting for Simple Absolute Infinite Length Position Control

Set the following parameters to use the Simple Absolute Infinite Length Position Control for an infinite length axis.

! CAUTION	Q The parameters for which   precautions are provided must be set referring to   10.4.3 Detailed Descriptions on Parameter Settings for Simple Absolute Infinite   Length Axes on page 10-18. Set these parameters carefully. If they are not set   correctly, the current position may not be correct after the power is turned ON.   Machine damage may occur.

( 1 ) Parameter Settings for Simple Absolute Infinite Length Position Control
Set the fixed parameters No. 1 bit 0 and bit 9, and No. 30 as follows to set the Simple Absolute Infinite Length Position Control for an infinite length axis.

Parameter	Fixed Parameter No. 1, Bit 0   (Axis Selection)	Fixed Parameter No. 1, Bit 9   (Simple ABS Rotary POS. Mode)	Fixed Parameter No. 30   (Encoder Selection)
Setting	1: Infinite length axis	1: Enabled	1: Absolute encoder

( 2 ) Machine Controller Fixed Parameters for Absolute Position Detection

Fixed Parameter No.	Name	Setting/Range	Units	Reference	Caution
No. 4	Reference Unit Selection	```0: pulse 1: mm 2: deg 3: inch (Electric gear is disabled when pulse is selected.)```	-	-	-
No. 6	Travel Distance per Machine Rotation	1 to $2^{31}-1$	$1=1$ reference unit	-	-
No. 8	Servo Motor Gear Ratio	1 to 65535	$1=1$ rotation	-	-
No. 9	Machine Gear Ratio	1 to 65535	$1=1$ rotation	-	-
No. 10	Infinite Length Axis Reset Position (POSMAX)	1 to $2^{31}-1$	Reference unit	-	-
No. 36	Number of Pulses per Motor Rotation	1 to $2^{31}-1$ (Set the value before multiplication. For example, set $2^{(16-2)}=16384$ when using a 16 bit encoder)	pulse	10.4.3 ( 2 )	D
No. 38	Maximum Number of Absolute Encoder Turns Rotation	0 to $2^{31}-1$	$1=1$ rotation	10.4.3 ( 3 )	V

## ( 3 ) SERVOPACK Parameters for Absolute Position Detection

SERVOPACK Model	Parameter	Name	Setting Range	Units	Reference	Caution
$\Sigma$-III Series (SGDS), $\Sigma$-V Series (SGDV), E-7 Series (SGD7S)	Pn000.0	Direction Selection	0: Sets counterclockwise (CCW) rotation as forward direction.   1: Sets clockwise (CW) rotation as forward direction (reverse rotation mode).	-	-	-
	Pn205	Multiturn Limit Setting	0 to 65535	Rev	10.4.3 (3)	(1)
	Pn212	PG Dividing Pulse	16 to 1073741824	P/Rev	10.4.3 (3)	(1)
	Pn002.2	Absolute Encoder Usage	0: Uses absolute encoder as an absolute encoder.   1: Uses absolute encoder as an incremental encoder.	-	10.4.3 (1)	(1)
$\Sigma$-II Series (SGDM, SGDH)	Pn000.0	Direction Selection	0: Sets counterclockwise (CCW) rotation as forward direction.   1: Sets clockwise (CW) rotation as forward direction (reverse rotation mode).	-	-	-
	Pn205	Multiturn Limit Setting	0 to 65535	Rev	10.4.3 (3)	1
	Pn201	PG Divider	16 to 16384	P/Rev	10.4.3 ( 2 )	(1)
	Pn002.2	Absolute Encoder Usage	0: Uses absolute encoder as an absolute encoder.   1: Uses absolute encoder as an incremental encoder.	-	10.4.3 ( 1 )	(1)
ᄃ-I Series(SGDA, SGDB)	Cn-0001, Bit E	Encoder Selection	0 : Incremental encoder   1: Absolute encoder	-	10.4.3 ( 1 )	(1)
	$\begin{aligned} & \text { Cn-0002, } \\ & \text { Bit } 0 \end{aligned}$	Rotation Direction Selection	0: Sets counterclockwise (CCW) rotation as forward rotation.   1: Sets clockwise (CW) rotation as forward rotation (reverse rotation mode).	-	-	-

### 10.4.3 Detailed Descriptions on Parameter Settings for Simple Absolute Infinite Length Axes

## (1) Encoder Selection/Encoder Selection/ Absolute Encoder Usage

For an axis performing absolute position detection, set the parameters as shown in the table below.

Model	Parameter	Setting
SVA-01 Module	Fixed parameter 30: Encoder Selection	1: Absolute encoder
$\Sigma$-II, $\Sigma$-III, $\Sigma$-V, or $\Sigma-7$   Series	Parameter Pn002.2: Absolute Encoder Usage	0: Uses absolute encoder as an absolute encoder
$\Sigma$-I Series SERVO-   PACK	Parameter Cn-0001, Bit E: Encoder Selection	1: Absolute encoder

- If the above settings are not used, correct motion control will not be performed. Set the parameters carefully. - Be sure to set both the SVA-01 Module and SERVOPACK parameters.


## (2) Encoder Resolution

The methods to set the fixed parameter No. 36 and No. 22 differs depending on the connected SERVOPACK model.
■ When a $\Sigma$-I Series SERVOPACK is Connected

Number of Bits	Fixed Parameter No. 36   Number of Pulses per Motor Rotation	Fixed Parameter No. 22   Pulse Counting Mode Selection
12	1024	6: Pulse A/B mode (Input pulse multiplier: 4)
15	8192	6: Pulse A/B mode (Input pulse multiplier: 4)

When a $\Sigma$-II Series SERVOPACK is Connected

Number of Bits	Fixed Parameter No. 36   Number of Pulses per Motor Rotation	Fixed Parameter No. 22   Pulse Counting Mode Selection
13	$2048^{* 1}$	6: Pulse A/B mode (Input pulse multiplier: 4)
16	$16384^{* 1}$	$6:$ Pulse A/B mode (Input pulse multiplier: 4)
17	$16384^{* 1, * 2}$	6: Pulse A/B mode (Input pulse multiplier: 4)

* 1. The actual value depends on the value of Pn201 (PG Divider). The values shown here are the max. values that can be set for each encoder.
* 2. The set value when using a 17 -bit encoder is limited to 16384 max. since the max. value that can be set for Pn201 (PG Divider) is 16384.

When a $\Sigma$-III or $\Sigma$-V Series SERVOPACK is Connected

Number of Bits	Fixed Parameter No. 36   Number of Pulses per Motor Rotation	Fixed Parameter No. 22   Pulse Counting Mode Selection
17	$16384^{*}$	6: Pulse A/B mode (Input pulse multiplier: 4)
20	$262144^{*}$	6: Pulse A/B mode (Input pulse multiplier: 4)

[^2]When a $\Sigma-7$ Series SERVOPACK is Connected

Number of Bits	Fixed Parameter No. 36   Number of Pulses per Motor Rotation	Fixed Parameter No. 22   Pulse Counting Mode Selection
20	$262144^{*}$	6: Pulse A/B mode (Input pulse multiplier: 4)
22	$1048576^{*}$	$6:$ Pulse A/B mode (Input pulse multiplier: 4)
24	$4194304^{*}$	$6:$ Pulse A/B mode (Input pulse multiplier: 4)

* The actual value depends on the value of Pn212 (PG Dividing Pulse). The values shown here are the max. values that can be set.
- If the above settings are not used, correct motion control will not be performed. Set the parameters carefully.


## ( 3 ) Maximum Number of Absolute Encoder Turns Rotation/Multiturn Limit Setting

These parameters determine the maximum value of the number of encoder turns managed by the SERVOPACK and Machine Controller.

For an infinite length axis, set the parameters as shown in the table below.

Applicable   SERVOPACK	Fixed Parameter 38   (Maximum Number of Absolute Encoder   Turns Rotation)	SERVOPACK   Parameter Pn205   (Multiturn Limit Setting)
$\Sigma$-II, $\Sigma$-III, $\Sigma$-V, or $\Sigma-7$   Series	Set the same value as Pn205*	65534 max.

* If the Machine Controller fixed parameter 38 is set to 65535 when using a $\Sigma$-II, $\Sigma$-III, $\Sigma-\mathrm{V}$, or $\Sigma-7$ series SERVOPACK for an infinite axis, a fixed parameter setting error will occur.
- If the above settings are not used, correct motion control will not be performed resulting in position error. Set the parameters correctly.


## 10．4．4 Setting the Zero Point and Turning ON Power as Simple Absolute Positions

## （1）Calculating the Zero Point of the Machine Coordinate System

If using the simple absolute infinite length position control，the Machine Controller calculates the axis position（i．e．， current position for the machine coordinate system）as follows when the power is turned ON．
Calculated Position in Machine Coordinate System（monitoring parameter ILDD10＊1 or ILDD16＊1）＝
Encoder position when servo power is turned $\mathrm{ON}^{* 2}+$ Zero Point Position in Machine Coordinate System Offset（setting parameter OLDप48）
To assign the current position of the machine coordinate system as the zero position，set the OLDप48（encoder posi－ tion when servo power turns ON）to a negative value．In other words，set OLD口48 to the difference between OLDप48 and ILDप10（or ILDD16）．
＊1．Use the ILDप10 to make the machine coordinate reference position as a standard，and ILDD16 to make the machine coordinate current position as a standard．
＊ 2 ．The encoder position when the servo power is turned ON is the value that is calculated with the following equation and converted to reference unit：Multiturn data $\times$ Number of encoder pulses + initial increment pulses．Refer to your SERVOPACK manual for information on the initial increment pulses．

Example： $\operatorname{IL} \square \square 10=10,000$ and OLDप48 $=100$
Set the encoder position when servo power is turned ON to a negative value as shown below．

$$
\begin{aligned}
\text { OLロप48- ILロロ10 } & =100-10000 \\
& =-9900
\end{aligned}
$$

Set OLDロ48 to－9900 to assign the current position in the machine coordinate system as the zero point．

## （ 2 ）Setting the Zero Point for Simple Absolute Infinite Axis Position Control

The procedure to set the zero point for a simple absolute infinite axis position control is shown below．


## （ 3 ）Saving OLDप48 Values at Power OFF

After having set the zero point，save the value of OLDप48 before turning OFF the power of Machine Controller so that the value will be written in OLDप48 the next time the power is turned ON．
There are two ways to save the Zero Point Position in Machine Coordinate System Offset（OLDप48）value．It can be saved through a ladder program in an M register backed up by battery or from the MPE720 Parameter Window．
Refer to ■ Method 1：Saving the Zero Point Position in Machine Coordinate System Offset（OLDロ48）from the MPE720 Parameter Window on page 10－11 and ■ Method 2：Saving in an M Register with a Ladder Program on page 10－12 for more details．

## 10．4．5 Turning ON the Power after Setting the Zero Point for Simple Absolute Infinite Length Axes

The Zero Point Return（Setting）Completed bit（IWपロ0C，bit 5）will turn OFF when the power supply to the Machine Controller is turned OFF and ON，the communication are interrupted by the power OFF to the SERVOPACK，or com－ munication are interrupted in any other reason after the zero point has been set．The Zero Point Return（Setting）Com－ pleted bit must therefore be turned back ON when the power supply is restored．
Use the following procedure．
1．Turn $O N$ the power supply to the Machine Controller．
The offset saved in the M register is stored in OLDप48．
2．Check the Motion Controller Operation Ready（SVCRDY）bit．
Check to see if the Motion Controller Operation Ready（SVCRDY）bit（IWDC00 bit 0）is ON．
3．Execute the Zero Point Setting（ZSET）motion command by setting OWDロ08 to 9 ．
－Use this procedure only to turn ON the Zero Point Return（Setting）Completed bit（IWロロ0C，bit 5）．It cannot be used to set the zero point of the machine coordinate system（OLDO48）．

### 10.4.6 Infinite Length Position Control without Simple Absolute Positions

## (1) Parameter Settings for Infinite Length Position Control without Simple Absolute Positions

Set the infinite length position control without simple absolute positions by setting the fixed parameters No. 1 bit 0 and bit 9 , and No. 30 as shown in the table below when the simple absolute infinite length position control function cannot be used.

Parameter	Fixed Parameter No.1, Bit 0   (Axis Selection)	Fixed Parameter No. 1, Bit 9   (Simple ABS Rotary POS. Mode)	Fixed Parameter No. 30   (Encoder Selection)
Setting	1: Infinite length axis	$0:$ Disabled	1: Absolute encoder

## ( 2 ) Infinite Length Axis Position Control without Simple Absolute Positions

The SVA-01 Module performs the following infinite length position control when the Simple Absolute Infinite Length Position Control Function is not used.
The pulse position and encoder position are always stored as paired information in backup memory. This information is used the next time power is turned ON as the pulse position and the encoder position at shutdown to find the relative encoder position in pulses.

- Pulse position $=$ Pulse position at power OFF $+($ Encoder position - Encoder position at power OFF)*
* The portion in parentheses ( ) represents the moving amount while the power is OFF.
- Terminology: Encoder position

Absolute encoder position information (Multiturn data $\times$ Number of encoder pulses + Initial increment pulses)

- Terminology: Pulse Position

The position information from the Machine Controller converted to pulses
(3) Setting the Zero Point for an Infinite Length Axis without Simple Absolute Positions


Perform the procedure shown in the figure on the left to set the zero point for infinite length position control without simple absolute positions.
The OLDप48 value (zero point data) does not have to be stored in an M register with this method. Set a desired position in OLDロ48 and execute the ZSET command to set the zero point. With this setting, the current position of the machine coordinate system will be set.
OLDロ48 is valid only when executing a ZSET command.

## Example:

To set the current position of the machine coordinate system to 0 when executing the ZSET command, set OLDप48 to 0.

## （ 4 ）Ladder Program for Infinite Length Axis Position Control

If the Simple Absolute Infinite Length Position Control Function is not used，a special ladder program is needed for normal operation and for operation when system power is turned ON．

## ［ a］Normal Operation

1．Check the status of the Zero Point Return（Setting）Completed bit．
Check to see if the Zero Point Return（Setting）Completed bit（monitoring parameter IWロロ0C，bit 5）is ON．If it is，go to step 2.
If it is not，it means that the pulse position at power OFF，encoder position at power OFF and all position data was not settled．In that case，restart the system and set up the position data again or execute the ZSET（zero point set－ ting）motion command to settle the position data all over from the start．

2．Save the pulse position at power OFF and encoder position at power OFF．
Use the ladder program to save the following monitoring parameters with high－speed scan timing at an M register backed up by battery．
－Monitoring Parameter：Encoder Position when the Power is OFF（All four words at ILDप5E to ILDप60）
－Monitoring Parameter：Pulse Position when the Power is OFF（All four words at ILDप62 to ILDप64）
The M register that is used to save the above monitoring parameters is structured as shown below．

MW	Bit 0	Toggle Buffer Enabled Flag（0：Disabled，1：Enabled）	
	Bit 1	Toggle Buffer Selection Flag（0：Buffer 0，1：Buffer 1）	
	Bit 2	Position Data Re－setup Request Flag（0：Complete，1：Request）	
	Bit 3	Position Data Save Request Flag（0：Prohibited，1：Request）	
MWロロロロロ＋1	Not used		
MLロロロロロ＋2	Buffer 0	Monitoring Parameter：   Encoder Position when the Power is OFF	Lower－place two words（ILD口5E）
MLロロロロロ＋4			Upper－place two words（ILDロ60）
MLロロロロロ＋6		Monitoring Parameter：   Pulse Position when the Power is OFF	Lower－place two words（ILDロ62）
MLD $\square \square \square \square+8$			Upper－place two words（ILDロ64）
MLロロロロロ＋10	Buffer 1	Monitoring Parameter：   Encoder Position when the Power is OFF	Lower－place two words（ILDロ5E）
MLDロロロロ＋12			Upper－place two words（ILロロ60）
MLDロロロロ＋14		Monitoring Parameter：   Pulse Position when the Power is OFF	Lower－place two words（ILD口62）
MLDロロロロ＋16			Upper－place two words（ILロ口64）

－Two buffers are needed to save the encoder position and the pulse position at power OFF because the program may be exited without settling position data at all four words if power is turned OFF during the high－speed scan．

Use the following flowchart to store values in buffers.


The following programming example (ladder program) is for the flowchart shown on the previous page. The axis used here is axis 1 of circuit number 1 . Change the motion parameter register number if the circuit and axis numbers are different.

P00001 H10 Main Program
H10


［b］Turning the System Back ON（Turning the Servo Back ON）
Set up position data again from the ladder program using high－speed scan timing as shown below．This is done when Machine Controller power or servo power is turned ON．

1．Store the pulse position at power OFF and encoder position at power OFF to setting parameters．
Store the pulse position at power OFF and encoder position at power OFF values saved in M register to the fol－ lowing setting parameters．
－Setting parameter：Encoder Position when the Power is OFF（All four words，form OLDप5E to OLDロ60．）
－Setting parameter：Pulse Position when the Power is OFF（All four words，from OLDप62 to OLD口64．）
Store the contents of the buffer selected by the Toggle Buffer Selection Flag．
2．Request $A B S$ Rotary Pos．Load bit
Reset the Request ABS Rotary Pos Load bit（setting parameter OWD $\square 00$ ，bit 7）to 0,1 and 0 again．This will allow all position data to be settled．The following monitoring parameters will then be enabled and the Zero Point Return（Setting）Completed bit（monitoring parameter IWDロ0C，bit 5）will turn ON．
－Monitoring Parameter：Encoder Position when the Power is OFF（All four words，from ILDD5E to ILDロ60．）
－Monitoring Parameter：Pulse Position when the Power is OFF（All four words，from ILDD62 to ILDप64．）
The system will create position data using the following equation when Request ABS Rotary Pos．Load bit is set to 1 ．
－Pulse position＝pulse position at power OFF + （encoder position - encoder position at power OFF）＊
＊The portion in parentheses（ ）represents the moving amount while power is OFF．

Use the following flowchart for storing the position data in the setting parameters and for Request ABS Rotary Pos. Load requests.


The following programming example (ladder program) is for the flowchart shown above. The axis used here is axis 1 of circuit number 1. Change the motion parameter register number if the circuit and axis numbers are different.



- There are no restrictions in the executing order for ladder programs H 10 and H 11 when an absolute encoder is used for an infinite length axis.


## Utility Functions

This chapter describes MP2000-series Machine Controller and SERVOPACK utility functions such as vertical axis control, overtravel, and software limits, and the utility functions the SVA-01 Module is provided with.
11.1 Controlling Vertical Axes ..... 11-2
11.1.1 Holding Brake Function of the SERVOPACK ..... 11-2
11.1.2 Connections to $\Sigma$-II, $\Sigma$-III, $\Sigma-\mathrm{V}$, or $\Sigma-7$ Series SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACKs ..... 11-2
11.1.3 Connections to $\Sigma$-I Series SGDB SERVOPACK ..... 11-4
11.1.4 Connections to $\Sigma$-I Series SGDA SERVOPACK ..... 11-6
11.2 Overtravel Function ..... 11-8
11.2.1 Connections to $\Sigma$-II, $\Sigma$-III, $\Sigma-\mathrm{V}$, or $\Sigma-7$ Series SGDH, SGDS, SGDV, and SGD7S SERVOPACKs ..... 11-8
11.2.2 Connections to $\Sigma$-I Series SGDB or SGDA SERVOPACK ..... 11-10
11.2.3 Rotation Direction Selection ..... 11-12
11.3 Software Limit Function ..... 11-13
11.3.1 Parameter Settings ..... 11-13
11.3.2 Software Limit Detection Function ..... 11-13
11.3.3 Axis Stopping Operation at Alarm Occurrence ..... 11-14
11.3.4 Processing after an Alarm Occurs ..... 11-14
11.4 Other Utility Functions ..... 11-15
11.4.1 Modal Latch Function ..... 11-15
11.4.2 Reading Absolute Data After Power is Turned ON ..... 11-16
11.4.3 Reading Absolute Data Online ..... 11-16
11.4.4 General-purpose DO_2 Signal Selection ..... 11-17

### 11.1 Controlling Vertical Axes

This section explains connection methods and parameter settings required to use the SERVOPACK to control a vertical axis.

### 11.1.1 Holding Brake Function of the SERVOPACK

When using a SERVOPACK to control a vertical axis or an axis to which an external force is being applied, a Servomotor with a brake must be used to prevent the axis from dropping or moving due to gravity or the external force when the system power is turned OFF.

- Vertical Axis

- Axis Subject to External Force


The holding brake of the Servomotor is controlled through the brake interlock output (/BK) signal from the SERVOPACK. The brake is not controlled from the Machine Controller.

- The brake built into a Servomotor with a brake uses non-excitation operation and is for use as a holding brake only. It cannot be used to control or stop axis movement. Use the holding brake only to hold the axis in a stopped state after the motor has stopped. The torque of the brake is $100 \%$ or higher of the rated torque of the motor.


