# Machine Controller MP2000 Series Built-in SVB/SVB-01 Motion Module USER'S MANUAL 

Model: JAPMC-MC2100(-E), JEPMC-MP2400-E JAPMC-MC2102-E, JAPMC-MC2140(-E), JAPMC-MC2142-E, JEPMC-MP2300(-E), JEPMC-MP2300S-E, JAPMC-MC2310(-E) JEPMC-MP2310-E


Settings and Installation
Self-configuration and Created Definition Files

Motion Parameters

Motion Parameter Setting Examples
Motion Commands
Switching Commands during Execution
Control Block Diagrams

Absolute Position Detection
Inverter Operation 10
Utility Functions 11
Troubleshooting

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

## Using this Manual

Read this manual to ensure correct usage of the MP2000-series Machine Controller (hereinafter referred to as Machine Controller unless otherwise specified) and the SVB-01 Module. Keep this manual in a safe place so that it can be referred to whenever necessary.

## ■ Manual Configuration

Read the chapters of this manual as needed.

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Overview | $\checkmark$ |  |  |  |  |
| 2 | Settings and Installation | $\checkmark$ |  | $\checkmark$ |  | $\checkmark$ |
| 3 | Self-configuration and Created Definition Files |  | $\checkmark$ |  | $\checkmark$ |  |
| 4 | Motion Parameters |  | $\checkmark$ |  | $\checkmark$ |  |
| 5 | Motion Parameter Setting Examples |  | $\checkmark$ |  | $\checkmark$ |  |
| 6 | Motion Commands |  | $\checkmark$ |  | $\checkmark$ |  |
| 7 | Switching Commands during Execution |  | $\checkmark$ |  | $\checkmark$ |  |
| 8 | Control Block Diagrams |  | $\checkmark$ |  | $\checkmark$ |  |
| 9 | Absolute Position Detection |  | $\checkmark$ |  | $\checkmark$ |  |
| 10 | Inverter Operation |  | $\checkmark$ |  | $\checkmark$ |  |
| 11 | Utility Functions |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |
|  | Troubleshooting |  | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |

## Symbols Used in this Manual

The symbols used in this manual indicate the following type of information.

- This symbol is used to indicate important information that should be memorized or minor precautions, such as precautions that will result in alarms if not heeded.
- MPE720 Engineering Tool Version Number

In this manual, the operation of MPE720 is described using screen captures of MPE720 version 7. For this reason, the screen captures and some descriptions may differ for MPE720 version 5 or version 6.

## - Terms Used to Describe "Torque"

Although the term "torque" is commonly used when describing rotary servomotors and "force" or "thrust" are used when describing linear servomotors, this manual uses "torque" when describing both (excluding parameters).

## $\square$ Indication of Reverse Signals

In this manual, the names of reverse signals (ones that are valid when low) are written with a forward slash (/) before the signal name, as shown in the following example:
Notation Examples

- $\overline{\mathrm{S}-\mathrm{ON}}=/ \mathrm{S}-\mathrm{ON}$
- $\overline{\mathrm{P}-\mathrm{CON}}=/ \mathrm{P}-\mathrm{CON}$


## Related Manuals

The following table lists the manuals relating to the MP2000-series Machine Controllers. Refer to these manuals as required.

| Manual Name | Manual Number | Contents |
| :---: | :---: | :---: |
| Machine Controller MP210प/MP210ロM User's Manual Design and Maintenance | SIEP C880700 01 | Describes how to use the MP210 $\square$ and MP210 $\square$ M Machine Controllers. |
| Machine Controller MP2101T/MP2101TM User's Manual | SIEP C880712 00 | Describes how to use the MP2101T and MP2101TM Machine Controllers. |
| Machine Controller MP2200 User's Manual | SIEP C880700 14 | Describes how to use the MP2200 Machine Controller and the modules that can be connected. |
| Machine Controller MP2300 Basic Module User's Manual | SIEP C880700 03 | Describes how to use the MP2300 Basic Module and the modules that can be connected. |
| Machine Controller MP2310 Basic Module User's Manual | SIEP C880732 01 | Describes how to use the MP2310 Basic Module and the modules that can be connected. |
| Machine Controller MP2300S Basic Module User's Manual | SIEP C880732 00 | Describes how to use the MP2300S Basic Module and the modules that can be connected. |
| Machine Controller MP2000 Series Machine Controller System Troubleshooting Manual | SIEP C880700 40 | Describes the troubleshooting of the MP2000-series Machine Controller. |
| Machine Controller MP900/MP2000 Series User's Manual Ladder Programming | SIEZ-C887-1.2 | Describes the instructions used in MP900/MP2000 ladder programming. |
| Machine Controller MP2000 Series User's Manual for Motion Programming | SIEP C880700 38 | Describes the instructions used in MP2000 motion programming. |
| Machine Controller MP2000/MP3000 Series Engineering Tool MPE720 Version 7 USER'S MANUAL | SIEP C880761 03 | Describes how to install and operate the programming tool MPE720 version 7 for MP2000-series and MP3000-series Machine Controller. |
| Engineering Tool for MP2000 Series Machine Controller <br> MPE720 Version 6 <br> User's Manual | SIEP C880700 30 | Describes how to install and operate the programming tool MPE720 version 6 for MP2000-series Machine Controllers. |
| Machine Controller MP900/MP2000 Series MPE720 Software for Programming Device User's Manual | SIEP C880700 05 | Describes how to install and operate the MP900/ <br> MP2000 series programming system (MPE720 Ver.5). |
| Machine Controller MP2000/MP3000 Series Distributed I/O Module <br> User's Manual MECHATROLINK-II | SIEP C880732 13 | Describes MECHATROLINK distributed I/O for MP2000/MP3000-series Machine Controllers. |