### 11.1.2 Connections to $\Sigma-I I, \Sigma-I I I, \Sigma-V$, or $\Sigma-7$ Series SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACKs

## (1) Example of a Brake ON and OFF Circuit

A circuit is configured to turn the brake ON and OFF using the /BK contact output signal from the SERVOPACK and a brake power supply. The following diagram shows the standard connections. Refer to the manual for your SERVOPACK for details.


* 1. The output terminals are allocated using parameter Pn50F.2. A setting of 1 (terminal numbers 1 and 2 ) is selected in the example above.
*2. Brake control relay contact
* 3 . There are $200-\mathrm{V}$ and $100-\mathrm{V}$ brake power supplies.


## (2) Parameter Settings

The SERVOPACK parameters related to control the holding brake are described below.

Parameter	Name	Unit	Setting/Range	Default	Control Mode
Pn50F. 2	Output Signal Selection 2	-	0: Brake not used   1: Terminal numbers 1 and 2   2: Terminal numbers 23 and 24   3: Terminal numbers 25 and 26	1	Speed, torque, position control
	Details   The following parameter determines wh	$\begin{aligned} & \text { ch CN1 } \\ & \text { utput Ter } \\ & \frac{\mathrm{J1-25,26}}{1-27,28} \\ & \frac{11-29,30}{} \end{aligned}$	pin (0 to 3 above) will be used to $\begin{aligned} & \text { ninals } \\ & \frac{(\mathrm{SO} 1)}{(\mathrm{SO} 2)} \\ & \hline(\mathrm{SO}) \end{aligned}$	put the /B	signal.
Parameter	Name	Unit	Setting/Range	Default	Control Mode
Pn506	Brake ON Timing after Motor Stops	10 ms	0 to 50	0	Speed, torque, position control
This parameter adjusts the delay time from /BK Signal Output until Servo OFF (stopping Servomotor output), and it is used to be set when the machine moves slightly due to gravity or other factors after turning the brake ON.					



- This parameter is used to set the timing when the motor is stopped. Brake operation while the motor is running is set in Pn507 and Pn508.
- For the standard settings, the Servo will turn OFF simultaneously with the /BK output (Brake Operation). If gravity causes the machine to move slightly at this time due to machine configuration or brake characteristics, turning OFF the Servo can be delayed to reduce the movement.

Parameter	Name	Unit	Setting/Range	Default	Control Mode
Pn507	Brake ON Timing when Motor   Running	$\mathrm{min}^{-1}$	0 to 10000	100	Speed, torque,   position control
		10 ms	0 to 100	50	Speed, torque,   position control

Details
Pn507: Speed Level for BK Signal Output when Motor Running
Pn508: Timing of BK Signal Output when Motor Running
These settings are used to set the timing for applying the brake when the Servo turns OFF due to an /S-ON input signal or alarm.


- The brake on the Servomotor is designed as a holding brake and it must be applied only after the motor has stopped. Adjust this parameter while observing machine operation.


### 11.1.3 Connections to $\Sigma$-I Series SGDB SERVOPACK

## (1) Example of a Brake ON and OFF Circuit

A circuit is configured to turn the brake ON and OFF using the /BK contact output signal from the SERVOPACK and a brake power supply. The following diagram shows the standard connections.


* 1. The terminal is allocated using parameter Cn-2D. In the example above, /BK signal 4 is set in the 2nd digit.
* 2. Brake control relay contact
* 3 . There are $200-\mathrm{V}$ and $100-\mathrm{V}$ brake power supplies.


## (2) Parameter Settings

The SERVOPACK parameters related to control the holding brake are described below.

Parameter	Name	Unit	Setting/Range	Default	Control Mode
Cn-2D	OUTSEL Output Signal Selection	-	110 to 666	210	Speed, torque, position control
	Details   The following parameter determines which right column). In the figure above, 4 is allo put to pins 27 and 28.   Allocation   1st digit: CN1-25, 26 (Factory setting: 0 ) 2nd digit: CN1-27, 28 (Factory setting: 1 ) 3rd digit: CN1-29, 30 (Factory setting: 2)	pin of th ated to	1 CN will be used 2nd digit and th   Set Value and $F$   0: /COIN/ /V-C   1:/TGON   2: /S-RDY   3: /CLT   4: /BK   5: OL warning   6: OL alarm	to output setting is   unction   MP (Vali	the /BK signal (4 in the lower $\square 4 \square$. So, the /BK signal is outd only at the 1 st digit.)
Parameter	Name	Unit	Setting/Range	Default	Control Mode
Cn-12	Brake ON Timing after Motor Stops	10 ms	0 to 50	0	Speed, torque, position control
	This parameter adjusts the Delay Time from /BK Signal Output until Servo OFF (stopping Servomotor output), and it is used to be set when the machine moves slightly due to gravity or other factors after turning the brake ON.				



- This parameter is used to set the timing when the motor is stopped. Brake operation while the motor is running is set in $\mathrm{Cn}-15$ and $\mathrm{Cn}-16$.
- For the standard settings, the Servo will turn OFF simultaneously with the /BK output (Brake Operation). If gravity causes the machine to move slightly at this time due to machine configuration or brake characteristics, turning OFF the Servo can be delayed to reduce the movement.

Parameter	Name	Unit	Setting/Range	Default	Control Mode
Cn-15	Brake ON Timing when Motor	$\min ^{-1}$	0 to max. speed	100	Speed, torque, position control
	Running	10 ms	0 to 100	50	Speed, torque, position control
Details         Cn-15: Speed Level for BK Signal Output when Motor Running   Cn-16: Timing of BK Signal Output when Motor Running   These settings are used to set the timing for applying the brake when the Servo turns OFF due to an /S-ON input   signal or alarm.					



- The brake on the Servomotor is designed as a holding brake and it must be applied only after the motor has stopped. Adjust this parameter while observing machine operation.


### 11.1.4 Connections to $\Sigma$-I Series SGDA SERVOPACK

## (1) Brake ON and OFF Circuit Example

A circuit is configured to turn the brake ON and OFF using the /BK contact output signal from the SERVOPACK and a brake power supply. The standard connections are shown in the following diagram.


* 1. Brake control relay contact
* 2. There are $200-\mathrm{V}$ and $100-\mathrm{V}$ brake power supplies.


## (2) Parameter Settings

The SERVOPACK parameters related to controlling the brake are described below.

Parameter	Name	Unit	Setting/Range	Default	Control Mode
Cn-12	Brake ON Timing after Motor Stops	10 ms	0 to 50	0	Speed, torque, position control
	Details   This parameter adjusts th and it is used to be set wh ON.   - This parameter is motor is running is   - For the standard se ation). If gravity cau brake characteristi	lay Tim   he mach   /BK out   Servo operat ON sta   to set in Cngs, the the m urning	/BK Signal Outp oves slightly due   ing when the $m$ Cn-16.   will turn OFF si to move slightly he Servo can be	ervo OFF or other   OFF   olding   Motor   OFF   topped. B   usly with time due do reduc	ping Servomotor outpu s after turning the brake   operation while the   /BK output (Brake Op achine configuration movement.
Parameter	Name	Unit	Setting/Range	Default	Control Mode
Cn-15	Brake ON Timing when Motor Running	$\min ^{-1}$	0 to max. speed	100	Speed, torque, position control
Cn-16		10 ms	10 to 100	50	Speed, torque, position control
Cn-15: Speed Level for BK Signal Output when Motor Running   Cn-16: Timing of BK Signal Output when Motor Running   These settings are used to set the timing for applying the brake when the Servo turns OFF due to an /S-ON input signal or alarm.					



- The brake on the Servomotor is designed as a holding brake and it must be applied only after the motor has stopped. Adjust this parameter while observing machine operation.


### 11.2 Overtravel Function

The overtravel function forces the machine to stop when the moving part of the machine exceeds the range of movement. With the MP2000-series Machine Controller, processing for stopping as a result of overtravel is achieved by using SERVOPACK functions.
The SERVOPACK connections and parameter setting depend on the model of SERVOPACK. The connections and parameter settings are described in the following sections.

### 11.2.1 Connections to $\Sigma$-II, $\Sigma$-III, $\Sigma-\mathrm{V}$, or $\Sigma-7$ Series SGDH, SGDS, SGDV, and SGD7S SERVOPACKs

The following parameters must be set to ensure the overtravel input signals are connected correctly for the overtravel function.

## (1) Overtravel Input Signal Connections

Correctly connect the input signals for the overtravel limit switches shown below to the corresponding pins on the SERVOPACK CN1 or 1CN connector.


P-OT	When ON   CN1-42 is low.	Forward drive enabled.   Normal operating condition
	When OFF   CN1-42 is high.	Forward drive disabled.   (Reverse movement possible.)
	When ON   CN1-43 is low.	Reverse drive enabled.   Normal operating condition
	When OFF   CN1-43 is high.	Reverse drive disabled.   (Forward movement possible.)

## (2) Parameter Settings

## [ a ] Use/Not Use Overtravel Input Signals

The following parameters are used to enable and disable the overtravel input signals.

Parameter	Name	Set Value	Item	Default
Pn50A.3	P-OT Signal Mapping	$\begin{array}{c}2 \\ \text { (Recom- } \\ \text { mended) }\end{array}$	$\begin{array}{l}\text { Enables use of Positive Prohibit Input Signal } \\ \text { (P-OT). (Forward rotation prohibited when } \\ \text { open, allowed for 0 V.) }\end{array}$	2

## [ b ] Selecting Motor Stopping Methods for Overtravel

When using the overtravel function has been enabled, the following parameters are used to set the methods for stopping the motor. Select the methods for stopping when the P-OT or N-OT is input during motor running.

Parameter	Name	Set Value	Item	Default
Pn001.1	Overtravel Stop Mode	0   (Recom-   mended)	Stops the motor according to Pn001.0 setting   (dynamic brake or coasting) when overtravel is   detected.	0



### 11.2.2 Connections to $\Sigma$-I Series SGDB or SGDA SERVOPACK

The following parameters must be set to ensure the overtravel input signals are connected correctly for the overtravel function.

## (1) Overtravel Input Signal Connections

Connect the input signals for the overtravel limit switches to the corresponding pins on the SERVOPACK CN1 or 1CN connector as shown below.

■ Connections to SGDB SERVOPACK


Connections to SGDA SERVOPACK


P-OT	When ON   CN1-42 (1CN-16) is low.	Forward drive enabled.   Normal operating condition
	When OFF   CN1-42 (1CN-16) is high.	Forward drive disabled.   (Reverse movement possible.)
	When ON      CN1-43 (1CN-17) is low.	Reverse drive enabled.   Normal operating condition
	When OFF   CN1-43 (1CN-17) is high.	Reverse drive disabled.   (Forward movement possible.)

## (2) Parameter Settings

## [ a ] Use/Not Use Overtravel Input Signals

The following parameters are used to enable and disable the overtravel input signals.

Parameter	Name	Set Value	Item	Default
$\begin{aligned} & \text { Cn-01 } \\ & \text { Bit } 2 \end{aligned}$	Use/Not Use P-OT Input Signal	$\begin{gathered} 0 \\ \text { (Recommended) } \end{gathered}$	Enables use of Positive Prohibit Input Signal (P-OT). (Forward rotation prohibited when open, allowed for 0 V .)	0
		1	Disables use of Positive Prohibit Input Signal (P-OT). (Forward rotation always allowed.)	
$\begin{aligned} & \text { Cn-01 } \\ & \text { Bit } 3 \end{aligned}$	Use/Not Use N-OT Input Signal	$\begin{gathered} 0 \\ \text { (Recommended) } \end{gathered}$	Enables use of Negative Prohibit Input Signal (N-OT). (Reverse rotation prohibited when open, allowed for 0 V .)	0
		1	Disables use of Negative Prohibit Input Signal (N-OT). (Reverse rotation always allowed.)	

## [ b ] Selecting Motor Stopping Methods for Overtravel

When using the overtravel function has been enabled, the following parameters are used to set the methods for stopping the motor. Select the methods for stopping when the P-OT or N-OT is input during motor running.

Parameter	Name	Set Value	Item	Default
$\begin{array}{l}\text { Cn-01 } \\ \text { Bit 8 }\end{array}$	$\begin{array}{l}\text { Selection of stopping } \\ \text { method for overtravel }\end{array}$	(Recommended)	$\begin{array}{l}\text { Uses the same stopping method as for Servo } \\ \text { OFF. } \\ \text { Stops the motor according to Cn-01 bit } 6 \text { set- } \\ \text { ting (dynamic brake or coasting) when over- } \\ \text { travel is detected. }\end{array}$	0



### 11.2.3 Rotation Direction Selection

The SVA-01 Module provides a rotation direction selection that can be used to reverse the direction of rotation of the servomotor without changing the motor wiring at the SGDA, SGDB, SGDH, SGDM, SGDS, SGDV, or SGD7S SERVOPACK.
The rotation direction selection only reverses the direction of rotation of the servomotor. The direction $(-,+)$ of axis travel will change. Nothing else will change.

## <Operation in Standard Mode>


<Operation in Reverse Rotation Mode>


## - Settings for Reverse Rotation Mode

Set the SERVOPACK parameter and the SVA-01 Module fixed parameter as shown below to use the servomotor in Reverse Rotation Mode.

Item		Parameter No.	Description	Set Value	Factory Setting		
Parameter	For SGDA and SGDB	Cn-02, bit 0	Direction	1: Reverse rotation   mode	0: Standard mode		
	For SGDH, SGDM,   SGDS, SGDV, and   SGD7S	Pn000.0	Selection	Rotation   Direction   Selection with an   Absolute Encoder	1: Reverse	0: Forward	SVA-01 Module Fixed Parameter
:---							

## 11．3 Software Limit Function

The software limit function is used to set upper and lower limits for the range of machine movement in fixed parame－ ters so the SVA－01 Module can constantly monitor the operating range of the machine．When the software limit func－ tion is enabled，the SVA－01 Module will generate an alarm to stop the axis if it receives a position reference value that exceeds the software upper and lower limits．Thus，the machine runaway or damage due to incorrect operation as well as incorrect references in a motion program can be avoided．


## 11．3．1 Parameter Settings

The following parameters must be set in order to use the software limit function．

Parameter Number	Name	Unit	Setting／Range
Fixed Parameter No．1	Function Selection Flag 1   Bit 1：Soft Limit（Positive Direction）   Enable／Disable   Bit 2：   Soft Limit（Negative Direction）   Enable／Disable	-	0：Disable，1：Enable   $0:$ Disable，1：Enable
Fixed Parameter No．12	Positive Software Limit Value	Reference unit	-2147483648   to 2147483647
Fixed Parameter No．14	Negative Software Limit Value	Reference unit	-2147483648   to 2147483647
Setting Parameter OL口ロ6E	System Reservation（Stop Distance）	-	$-21^{31}$ to $+2^{31}-1$

－The software limit function is enabled only after completing a Zero Point Return or Zero Point Setting operation． If any fixed parameters are changed and saved or the power is turned ON，the Zero Point Return or Zero Point Set－ ting operation must be performed again．

## 11．3．2 Software Limit Detection Function

The software limit alarm will occur if the following conditions and Equation 1 are satisfied．The excess by which the amount of movement exceeds the software limit value will be cleared if Equation 2 is satisfied．

## ＜Conditions＞

－The Soft Limit bits（fixed parameter No．1，bit 1 and 2）are set to 1 （enabled）．
－The Zero Point Return（Setting）Completed bit（ILロロ0C，bit 5）is ON．
－The servo is ON．
－A motion command other than Zero Point Return（ZRET）command is being executed．
＜Equation 1＞
Forward Software Limit：
MPOS（ILD $\square 12)+$ OL $\square \square 6$ E（Stop Distance）$\geq$ Fixed Parameter No． 12 （Forward Software Limit Value）
Reverse Software Limit：
MPOS（ILD $\square 12)+$ OL $\square \square 6 E($ Stop Distance $) \leq$ Fixed Parameter No． 14 （Reverse Software Limit Value）

## ＜Equation 2＞

Forward Software Limit：MPOS（ILD口12）$\geq$ Fixed Parameter No． 12 （Forward Software Limit Value）
Reverse Software Limit：MPOS（ILD $\square 12$ ）$\leq$ Fixed Parameter No． 14 （Reverse Software Limit Value）

### 11.3.3 Axis Stopping Operation at Alarm Occurrence

The way the axis stops at occurrence of alarm differs depending on the motion command that is being executed as shown in the table below.

Motion Command	Stop Operation		
POSING	The axis will start decelerating before the software limit position and stop		
EX_POSING	at the software limit position.		
FEED			
STEP		$\quad$	The pulse distribution command will stop executing at the software limit
:---			
INTERPOLATE   ENDOF_INTERPOLATE   LATCH			
VELO   TRQ   PHASE		The axis will start decelerating the software limit position and stop	
:---			
beyond the software limit position.			

- The software limit settings is disabled for ZRET operation.


### 11.3.4 Processing after an Alarm Occurs

## ( 1 ) Monitoring Alarms

If an axis exceeds a software limit, a Positive/Negative Soft Limit (Positive/Negative Software Limit) alarm will occur. This alarm can be monitored in the monitoring parameter (ILDC04).

Name	Parameter No.	Meaning	
Alarm	IL口ロ04	Bit 3:	Positive Direction Software Limit
		Bit 4:	Negative Direction Software Limit

## ( 2 ) Clearing Software Limit Alarms

Clear software limit alarms using the procedure below.

1. Set the Clear Alarm bit to 1 in the RUN Command Setting (OWDD00, bit F) to clear the alarm.

The alarm (ILDD04) will be cleared.

Name	Parameter No.	Meaning	
RUN Command Setting	OW $\square 00$	Bit F:	Alarm Clear

2. Use the FEED or STEP command to return past the software limit.


## 11．4 Other Utility Functions

## 11．4．1 Modal Latch Function

The Modal Latch function can be executed to latch a position independently from the motion command being executed as long as the motion command being executed is not a motion command with latch function such as EX＿POSING， ZRET，and LATCH．
－If a motion command with latch function，such as EX＿POSING，ZRET，and LATCH，is executed while the modal latch function is being executed，the motion command has priority over the modal latch function，therefore，the motion command will be executed first．

## －Latch Request

A latch request is sent at the moment the Latch Detection Demand bit（setting parameter OWDD00，bit 4）turns ON from OFF．
When the latch is completed，the Latch Completed bit（monitoring parameter IWDD0C，bit 2）will turn ON．
The latched position will be written in the monitoring parameter ILDC18 Machine Coordinate System Latch Position．


## －Cancelling Latch Request

Set the Latch Detection Demand bit（setting parameter OWDD00，bit 4）to OFF to cancel the latch request．

## －Signals Used for Latch

DI＿5，DI＿2，and Phase－C signals can be used as a latch signal．Use the setting parameter Latch Detection Signal Selec－ tion（OWDロ04，bits 0 to 3 ）to select a signal to be used as a latch signal．

## －Related Parameters

The following table lists the related parameters．

Parameter Type	Parameter No．	Parameter Name	Description
Setting parameter	OWDロ00，bit 4	Latch Detection Demand	Executed when the bit 4 turns ON from OFF．   Cancelled when the bit 4 turns OFF from ON．
	OW口ロ04，bits 0 to 3	Latch Detection Signal Selection	0：DI＿5（DEC／EXIT）   1：DI＿2（ZERO／HOME LS）   2：Phase－C pulse input signal
Monitoring parameter	IWDロ0C，bit 2	Latch Completed	－
	ILロロ18	Machine Coordinate System Latch Position	1 ＝ 1 reference unit

## 11．4．2 Reading Absolute Data After Power is Turned ON

When using an absolute encoder，the absolute data can be read out from the absolute encoder when the power supply is turned ON and when saving the fixed parameters．The processing required to read out the data，will be repeated a max－ imum of two times，including one retry．
The time required to complete this processing two times is approximately 3 seconds for one axis and 6 seconds for two axes，because it takes approximately 1.5 seconds to read out the data one time．

## Read Absolute Data Function is Disabled

This function can be disabled by setting the Absolute Position Data Read－out at Power ON bit（fixed parameter No．1， bit 7）to 1 （Not execute）．If so，the ABS Total Rev．Receive Error bit（monitoring parameter ILD 004 ，bit 15）will be ON，and an alarm will occur．
If an alarm occurs，clear the alarm，and then change the setting of the Absolute Position Reading Demand bit（setting parameter OWDप00，bit 5）from 0 （OFF）to $1(\mathrm{ON})$ to read out the absolute data（refer to 11．4．3 Reading Absolute Data Online on page 11－16 for details on Absolute Position Reading Demand．）
－If an alarm code in stead of the absolute data is received from the absolute data，the alarm code will be reported in the monitoring parameter IW $\square \square 2 D$（Servo Driver Alarm Code）．

## －Related Parameters

The following table lists the related parameters．

Parameter Type	Parameter No．	Parameter Name	Description
Fixed parameter	No．1，bit7	Absolute Position Data   Read－out at Power ON	0：Execute（default）   1：Not execute
Setting parameter	OW口ロ00，bit 5	Absolute Position Reading   Demand	Executed at rising edge（OFF $\rightarrow$ ON）．
Monitoring parameter	ILロロ04，bit 15	ABS Total Rev．Receive   Error	0：No alarm   1：Alarm occurrence
	IW口ロ2D	Servo Driver Alarm Code	

## 11．4．3 Reading Absolute Data Online

The ladder program can start reading out the absolute data by setting the Absolute Position Reading Demand bit（set－ ting parameter $\mathrm{OW} \square \square 00$ ，bit 5 ）to $1(\mathrm{ON})$ ．The processing required to read out the data will be repeated a maximum of two times，including one retry．After this process has been completed，the Absolute Position Read－out Completed bit （monitoring parameter IW $\square \square 0 \mathrm{C}$ ，bit 7 ）will be ON． If the SVA－01 Module failed to read the absolute data，the ABS Total Rev．Receive Error bit（monitoring parameter ILDप04，bit 15）will be ON．
－Absolute data can be read out for only one axis at a time．
－Absolute data cannot be read out in the following conditions．If executed，the ABS Total Rev．Receive Error will occur．
－While the servo is ON
－While the parameters from MPE720 are being saved

## －Related Parameters

The following table lists the related parameters．

Parameter Type	Parameter No．	Parameter Name	Description
Setting parameter	OWDO00，bit 5	Absolute Position Reading Demand	Executed at rising edge（ $\mathrm{OFF} \rightarrow \mathrm{ON}$ ）
Monitoring parameter	ILDO04，bit 15	ABS Total Rev．Receive Error	0：No alarm   1：Alarm occurrence
	IWपロ0C，bit 7	Absolute Position Read－out Completed	This bit turns OFF after the absolute data has been read out （OWDC00，bit $5=$ OFF）．

### 11.4.4 General-purpose DO_2 Signal Selection

In normal operation mode, the general-purpose DO_2 signal (pin No. 12 of CN1/CN2) can be used as a general-purpose output signal by setting the General-purpose DO_2 Signal Selection bit (fixed parameter No. 21, bit 5) to 1 (Use as a general-purpose signal). The user can directly control the general-purpose DO_2 signal (pin No. 12 of CN1/CN2) by using the General-purpose DO_2 bit (setting parameter OW $\square \square 5 \mathrm{D}$, bit 2 ).

## (1) Supported Firmware and Engineering Tool Versions

The following firmware and engineering tool versions support this function.

Type	Model	Model Number	Version
Optional module	SVA-01	JAPMC-MC2300(-E)	Ver.1.05 or later
Engineering tool	MPE720 Ver.5	CPMC-MPE720	Ver.5.42 or later
	MPE720 Ver.6	CPMC-MPE770	Ver.6.08 or later


| - The following restrictions apply when using MPE720 Ver. 5.41 or earlier or MPE720 Ver. 6.07 or |
| :---: | :--- | :--- |
| earlier to change a definition created using the MPE720 Ver. 5.42 or later or MPE720 Ver. 6.08 or |
| later. |
| • The setting of the bit 5 of fixed parameter No. 21 cannot be changed. The original setting (the set value |
| created using the MPE720 Ver.5.42 or later or MPE720 Ver. 6.08 or later) will be displayed on the |
| MPE720 screen. |
| - Overwriting and saving a change in the setting will not replace the original setting, and the original set- |
| ting will remain unchanged. |

## ( 2 ) Related Parameters

The following table lists the related parameters.

Parameter Type	Parameter No.	Parameter Name	Description		
Fixed parameter	No.21, bit 5	$\begin{array}{l}\text { General-purpose DO_2 } \\ \text { Signal Selection }\end{array}$	$\begin{array}{l}\text { 0: Use as a system exclusive signal (default). }\end{array}$		
1: Use as a general-purpose signal. ${ }^{* 2}$				$]$	S: OFF
:---					
Setting parameter					
OW口口5D,   bit 2					
General-purpose DO_2					

* 1. The system automatically controls this output signal according to the motion command setting. When using a standard cable, this signal is connected to the /P-CON or C-SEL signal of the SERVOPACK to switch the control mode. The user cannot directly control this signal.
* 2. The user can directly control the general-purpose DO_2 signal (pin No. 12 of CN1/CN2) by using the General-purpose DO_2 bit (setting parameter OWवप5D, bit 2).

| CAUTION Do not use the Torque Reference command (motion command 24) when the General-purpose <br> DO_2 Signal Selection bit (fixed parameter No. 21, bit 5) is set to 1 (Use as a General-purpose <br> Signal). <br> Always follow the instructions described in (3) Precautions When Using the General-purpose <br> DO_2 Signal (Pin No. 12 of CN1/CN2) as a General-purpose Output Signal on page 11-18. |
| :--- | :--- |

( 3 ) Precautions When Using the General-purpose DO_2 Signal (Pin No. 12 of CN1/CN2) as a General-purpose Output Signal

Always set the parameters of the connected SERVOPACK as follows when using the general-purpose DO_2 signal (pin No. 12 of $\mathrm{CN} 1 / \mathrm{CN} 2$ ) as a general-purpose output signal.

## SGDA SERVOPACK Parameter Settings

Parameter   No.	Name	Default Value	Set   Value	Setting Contents
Cn-01, bit A	Control mode selection	0	0	Speed control
Cn-01, bit B		0	Sord	0
Cn-01, Bit F	Torque feed forward function	0	0	Disables the torque feed forward function.
Cn-02, bit F	Torque reference input selection	0	1	In speed control mode, TREF is used as the torque   limit.

The following diagram shows a connection example of the SVA-01 Module and the SGDA SERVOPACK input signals. Refer to 2.5.3 ( 3 ) SGDA- $\square \square \square S$ Connection Diagram on page 2-15.
The general-purpose DO_2 signal (pin No. 12 of CN1/CN2) is connected to the /P-CON signal of the SGDA SERVOPACK.


## ■ SGDB SERVOPACK Parameter Settings

Parameter   No.	Name	Default Value	Set   Value	Setting Contents
Cn-02, bit 8	Analog current limit function	0	1	In speed control mode, TREF is used as the analog   current limit (torque limit).
Cn-02, bit 9	Torque feed-forward function	0	0	Disables the torque feed forward function.
Cn-2B	Control method selection	0	0	Speed control (analog reference)

The following diagram shows a connection example of the SVA-01 Module and the SGDB SERVOPACK input signals. Refer to 2.5.3 JEPMC-W2041-■D-E Details on page 2-16.
The general-purpose DO_2 signal (pin No. 12 of CN1/CN2) is connected to the /P-CON signal of the SGDB SERVOPACK.
General-purpose input P-OT/
General-purpose input $\mathrm{N}-\mathrm{OT} / \mathrm{Cl}$
SVA-01 Module

SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACK Parameter Settings

Parame-   ter No.	Name	Default   Value	Set   Value	Setting Contents	Remarks
Pn000.1	Control method selection	0	0	Speed control (analog voltage reference)	
Pn002.0	Speed control option	0	1	Use T-REF as external torque limit input.	
Pn50A.0	Input signal allocation   mode	0	1	Enables free allocation of input signals.	
Pn50A.1	/S-ON signal mapping	0	0	Input signal from CN1-40 input terminal.	Used by SVA-01   system
Pn50A.2	/P-CON signal mapping	1	1	Input signal from CN1-41 input terminal.	$*$
Pn50A.3	P-OT signal mapping	2	2	Input signal from CN1-42 input terminal.	$*$
Pn50B.0	N-OT signal mapping	3	3	Input signal from CN1-43 input terminal.	$*$
Pn50B.1	/ALM-RST signal mapping	4	4	Input signal from CN1-44 input terminal.	Used by SVA-01   system
Pn50B.2	/P-CL signal mapping	5	8	Signal always disabled.	$*$
Pn50B.3	/N-CL signal mapping	6	8	Signal always disabled.	$*$
Pn50C.0	/SPD-D signal mapping	8	8	Signal always disabled.	Cannot be used.
Pn50C.1	/SPD-A signal mapping	8	8	Signal always disabled.	Cannot be used.
Pn50C.2	/SPD-B signal mapping	8	8	Signal always disabled.	Cannot be used.
Pn50C.3	/C-SEL signal mapping	8	8	Signal always disabled.	Cannot be used.
Pn50D.0	/ZCLAMP signal mapping	8	8	Signal always disabled.	Cannot be used.
Pn50D.1	/INHIBIT signal mapping	8	8	Signal always disabled.	$*$
Pn50D.2	/G-SEL signal mapping	8	8	Signal always disabled.	

* The user can freely allocate functions to the following input terminals: CN1-41, CN1-42, CN1-43, CN1-45, and CN146. Of these, CN1-42 and CN1-43 are for external input signals. Data is input into CN1-41, CN1-45, and CN1-46 as signals by the SVA-01 setting parameters.

The following diagram shows a connection example of the SVA-01 Module and the SGDM, SGDH, SGDS, SGDV, or SGD7S SERVOPACK input signals when using a standard cable.
The general-purpose DO_2 signal (pin No. 12 of CN1/CN2) is connected to the /P-CON signal of the SGDM, SGDH, SGDS, SGDV, or SGD7S SERVOPACK.


## Troubleshooting

This chapter explains error details and corrective actions for each error.
12.1 Troubleshooting ..... 12-2
12.1.1 Basic Flow of Troubleshooting ..... 12-2
12.1.2 MP2000 Series Machine Controller Error Check Flowchart ..... 12-3
12.1.3 LED Indicators (MP2200/MP2300) ..... 12-4
12.2 Troubleshooting System Errors ..... 12-6
12.2.1 Outline of System Errors ..... 12-6
12.2.2 Troubleshooting Flowchart for System Errors ..... 12-9
12.2.3 Correcting User Program Errors ..... 12-10
12.2.4 System Register Configuration and Error Status ..... 12-11
12.3 Motion Program Alarms ..... 12-27
12.3.1 Motion Program Alarm Configuration ..... 12-27
12.3.2 Motion Program Alarm Code List ..... 12-27
12.4 Troubleshooting Motion Errors ..... 12-28
12.4.1 Overview of Motion Errors ..... 12-28
12.4.2 Axis Alarm Details and Corrections ..... 12-29
12.4.3 Analog Servo Alarm List ..... 12-32

### 12.1 Troubleshooting

This section describes the basic troubleshooting methods and provides a list of errors.

### 12.1.1 Basic Flow of Troubleshooting

When problems occur, it is important to quickly find the cause of the problems and get the system running again as soon as possible. The basic flow of troubleshooting is illustrated below.

Step 1	Visually confirm the following items.
- Machine movement (or status if stopped)	
- Power supply	
- I/O device status	
- Wiring status	
- Indicator status (LED indicators on each Module)	
- Switch settings (e.g., DIP switches)	
-	Parameter settings and program contents



Step 2	Monitor the system to see if the problem changes for   the following operations.
- Switching the Controller to STOP status	
- Resetting alarms	
- Turning the power supply OFF and ON	



Step 3	Determine the location of the cause from the results of   steps 1 and 2.
- Controller or external?	
- Sequence control or motion control?	
- Software or hardware?	

### 12.1.2 MP2000 Series Machine Controller Error Check Flowchart

Find the correction to the problem using the following flowchart if the cause of the problem is thought to be the Machine Controller or SERVOPACK.


* 1. Check the status flag Program Alarm Occurrence (MSEE work, bit 8 of the 0 word) to see whether a motion program alarm is occurring or not.
<Example> When an MSEE instruction is executed in the ladder program shown below, bit 8 of DW00000 indicates an alarm occurrence.

* 2. To find the system work number, find the SW register that stores the motion program number where the alarm is occurring from the Main Program Number in Execution (SW03200 to SW03215), and obtain the system work number from the SW register.
Refer to 12.2.4 ( 9 ) Motion Program Execution Information on page 12-26 for the relationship between SW register and system work number.
* 3. Obtain the motion program alarm code from Work Using Program Information (58 words). Obtain the system work number and then determine the contents of the alarm code referring to 12.2.4 (9) Motion Program Execution Information on page 12-26.
An alarm code is prepared for each Parallel. When a parallel execution instruction such as PFORK, JOINTO, PJOINT is not used, the alarm code will be stored in Parallel 0 .


### 12.1.3 LED Indicators (MP2200/MP2300)

- For explanations of the LED indicators on MP2100M and MP2500MD respectively, refer to Machine Controller MP2100/MP2100M User's Manual Design and Maintenance (manual number SIEP C880700 01) and Machine Controller MP2500/MP2500M/MP2500D/MP2500MD User's Manual (manual number SIEP C880752 00).


## ( 1 ) LED Indicators



The status of the LED indicators on the front of the MP2200/MP2300 can be used to determine the error status and meaning.
The locations in the program that need to be corrected can be determined by using the LED indicator status to determine the general nature of the error, using the contents of system (S) registers to check drawings and function numbers causing the error, and knowing the meaning of operation errors.
(2) LED Indicator Meanings

The following table shows how to use the LED indicators to determine the operating status of the MP2200/MP2300, as well as relevant error information when the LED indicator status indicates an error.

Classification	LED Indicator					Indicator Details	Countermeasures
	RDY	RUN	ALM	ERR	BAT		
Normal operation	Not lit	Not lit	Lit	Lit	Not lit	Hardware reset status	Usually the CPU will start within 10 seconds. If this status continues for more than 10 seconds, either a program error or hardware failure has occurred. Refer to 12.2 Troubleshooting System Errors on page 12-6 and correct any system errors.
	Not lit	Initialization					
	Not lit	Lit	Not lit	Not lit	Not lit	Drawing A (DWG.A) being executed.	
	Lit	Not lit	Not lit	Not lit	Not lit	User program stopped. (Offline Stop Mode)	This status occurs   - When the stop operation is executed from the MPE720   - When the STOP switch is turned ON   This status does not indicate an error.
	Lit	Lit	Not lit	Not lit	Not lit	User program being executed normally.	This is the normal status.

(cont'd)

Classification	LED Indicator					Indicator Details	Countermeasures
	RDY	RUN	ALM	ERR	BAT		
Errors	Not lit	Not lit	Not lit	Lit	Not lit	A serious error has occurred.	Refer to 12.2.3 Correcting User Program Errors on page 12-10.
	Not lit	Not lit	Lit	Not lit	Not lit		
	Not lit	Not lit	Not lit	Blinking	Not lit	Software Error	A hardware error has occurred. Replace the Module.
						Number of LED blinks indicates error type.	
						3: Address error (read) exception	
						4: Address error (write) exception	
						6: Illegal general command exception	
						7: Illegal slot command exception	
						8: General FPU inhibited exception	
						12: LTB error (write) exception	
						13: LTB protection violation (read) exception	
						14: LTB protection violation (write)	
						15: Initial page write exception	
						Hardware Error   Number of LED blinks indicates error type.	
	Not lit	Not lit	Blinking	Blinking	Not lit	2: RAM diagnostic error	
						3: ROM diagnostic error	
						4: CPU function diagnostic error	
						5: FPU function diagnostic error	
Warnings	-	-	-	-	Lit	Battery alarm	Replace the battery to save the memory.
	Lit	Lit	Lit	Not lit	Not lit	Operation error I/O error	Refer to 12.2.4 (3) Ladder Program User Operation Error Status on page 12-13 and 12.2.4 (4) System Service Execution Status on page 12-15.

### 12.2 Troubleshooting System Errors

This section provides troubleshooting information for system errors.

### 12.2.1 Outline of System Errors

The LED indicators on the front of the Basic Module can be used to determine Machine Controller operating status and error status. To obtain more detailed information on errors, the system (S) registers can be used. A detailed check of the contents of system registers can be used to determine the location of the error and take the corrective measures.
Details on system registers are provided below.

## ( 1 ) System Register Allocations

The following table shows the overall structure of the system registers. Refer to the sections given on the right for details.

SW00000	System Service Register	
SW00030	System Status	$\rightarrow$ 12.2.4 (1) System Status on page 12-11
SW00050	System Error Status	$\rightarrow$ 12.2.4 ( 2 ) System Error Status on page 12-12
SW00080	User Operation Error Status	$\rightarrow$ 12.2.4 (3) Ladder Program User Operation Error Status on page 12-13
SW00090	System Service Execution Status	$\rightarrow$ 12.2.4 ( 4 ) System Service Execution Status on page 12-15
SW00110	User Operation Error Status Details	$\rightarrow \begin{aligned} & \text { 12.2.4 (3) Ladder Program User Operation Error Status on } \\ & \text { page 12-13 }\end{aligned}$
SW00190	Alarm Counter and Alarm Clear	$\rightarrow$ 12.2.4 ( 5 ) Alarm Counter and Alarm Clear on page 12-15
SW00200	System I/O Error Status	$\rightarrow$ 12.2.4 ( 6 ) System I/O Error Status on page 12-16
SW00504	Reserved by the system	
SW00698	Interrupt Status	
SW00800	Module Information	$\rightarrow$ 12.2.4 ( 8 ) Module Information on page 12-21
SW01312	Reserved by the system	
SW02048	Reserved by the system	
SW03200	Motion Program Information	$\rightarrow$ 12.3 Motion Program Alarms on page 12-27
SW05200   to SW08191	Reserved by the system	

## ( 2 ) Accessing System Registers

To access the contents of system registers, start the MPE720 Programming Tool and use the Register List or Quick Reference function.
The Register List on the MPE720 version 5. $\square \square$ is displayed differently from that on the MPE720 version $6 . \square \square$. The display of each version is as follows.
[ a ] Register List Display Procedure (MPE720 Version 5.पロ)
Use the following procedure to display the register list on the MPE720 version 5.П口.

1. Select File - Open - Tool - Register List from the MPE720 Engineering Manager Window to open the Register List Window.


- Refer to 3.2.2 Opening the Module Configuration Window on page 3-4 for details on how to display the Engineering Manager Window.

2. Select View Mode - HEX to change the view mode to hexadecimal.

3. Input the register number of the first system register to be accessed for Register, input the register number of the last system register to be accessed for $D$, and click anywhere in the list. The contents of the specified range of register numbers will be displayed.

[ b ] Displaying a Register List with the Quick Reference (MPE720 Version 5.口ロ)
Register lists can also be accessed with the Quick Reference.
4. Select View - Quick Reference from the MPE720 Engineering Manager Window.


The Quick Reference will be displayed at the bottom of the Engineering Manager Window.

- Refer to 3.2.2 Opening the Module Configuration Window on page 3-4 for details on how to display the Engineering Manager Window.

2. Click the Register List Tab to switch to the register list.
3. Enter the register number of the first system register to be accessed for Register, input the register number of the last system register to be accessed for $D$, and click anywhere in the list. The contents of the specified range of register numbers will be displayed.

[ c ] Register List Display Procedure (MPE720 Version 6. $\square \square$ )
Use the following procedure to display the register list.
4. Open the Register List Subwindow on MPE720 version 6. $\square \square$.

The Register List Tab will appear by default on the bottom of the subwindow.

2. Enter the first register number SW $\square \square \square \square \square$ of the system registers to be accessed in the Register input field. The contents of system registers from the first register number will be displayed.

Register List																$\times$
Regist 5 W00000		$\checkmark$								- Auto				S Manto		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	$\wedge$
SW00000	0010	0705	0000	0705	0064	0001	0002	$01 F 4$	0000	0000	07D0	0000	0001	0000	07D0	
Sw00015	0007	0424	0909	0042	0005	0250	0000	0000	0000	0000	0000	A9E0	0057	0000	0058	
SW00030	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	8083	0000	0000	0000	0000	
SW00045	0000	0000	0000	000C	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
SW00060	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
SW00075	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
SW00090	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	-

- The data type is set by default to decimal. To display data in hexadecimal as shown above, right-click anywhere in the list and select Hexadecimal from the pop-up menu that opens.


### 12.2.2 Troubleshooting Flowchart for System Errors

A troubleshooting flowchart for system errors is provided below.


* For LED indicator pattern, refer to 12.1.3 ( 2 ) LED Indicator Meanings on page 12-4.


### 12.2.3 Correcting User Program Errors

A serious error may have occurred if the ALM and ERR indicators on the front of the Machine Controller Basic Module are lit red. Set the Machine Controller in stop status (STOP switch on DIP switch 6: ON) and investigate the error. Use the following procedure to investigate ladder program errors.

## - When the ERR LED Lights Up



- When the ALM LED Lights Up
(1) Check to see whether an operation error has occurred

Check the error count for each drawing in SW00080 to SW00088. If errors have been counted, an operation error has occurred. Go to (2).

1. Check Error Details

Check error codes for drawings where the error is counted.
DWG.A: SW00111, DWG.H: SW00143
DWG.I: SW00127, DWG.L: SW00175
2. Check the Drawing Number

Check the error drawing number for the drawing number where an error occurred.

DWG.A: SW00122, DWG.H: SW00154
DWG.I: SW00138, DWG.L: SW00186
3. Errors in Functions

Check the Function Referencing Drawing Number and Function Referencing STEP Number.

DWG.A: SW00123, SW00124, DWG.H: SW00155, SW00156
DWG.I: SW00139, SW00140, DWG.L: SW00187, SW00188

[^3]
### 12.2.4 System Register Configuration and Error Status

## (1) System Status

System operating status and error status is stored in registers SW00040 to SW00048. Checking of system status details are used to determine whether hardware or software is the cause of an error.