## Copyrights

- MECHATROLINK is a trademark of the MECHATROLINK Members Association.
- Other product names and company names are the trademarks or registered trademarks of the respective company. "TM" and the ${ }^{\circledR}$ mark do not appear with product or company names in this manual.


## Safety Information

The following conventions are used to indicate precautions in this manual. These precautions are provided to ensure the safe operation of the MP2000-series Machine Controller and connected devices. Information marked as shown below is important for the safety of the user. Always read this information and heed the precautions that are provided. The conventions are as follows:


CAUTION

PROHIBITED

Indicates precautions that, if not heeded, could possibly result in loss of life, serious injury, or property damage.
Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or property damage.
If not heeded, even precautions classified under $\uparrow$ CAUTION can lead to serious results depending on circumstances.

Indicates prohibited actions. Specific prohibitions are indicated inside
For example, $\$$ indicates prohibition of open flame.
(!) MANDATORY
Indicates mandatory actions. Specific actions are indicated inside
For example, $\quad \frac{\square}{\square}$ indicates mandatory grounding.

## Safety Precautions

The following precautions are for checking products on delivery, storage, transportation, installation, wiring, operation, inspection, and disposal. These precautions are important and must be observed.

## - General Precautions

## $\triangle$ WARNING

- Before connecting the machine and starting operation, ensure that an emergency stop procedure has been provided and is working correctly.
There is a risk of injury.
- Do not touch anything inside the Machine Controller. There is a risk of electrical shock.
- Always keep the front cover attached when power is being supplied.

There is a risk of electrical shock.

- Observe all procedures and precautions given in this manual for trial operation.

Operating mistakes while the servomotor and machine are connected may damage the machine or even cause accidents resulting in injury or death.

- Do not remove the front cover, cables, connectors, or options while power is being supplied. There is a risk of electrical shock.
- Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch cables. There is a risk of electrical shock, operational failure or burning of the Machine Controller.
- Do not attempt to modify the Machine Controller in any way. There is a risk of injury or device damage.
- Do not approach the machine when there is a momentary interruption to the power supply. When power is restored, the Machine Controller and the device connected to it may start operation suddenly. Provide safety measures in advance to ensure human safety in the event that operation restarts suddenly. There is a risk of injury.
- Do not allow installation, disassembly, or repairs to be performed by anyone other than specified personnel. There is a risk of electrical shock or injury.

Storage and Transportation

## . CAUTION

- Do not store or install the Machine Controller in the following locations.

There is a risk of fire, electrical shock, or device damage.

- Direct sunlight
- Ambient temperature exceeds the storage or operating conditions
- Ambient humidity exceeds the storage or operating conditions
- Rapid changes in temperature or locations subject to condensation
- Corrosive or flammable gas
- Excessive dust, dirt, salt, or metallic powder
- Water, oil, or chemicals
- Vibration or shock
- Do not overload the Machine Controller during transportation.

There is a risk of injury or an accident.

- If disinfectants or insecticides must be used to treat packing materials such as wooden frames, pallets, or plywood, the packing materials must be treated before the product is packaged, and methods other than fumigation must be used.
Example: Heat treatment, where materials are kiln-dried to a core temperature of $56^{\circ} \mathrm{C}$ for 30 minutes or more.
If the electronic products, which include stand-alone products and products installed in machines, are packed with fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors.