Name	Register No.	Description		
Reserved by the system	$\begin{gathered} \hline \text { SW00030 } \\ \text { to } \\ \text { SW00039 } \end{gathered}$			
CPU Status	SW00040	SW00040, bit 0	READY	0: Failure   1: Normal
		SW00040, bit 1	RUN	0: Stopped, 1: Running
		SW00040, bit 2	ALARM	0: Normal, 1: Alarm
		SW00040, bit 3	ERROR	0: Normal, 1: Error
		SW00040, bit 4	Reserved by the system	
		SW00040, bit 5	Reserved by the system	
		SW00040, bit 6	FLASH	1: Flash operation
		SW00040, bit 7	WEN	0: Write-disabled, 1: Write-enabled
		$\begin{aligned} & \text { SW00040, bit } 8 \text { to } \\ & \text { SW00040, bit D } \end{aligned}$	Reserved by the system	
		SW00040, bit E	Operation Stop Request	0: RUN selection, 1: STOP selection
		SW00040, bit F	Run Switch Status at Power ON	$\begin{aligned} & \text { 0: STOP } \\ & \text { 1: RUN } \end{aligned}$
CPU Error Status	SW00041	SW00041, bit 0	Serious Failure	1: WDGE, undefined command See SW00050 for details.
		SW00041, bit 1	Reserved by the system	
		SW00041, bit 2	Reserved by the system	
		SW00041, bit 3	Exception Error	
		$\begin{aligned} & \text { SW00041, bit } 4 \text { to } \\ & \text { SW00041, bit } 7 \end{aligned}$	Reserved by the system	
		SW00041, bit 8	User operation error	1: User operation error
		SW00041, bit 9	I/O Error	1: I/O error
		SW00041, bit A to SW00041, bit F	Reserved by the system	
H Scan Time Over Counter	SW00044			
L Scan Time Over Counter	SW00046			
Reserved by the system	SW00047	$\begin{aligned} & \text { SW00047, bit } 0 \text { to } \\ & \text { SW00047, bit F } \end{aligned}$	Reserved by the system	
Hardware Configuration Status	SW00048	SW00048, bit 0	TEST	DIP switch status   0 : ON, 1: OFF
		SW00048, bit 1	MON	
		SW00048, bit 2	CNFG	
		SW00048, bit 3	INIT	
		SW00048, bit 4	SUP	
		SW00048, bit 5	STOP	
		SW00048, bit 6	-	
		SW00048, bit 7	Battery Alarm	
		$\begin{aligned} & \text { SW00048, bit } 8 \text { to } \\ & \text { SW00048, bit F } \end{aligned}$	Reserved by the system	
Reserved by the system	SW00049	SW00049, bit 0 to SW00049, bit F	Reserved by the system	

## （ 2 ）System Error Status

System error status is stored in registers SW00050 to SW00060．

Name	Register No．	Description		
32－bit Error Code	SW00050	0001H	Watchdog timer timeout error	
		0041H	ROM diagnosis error	
		0042H	RAM diagnosis error	
		0043H	CPU diagnosis error	
		0044H	FPU diagnosis error	
		00 E 0 H	Address read exception error	
		0100H	Address write exception error	
		0120H	FPU exception error	
		0180H	Illegal general command error	
		01A0H	Illegal slot command error	
		01E0H	User break after command execution	
		0800H	General FPU inhibited exception error	
		0820H	Slot FPU inhibited exception error	
	SW00051	For system error analysis		
$\begin{aligned} & \text { 32-bit } \\ & \text { Error Addresses } \end{aligned}$	SW00052	For system error analysis		
	SW00053			
Ladder Program Error Task	SW00054	0000H：System 0001H：DWG．A	0002H：DWG．I 0003H：DWG．H	0005H：DWG．L
Ladder Program Type	SW00055	0000H：System 0001 H ：DWG．A	0002H：DWG．I   0003H：DWG．H	0005H：DWG．L 0008H：Function
Ladder Program Error Drawing Number	SW00056	Ladder program parent drawing：FFFFH   Ladder program function： 8000 H   Ladder program child drawing：$\square \square 00 \mathrm{H}$（Hロロ：Child drawing number）   Ladder program grandchild drawing：$\square \square y y H$（Hyy：Grandchild drawing number）   Motion program：F0매（HDD：Program number）		
Ladder Program Function Calling Drawing Type	SW00057	Type of drawing that calls the ladder program function in which an error occurred．		
		0001H：DWG．A 0002H：DWG．I 0003H：DWG．H	0005H：DWG．L   0008 H ：Ladder program function	0010H：Reserved by system． 0011 H ：Reserved by system．
Ladder Program Function Calling Drawing Number	SW00058	Number of drawing that calls the ladder program function in which an error occurred．   Parent drawing：FFFFH Child drawing：$\square \square 00 \mathrm{H}$（Hロロ：Child drawing number）   Function：0100H		
Ladder Program Function Calling Drawing Number	SW00059	STEP number of the drawing that calls the ladder program function in which an error occurred．   0 when there is an error in the drawing．		
Error Data	$\begin{aligned} & \text { SW00060 and } \\ & \text { SW00061 } \end{aligned}$	Reserved by the system		
	$\begin{aligned} & \text { SW00062 to } \\ & \text { SW00065 } \end{aligned}$	Name of Task Generating Error		
	SW00066 and SW00067	Reserved by the system		
	SW00068	Year Generated		
	SW00069	Month Generated		
	SW00070	Day of Week Generated		
	SW00071	Day of Month Generated		
	SW00072	Hour Generated		
	SW00073	Minutes Generated		
	SW00074	Seconds Generated		
	SW00075	Milliseconds Generated（Not used）		
	$\begin{aligned} & \hline \text { SW00076 to } \\ & \text { SW00079 } \end{aligned}$	Reserved by the system		

## ( 3 ) Ladder Program User Operation Error Status

Error information for user operation errors in ladder programs is stored in registers SW00080 to SW00089 (Error Status 1) and SW00110 to SW00189 (Error Status 2).
[ a Ladder Program User Operation Error Status 1

Name	Register No.	Description
DWG.A Error Count Error Code	SW00080	Operation error code:   See Ladder Program User Operation Error Codes 1.
	SW00081	
DWG.I Error Count Error Code	SW00082	
	SW00083	
DWG.H Error Count Error Code	SW00084	
	SW00085	
Reserved by the system.	SW00086	Error code when an index error occurs:   See Ladder Program User Operation Error Codes 2.
	SW00087	
DWG.L Error Count Error Code	SW00088	
	SW00089	

[ b ] Ladder Program User Operation Error Status 2

Name	Register No.				Remarks
	DWG.A	DWG.I	DWG.H	DWG.L	
Error Count	SW00110	SW00126	SW00142	SW00174	<Error Drawing Number >   Parent drawing: FFFFH   Child drawing: $\square \square 00 \mathrm{H}$ (HDD: Child
Error Code	SW00111	SW00127	SW00143	SW00175	
Error A Register	SW00112	SW00128	SW00144	SW00176	
	SW00113	SW00129	SW00145	SW00177	
Modification A Register	SW00114	SW00130	SW00146	SW00178	drawing number)   Grandchild drawing: $\square \square \mathrm{yyH}$ (Hyy:   Grandchild drawing number)
	SW00115	SW00131	SW00147	SW00179	
Error F Register	SW00116	SW00132	SW00148	SW00180	Function: 8000H   Motion program:   F0 $\square \square \mathrm{H}$ (HDロ: Program number)
	SW00117	SW00133	SW00149	SW00181	
Modification F Register	SW00118	SW00134	SW00150	SW00182	
	SW00119	SW00135	SW00151	SW00183	<Function Calling Drawing Number> Number of the drawing that calls the function in which an error occurred.
Error Address	SW00120	SW00136	SW00152	SW00184	
	SW00121	SW00137	SW00153	SW00185	
Error Drawing Number	SW00122	SW00138	SW00154	SW00186	<Function Calling DWG Step Number> Step number of the drawing that calls the function in which an error occurred. 0 when there is an error in the parent drawing.
Function Calling Drawing Number	SW00123	SW00139	SW00155	SW00187	
Function Calling DWG Step Number	SW00124	SW00140	SW00156	SW00188	
Reserved by the system.	SW00125	SW00141	SW00157	SW00189	

[ c ] Ladder Program User Operation Error Codes 1

	Error Code	Error Contents		User*	System Default Value
	0001H	Integer operation - underflow		Yes	-32768 [-32768]
	0002 H	Integer operation - overflow		Yes	32767 [32767]
	0003H	Integer operation - division error		Yes	The A register remains the same.
Integer Op-	0009H	Double-length integer operation - underflow		Yes	-2147483648 [-2147483648]
erations	000AH	Double-length integer operation - overflow		Yes	2147483647 [2147483647]
	000BH	Double-length integer operation - division error		Yes	The A register remains the same.
	010xH	Operation error drawing - integer operation error ( $\mathrm{x}=1$ to B )		No	Default indicated above.
	0010H	Integer storage - non-numeric error		Yes	Store not executed. [00000]
	0011H	Integer storage - underflow		Yes	Store not executed. [-32768]
	0012H	Integer storage - overflow		Yes	Store not executed. [+32767]
	0021 H	Real number storage - underflow		Yes	Store not executed. [-1.0E+38]
	0022H	Real number storage - overflow		Yes	Store not executed. [1.0E+38]
	0023H	Real number operation - division-by-zero error		Yes	Operation not executed.   The F register remains the same.
	0030H	Real number operation - invalid operation (non-numeric)		No	Operation not executed.
	0031H	Real number operation - exponent underflow		No	0.0
	0032H	Real number operation - exponent overflow		No	Maximum value
Real Number	0033H	Real number operation - division error (nonnumeric $0 / 0$ )		No	Operation not executed.
Operation	0034H	Real number storage - exponent underflow		No	Stores 0.0.
	0035H	Real number operation - stack error		.	
	0040H	Standard System Functions Real number operation errors		No	Interrupt operation and output $=$ $0.0$
		0040H: SQRT	0041H: SIN	0042H: COS	S ${ }^{\text {a }}$ (0043H: TAN
		0044H: ASIN	0045H: ACOS	0046H: ATAN	AN
	to	0048H: LN	0049H: LOG	004AH: DZA	ZA
		004CH: LIM	004DH: PI	004EH: PD	- $004 \mathrm{FH}:$ PID
	0059H	0050H: LAG	0051H: LLAG	0052H: F	N
		0054H: LAU	0055H: SLAU	0056H: R	M
		0058 H : BSRCH	0059H: SQRT		-
		1000 H or 2000 H is added for an index error.			

* Yes: Can be set to value other than system default from the user program.

No: The system default cannot be changed from the user program.
[ d ] Ladder Program User Operation Error Codes 2

	Error Code	Error Contents		User*	System Default	
Integer - Real Number Operations	1000H	Index error within drawing		No	Execute again with $\mathrm{i}, \mathrm{j}=0$.   The $i$ and $j$ register remains the same.	
	2000H	Index error within function		No	Execute again with $\mathrm{i}, \mathrm{j}=0$.   The $i$ and $j$ register remains the same.	
Integer Operation	$\begin{gathered} \square 060 \mathrm{H} \\ \text { to } \\ \square 077 \mathrm{H} \\ (\square=1,2) \end{gathered}$	Integer system functions Index error		No	Operation stopped and output = input. The A register remains the same.	
		$\square 06 \mathrm{DH}$ : PI	$\square 06 \mathrm{DH}$ : PD	$\square 06 \mathrm{FH}$ : PID		$\square 070 \mathrm{H}:$ LAG
		$\square 071 \mathrm{H}$ : LLAG	$\square 072 \mathrm{H}: \mathrm{FGN}$	$\square 073 \mathrm{H}: \mathrm{IFGN}$		$\square 074 \mathrm{H}: \mathrm{LAU}$
		$\square 075 \mathrm{H}:$ SLAU	$\square 076 \mathrm{H}$ : FGN	$\square 077 \mathrm{H}: \mathrm{IFGN}$		

* No: The system default cannot be changed from the user program.


## ( 4 ) System Service Execution Status

[ a ] Data Trace Execution Status

Name	Register No.	Remarks
Reserved by the system	SW00090 to   SW00097	
Existence Of Data Trace Definition	SW00098	Bits 0 to 3 = Group 1 to 4   Definition exists = 1, No definition $=0$
Data Trace Execution Status	SW00099	Bits 0 to 3 = Group 1 to 4   Trace stopped = 1, Trace executing $=0$

[ b ] Latest Data Trace Record Numbers

Name	Register No.	Remarks
Data Trace Group 1	SW00100	Latest record number
Data Trace Group 2	SW00101	Latest record number
Data Trace Group 3	SW00102	Latest record number
Data Trace Group 4	SW00103	Latest record number

(5) Alarm Counter and Alarm Clear

Name	Register No.	Remarks
Number of Alarm Occurrences	SW00190	Number of alarm occurrences
Number of Alarm Histories	SW00191	Number of alarm histories
Clear Alarm	SW00192	1: Clear alarm   2: Clear the number of alarm occurrences and alarm   histories

## （ 6 ）System I／O Error Status

## ［ a ］MP2100M Machine Controller

Name	Register No．	Remarks
I／O Error Count	SW00200	Number of I／O error occurrences
Number of Input Errors	SW00201	Number of input error occurrences
Input Error Address	SW00202	Address of the latest input error（IWDロロロ register num－ ber）
Number of Output Errors	SW00203	Number of output error occurrences
Output Error Address	SW00204	Address of the latest output error（OWDप्वप register number）
Reserved for the system	SW00205	Not used．
	SW00206	
	SW00207	
I／O Error Status	SW00208 to SW00215	MP2 100M Machine Controller error status
	SW00216 to SW00223	Reserved for the system
	SW00224 to SW00228	SVB－01 Module error status
	SW00229 to SW00239	Reserved for the system
	SW00240 to SW00247	Error status of slot 1 of rack 2＊   （Depends on the mounted module and error code．）
	SW00248 to SW00255	Error status of slot 2 of rack 2 ＊   （Depends on the mounted module and error code．）
	SW00256 to SW00263	Error status of slot 3 of rack 2 ＊   （Depends on the mounted module and error code．）
	SW00264 to SW00271	Error status of slot 4 of rack 2＊   （Depends on the mounted module and error code．）
	：	：
	SW00448 to SW00455	Error status of slot 9 of rack 4 ＊   （Depends on the mounted module and error code．）

[^4]［ b ］MP2200 Machine Controller

Name	Register No．	Remarks
I／O Error Count	SW00200	Number of I／O error occurrences
Number of Input Errors	SW00201	Number of input error occurrences
Input Error Address	SW00202	Address of the latest input error（IWロロดロ register num－ ber）
Number of Output Errors	SW00203	Number of output error occurrences
Output Error Address	SW00204	Address of the latest output error（OWDप्वप register number）
Reserved for the system	SW00205	Not used．
	SW00206	
	SW00207	
I／O Error Status	SW00208 to SW00215	Not used．
	SW00216 to SW00223	Reserved for the system
	SW00224 to SW00228	Error status of slot 1 of rack 1 （Depends on the mounted module and error code．）
	SW00229 to SW00239	Error status of slot 2 of rack 1   （Depends on the mounted module and error code．）
	SW00240 to SW00247	Error status of slot 3 of rack 1   （Depends on the mounted module and error code．）
	SW00248 to SW00255	Error status of slot 4 of rack 1   （Depends on the mounted module and error code．）
	：	：
	SW00496 to SW00503	Error status of slot 9 of rack 4 ＊   （Depends on the mounted module and error code．）

＊Racks 2 to 4 can be used only when using EXIOIF．
［c］MP2300 Machine Controller

Name	Register No．	Remarks
I／O Error Count	SW00200	Number of I／O error occurrences
Number of Input Errors	SW00201	Number of input error occurrences
Input Error Address	SW00202	Address of the latest input error（IWロロロロ register num－ ber）
Number of Output Errors	SW00203	Number of output error occurrences
Output Error Address	SW00204	Address of the latest output error（OWDロロロ register number）
Reserved for the system	SW00205	Not used．
	SW00206	
	SW00207	
I／O Error Status	SW00208 to SW00215	Slot 0 error status （Depends on the mounted module and error code）
	SW00216 to SW00223	Reserved for the system
	SW00224 to SW00231	Slot 1 error status （Depends on the mounted module and error code．）
	SW00232 to SW00239	Slot 2 error status   （Depends on the mounted module and error code．）
	SW00240 to SW00247	Slot 3 error status （Depends on the mounted module and error code．）

## ( 7 ) Details on I/O Error Status

When a system I/O error occurs, the error status will be written in the system register.
[ a ] Modules Whose I/O Error Status Are Written in the System Register
The table below shows whether the I/O error status of each module is written in the system register or not.

Classification	Module Name	I/O Error Status is   Written or Not	Remarks
CPU Module	CPU-01	No	Not equipped with external I/O interface
Motion Module	SVA-01	No	Use the monitoring parameter to obtain error   information.
	SVB-01	Yes	
	217 IF-01	No	No I/O
	218 IF-01	No	No I/O
	260 IF-01	Yes	
	261 IF-01	Yes	
I/O Module	LIO-01	Yes	
	LIO-02	Yes	
	EIO-04	Yes	

[ b ] MP2300 Machine Controller Basic Module Error Status
The registers allocated for each error status when an I/O Module (LIO-01/02), SVB-01 Module, and Communication Module (260IF-01) are mounted in slots 1, 2, and 3 of the MP2300 Machine Controller respectively are described below.

Name	Register No.	Remarks
Slot 0 Error Status	SW00208 to   SW00215	(Depends on the mounted module and error code.)
Reserved by the system	SW00216 to   SW00223	(Depends on the mounted module and error code.)
Slot 1 Error Status	SW00224 to   SW00231	(Depends on the mounted module and error code.)
Slot 2 Error Status	SW00232 to   SW00239	(Depends on the mounted module and error code.)
Slot 3 Error Status	SW00240 to   SW00247	(Depends on the mounted module and error code.)

Register Allocation Details: Slot 0 (Reserved for Basic Module)

(Bit No.)						
SW00208	Error code (l/O error = 2)			Subslot No. (= 2)		
SW00209	Error code (Station error = 1)			Subslot No. (= 3)		
SW00210	ST\#15		............	ST\#2	ST\#1	Not used
SW00211	Not used	ST\#30	............		ST\#17	ST\#16
SW00212	Not used	...........				Not used
SW00213	Not used	...........				Not used
SW00214	Not used	$\ldots \ldots \ldots$.				Not used
SW00215	Not used	*********				Not used

LIO-01/LIO-02 Module Error Status (Slot 1)


- SVB-01 Module Error Status (Slot 2)

(Bit No.)	.......			87	................................... 0		
SW00232	Error code (Station error = 1)			Subslot No. (= 1)			
SW00233	ST\#15		...........		ST\#2	ST\#1	Not used
SW00234	Not used	ST\#30	...........			ST\#17	ST\#16
SW00235	Not used		$\ldots$				Not used
SW00236	Not used		...........				Not used
SW00237	Not used		...........				Not used
SW00238	Not used		...........				Not used
SW00239	Not used		...........				Not used

260IF-01 Module Error Status (Slot 3)

(Bit No.)	F ...	7	.... 0
SW00240	Error code (Station error = 1)	Subslot No. (= 2)	
SW00241	ST\#15	$\ldots$	ST\#0
SW00242	ST\#31	$\ldots$	ST\#16
SW00243	ST\#47	.......	ST\#32
SW00244	ST\#63	...	ST\#48

<Error Status Details>

Item	Code	Description
ST\#n	0	Normal communication
	1	Communication error at the station n (n = local station   number in slave mode)

## ( 8 ) Module Information

[ a ] MP2100M Machine Controller

Name	Register No.	Description
CPU Information	SW00800	MP2100M ID (C181H)
	SW00801	Reserved by the system
	SW00802	CPU Software version (BCD)
	SW00803	Number of subslots   (Version 2.45 or before: 0004 H , Version 2.46 or later: 0007 H )
	SW00804	CPU Function Module ID ( C 110 H )
	SW00805	CPU Function Module status
	SW00806	I/O Function Module ID (8070H)
	SW00807	I/O Function Module status
	SW00808	SVB Function Module ID (9112H)
	SW00809	SVB Function Module status
	SW00810	SVR Function Module ID (9210H)
	SW00811	SVR Function Module status
	SW00812 to SW00815	Reserved by the system
SVB-01 Information	SW00816	SVB-01 (9195H)
	SW00817	Hardware version (BCD)
	SW00818	SVB-01 Software version (BCD)
	SW00819	Number of subslots (0001H)
	SW00820	SVB-01 Function Module ID (9115H)
	SW00821	SVB-01 Function Module status
	SW00822 to SW00823	Reserved by the system
EXIOIF Information	SW00824	EXIOIF (808FH)
	SW00825	Hardware version (BCD)
	SW00826	Reserved by the system
	SW00827	Number of subslots (0001H)
	SW00828	EXIOIF Function Module ID (800FH)
	SW00829	EXIOIF Function Module status
	SW00830 to SW00831	Reserved by the system
Rack 2, Slot 1 Information	SW00832	Module ID
	SW00833	Hardware version (BCD)
	SW00834	Software version (BCD)
	SW00835	Number of subslots
	SW00836	Subslot 1 Function Module ID
	SW00837	Subslot 1 Function Module status
	SW00838	Subslot 2 Function Module ID
	SW00839	Subslot 2 Function Module status
Rack 2, Slot 2 Information	SW00840 to SW00847	Same as above
Rack 2, Slot 3 Information	SW00848 to SW00855	Same as above
Rack 2, Slot 4 Information	SW00856 to SW00863	Same as above
Rack 2, Slot 5 Information	SW00864 to SW00871	Same as above
Rack 2, Slot 6 Information	SW00872 to SW00879	Same as above
Rack 2, Slot 7 Information	SW00880 to SW00887	Same as above


Name	Register No.	Description
Rack 2, Slot 8 Information	SW00888 to SW00895	Same as above
Rack 2, Slot 9 Information	SW00896 to SW00903	Same as above
Rack 3, Slot 1 Information	SW00904	Module ID
	SW00905	Hardware version (BCD)
	SW00906	Software version (BCD)
	SW00907	Number of subslots
	SW00908	Subslot 1 Function Module ID
	SW00909	Subslot 1 Function Module status
	SW00910	Subslot 2 Function Module ID
	SW00911	Subslot 2 Function Module status
Rack 3, Slot 2 Information	SW00912 to SW00919	Same as above
Rack 3, Slot 3 Information	SW00920 to SW00927	Same as above
Rack 3, Slot 4 Information	SW00928 to SW00935	Same as above
Rack 3, Slot 5 Information	SW00936 to SW00943	Same as above
Rack 3, Slot 6 Information	SW00944 to SW00951	Same as above
Rack 3, Slot 7 Information	SW00952 to SW00959	Same as above
Rack 3, Slot 8 Information	SW00960 to SW00967	Same as above
Rack 3, Slot 9 Information	SW00968 to SW00975	Same as above
Rack 4, Slot 1 Information	SW00976	Module ID
	SW00977	Hardware version (BCD)
	SW00978	Software version (BCD)
	SW00979	Number of subslots
	SW00980	Subslot 1 Function Module ID
	SW00981	Subslot 1 Function Module status
	SW00982	Subslot 2 Function Module ID
	SW00983	Subslot 2 Function Module status
Rack 4, Slot 2 Information	SW00984 to SW00991	Same as above
Rack 4, Slot 3 Information	SW00992 to SW00999	Same as above
Rack 4, Slot 4 Information	SW01000 to SW01007	Same as above
Rack 4, Slot 5 Information	SW01008 to SW01015	Same as above
Rack 4, Slot 6 Information	SW01016 to SW01023	Same as above
Rack 4, Slot 7 Information	SW01024 to SW01031	Same as above
Rack 4, Slot 8 Information	SW01032 to SW01039	Same as above
Rack 4, Slot 9 Information	SW01040 to SW01047	Same as above

- Information of EXIOIF and Racks 2 through 4 is available only when MP2100MEX is used.
[ b ] MP2200 Machine Controller

Name	Register No.	Description	
CPU Information	SW00800	Module ID	CPU-01: (C280H)
			CPU-02: (C281H)
	SW00801	Reserved by the system	
	SW00802	CPU Software version (BCD)	
	SW00803	Number of subslots	CPU-01: $(0002 \mathrm{H})$
			CPU-02: $(0004 \mathrm{H})$
	SW00804	CPU Function Module ID (C210H)	
	SW00805	CPU Function Module status	
	SW00806	SVR Function Module ID (9210H)	
	SW00807	SVR Function Module status	
	SW00808	CPU-02: CARD Function Module ID (8170H)	CPU-01:   Reserved by the system
	SW00809	CPU-02: CARD Function Module status	
	SW00810	CPU-02: USB Function Module ID (8F20H)	
	SW00811	CPU-02: USB Function Module status	
	SW00812 to SW00815	Reserved by the system	
Rack 1, Slot 1 Information	SW00816	Module ID	
	SW00817	Hardware version (BCD)	
	SW00818	Software version (BCD)	
	SW00819	Number of subslots	
	SW00820	Subslot 1 Function Module ID	
	SW00821	Subslot 1 Function Module status	
	SW00822	Subslot 2 Function Module ID	
	SW00823	Subslot 2 Function Module status	
Rack 1, Slot 2 Information	SW00824 to SW00831	Same as above	
Rack 1, Slot 3 Information	SW00832 to SW00839	Same as above	
Rack 1, Slot 4 Information	SW00840 to SW00847	Same as above	
Rack 1, Slot 5 Information	SW00848 to SW00855	Same as above	
Rack 1, Slot 6 Information	SW00856 to SW00863	Same as above	
Rack 1, Slot 7 Information	SW00864 to SW00871	Same as above	
Rack 1, Slot 8 Information	SW00872 to SW00879	Same as above	
Rack 2, Slot 1 Information	SW00880	Module ID	
	SW00881	Hardware version (BCD)	
	SW00882	Software version (BCD)	
	SW00883	Number of subslots	
	SW00884	Subslot 1 Function Module ID	
	SW00885	Subslot 1 Function Module status	
	SW00886	Subslot 2 Function Module ID	
	SW00887	Subslot 2 Function Module status	
Rack 2, Slot 2 Information	SW00888 to SW00895	Same as above	
Rack 2, Slot 3 Information	SW00896 to SW00903	Same as above	
Rack 2, Slot 4 Information	SW00904 to SW00911	Same as above	
Rack 2, Slot 5 Information	SW00912 to SW00919	Same as above	


Name	Register No.	Description
Rack 2, Slot 6 Information	SW00920 to SW00927	Same as above
Rack 2, Slot 7 Information	SW00928 to SW00935	Same as above
Rack 2, Slot 8 Information	SW00936 to SW00943	Same as above
Rack 2, Slot 9 Information	SW00944 to SW00951	Same as above
Rack 3, Slot 1 Information	SW00952	Module ID
	SW00953	Hardware version (BCD)
	SW00954	Software version (BCD)
	SW00955	Number of subslots
	SW00956	Subslot 1 Function Module ID
	SW00957	Subslot 1 Function Module status
	SW00958	Subslot 2 Function Module ID
	SW00959	Subslot 2 Function Module status
Rack 3, Slot 2 Information	SW00960 to SW00967	Same as above
Rack 3, Slot 3 Information	SW00968 to SW00975	Same as above
Rack 3, Slot 4 Information	SW00976 to SW00983	Same as above
Rack 3, Slot 5 Information	SW00984 to SW00991	Same as above
Rack 3, Slot 6 Information	SW00992 to SW00999	Same as above
Rack 3, Slot 7 Information	SW01000 to SW01007	Same as above
Rack 3, Slot 8 Information	SW01008 to SW01015	Same as above
Rack 3, Slot 9 Information	SW01016 to SW01023	Same as above
Rack 4, Slot 1 Information	SW01024	Module ID
	SW01025	Hardware version (BCD)
	SW01026	Software version (BCD)
	SW01027	Number of subslots
	SW01028	Subslot 1 Function Module ID
	SW01029	Subslot 1 Function Module status
	SW01030	Subslot 2 Function Module ID
	SW01031	Subslot 2 Function Module status
Rack 4, Slot 2 Information	SW01032 to SW01039	Same as above
Rack 4, Slot 3 Information	SW01040 to SW01047	Same as above
Rack 4, Slot 4 Information	SW01048 to SW01055	Same as above
Rack 4, Slot 5 Information	SW01056 to SW01063	Same as above
Rack 4, Slot 6 Information	SW01064 to SW01071	Same as above
Rack 4, Slot 7 Information	SW01072 to SW01079	Same as above
Rack 4, Slot 8 Information	SW01080 to SW01087	Same as above
Rack 4, Slot 9 Information	SW01088 to SW01095	Same as above

- Information of Racks 2 through 4 are available only when EXIOIF is used.
[ c ] MP2300 Machine Controller

Name	Register No.	Description
Module Information	SW00800	Basic Module (C380H)
	SW00801	Reserved by the system
	SW00802	CPU Software version (BCD)
	SW00803	Number of subslots (0004H)
	SW00804	CPU Function Module ID (C310H)
	SW00805	CPU Function Module status
	SW00806	I/O Function Module ID (8070H)
	SW00807	I/O Function Module status
	SW00808	SVB Function Module ID (9113H)
	SW00809	SVB Function Module status
	SW00810	SVR Function Module ID (9210H)
	SW00811	SVR Function Module status
	SW00812 to SW00815	Reserved by the system
	SW00816 to SW00823	Slot 1 Information
	SW00824 to SW00831	Slot 2 Information
	SW00832 to SW00839	Slot 3 Information
	!	
	SW01008 to SW01015	Reserved by the system (Slot 26)

[d] SVA-01 Module Information

- Module ID = 9093H
- SVA Function Module ID = 9013H

9093 H will be written as Module ID, and 9013 H as Function Module ID in the SVA-01 Module mounted slot description.
For example, when an SVA-01 Module is mounted in Slot 1 of Rack 1,
SW00816 $=9093 \mathrm{H}$
SW00820 $=9013 \mathrm{H}$
(9) Motion Program Execution Information

System Work	Main Program No. in Execution	Program Information Used by Work	Motion Program Alarm							
			Parallel 0	Parallel 1	Parallel 2	Parallel 3	Parallel 4	Parallel 5	Parallel 6	Parallel 7
			Offset $+4$	Offset $+7$	$\begin{gathered} \text { Offset } \\ +10 \end{gathered}$	$\begin{gathered} \hline \text { Offset } \\ +13 \end{gathered}$	$\begin{gathered} \hline \text { Offset } \\ +16 \end{gathered}$	$\begin{gathered} \hline \text { Offset } \\ +19 \end{gathered}$	$\begin{gathered} \hline \text { Offset } \\ +22 \end{gathered}$	$\begin{gathered} \hline \text { Offset } \\ +25 \end{gathered}$
1	SW3200	$\begin{aligned} & \text { SW03264 } \\ & \text { to SW03321 } \end{aligned}$	SW03268	SW03271	SW03274	SW03277	SW03280	SW03283	SW03286	SW03289
2	SW3201	$\begin{aligned} & \text { SW03322 } \\ & \text { to SW03379 } \end{aligned}$	SW03326	SW03329	SW03332	SW03335	SW03338	SW03341	SW03344	SW03347
3	SW3202	$\begin{aligned} & \text { SW03380 } \\ & \text { to SW03437 } \end{aligned}$	SW03384	SW03387	SW03390	SW03393	SW03396	SW03399	SW03402	SW03405
4	SW3203	$\begin{aligned} & \text { SW03438 } \\ & \text { to SW03495 } \end{aligned}$	SW03442	SW03445	SW03448	SW03451	SW03454	SW03457	SW03460	SW03463
5	SW3204	$\begin{aligned} & \hline \text { SW03496 } \\ & \text { to SW03553 } \end{aligned}$	SW03500	SW03503	SW03506	SW03509	SW03512	SW03515	SW03518	SW03521
6	SW3205	$\begin{aligned} & \text { SW03554 } \\ & \text { to SW03611 } \end{aligned}$	SW03558	SW03561	SW03564	SW03567	SW03570	SW03573	SW03576	SW03579
7	SW3206	$\begin{aligned} & \hline \text { SW03612 } \\ & \text { to SW03669 } \end{aligned}$	SW03616	SW03619	SW03622	SW06325	SW03628	SW03631	SW03634	SW03637
8	SW3207	$\begin{aligned} & \text { SW03670 } \\ & \text { to SW03727 } \end{aligned}$	SW03674	SW03677	SW03680	SW03683	SW03686	SW03689	SW03692	SW03695
9	SW3208	$\begin{aligned} & \text { SW03728 } \\ & \text { to SW03785 } \end{aligned}$	SW03732	SW03735	SW03738	SW03741	SW03744	SW03747	SW03750	SW03753
10	SW3209	$\begin{aligned} & \text { SW03786 } \\ & \text { to SW04843 } \end{aligned}$	SW03790	SW03793	SW03796	SW03799	SW03802	SW03805	SW03808	SW03811
11	SW3210	$\begin{aligned} & \hline \text { SW03844 } \\ & \text { to SW03901 } \end{aligned}$	SW03848	SW03851	SW03854	SW03857	SW03860	SW03863	SW03866	SW03869
12	SW3211	$\begin{aligned} & \text { SW03902 } \\ & \text { to SW03959 } \end{aligned}$	SW03906	SW03909	SW03912	SW03915	SW03918	SW03921	SW03924	SW03927
13	SW3212	$\begin{aligned} & \text { SW03960 } \\ & \text { to SW04017 } \end{aligned}$	SW03964	SW03967	SW03970	SW03973	SW03976	SW03979	SW03982	SW03985
14	SW3213	$\begin{aligned} & \text { SW04018 } \\ & \text { to SW04075 } \end{aligned}$	SW04022	SW04025	SW04028	SW04031	SW04034	SW04037	SW04040	SW04043
15	SW3214	$\begin{aligned} & \text { SW04076 } \\ & \text { to SW04133 } \end{aligned}$	SW04080	SW04083	SW04086	SW04089	SW04092	SW04095	SW04098	SW04101
16	SW3215	$\begin{aligned} & \text { SW04134 } \\ & \text { to SW04191 } \end{aligned}$	SW04138	SW04141	SW04144	SW04147	SW04150	SW04153	SW04156	SW04159

* Offset: Offset value from the first register number of Program Information Used by Work


### 12.3 Motion Program Alarms

If the result of investigation using 12.1.2 MP2000 Series Machine Controller Error Check Flowchart on page 12-3 indicates that a motion program alarm has occurred, use the alarm code to determine the cause of the error.

### 12.3.1 Motion Program Alarm Configuration

Motion program alarms stored in the alarm output register (default: SW03268) are displayed as shown in the following diagram.


- Refer to the relevant Machine Controller user's manual for information on finding the alarm output register.


### 12.3.2 Motion Program Alarm Code List

The motion program alarm codes are listed in the following table.

- When displaying these on the register list, set the view mode to hexadecimal.

	Alarm Code	Description	Correction
Program alarms	0	No alarm	Check the specifications for the instruction that was being executed in the motion program when the alarm occurred according to the meaning of the alarm code.
	10h	Complete circle specified for radius designation	
	11h	Interpolation feed speed exceeded	
	12h	Interpolation feed speed not specified	
	13h	Range exceeded after acceleration/deceleration speed parameter conversion	
	14h	LONG_MAX exceeded for circular arc length	
	15h	No vertical specification for circular plane designation	
	16h	No horizontal specification for circular plane designation	
	17h	Specified axes exceeded	
	18h	Specified number of turns exceeded	
	19h	LONG_MAX exceeded for radius	
	1Bh	Emergency stop in progress	
	1Ch	LONG_MAX exceeded for linear interpolation block moving amount	
	1Dh	FMX not defined	
	1Eh	Address T out of range	
	1Fh	Address P out of range	
	20h	REG data error	
	21h	Function work duplication (Function work in second PFORK column was used at a different nesting level.)	
	22h	Indirect register designation range error	
	23h	Overflow when converting reference unit	
Axis alarms*	80h	During use of logical axis prohibited	
	81h	Specifications exceeding POSMAX made for infinite length axis designation	
	82h	LONG_MAX exceeded for axis moving distance	
	84h	Motion command duplication	
	85h	Motion command response duplication	
	87h	VEL setting data out of range	
	88h	INP setting data out of range	
	89h	ACC/SCC/DCC setting data out of range	
	8Ah	T reference for MVT instruction is 0	
	8Bh	Instruction designated that cannot be executed for the Motion Module model	
	8Ch	Prohibition command executed when pulse distribution was not completed	
	8Dh	Motion command error end status	

* The axis number is stored in bits 8 to 12 for axis alarms.


### 12.4 Troubleshooting Motion Errors

This section explains the details and corrective actions for errors that occur in motion control functions.

### 12.4.1 Overview of Motion Errors

Motion errors in the MP2000-series Machine Controller include axis alarms detected for individual SERVOPACKs. The failure location can be determined and appropriate corrections can be taken simply by checking the contents of the Warning (ILDロ02) and Alarm (ILDप04) monitoring parameters.
The motion alarms for the SVA-01 Module are shown below.


### 12.4.2 Axis Alarm Details and Corrections

The following tables show the details of the axis alarms (ILDC04).

## (1) Bit 0: Servo Driver Error

Detection Timing	- SERVOPACK alarms are continuously monitored by the alarm management section.
Processing when Alarm Occurs	- The current command will be aborted. If a SERVOPACK error is detected during execution of a POSING command, the positioning will be aborted and the axis will decelerate to a stop.   - The Command Error Completed Status in the Motion Command Status (IW $\square \square 09$, bit 3) will turn ON.
Error and Cause	One of the following is possible.   - An alarm is occurring in the SERVOPACK.   - SVALM signal (pin No. 17 of CN1/2) is incorrectly connected.   - The $24-\mathrm{V}$ power is not being supplied.
Correction	- Confirm the SERVOPACK alarm and remove the cause.   - Check the SVALM signal connection to see if it is correctly made.   - Check the 24-V input.   - Reset the alarm.

## ( 2 ) Bit 1: Positive Direction Overtravel and Bit 2: Negative Direction Overtravel

Detection Timing	- Overtravel is continuously monitored by the position management section during execution of a motion command.   - Overtravel is detected when the overtravel signal in the direction of movement turns OFF.
Processing when Alarm Occurs	- The SERVOPACK performs stop processing.   The stop method and processing after stopping depends on the SERVOPACK parameter settings.   - The Command Error Completed Status in the Motion Command Status (IW口口09, bit 3) will turn ON.   - Machine Controller Processing   The command is canceled and the axis decelerates to a stop. Follow-up processing (each scan the current position of the machine is adjusted to the reference position) is executed.
Error and Cause	One of the following is possible.   - A move command that exceeded the travel limit of the machine was executed as follows:   A user program command exceeded the travel limit.   The software limit was exceeded in manual operation.   - Overtravel signal malfunction.
Correction	- Check the following.   Check the overtravel signal.   Check the program or manual operation.   - Then, after clearing the motion command code and resetting the alarm, use a return operation to eliminate the overtravel status. (Commands in the overtravel direction will be disabled and an alarm will occur again if one is executed.)