Installation

## $\triangle$ CAUTION

- Never use the Machine Controller in locations subject to water, corrosive atmospheres, or flammable gas, or near burnable objects.
There is a risk of electrical shock or fire.
- Do not step on the Machine Controller or place heavy objects on the Machine Controller. There is a risk of injury.
- Do not block the air exhaust port or allow foreign objects to enter the Machine Controller. There is a risk of element deterioration inside, an accident, or fire.
- Always mount the Machine Controller in the specified orientation. There is a risk of an accident.
- Do not subject the Machine Controller to strong shock. There is a risk of an accident.

Wiring

## $\triangle$ CAUTION

- Check the wiring to be sure it has been performed correctly.

There is a risk of motor overrun, injury, or an accident.

- Always use a power supply of the specified voltage. There is a risk of burning.
- In places with poor power supply conditions, take all steps necessary to ensure that the input power supply is within the specified voltage range.
There is a risk of device damage.
- Install breakers and other safety measure to provide protection against shorts in external wiring. There is a risk of fire.
- Provide sufficient shielding when using the Machine Controller in the following locations. There is a risk of device damage.
- Noise, such as from static electricity
- Strong electromagnetic or magnetic fields
- Radiation
- Near to power lines
- When connecting the battery, connect the polarity correctly.

There is a risk of battery damage or explosion.

- Only qualified safety-trained personnel should replace the battery.

If the battery is replaced incorrectly, machine malfunction or damage, electric shock, or injury may result.

- When replacing the battery, do not touch the electrodes.

Static electricity may damage the electrodes.

Selecting, Separating, and Laying External Cables

## $\triangle$ CAUTION

- Consider the following items when selecting the I/O signal lines (external cables) to connect the Machine Controller to external devices.
- Mechanical strength
- Noise interference
- Wiring distance
- Signal voltage, etc.
- Separate the I/O signal lines from the power lines both inside and outside the control box to reduce the influence of noise from the power lines.
If the I/O signal lines and power lines are not separated properly, malfunctioning may result.
Example of Separated External Cables


Maintenance and Inspection Precautions

## $\triangle$ CAUTION

- Do not attempt to disassemble the Machine Controller.

There is a risk of electrical shock or injury.

- Do not change wiring while power is being supplied.

There is a risk of electrical shock or injury.

- When replacing the Machine Controller, restart operation only after transferring the programs and parameters from the old Module to the new Module.
If the data has not been transferred to the new module before the operation of the machine controller starts, damage to the device may result.

Disposal Precautions

## . CAUTION

- Dispose of the Machine Controller as general industrial waste.

General Precautions

## Observe the following general precautions to ensure safe application.

- The products shown in illustrations in this manual are sometimes shown without covers or protective guards. Always replace the cover or protective guard as specified first, and then operate the products in accordance with the manual.
- The drawings presented in this manual are typical examples and may not match the product you received.
- If the manual must be ordered due to loss or damage, inform your nearest Yaskawa representative or one of the offices listed on the back of this manual.


## Warranty

## (1) Details of Warranty

## Warranty Period

The warranty period for a product that was purchased (hereinafter called "delivered product") is one year from the time of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory, whichever is sooner.

## - Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the warranty period above. This warranty does not cover defects caused by the delivered product reaching the end of its service life and replacement of parts that require replacement or that have a limited service life. This warranty does not cover failures that result from any of the following causes.

1. Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications
2. Causes not attributable to the delivered product itself
3. Modifications or repairs not performed by Yaskawa
4. Abuse of the delivered product in a manner in which it was not originally intended
5. Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from Yaskawa
6. Events for which Yaskawa is not responsible, such as natural or human-made disasters

## (2) Limitations of Liability

1. Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product.
2. Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execution of the programs provided by the user or by a third party for use with programmable Yaskawa products.
3. The information described in product catalogs or manuals is provided for the purpose of the customer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a license.
4. Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or other proprietary rights of third parties as a result of using the information described in catalogs or manuals.

## ( 3 ) Suitability for Use

1. It is the customer's responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products.
2. The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer.
3. Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to minimize hazards in the event of failure.

- Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to separate industry or government regulations
- Systems, machines, and equipment that may present a risk to life or property
- Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems that operate continuously 24 hours a day
- Other systems that require a similar high degree of safety

4. Never use the product for an application involving serious risk to life or property without first ensuring that the system is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa product is properly rated and installed.
5. The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the product.
6. Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent accidental harm to third parties.

## (4) Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications before purchasing a product.

## Contents

Using this Manual ..... iii
Safety Information ..... v
Safety Precautions ..... vi
Warranty ..... ix
1 Overview ..... 1-1
1.1 SVB Module Overview and Features ..... 1-2
1.1.1 SVB Modules ..... 1-2
1.1.2 Built-in SVB and Slot-mounting Optional SVB ..... 1-2
1.1.3 Features ..... 1-2
1.1.4 System Configuration Example ..... 1-3
1.1.5 Devices and Cables Connectable to MECHATROLINK ..... 1-4
1.1.6 Synchronization between Modules ..... 1-7
1.2 Specifications ..... 1-9
1.2.1 SVB-01 Module Hardware Specifications ..... 1-9
1.2.2 Specifications of SVB Module ..... 1-10
1.3 SVR Virtual Motion Module ..... 1-13
1.3.1 Overview ..... 1-13
1.3.2 Example of SVR Usage ..... 1-14
1.3.3 System Configuration Example ..... 1-14
1.3.4 SVR Operation ..... 1-15
2 Settings and Installation ..... 2-1
2.1 LED Indicators and Switch Settings ..... 2-2
2.1.1 External Appearance ..... 2-2
2.1.2 Indicators ..... 2-2
2.1.3 SVB-01 Module Status Indication ..... 2-2
2.1.4 Switch Settings ..... 2-4
2.2 Applicable Machine Controllers for SVB-01 Modules ..... 2-6
2.2.1 MP2000 Series ..... 2-6
2.2.2 MP3000 Series ..... 2-6
2.3 Mounting/Removing SVB-01 Modules ..... 2-8
2.3.1 Mounting an SVB-01 Module ..... 2-8
2.3.2 Replacing and Adding an SVB-01 Module ..... 2-9
3 Self-configuration and Created Definition Files ..... 3-1
3.1 Self-configuration Overview ..... 3-2
3.2 Executing Self-configuration ..... 3-4
3.3 System Startup Using Self-Configuration ..... 3-5
3.3.1 Starting the System for First Time ..... 3-5
3.3.2 System Startup when Adding Electronic Devices ..... 3-8
3.3.3 System Startup when Replacing Electronic Devices ..... 3-10
3.4 Self-configuration and Each Window ..... 3-12
3.4.1 Module Configuration Definition Window ..... 3-13
3.4.2 MECHATROLINK Transmission Definition Window ..... 3-16
3.4.3 Motion Parameter Window ..... 3-22
3.4.4 SERVOPACK Parameter Window ..... 3-31
4 Motion Parameters ..... 4-1
4.1 Motion Parameters Register Numbers ..... 4-2
4.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers ..... 4-2
4.2 Motion Parameters Setting Window ..... 4-4
4.2.1 Opening the Motion Parameter Setting Windows ..... 4-5
4.2.2 Motor Type and Related Alarms ..... 4-6
4.3 Motion Parameter Lists ..... 4-7
4.3.1 Fixed Parameter List- ..... 4-7
4.3.2 Setting Parameter List ..... 4-9
4.3.3 Monitoring Parameter List ..... 4-15
4.4 MP2000 Series Machine Controller Parameter Details ..... 4-19
4.4.1 Motion Fixed Parameter Details ..... 4-19
4.4.2 Motion Setting Parameter Details ..... 4-26
4.4.3 Motion Monitoring Parameter Details ..... 4-58
5 Motion Parameter Setting Examples ..... 5-1
5.1 Example Setting of Motion Parameters for the Machine ..... 5-2
5.1.1 Reference Unit ..... 5-2
5.1.2 Electronic Gear ..... 5-2
5.1.3 Axis Type Selection ..... 5-4
5.1.4 Position Reference ..... 5-5
5.1.5 Speed Reference ..... 5-9
5.1.6 Acceleration/Deceleration Settings ..... 5-11
5.1.7 Acceleration/Deceleration Filter Settings ..... 5-13
5.1.8 Linear Scale Pitch and Rated Speed ..... 5-14
6 Motion Commands ..... 6-1
6.1 Motion Commands ..... 6-3
6.1.1 Motion Command Table ..... 6-3
6.1.2 Motion Commands Supported by SERVOPACK Models- ..... 6-4
6.2 Motion Command Details ..... 6-5
6.2.1 Position Mode (POSING) (Positioning) ..... 6-5
6.2.2 Latch Target Positioning (EX_POSING) (External Positioning) ..... 6-10