- For a vertical axis, the following should be set at the SERVOPACK to avoid dropping and vibration at the overtravel limit.
- An emergency deceleration to a stop
- Zero clamp status after the deceleration to a stop


## （ 3 ）Bit 3：Positive Direction Software Limit and Bit 4：Negative Direction Software Limit

Detection Timing	• Enabled when using a motion command and detected by the position management section．   －The software limits are valid after a ZRET or ZSET command has been completed．
Processing when   Alarm Occurs	－The axis decelerates to a stop at the software limit．   －The Command Error Completed Status in the Motion Command Status（IW口ロ09，bit 3）will turn ON．
Error and Cause	－A move command that exceeded a software limit of the machine was executed as follows：   A user program command exceeded the software limit．   The software limit was exceeded in manual operation．
Correction	－Check the program or manual operation．   －Then，after clearing the motion command code and resetting the alarm，use a return operation to eliminate   the software limit status．（Commands in the direction of the software limit will be disabled and an alarm   will occur again if one is executed．）

## （4）Bit 5：Servo OFF

Detection Timing	• Servo OFF status is detected when a move command is executed．
Processing when   Alarm Occurs	• The specified movement command will not be executed．   • The Command Error Completed Status in the Motion Command Status（IW口ロ09，bit 3）will turn ON．
Error and Cause	• A move command（commands for positioning，external positioning，STEP operation，JOG operation，etc．）   was executed when the SERVOPACK was Servo OFF status．
Correction	• After clearing the motion command and resetting the alarm，turn the SERVOPACK to the Servo ON sta－   tus．

## （5）Bit 6：Positioning Time Over

Detection Timing	－Positioning was not completed within the time specified in OWD口26（Positioning Completion Check Time）after completing pulse distribution．
Processing when Alarm Occurs	－The current command was ended forcibly．   －The Command Error Completed Status in the Motion Command Status（IW口ロ0，9 bit 3）will turn ON．
Error and Cause	One of the following is possible．   －The position loop gain and speed loop gain are not set correctly，creating poor response．Or，there is oscil－ lation．   －The Positioning Completion Check Time（OWDロ26）is too short．   －The capacity of the motor is insufficient for the machine load．   －Connections are not correct between the SERVOPACK and the motor．
Correction	Check the following．   －Check the SERVOPACK gain parameters．   －Check connections between the SERVOPACK and the motor．   －Check the motor capacity．   －Check the Positioning Completion Check Time（OWDロ26）．

－The above check is not performed if the Positioning Completion Check Time（OWDL26）is set to 0 ．

## （6）Bit 8：Excessive Speed

Detection Timing	• When the electronic gear is used and a move command is executed．
Processing when   Alarm Occurs	• The move command is not executed．   • The Command Error Completed Status in the Motion Command Status（IWロロ09，bit 3）will turn ON．
Error and Cause	• The speed（movement output for one scan in case of interpolation）exceeds the upper limit．
Correction	• Check the settings for speed reference，interpolation command movement per scan，and speed compensa－   tion．

## （7）Bit 9：Excessive Deviation

Detection Timing	－Always，except during speed control and torque control
Processing when Alarm Occurs	－The move command is not executed．   －The Command Error Completed Status in the Motion Command Status（IWDC09，bit 3）will turn ON．
Error and Cause	One of the following is possible．   －The position loop gain and speed loop gain are not set correctly，creating poor response．   －The Error Count Alarm Detection（OLDप22）is too small．   －The capacity of the motor is insufficient for the machine load．   －SERVOPACK failure
Correction	Check the following and correct the problem．If the problem persists，contact the maintenance department．   －Check the position loop gain and speed loop gain．   －Check the Error Count Alarm Detection（OLDD22）．   －Check the motor capacity．

－The above check is not performed if the Error Count Alarm Detection（OLDロ22）is set to 0 ．

## （ 8 ）Bit D：Zero Point Unsetting

	• Enabled only when an absolute encoder is used for an infinite length axis and detected when the next com－   mand is set in the Motion Command（OWDロ08）．   Commands：Positioning，External Positioning，Interpolation，Interpolation with position detection   function，Phase reference
Processing when   Alarm Occurs	• The set command will not be executed．   • The Command Error Completed Status in the Motion Command Status（IWロロ09，bit 3）will turn ON．
Error and Cause	• A move command was set without executing the ZSET command（IWロロ0C，bit 5 is OFF）．
Correction	• After clearing the motion command and resetting the alarm，execute a Zero Point Setting operation．

（9）Bit 13：Excessive ABS（Absolute）Encoder Rotations

Detection Timing	• Enabled only when an absolute encoder is used for a finite length axis，and the electronic gear is used．   Detected by the position management section when power is turned ON．
Processing when   Alarm Occurs	• The absolute position information read from the absolute encoder when the SEN signal turned ON is   ignored．
Error and Cause	• An operation error occurred when the absolute position information read from the absolute encoder is con－   verted from pulses to reference units at power ON．
Correction	• Check the gear ratio，number of encoder pulses for other motion fixed parameters．

## （ 10 ）Bit 14：PG Disconnection Error

Detection Timing	• Any time
Processing when   Alarm Occurs	• The command in execution is forcibly terminated．   • The Command Error Completed Status in the Motion Command Status（IWロロ09，bit 3）will turn ON．
Error and Cause	One of the following is possible．   • Any of the following pulse input signals are incorrectly connected or disconnected．   PA（pin No．3），PAL（pin No．4），PB（pin No．23），PBL（pin No．24）   • The SERVOPACK control power supply is OFF．
Correction	• Check the pulse input signal connections to see if they are correctly connected．   • Check the SERVOPACK control power supply．

### 12.4.3 Analog Servo Alarm List

The Servo Driver Error Flag (ILDロ04, bit 0) turns ON when an alarm has occurred in a SERVOPACK connected to the SVA-01 Module.
The content of the alarm can be confirmed by connecting a Digital Operator to the SERVOPACK. The following tables show the alarms that can occur in the SGDA, SGDB, SGDM, SGDH, SGDS, SGDV, and SGD7S SERVOPACKs.
(1) Alarm List for the SGDA, SGDB, SGDM, and SGDH SERVOPACKs

- O: Alarm displayed
$x$ : No alarm displayed

Alarm Display	Alarm Name	Alarm Content	SGDA	SGDB	SGDM	SGDH
A. 00	Absolute Value Data Error	Absolute data cannot be received or the received absolute data is invalid.	$\bigcirc$	0	$\times$	$\times$
A. 02	Parameter Corrupted	A parameter checksum error was detected.	0	$\bigcirc$	$\bigcirc$	$\bigcirc$
A. 03	Main Circuit Detector Error	There was an error in the power circuit's detection data.	$\times$	$\times$	$\bigcirc$	$\bigcirc$
A. 04	Parameter Setting Error	A parameter value setting exceeded the allowed setting range.	0	0	0	$\bigcirc$
A. 05	Combination Error	The motor and SERVOPACK capacity settings are incompatible.	$\times$	$\times$	0	$\bigcirc$
A. 09	Divider Setting Error	An invalid Divider Setting (Pn212) was set (between increments) or the setting exceeds the connected Encoder's resolution.	$\times$	$\times$	0	$\times$
		When a linear motor is connected, the setting exceeds the maximum dividing ratio ( Pn 281 ), which was calculated from the linear motor's maximum speed.	$\times$	$\times$	0	$\times$
A.0A	Encoder Type Mismatch	A serial encoder has been mounted that is not supported by the $\Sigma$-II.	$\times$	$\times$	0	$\times$
A. 10	Overcurrent or Heat Sink Overheat	There was an overcurrent in the power transistor. The heat sink overheated (SGDM).	0	0	0	$\bigcirc$
A. 30	Regeneration Error	An error occurred in the regeneration processing circuit.	0	0	0	$\bigcirc$
A. 31	Position Error Pulse Overflow	The position error pulses exceeded the "Overflow" limit set in the parameters.	0	0	$\times$	$\times$
A. 32	Regeneration Overload	The regenerative energy exceeds the regenerative resistor's capacity.	$\times$	$\times$	0	$\bigcirc$
A. 33	Main Circuit Wiring Error	The power supply method used to supply the main circuit does not match the setting in parameter Pn001.	$\times$	$\times$	0	$\bigcirc$
A. 40	Overvoltage	The power supply voltage to the main circuit is excessively high.	0	0	0	$\bigcirc$
A. 41	Undervoltage	The power supply voltage to the main circuit is too low.	$\times$	$\times$	0	$\bigcirc$
A. 51	Overspeed	The motor's speed is too high.	$\bigcirc$	$\bigcirc$	0	$\bigcirc$
A. 70	Overload	The torque exceeded the rated torque (high or low load).	$\bigcirc$	$\times$	$\times$	$\times$
A. 71	Overload (High Load)	The torque significantly exceeded the rated torque for several seconds to several dozen seconds.	$\times$	0	$\bigcirc$	$\bigcirc$
A. 72	Overload (Low Load)	The motor is operating continuously at a torque exceeding the rated torque.	$\times$	0	$\bigcirc$	$\bigcirc$
A. 73	DB Overload	During dynamic braking operation, the rotating energy exceeds the DB resistor's capacity.	$\times$	$\times$	0	$\bigcirc$
A. 74	Inrush Resistance Overload	The main circuit power supply was turned OFF and ON repeatedly.	$\times$	$\times$	$\bigcirc$	$\bigcirc$
A.7A	Heat Sink Overheat	The SERVOPACK's heat sink overheated.	$\times$	$\times$	0	$\bigcirc$
A. 80	Absolute Encoder Error	The "Number of Pulses per Absolute Encoder Rotation" value is incorrect.	$\bigcirc$	$\bigcirc$	$\times$	$\times$


Alarm Display	Alarm Name	Alarm Content	SGDA	SGDB	SGDM	SGDH
A. 81	Absolute Encoder Backup Error	The encoder power supplies are all down and the position data was cleared.	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
A. 82	Absolute Encoder Checksum Error	A checksum error was detected in the encoder's memory.	0	$\bigcirc$	O	$\bigcirc$
A. 83	Absolute Encoder Battery Error	The voltage is too low in the absolute encoder's backup battery.	0	$\bigcirc$	$\bigcirc$	0
A. 84	Absolute Encoder Data Error	The received absolute data is invalid.	0	$\bigcirc$	$\bigcirc$	$\bigcirc$
A. 85	Absolute Encoder Overspeed	The encoder was rotating at high-speed when the power was turned ON.	$\bigcirc$	O	$\bigcirc$	$\bigcirc$
A. 86	Encoder Overheat	The encoder's internal temperature is too high.	$\times$	$\times$	$\bigcirc$	$\bigcirc$
A.A1	Heat Sink Overheat	The SERVOPACK's heat sink overheated.	$\times$	$\bigcirc$	$\times$	$\times$
A.b1	Speed Reference   A/D Error   (Reference mechanism read error)	There is an error in the speed reference input's $A / D$ converter.	0	$\bigcirc$	O	$\bigcirc$
A.b2	Torque Reference A/D Error	There is an error in the torque reference input's $\mathrm{A} / \mathrm{D}$ converter.	$\times$	$\times$	O	$\bigcirc$
A.b3	Current Sensor Error	There is an error in the current sensor system or a motor power line is disconnected.	$\times$	$\times$	$\bigcirc$	$\bigcirc$
A.bF	System Alarm	A SERVOPACK system alarm occurred.	$\times$	$\times$	$\bigcirc$	$\bigcirc$
A.c1	Servo Run-away	The Servomotor was overrunning.	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.c2	Encoder Phase Error Detected	An error occurred in the phase of the encoder's phaseA, phase-B, or phase-C output.	0	O	$\times$	$\times$
A.c3	Encoder Phase-A or -B Broken	The encoder's phase-A or phase-B is disconnected.	0	O	$\times$	$\times$
A.c4	Encoder Phase-C   Broken	The encoder's phase-C is disconnected.	0	O	$\times$	$\times$
A.c8	Encoder Clear Error Multiturn Limit Setting Error	The absolute encoder's multiturn count could not be cleared or it could not be set properly.	$\times$	$\times$	$\bigcirc$	$\bigcirc$
A.c9	Encoder Communication Error	Communication could not be established between the Encoder and SERVOPACK.	$\times$	$\times$	$\bigcirc$	$\bigcirc$
A.cA	Encoder Parameter Error	The Encoder's parameters are corrupted.	$\times$	$\times$	O	$\bigcirc$
A.cb	Encoder Echoback Error	The contents of communication with the encoder are incorrect.	$\times$	$\times$	$\bigcirc$	O
A.cc	Multiturn Limit Mismatch	The Encoder and SERVOPACK Multiturn Limit Values do not agree.	$\times$	$\times$	$\bigcirc$	$\bigcirc$
A.do	Excessive Position Error	The position error pulses exceeded the setting in parameter Pn505.	$\times$	$\times$	$\bigcirc$	$\bigcirc$
A.E7	Application Module Detection Failure	Detection of the Application Module failed.	$\times$	$\times$	$\times$	$\bigcirc$
A.F1	Broken Phase in Power Line	One phase is open in the main power supply.	$\times$	O	$\bigcirc$	$\bigcirc$
A.F3	Power Loss Alarm	There was a power interruption of more than 1 cycle in the AC power supply.	$\bigcirc$	O	$\times$	$\times$
$\begin{aligned} & \text { A.F5 } \\ & \text { A.F6 } \end{aligned}$	Motor Wire Disconnection	Power is not being applied to the Servomotor even though the SERVOPACK received the Servo ON reference.	$\times$	$\times$	$\bigcirc$	$\times$
CPF00		Communication could not be established between the	$\times$	$\times$	O	0
CPF01	Communication Error	JUSP-OP02A-2 Digital Operator and SERVOPACK due to a CPU Error or other problem.	$\times$	$\times$	$\bigcirc$	$\bigcirc$
A99	No error display	Indicates normal operating status.	0	$\bigcirc$	$\times$	$\times$
A.- -	No error display	Indicates normal operating status.	$\times$	$\times$	$\bigcirc$	$\bigcirc$

( 2 ) Alarm List for the SGDS, SGDV, and SGD7S SERVOPACKs

- O: Alarm displayed
$x$ : No alarm displayed

Code	Alarm Name	Alarm Content	SGDS	SGDV	SGD7S
A. 020	Parameter Checksum Error	There is an error in the parameter data in the SERVOPACK.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A. 021	Parameter Format Error	There is an error in the parameter data format in the SERVOPACK.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A. 022	System Checksum Error	There is an error in the parameter data in the SERVOPACK.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A. 023	Parameter Password Error	There is an error in the parameter data in the SERVOPACK.	$\bigcirc$	$\times$	$\times$
A. 024	System Alarm	An internal program error occurred in the SERVOPACK.	$\times$	$\times$	$\bigcirc$
A. 025	System Alarm	An internal program error occurred in the SERVOPACK.	$\times$	$\times$	$\bigcirc$
A. 030	Main Circuit Detector Error	There is an error in the detection data for the main circuit.	0	$\bigcirc$	$\bigcirc$
A. 040	Parameter Setting Error	A parameter setting is outside of the setting range.	0	$\bigcirc$	$\bigcirc$
A. 041	Encoder Output Pulse Setting Error	The setting of Pn212 (Encoder Output Pulses) or Pn281 (Encoder Output Resolution) is outside of the setting range or does not satisfy the setting conditions.	0	0	O
A. 042	Parameter Combination Error	The combination of some parameters exceeds the setting range.	0	$\bigcirc$	$\bigcirc$
A. 044	Semi-Closed/Fully-Closed Loop Control Parameter Setting Error	The settings of the Option Module and Pn002 = n.Xㅁㅁㅁ (External Encoder Usage) do not match.	$\times$	$\bigcirc$	$\bigcirc$
A. 050	Combination Error	The capacities of the SERVOPACK and Servomotor do not match.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A. 051	Unsupported Device Alarm	An unsupported device was connected.	0	$\bigcirc$	$\bigcirc$
A. 070	Motor Type Change Detected	The connected motor is a different type of motor from the previously connected motor.	$\times$	$\times$	$\bigcirc$
A. 080	Linear Encoder Pitch Setting Error	The setting of Pn282 (Linear Encoder Pitch) has not been changed from the default setting.	$\times$	$\times$	$\bigcirc$
A.0b0	Invalid Servo ON Command Alarm	The /S-ON (Servo ON) signal was input from the host controller after a utility function that turns ON the Servomotor was executed.	0	0	0
A. 100	Overcurrent Detected	An overcurrent flowed through the power transformer or the heat sink overheated.	O	$\bigcirc$	$\bigcirc$
A. 101	Motor Overcurrent Detected	The current to the motor exceeded the allowable current.	$\times$	$\times$	$\bigcirc$
A. 300	Regeneration Error	There is an error related to regeneration.	0	$\bigcirc$	$\bigcirc$
A. 320	Regenerative Overload	A regenerative overload occurred.	0	$\bigcirc$	$\bigcirc$
A. 330	Main Circuit Power Supply Wiring Error	The AC power supply input setting or DC power supply input setting is not correct. The power supply wiring is not correct.	O	O	$\bigcirc$
A. 400	Overvoltage	The main circuit DC voltage is too high.	0	0	0
A. 410	Undervoltage	The main circuit DC voltage is too low.	0	$\bigcirc$	$\bigcirc$
A. 450	Main-Circuit Capacitor Overvoltage	The capacitor of the main circuit has deteriorated or is faulty.	$\times$	O	$\times$
A. 510	Overspeed	The motor exceeded the maximum speed.	0	0	$\bigcirc$
A. 511	Encoder Output Pulse Overspeed	Rotary Servomotor: The pulse output speed for the setting of Pn212 (Encoder Output Pulses) was exceeded.   Linear Servomotor: The motor speed upper limit for the setting of Pn281 (Encoder Output Resolution) was exceeded.	0	$\bigcirc$	$\bigcirc$


Code	Alarm Name	Alarm Content	SGDS	SGDV	SGD7S
A. 520	Vibration Alarm	Abnormal oscillation was detected in the motor speed.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A. 521	Autotuning Alarm	Vibration was detected during autotuning for the tuning-less function.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A. 550	Maximum Speed Setting Error	The setting of Pn385 (Maximum Motor Speed) is greater than the maximum motor speed.	$\times$	$\times$	$\bigcirc$
A. 710	Instantaneous Overload	The Servomotor was operating for several seconds to several tens of seconds under a torque that largely exceeded the rating.	0	O	0
A. 720	Continuous Overload	The Servomotor was operating continuously under a torque that exceeded the rating.	$\bigcirc$	0	$\bigcirc$
A. 730		When the dynamic brake was applied, the rotational	$\bigcirc$		$\bigcirc$
A. 731		or linear kinetic energy exceeded the capacity of the dynamic brake resistor.	$\times$	O	$\bigcirc$
A. 740	Inrush Current Limiting Resistor Overload	The main circuit power supply was frequently turned ON and OFF.	$\bigcirc$	0	0
A.7A0	Heat Sink Overheated	The heat sink of the SERVOPACK exceeded $100^{\circ} \mathrm{C}$.	$\bigcirc$	$\bigcirc$	$\times$
A.7A1	Internal Temperature Error 1 (Control Board Temperature Error)	The surrounding temperature of the control PCB is abnormal.	$\times$	$\times$	O
A.7A2	Internal Temperature Error 2 (Power Board Temperature Error)	The surrounding temperature of the power PCB is abnormal.	$\times$	$\times$	$\bigcirc$
A.7A3	Internal Temperature Sensor Error	An error occurred in the temperature sensor circuit.	$\times$	$\times$	$\bigcirc$
A.7Ab	SERVOPACK Built-in Fan Stopped	The fan inside the SERVOPACK stopped.	$\times$	0	$\bigcirc$
A. 810	Encoder Backup Alarm	The power supplies to the encoder all failed and the position data was lost.	$\bigcirc$	0	$\bigcirc$
A. 820	Encoder Checksum Alarm	There is an error in the checksum results for encoder memory.	$\bigcirc$	0	$\bigcirc$
A. 830	Encoder Battery Alarm	The battery voltage was lower than the specified level after the control power supply was turned ON.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A. 840	Encoder Data Alarm	There is an internal data error in the encoder.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A. 850	Encoder Overspeed	The encoder was operating at high speed when the power was turned ON.	$\bigcirc$	0	$\bigcirc$
A. 860	Encoder Overheated	The internal temperature of the rotary encoder or linear encoder is too high.	$\bigcirc$	0	$\bigcirc$
A. 861	Motor Overheated	The internal temperature of motor is too high.	$\times$	$\times$	$\bigcirc$
A. 890	Encoder Scale Error	A failure occurred in the linear encoder.	$\times$	$\times$	$\bigcirc$
A. 891	Encoder Module Error	An error occurred in the linear encoder.	$\times$	$\times$	$\bigcirc$
A.8A0	External Encoder Error	An error occurred in the external encoder.	$\times$	$\bigcirc$	$\bigcirc$
A.8A1	External Encoder Module Error	An error occurred in the Serial Converter Unit.	$\times$	0	$\bigcirc$
A.8A2	External Incremental Encoder Sensor Error	An error occurred in the external encoder.	$\times$	$\bigcirc$	$\bigcirc$
A.8A3	External Absolute Encoder Position Error	An error occurred in the position data of the external encoder.	$\times$	O	$\bigcirc$
A.8A5	External Encoder Overspeed	An overspeed error occurred in the external encoder.	$\times$	0	$\bigcirc$
A.8A6	External Encoder Overheated	An overheating error occurred in the external encoder.	$\times$	O	$\bigcirc$
A.b10	Speed Reference A/D Error	An error occurred in the $A / D$ converter for the speed reference input.	$\bigcirc$	0	$\bigcirc$
A.b11	Speed Reference A/D Data Error	An error occurred in the A/D conversion data for the speed reference.	$\bigcirc$	0	$\bigcirc$
A.b20	Torque Reference A/D Error	An error occurred in the A/D converter for the torque reference input.	0	$\bigcirc$	$\bigcirc$
A.b31	Current Detection Error 1	The current detection circuit for phase $U$ is faulty.	0	0	$\times$


Code	Alarm Name	Alarm Content	SGDS	SGDV	SGD7S
A.b32	Current Detection Error 2	The current detection circuit for phase V is faulty.	$\bigcirc$	O	$\times$
A.b33	Current Detection Error 3	An error occurred in the current detection circuit.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.bF0	System Alarm 0	Internal program error 0 occurred in the SERVOPACK.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.bF1	System Alarm 1	Internal program error 1 occurred in the SERVOPACK.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.bF2	System Alarm 2	Internal program error 2 occurred in the SERVOPACK.	O	$\bigcirc$	$\bigcirc$
A.bF3	System Alarm 3	Internal program error 3 occurred in the SERVOPACK.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.bF4	System Alarm 4	Internal program error 4 occurred in the SERVOPACK.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.C10	Servomotor Out of Control	The Servomotor ran out of control.	0	$\bigcirc$	$\bigcirc$
A.C20	Phase Detection Error	The detection of the phase is not correct.	$\times$	$\times$	$\bigcirc$
A.C21	Polarity Sensor Error	An error occurred in the polarity sensor.	$\times$	$\times$	$\bigcirc$
A.C22	Phase Information Disagreement	The phase information does not match.	$\times$	$\times$	$\bigcirc$
A.C50	Polarity Detection Failure	The polarity detection failed.	$\times$	$\times$	$\bigcirc$
A.C51	Overtravel Detected during Polarity Detection	The overtravel signal was detected during polarity detection.	$\times$	$\times$	$\bigcirc$
A.C52	Polarity Detection Not Completed	The servo was turned ON before the polarity was detected.	$\times$	$\times$	$\bigcirc$
A.C53	Out of Range of Motion for Polarity Detection	The travel distance exceeded the setting of Pn48E (Polarity Detection Range).	$\times$	$\times$	$\bigcirc$
A.C54	Polarity Detection Failure 2	The polarity detection failed.	$\times$	$\times$	$\bigcirc$
A.C80	Encoder Clear Error or Multiturn Limit Setting Error	The multiturn data for the absolute encoder was not correctly cleared or set.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.C90	Encoder Communications Error	Communications between the encoder and SERVOPACK is not possible.	O	$\bigcirc$	$\bigcirc$
A.C91	Encoder Communications Position Data Acceleration Rate Error	An error occurred in calculating the position data of the encoder.	O	$\bigcirc$	O
A.C92	Encoder Communications Timer Error	An error occurred in the communications timer between the encoder and SERVOPACK.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.CA0	Encoder Parameter Error	The parameters in the encoder are corrupted.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.Cb0	Encoder Echoback Error	The contents of communications with the encoder are incorrect.	O	$\bigcirc$	O
A.CC0	Multiturn Limit Disagreement	Different multiturn limits have been set in the encoder and the SERVOPACK.	O	O	$\bigcirc$
A.CF1	Reception Failed Error in Feedback Option Module Communications	Receiving data from the Feedback Option Module failed.	$\times$	$\bigcirc$	$\bigcirc$
A.CF2	Timer Stopped Error in Feedback Option Module Communications	An error occurred in the timer for communications with the Feedback Option Module.	$\times$	O	O
A.d00	Position Deviation Overflow	The setting of Pn520 (Excessive Position Deviation Alarm Level) was exceeded by the position deviation while the servo was ON.	$\bigcirc$	$\bigcirc$	O
A.d01	Position Deviation Overflow Alarm at Servo ON	The servo was turned ON after the position deviation exceeded the setting of Pn526 (Excessive Position Deviation Alarm Level at Servo ON) while the servo was OFF.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.d02	Position Deviation Overflow Alarm for Speed Limit at Servo ON	If position deviation remains in the deviation counter, the setting of Pn529 or Pn584 (Speed Limit Level at Servo ON) limits the speed when the servo is turned ON. This alarm occurs if reference pulses are input and the setting of Pn520 (Excessive Position Deviation Alarm Level) is exceeded before the limit is cleared.	$\bigcirc$	$\bigcirc$	$\bigcirc$


Code	Alarm Name	Alarm Content	SGDS	SGDV	SGD7S
A.d10	Motor-Load Position Deviation Overflow	There was too much position deviation between the motor and load during fully-closed loop control.	$\times$	$\bigcirc$	$\bigcirc$
A.d30	Position Data Overflow	The position feedback data exceeded $\pm 1,879,048,192$.	$\times$	$\times$	$\bigcirc$
A.E71	Safety Option Module Detection Failure	Detection of the safety option module failed.	$\times$	$\bigcirc$	$\times$
A.E72	Feedback Option Module Detection Failure	Detection of the Feedback Option Module failed.	$\times$	$\bigcirc$	$\bigcirc$
A.E74	Unsupported Safety Option Module	An unsupported safety option module was connected.	$\times$	$\bigcirc$	$\times$
A.E75	Unsupported Feedback Option Module	An unsupported feedback option module was connected.	$\times$	$\bigcirc$	$\times$
A.Eb1	Safety Function Signal Input Timing Error	An error occurred in the input timing of the safety function signal.	$\times$	$\bigcirc$	$\bigcirc$
A.EC8	Gate Drive Error 1	An error occurred in the gate drive circuit.	$\times$	$\times$	$\bigcirc$
A.EC9	Gate Drive Error 2	An error occurred in the gate drive circuit.	$\times$	$\times$	$\bigcirc$
A.F10	Power Supply Line Open Phase	The voltage was low for more than one second for phase R, S, or T when the main power supply was ON.	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.F50	Servomotor Main Circuit Cable Disconnection	The Servomotor did not operate or power was not supplied to the Servomotor even though the /S-ON (Servo ON) signal was input when the Servomotor was ready to receive it.	$\times$	$\bigcirc$	$\bigcirc$
FL-1			$\times$	$\bigcirc$	$\bigcirc$
FL-2			$\times$	$\bigcirc$	$\bigcirc$
FL-3	System Alarm	An internal program error occurred in the SERVOPACK.	$\times$	$\times$	$\bigcirc$
FL-4			$\times$	$\times$	$\bigcirc$
FL-5			$\times$	$\times$	$\bigcirc$
CPF00	Digital Operator Communications Error 1	Communications were not possible between the	$\bigcirc$	$\bigcirc$	$\bigcirc$
CPF01	Digital Operator Communications Error 2	the SERVOPACK (e.g., a CPU error occurred).	$\bigcirc$	$\bigcirc$	$\bigcirc$
A.--	No error display	Indicates normal operation status	$\bigcirc$	$\bigcirc$	$\bigcirc$

## Appendices

A System Registers Lists ..... A-2
A. 1 System Service Registers- ..... A-2
A. 2 Scan Execution Status and Calendar ..... A-4
A. 3 Program Software Numbers and Remaining Program Memory Capacity ..... A-4
B Initializing the Absolute Encoder- ..... -A-5
B. $1 \Sigma$-III, $\Sigma$-V, or $\Sigma-7$ Series SERVOPACK ..... A-5
B. $2 \Sigma$-II Series SERVOPACKs ..... A-6
B. 3 г-I Series SERVOPACK ..... A-8
C Fixed Parameter Setting According to Encoder Type and Axis Type ..... A-10
D Terminology ..... -A-12

## Appendix A System Registers Lists

## A. 1 System Service Registers

(1) Shared by All Drawings

Name	Register No.	Remarks
Reserved (Reserved for the system)	SB000000	(Not used)
First High-speed Scan	SB000001	ON for only the first scan after high-speed scan is   started.
First Low-speed Scan	SB000003	ON for only the first scan after low-speed scan is   started.
Always ON	SB000004	Always ON (=1)
Reserved (Reserved for the system)	SB000005 to SB00000F	(Not used)

## ( 2 ) DWG.H Only

Operation starts when high-speed scan starts.
Name $\quad$ Register No.

## (3) DWG.L Only

Operation starts when low-speed scan starts.
Name $\quad$ Register No.

## A． 2 Scan Execution Status and Calendar

Name	Register No．	Remarks
High－speed Scan Set Value	SW00004	High－speed Scan Set Value（0．1 ms）
High－speed Scan Current Value	SW00005	High－speed Scan Current Value（0．1 ms）
High－speed Scan Maximum Value	SW00006	High－speed Scan Maximum Value（0．1 ms）
Reserved by the system	SW00007   to   SW00009	（Not used）
Low－speed Scan Set Value	SW00010	Low－speed Scan Set Value（0．1 ms）
Low－speed Scan Current Value	SW00011	Low－speed Scan Current Value（0．1 ms）
Low－speed Scan Maximum Value	SW00012	Low－speed Scan Maximum Value（0．1 ms）
Reserved by the system．	SW00013	（Not used）
Executing Scan Current Value	SW00014	Executing Scan Current Value（0．1 ms）
Calendar：Year	SW00015	1999：0099（BCD）（Last two digits only）
Calendar：Month Day	SW00016	December 31：1231（BCD）
Calendar：Hours Minutes	SW00017	23 hours 59 minutes：2359（BCD）
Calendar：Seconds	SW00018	59 s：59（BCD）
Calendar：Day of Week	SW00019	0 to 6：Sun．，Mon．to Sat．

## A． 3 Program Software Numbers and Remaining Program Memory Capacity

Name	Register No．	Remarks
System Program Software Number	SW00020	S口ロロロ（口ロロロ is stored as BCD）
System Number	SW00021   to   SW00025	（Not used）
Remaining Program Memory Capacity	SL00026	Unit：Bytes
Total Memory Capacity	SL00028	Unit：Bytes

## Appendix B Initializing the Absolute Encoder

The procedure for initializing an absolute encoder for a $\Sigma$-I, $\Sigma$-II, or $\Sigma$-III series SERVOPACK is given below.

- Refer to 10.2.1 System Startup Flowchart on page 10-4 for the procedure for absolute-position detection.


## B. $1 \quad \Sigma$-III, $\Sigma$-V, or $\Sigma-7$ Series SERVOPACK

- Refer to the following manuals for information on $\Sigma$-III series SERVOPACKs: AC Servo Drives L-III Series SGMDD/SGDS User's Manual (Manual No. SIEP S800000 00) ट-III Series SGMDS/SGDS Digital Operator Instructions (TOBP S800000 01)
- Refer to the following manuals for information on $\Sigma$-V series SERVOPACKs: AC Servodrive $\Sigma-V$ Series SGMDロ/SGDV User's Manual Design and Maintenance Rotational Motor Analog Voltage and Pulse Train Reference (Manual No. SIEP S800000 45) AC Servodrive $\Sigma$-V Series User's Manual Design and Maintenance Linear Motor Analog Voltage and Pulse Train Reference (Manual No. SIEP S800000 47)
- Refer to the following manual for information on $\Sigma-7$ series SERVOPACKs:

AC Servo Drive $\Sigma-7 S$ SERVOPACK with Analog Voltage/Pulse Train References Product Manual (Manual No.: SIEP S800001 26).

Follow the setup procedure below using a Digital Operator.
 select Fn008.

$$
\begin{array}{ll}
\text { BB } & \text {-FUNCTION- } \\
\text { FnOO7 } \\
\text { FnOO8 } \\
\hline \text { FnOO9 } & \\
\text { FnOOA }
\end{array}
$$

2. Press the DARA Key.

The display is switched to the execution display of Fn008 (Absolute encoder multi-turn reset and encoder alarm reset).

```
B B
 MultiturnCClear
 PGCL 1
```

- If the display is not switched and "NO_OP" is displayed in the status display, the Write Prohibited setting ( $\mathrm{Fn} 010=0001$ ) is set. Check the status and reset. Then clear the Write Prohibited setting.

3. Keep pressing the $\wedge$ Key until "PGCL1" is changed to "PGCL5."
```
B B
 Multiturn Clear
 PGCLL5
```

4. Press the Dan Key.
"BB" in the status display changes to "Done."
```
Done
 Multiturn Clear
 PGCL5
```

5．Press the Key．The display returns to the Utility Function Mode main menu．
This completes setting up the absolute encoder．Turn the power supply OFF and then back ON to reset the SERVO－ PACK．

## B． $2 \quad \Sigma$－II Series SERVOPACKs

－Refer to the following manuals for information on $\Sigma$－II SERVOPACKs：
$\Sigma$－II Series SGMロH／SGDH User＇s Manual（SIEPS800000005）
上－II Series SGMロ／SGDB／SGMロH／SGDM User＇s Manual（SIEPS80000015）

## （1）Initialization Using a Hand－held Digital Operator

1．Press the DSPL／SET Key to select the Auxiliary Function Mode．


2．Select parameter Fn008 by pressing the LEFT（＜）and RIGHT（＞）Keys to select the digit to be changed and then using the UP $(\wedge)$ and DOWN $(\vee)$ Keys to change the value of the digit．


3．Press the DATA／ENTER Key．
The following display will appear．


4．The rightmost digit will be incremented each time the UP（ $\wedge$ ）Key is pressed．Press the UP（ $\wedge$ ）Key sev－ eral times until＂PGCL5＂is displayed．

If a mistake is made in the key operation，＂nO＿OP＂will blink on the display for 1 second and then the display will return to the Auxiliary Function Mode．If this happens，return to step 3，above，and repeat the operation．


Mistake in Key Operation


Returns to the Auxiliary Function Mode．

5．Press the DSPL／SET Key．
The display will change as shown below and the clear operation will be performed for multiturn data for the absolute encoder．


This completes initializing the absolute encoder．Reset the SERVOPACK to turn the power supply OFF and then back ON．

## (2) Initialization Using the Built-in Panel Operator

1. Press the MODE/SET Key to select the Auxiliary Function Mode.

2. Press the UP $(\mathbf{\Delta})$ and DOWN ( $\boldsymbol{\nabla})$ Keys to select parameter Fn008.

3. Press the DATA/ < Key for more than one second.

The following display will appear.

4. The rightmost digit will be incremented each time the UP ( $\mathbf{\Delta}$ ) Key is pressed. Press the UP ( $\mathbf{\Delta}$ ) Key several time until "PGCL5" is displayed.

If a mistake is made in the key operation, "nO_OP" will blink on the display for 1 second and then the display will return to the Auxiliary Function Mode. If this happens, return to step 3, above, and repeat the operation.


Mistake in Key Operation


Blinks for 1 s .
5. Press the MODE/SET Key.

The display will change as shown below and the clear operation will be performed for multiturn data for the absolute encoder.


This completes initializing the absolute encoder. Reset the SERVOPACK to turn the power supply OFF and then back ON.

## B. $3 \quad \Sigma$-I Series SERVOPACK

- Refer to the following manual for information on $\Sigma$-I series SERVOPACKs: $\Sigma$ Series SGM■/SGD User's Manual (Manual No. SIE-S800-26.3)


## ( 1 ) Initializing a 12-bit Absolute Encoder

Use the following procedure to initialize a 12-bit absolute encoder.

1. Properly connect the SERVOPACK, Servomotor, and Machine Controller.
2. Disconnect the connector on the encoder end and short-circuit pins 13 and 14 on the encoder end connector for 2 seconds or more.

3. Remove the short piece and insert the connector securely in its original position.
4. Connect the cables using normal wiring and make sure the encoder battery is connected.
5. Turn ON the system.

Repeat the procedure starting from step 1 if an Absolute Encoder Alarm occurs, so the system has been successfully initialized.

## ( 2 ) Initializing a 15-bit Absolute Encoder

Use the following procedure to initialize a 15 -bit absolute encoder.

1. Turn OFF the SERVOPACK and Machine Controller.
2. Discharge the large-capacity capacitor in the encoder using one of the following methods.

- At the SERVOPACK End Connector
a) Disconnect the connector on the SERVOPACK end.
b) Use a short piece to short-circuit together connector pins 10 and 13 on the encoder end and leave the pins short-circuited for at least 2 minutes.
c) Remove the short piece and insert the connector securely in its original position.

At the Encoder End Connector
a) Disconnect the connector on the encoder end.
b) Use a short piece to short-circuit together connector pins R and S on the encoder end and leave the pins short-circuited for at least 2 minutes
c) Remove the short piece and insert the connector securely in its original position.

3. Connect the cables using normal wiring and make sure the encoder battery is connected.
4. Turn ON the system.

Repeat the procedure starting from step 1 if an Absolute Encoder Alarm occurs, so the system has been successfully initialized.

## Appendix C Fixed Parameter Setting According to Encoder Type and Axis Type

The method of setting or changing the coordinate zero point differs depending on the encoder type, motor type, and axis type (infinite length axis or finite length axis) to be used. Use the flowchart below to correctly set the fixed parameter according to your application.


Coordinate Zero Point is Determined By	Precautions When Turning the Power ON／OFF	Setting Mode	How to Change the Coordinate Zero Point
Zero point return method and zero point position offset （OLD口48）．   The way the axis returns to zero point depends on the motion pattern． （See the relevant SERVOPACK manual．）	Requires zero point return operation after turning ON the power． When zero point return operation is not performed，the position when the power is turned ON becomes the coordinate zero point．In this case， if ZSET（Set Zero Point）command is not executed，the software limit function will not be valid．	Either Absolute mode or in Incremental Addition mode （relative value）．   Depends on the setting of OW $\square \square 09$ ，bit 5.   Setting range：$-2^{31}$ to $2^{31}-1$	The coordinate zero point offset is always calculated． The coordinate zero point will be changed whenever the OLD口48 is changed． When setting the current position as the zero point， set OLDप48 to the result of OLDप48－ILロロ10．
		In Incremental Addition mode （relative value）	
Encoder zero－point position （incremental pulses）and Machine Controller coordinate zero point offset（OLDप48）．   Encoder zero－point position is set by encoder initialization．	Requires no special processing since the encoder retains the position data while the power to the Machine Controller is OFF．   However，the ZSET（Set Zero Point） command must be executed to validate the software limit function．	Either Absolute mode or in Incremental Addition mode （relative value）．   Depends on the setting of OWDप09，bit 5.   Setting range：$-2^{31}$ to $2^{31}-1$	
Encoder zero－point position （incremental pulses）and Machine Controller coordinate zero point offset（OLDप48）．   Encoder zero－point position is set by encoder initialization．	While the power to the Machine Controller is OFF，the encoder retains the position data within one turn（incremental pulses），however， it does not retain multiturn data． Requires to execution of the ZSET （Set Zero Point）command after turning ON the power．	Incremental Addition mode （relative value）	
Encoder zero－point position （incremental pulses）and Machine Controller coordinate zero point offset（OLDप48）．   Encoder zero－point position is set by encoder initialization．	Requires no special processing since the encoder retains the position data while the power to the Machine Controller is OFF．   However，the ZSET（Set Zero Point） command must be executed after turning ON the power．（If not an alarm will occur．）	Incremental Addition mode （relative value）	
Encoder zero－point position （incremental pulses）and by executing ZSET（Set Zero Point） command．	Requires processing to request coordinate setup（set bit 7 of OWD $\square 00$ to ON．）   The current position coordinate must be backed up even during normal operation．   Both processes can be implemented by using a ladder program．	Incremental Addition mode （relative value）	Executing ZSET（Set Zero Point） command will re－set the coordinate system．   Set OLDप48 to the coordinate value to be set，and then execute ZSET command．

## Appendix D Terminology

- Phase-C Pulse

The encoders mounted on Yaskawa's servomotors output three types of pulse data, phase-A, -B, and -C. Phase-C pulse is a signal that reverses once per motor rotation and is called Zero-point Pulse.

## POSMAX

Reset position of infinite length axis
Refer to 5.4.1 Motion Fixed Parameter Details on page 5-17 for details.

## Override

The original meaning of Override is annulling. In descriptions on Machine Controllers, override means overwriting the setting

## Machine Coordinate System

The basic coordinate system set by executing the motion command ZRET (Zero Point Return) or ZSET (Set Zero Point). The Machine Controller manages positions using the Machine Coordinate System.
With a system using an incremental encoder, or absolute encoder as the incremental encoder, the Machine Coordinate System is automatically set by the first zero point return operation after the power turns ON.
With the system using an absolute encoder, it is automatically set after the power turns ON.

## Deceleration LS

Limit switch for deceleration.
For SERVOPACKs, deceleration LS for zero point return is connected to the Zero Point Return Deceleration signal DEC.

## Absolute Mode

One of target position coordinate data setting methods for position control. Target position coordinate data is directly set in Absolute Mode.
Refer to 6.1.4 Position Reference on page 6-5 for details.

## Incremental Addition Mode

One of the target position coordinate data setting methods for position control. Target position coordinate data is set by adding the movement amount to the previous position reference value in Incremental Addition Mode.
Refer to 6.1.4 Position Reference on page 6-5 for details.

- Infinite Length Axis

An axis that employs the infinite length position control method, which resets the position data after one motor rotation.
Refer to 6.1.3 Axis Type Selection on page 6-4 for details.

- Infinite Length Position Control

This control method is used to perform position control without limiting the movement range for movements such as rotation in one direction.
Refer to 6.1.3 Axis Type Selection on page 6-4 for details.

- Finite Length Axis

An axis that employs the finite length position control method or infinite length position control that does not reset the position data after one motor rotation to move in one direction.
Refer to 6.1.3 Axis Type Selection on page 6-4 for details.

## Finite Length Position Control

This control method is used to perform position control within a specified section for movements such as go-and-return motions.
Refer to 6.1.3 Axis Type Selection on page $6-4$ for details.

## Work Coordinate System

The coordinate system used in motion programs. It is called the Work Coordinate System to distinguish it from the Machine Coordinate System. The work coordinate system can be set by executing the Change Current Value (POS) instruction of the motion program.
Refer to Machine Controller MP900/MP2000 Series User's Manual Motion Program (Manual No. SIE-C887-1.2) for details.

## INDEX

Numerics	
$24-\mathrm{V}$ input cable connection procedure	
$24-\mathrm{V}$ input connector CN3	
A	
ABS (absolute) encoder count exceeded	
ABS encoder count exceeded -----------------------5-46	
ABS system infinite length position control information   LOAD complete   --------------------------------- - $-4-48$	
ABSLDE -------------------------------------5-48	
absolute data --------------------------------10-3	
absolute encoder --------------------------------10-2	
absolute encoder usage --------------------------	
absolute mode ------------------------------ ${ }^{\text {A-12 }}$	
absolute position -------------------------------10-22	
absolute position at power OFF (lower 2 words) ------5-42, 5-52	
absolute position at power OFF (upper 2 words) -----5-42, 5-52	
absolute position detection for finite length axes ---------- - 10-6	
absolute position detection for infinite length axes -------- $10-14$	
absolute position detection system -------------------10-2	
acceleration/deceleration filter settings ----------------6-13	
acceleration/deceleration settings --------------------6-6-11	
acceleration/deceleration units -----------------------5-27	
alarm ----------------------------------------5-45	
alarm clear ------------------------------5-26, $12-15$	
alarm counter ---------------------------------12-15	
alarm list for the SGDA, SGDB, SGDM, and SGD	
SERVOPACKs ------------------------------- - 12-32	
alarm list for the SGDS, SGDV, and SGD7S SERVOPACKs -- 12-34	
APOS --------------------------------------5-49	
applicable SERVOPACKs ------------------------- $1-9$	
approach speed -------------------------------5-39	
axis alarm ----------------------------------12-29	
axis selection --------------------------------10-8	
axis type -----------------------------------5-18	
axis	
B	
backlash compensation --------------------------5-21	
ball screw ----------------------------------6-3	
bias speed for index acceleration/deceleration filter ---------5-38	
BUSY ---------------------------------- - - 5 - $-46,5-47$	
C	
C pulse only method -----------------------------7-43	
cable connections diagram --------------------------2-13	
calculating the zero point of the machine coordinate system -------------------------------10-10-10 10	
calculation of absolute position ----------------------10-3	
change position loop integration time constant -------------7-85	
close position loop using OLDC16 (disable phase reference generation) ------------------------------5-5	
command abort ---------------------------- 5-29, $5-41$	
command buffer for transparent command mode ------5-42, 5-43   command error occurrence ---------------------5-46, 5-47	
command error occurrence $-------------------5-36,5-47$ command execution --------------------------- $5-46,5-47$	
command execution completed ----------------- --4-46, 5-47	
command hold completed --------------------------5-46	
command pause ---------------------------- 5 - $29,5-41$	
communication error mask ------------------------5-19	

24-V input cable connection procedure ---------------- - $-2-10$
24-V input connector CN32-9
ABS (absolute) encoder count exceeded-46
LOAD complete ..... 5-48absolute data10-3
abselut10-8
ablut mod-22
absolute position at power OFF (lower 2 words) ..... -42, 5-52
absolute position detection for finite lanth10-6
absolute position detection for infinite length axes10-2
acceleration/deceleration filter settings6-11
acceleration/deceleration units12-15
alarm list for the SGDA, SGDB, SGDM, and SGDHalarm list for the SGDS, SGDV, and SGD7S SERVOPACKs -- 12-341-9
appor-29
axis selection-8axis type selection6-4

## B

ash compensation
-bias speed for index acceleration/deceleration filter
BUSY7-43
cable connections diagram ..... -13
system10
change position loop integration time constant ..... 7-85
reference generation)5-29, 5-41
command buffer for transparent command mode5-46, 5-47
mand execution5-46, 5-47
command hold completed5-29, 5-41
COMPLETE 5-46, 5-47
connector pin arrangement ..... 2-11
control block diagram ..... 9-2
controlling vertical axes ..... 11-2
correcting user program errors ..... 12-10
CPOS ..... 5-48
CPOS for 32 bit ..... 5-49
creep speed ..... 5-39
D
DEC1 + phase-C method ..... 7-21
DEC1 + ZERO signal method ..... 7-23
deceleration LS ..... A-12
DEN ..... 5-47, 5-51
details on I/O error status ..... 12-18
deviation abnormal detection error level ..... 5-27
deviation abnormal detection value ..... 5-35
distribution completed ..... 5-47, 5-51
DPOS ..... 5-49
drive status ..... 5-43
E
electronic gear ..... 6-2
encoder resolution in pulses/revolution ..... 5-24
encoder selection ..... 10-8
error confirmation flow ..... 12-3
example setting of motion parameters ..... 6-2
excessive speed ..... 5-45, 12-30
excessively following error 5-44, 5-45, 12-31
EX_POSING ..... 7-9
external positioning ..... 7-9
external positioning move distance ..... 5-40
external positioning signal ..... 5-28
F
FAIL ..... 5-46, 5-47
FEED ..... 7-63
feedback speed ..... 5-50, 5-52
feedback speed moving average time constant ..... 5-24
feedback torque/thrust ..... 5-50
filter time constant ..... 5-38
filter type selection ..... 5-27
finite length axis ..... 10-3, 10-10, A-12
finite length position control ..... A-13
fixed parameter details ..... 5-17
fixed parameter error ..... -44
fixed parameter list ..... 5-5
fixed parameter monitor ..... 5-51
fixed parameter setting ..... 3-9
fixed parameter setting according to encoder type and axis type ..... A-10
FIXPRM RD ..... 7-86
forward software limit ..... 5-21, 5-22
forward software limit enabled ..... 5-18
function 1 ..... 5-27
function 2 ..... 5-28
function 3 ..... 5-28
function selection 1 ..... 5-18
function selection 2 ..... 5-19
Functional Specifications ..... 1-7
functional specifications ..... -1-7
G
gear ratio (load) ..... 5-20
gear ratio (motor) ..... 5-20
general-purpose AI Monitor 1 ..... -52
general-purpose AI Monitor 2 ..... 5-52
general－purpose AO 1 ..... 5－33
general－purpose AO2 ..... 5－33
general－purpose DI Monitor ..... 5－51
general－purpose DO ..... 5－41
general－purpose I／O mode ..... 4－6
general－purpose I／O signal connection example ..... －4－9
H
hardware specifications ..... 1－5
HOLDL ..... 5－46
home direction ..... 5－29，5－41
HOME LS \＆phase－C pulse method ..... 7－47
HOME LS signal method ..... 7－49
home return type ..... 5－39
home window ..... 5－39
I
incremental addition mode ..... A－12
incremental encoder ..... 7－15
infinite axis reset position ..... 5－20
infinite length axes ..... 10－3
infinite length axis ..... 10－14，A－12
infinite length axis position control ..... 10－22
infinite length axis position control without simple absolute positions ..... 10－22
infinite length axis position information LOAD ..... 5－26
infinite length position control ..... A－12
initializing the absolute encoder ..... 10－5，A－5
INPUT \＆phase－C pulse method ..... 7－53
INPUT signal for zero point return ..... 5－28
INPUT signal method ..... 7－55
integration reset ..... 5－26
INTERPOLATE ..... 7－57
J
JEPMC－W2040－ㅁㅁ－E ..... 2－12
JEPMC－W2041－ロロ－E ..... 2－14
JOG operation ..... 7－63
jog／step direction ..... 5－29，5－41
ladder program for infinite length axis position control ..... 10－23
ladder program user operation error status ..... 12－13
LATCH ..... 7－60
latch completed ..... 5－47
latch input signal type ..... 5－28
latch request ..... 5－26
latch zone enable ..... 5－29，5－41
latch zone lower limit setting ..... 5－36
latch zone upper limit setting ..... 5－36
LCOMP ..... 5－47
leading register numbers ..... 5－2
LED indicators ..... 2－3，12－4
linear ..... 5－4
linear acceleration／acceleration time constant ..... 5－37
linear deceleration／deceleration time constant ..... 5－37
linear scale pitch ..... 6－15
LPOS ..... 5－49
Mmachine controller fixed parameters for absoluteposition detection10－16
machine coordinate feedback position ..... 5－49
machine coordinate latch position ..... 5－49
machine coordinate system－ ..... －49，A－12
machine coordinate system position ..... 5－49
machine coordinate target position ..... 5－48
machine lock ..... 5－25
machine lock ON ..... 5－48，5－51
maximum number of absolute encoder turns ..... 5－24
maximum value of rotary counter ..... 5－20
MLKL ..... 5－48，5－51
modal latch function ..... 11－15
mode 1 ..... 5－27
modularized position ..... 10－22
modularized position at power OFF（lower 2 words）－－－5－42，5－52
modularized position at power OFF（upper 2 words）－－－5－42，5－52
module configuration window details ..... 3－5
module configuration window opening ..... 3－4
module information ..... 12－21
monitoring parameter details ..... 5－43
monitoring parameter list ..... 5－13
motion command control flags ..... 5－29
motion command options ..... 5－29，5－41
motion command response codes ..... 5－46
motion command setting error ..... 5－44
motion command status ..... 5－46
motion command table ..... 7－2
motion commands ..... 5－29
motion controller operation ready ..... 5－43
motion errors ..... 12－28
motion parameters register numbers ..... 5－2
motion parameters setting window ..... 5－3
motion program alarms ..... 12－27
motion program execution information ..... 12－26
motion subcommand response code ..... 5－47
motion subcommand status ..... 5－47
motion subcommands ..... 5－30，7－85
motor type ..... 5－4
MPOS ..... 5－49
multiturn limit setting ..... 10－9
N
NEAR ..... 5－47
negative overtravel ..... 12－29
negative soft limit（negative software limit） ..... 5－45
negative software limit ..... 12－30
no command ..... 7－85
NOP ..... 7－85
normal operation mode ..... 4－3
NOT \＆phase－C pulse method ..... 7－51
NOT signal method ..... 7－52
number of decimal places ..... 5－20
number of encoder resolution ..... 10－8
number of pulses per linear scale pitch ..... 5－24
0
 ..... 6－10
operation mode ..... 4－3
over range parameter number ..... 5－43
override ..... A－12
overtravel function ..... 11－8
overview of motion errors ..... 12－28
OWDロ18 ..... 6－10

## P

parameter settings for simple absolute infinite lengthposition control10－16
performance specifications ..... 1－8
PERR ..... 5－49
PHASE ..... 7－81
phase compensation ..... 5－35
phase compensation type with an electronic cam ..... 5-30
phase references ..... 7-81
phase-C method ..... 7-24
phase-C pulse ..... A-12
POSCOMP ..... 5-47, 5-51
POSING ..... 7-3
position complete timeout ..... 5-35
position completed width ..... 5-34
position error ..... 5-49
position integration time constant ..... 5-36
position loop gain ..... 5-36
position management status ..... 5-47
position proximity ..... 5-47, 5-51
position reference ..... 6-5
position reference setting ..... 5-33
position reference type ..... 5-29, 5-41
positioning
5-47, 5-51
positioning completed
positioning completed width 2
5-45, 12-30
positioning time over
positive overtravel ..... 5-18, 5-44, 5-45, 12-29
positive soft limit (positive software limit) ..... 5-45
positive software limit ..... 12-30
POSMAX ..... A-12
POSMAX number of turns ..... 5-49
POSMAX preset ..... 5-26
POSMAX turn number presetting completed ..... 5-48
POT \& C pulse method ..... 7-44
POT signal method ..... 7-45
preset data of POSMAX turn ..... 5-40
pulse A/B mode ..... 4-11
pulse counter connection example ..... 4-12
pulse input modes ..... 4-10
R
rated speed ..... 5-24, 6-15
read fixed parameters ..... 7-86
read SERVOPACK parameter ..... 7-86
reference offset adjustment ..... -13
reference unit ..... 6-2
reference unit setting ..... 5-19
reference units per revolution ..... 5-20
response buffer for transparent command mode ..... 5-52
restrictions for feedback pulse inputs ..... 2-17
reverse software limit ..... 5-23
reverse software limit enabled ..... 5-18
rotary switches ..... 2-4
rotating table ..... 6-3
RUN commands ..... 5-25
run mode ..... 5-17
running (servo ON) ..... 5-43

## s

saving OLD口48 values ..... 10-11
secondary speed compensation ..... 5-32
segment distribution processing ..... 5-18
selecting a motor type ..... 5-4
self-configuration ..... 3-3
servo driver error ..... 5-45, 12-29
servo interface connectors CN1 and CN2 ..... 2-9
servo module command status ..... 5-46
servo OFF ..... 5-45, 12-30
servo ON ..... 5-25
servo ready ..... 5-43
servo user monitor ..... 5-41
SERVOPACK connection cables ..... 2-12
SERVOPACK parameter settings ..... 3-10
SGDA ..... 3-10
SGDB ..... 3-11
SGDM, SGDH, SGDS, SGDV, and SGD7S ..... 3-12
SERVOPACK parameters for absolute position detection (finite length axis) ..... 10-7
SERVOPACK parameters for absolute position detection (infinite length axis) ..... 10-17
SERVOPACK status ..... 5-50
SERVOPACKs ..... 1-9
setting parameter details ..... 5-25
setting parameter error ..... -44
setting parameter list ..... 5-8
setting procedure of absolute position detection function ..... 10-4
Setting the SVA-01 Module Fixed Parameters ..... 3-9
SGDA-पดपS Connection Diagram ..... 2-15
SGDB-■ロ Connection Diagram ..... 2-16
sign mode ..... 4-10
simple ABS infinite axis ..... 5-19
simple absolute infinite length position control ..... 10-14
simulation mode ..... 4-4
speed amends ..... 5-36
speed feedforward compensation ..... 5-36
speed limit at torque/thrust reference ..... 5-31
speed override ..... 5-33, 6-10
speed reference ..... 6-9, 7-73
speed reference output monitor ..... 5-50
speed reference setting examples ..... 6-10
speed unit ..... 5-27
step distance ..... 5-40
STEP operation ..... 7-67
store ..... 5-17
SVA definition ..... 3-7
SVA-01 Module Status Indication ..... 2-3
SVB-01
applicable machine controllers ..... 2-4
mounting ..... 2-5
removing ..... -2-5
switching between motion commands ..... 8-2
switching from ENDOF_INTERPOLATE ..... 8-16
switching from EX_POSING ..... -8-7
switching from FEED ..... 8-17
switching from INTERPOLATE ..... 8-13
Switching from LATCH ..... 8-16
switching from PHASE ..... 8-36
switching from POSING ..... 8-3
switching from STEP ..... 8-21
switching from TRQ ..... 8-30
switching from VELO ..... 8-25
switching from ZSET ..... 8-24
system error status ..... 12-12
system I/O error status ..... 12-16
system register configuration ..... 12-11
system registers list ..... A-2
system service execution status ..... 12-15
system status ..... 12-11
T
arget position5-48
target position difference monitor ..... 5-49
terminology ..... A-12
torque feed forward compensation ..... 5-31
torque reference ..... 7-77
torque unit selection ..... 5-27
torque/force setting at the speed reference ..... 5-32
torque/thrust reference ..... 5-31
TPOS ..... 5-48
TPRSE ..... 5-48
troubleshooting ..... 12-2
troubleshooting system errors ..... 12-6
TRQ ..... 7-77
U
unmatched with SERVOPACK encoder type ..... 5-46
unmatched with SERVOPACK motor type ..... 5-46
Up/Down mode ..... 4-10
V
VELO ..... 7-73
W
warning ..... 5-44
WDT error mask ..... 5-19
work coordinate system ..... A-13
work coordinate system offset ..... 5-40
Z
ZERO ..... 5-47
zero point not set 5-46, 12-31
zero point offset ..... 5-40
zero point position ..... 5-47, 5-51
zero point return ..... 7-15
zero point return (setting) completed ..... 5-48, 5-51
zero point return final travel distance ..... 5-39
zero point setting ..... 7-71
ZERO signal method ..... 7-22
ZRET ..... 7-15
ZRNC ..... 5-48
ZSET ..... 7-71

## Revision History

The date of publication, revision number, and web revision number are given at the bottom right of the back cover.
Refer to the following example.


Date of Publication	Rev. No.	Web   Rev.   No.	Section	Revised Contents
April 2020	<7>	1	2.4.1, 2.5	Partly revised
			Back cover	Revision: Address
June 2019		0	Back cover	Revision: Address
July 2018	<6>	1	2.4.1	Revision: Connector Specifications
February 2018		0	1.2.1	Revision: Pollution Level, Noise Resistance
			2.2	Revision: Applicable Machine Controllers for SVA-01 Modules
			Back cover	Revision: Address
December 2017	<5>	0	Back cover	Revision: Address
December 2016	<4>	0	Front cover	Revision: Format
			1.2.3	Revision: Information on D/A (output delay time, accuracy, and temperature drift) and A/D (input delay time and accuracy)
			2.1.3	Addition: Information on hardware errors (8: Internal power supply error)
			2.5	Partly revised
			Back cover	Revision: Address, format
March 2015	<3>	0	Preface, 1, 2, 3, 5, 6.8.1, $10,11,12.4 .3$, Appendix B. 1	Addition: Information on 5 -7-series SERVOPACKs
			2.4.1 (3), 2.5.2 (2)	Revision: Sumitomo 3M Limited $\rightarrow$ 3M Japan Limited
			Back cover	Revision: Address
February 2014	<2>	0	-	Printed version of the user's manual that is available on the web (web version: SIEP C880700 32B<1>-11)
			Back cover	Revision: Address


Date of Publication	Rev. No.	Web Rev. No.	Section	Revised Contents
August 2013	<1>	11	7.2.11 (1)	Revision: Description of phase references (PHASE)
			9.1	Revision: Diagram of phase reference generation (when using an electronic shaft)
			Back cover	Revision: Address
May 2012		10	2.4.2	Revision: Values for the tightening torque in step 3
			Back cover	Revision: Address
December 2011		9	2.2	Revision: Description of applicable machine controllers for SVA-01 modules
August 2011		8	5.4.2 (4)	Revision: Default value of motion setting parameter OWD $\square 04$ $0033 \mathrm{H} \rightarrow 0000 \mathrm{H}$
June 2011		7	$\begin{aligned} & \text { 2.4.1 (3) } \\ & 2.5 .2(2) \end{aligned}$	Revision: Plug model numbers $\begin{aligned} & 10136-3000 \mathrm{VE} \rightarrow 10136-3000 \mathrm{PE} \\ & 10150-3000 \mathrm{VE} \rightarrow 10150-3000 \mathrm{PE} \end{aligned}$
March 2011		6	Front cover	Revision: Format
			6.1 .5 (2)	Revision: The value of fixed parameter No. 36
			Back cover	Revision: Address, format
May 2010		5	5.4.1 (10)	Revision: Description of <Example> in motion fixed parameter no. 24
March 2010		4	1.2.1	Addition: Description of input/output impedance
			2.5.2 (2)	Addition: Remarks of (6)
			3.4.2	Revision: Description of *.
			Back cover	Revision: Address
January 2010		3	5.4.3 (12), (16)	Revision: IL $\square \square 5 \mathrm{~A} \rightarrow$ IW $\square \square 5 \mathrm{~A}$, IL $\square \square 59 \rightarrow$ IW $\square \square 59$
November 2009		2	1.2.1	Revision: Description of digital inputs
September 2009		1	Preface	Addition: Warranty
			Back cover	Revision: Address
September 2008		0	All Chapters	Addition: Description of $\Sigma-\mathrm{V}$ series
				Addition: Description of general-purpose DO_2 signal selection
				Term changed: Torque/thrust $\rightarrow$ torque
			Back cover	Revision: Address
December 2007	-	-	-	First edition

## Machine Controller MP2000 Series

## SVA-01 Motion Module USER'S MANUAL

## IRUMA BUSINESS CENTER (SOLUTION CENTER)

480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan
Phone: +81-4-2962-5151 Fax: +81-4-2962-6138
www.yaskawa.co.jp

## YASKAWA AMERICA, INC.

2121, Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310
www.yaskawa.com
YASKAWA ELÉTRICO DO BRASIL LTDA.
777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil
Phone: $+55-11-3585-1100$ Fax: $+55-11-3585-1187$
www.yaskawa.com.br
YASKAWA EUROPE GmbH
Hauptstraße 185, 65760 Eschborn, Germany
Phone: +49-6196-569-300 Fax: +49-6196-569-398
www.yaskawa.eu.com E-mail: info @yaskawa.eu.com
YASKAWA ELECTRIC KOREA CORPORATION
35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea
Phone: +82-2-784-7844 Fax: +82-2-784-8495
www.yaskawa.co.kr
YASKAWA ASIA PACIFIC PTE. LTD.
30A, Kallang Place, \#06-01, 339213, Singapore
Phone: +65-6282-3003 Fax: +65-6289-3003
www.yaskawa.com.sg
YASKAWA ELECTRIC (THAILAND) CO., LTD.
59, 1F-5F, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand
Phone: +66-2-017-0099 Fax: +66-2-017-0799
www.yaskawa.co.th
YASKAWA ELECTRIC (CHINA) CO., LTD.
22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China
Phone: +86-21-5385-2200 Fax: +86-21-5385-3299
www.yaskawa.com.cn
YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Avenue,
Dong Cheng District, Beijing, 100738, China
Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

## YASKAWA ELECTRIC TAIWAN CORPORATION

12F, No. 207, Section 3, Beishin Road, Shindian District, New Taipei City 23143, Taiwan
Phone: $+886-2-8913-1333$ Fax: $+886-2-8913-1513$ or $+886-2-8913-1519$
www.yaskawa.com.tw


[^0]:    －When the incremental addition mode is selected for Position Reference Setting（OWDD 09 ，bit $5=0$ ），execute a POSING command in distribution completed status（IWDCOC，bit $0=1$ ）．
    When the absolute mode is selected for Position Reference Setting（OWDC 09 ，bit $5=1$ ），a POSING command can be exe－ cuted if the distribution is not completed（IWDロ0C，bit $0=0$ ）．

[^1]:    * The actual value depends on the value of Pn212 (PG Dividing Pulse). The values shown here are the max. values that can be set.

[^2]:    * The actual value depends on the value of Pn212 (PG Dividing Pulse). The values shown here are the max. values that can be set.

[^3]:    (3) Correct the Program

    Correct the program at the point where the error occurred.

[^4]:    ＊Racks 2 to 4 can be used only when using MP2100MEX．