6.2.3 Zero Point Return (ZRET) ..... 6-15
6.2.4 Interpolation (INTERPOLATE) ..... 6-35
6.2.5 Interpolation Mode with Latch Input (LATCH) ..... 6-39
6.2.6 Jog Mode (FEED)- ..... 6-43
6.2.7 Relative Position Mode (STEP) (Step Mode) ..... 6-47
6.2.8 Set Zero Point (ZSET) ..... 6-51
6.2.9 Change Acceleration Time (ACC) ..... 6-53
6.2.10 Change Deceleration Time (DCC) ..... 6-55
6.2.11 Change Filter Time Constant (SCC) ..... 6-57
6.2.12 Change Filter Type (CHG_FILTER) ..... 6-59
6.2.13 Change Speed Loop Gain (KVS) ..... 6-61
6.2.14 Change Position Loop Gain (KPS) ..... 6-63
6.2.15 Change Feed Forward (KFS) ..... 6-65
6.2.16 Read User Constant (PRM_RD) ..... 6-67
6.2.17 Write User Constant (PRM_WR) ..... 6-69
6.2.18 Alarm Monitor (ALM_MON) ..... 6-71
6.2.19 Alarm History Monitor (ALM_HIST) ..... 6-73
6.2.20 Clear Alarm History (ALMHIST_CLR) ..... 6-75
6.2.21 Absolute Encoder Reset (ABS_RST)- ..... 6-77
6.2.22 Speed Reference (VELO) ..... 6-80
6.2.23 Torque /Thrust Reference (TRQ) ..... 6-84
6.2.24 Phase References (PHASE) ..... 6-88
6.2.25 Change Position Loop Integral Time Constant (KIS) ..... 6-92
6.2.26 Stored Parameter Write (PPRM WR) ..... 6-94
6.2.27 Multiturn Limit Setting (MLTTRN_SET) ..... 6-96
6.3 Motion Subcommands ..... 6-100
6.3.1 Motion Subcommand Table ..... 6-100
6.3.2 Motion Subcommand Settings ..... 6-100
6.4 Motion Subcommand Details ..... 6-101
6.4.1 No Command (NOP) ..... 6-101
6.4.2 Read User Constant (PRM_RD) ..... 6-102
6.4.3 Write User Constant (PRM_WR)- ..... 6-104
6.4.4 Status Monitor (SMON) ..... 6-106
6.4.5 Read Fixed Parameters (FIXPRM_RD) ..... 6-108
7 Switching Commands during Execution ..... 7-1
7.1 Switchable Motion Commands and Subcommands ..... 7-2
7.1.1 Switching Between Motion Commands ..... 7-2
7.1.2 Setting a Subcommand During Command Execution ..... 7-4
7.2 Motions After Switching Motion Commands ..... 7-5
7.2.1 Switching from POSING ..... 7-6
7.2.2 Switching from EX_POSING ..... 7-10
7.2.3 Switching from ZRET ..... 7-14
7.2.4 Switching from INTERPOLATE ..... 7-17
7.2.5 Switching from ENDOF_INTERPOLATE or LATCH ..... 7-20
7.2.6 Switching from FEED ..... 7-21
7.2.7 Switching from STEP ..... 7-25
7.2.8 Switching from ZSET ..... 7-28
7.2.9 Switching from VELO ..... 7-29
7.2.10 Switching from TRQ- ..... 7-34
7.2.11 Switching from PHASE ..... 7-39
8 Control Block Diagrams ..... 8-1
8.1 Position Control ..... 8-2
8.1.1 Motion Parameters for Position Control ..... 8-2
8.1.2 Control Block Diagram for Position Control ..... 8-6
8.2 Phase Control ..... 8-8
8.2.1 Motion Parameters for Phase Control ..... 8-8
8.2.2 Control Block Diagram for Phase Control- ..... 8-12
8.3 Torque Control ..... 8-14
8.3.1 Motion Parameters for Torque Control ..... 8-14
8.3.2 Control Block Diagram for Torque Control ..... 8-18
8.4 Speed Control ..... 8-20
8.4.1 Motion Parameters for Speed Control ..... 8-20
8.4.2 Control Block Diagram for Speed Control- ..... 8-24
9 Absolute Position Detection ..... 9-1
9.1 Absolute Position Detection Function ..... 9-2
9.1.1 Outline of the Function ..... 9-2
9.1.2 Reading Absolute Data ..... 9-2
9.1.3 Finite Length/Infinite Length Axes and Absolute Position Detection ..... 9-3
9.2 Setting Procedure of Absolute Position Detection Function- ..... 9-4
9.2.1 System Startup Flowchart ..... 9-4
9.2.2 Initializing the Absolute Encoder ..... 9-5
9.3 Absolute Position Detection for Finite Length Axes ..... 9-6
9.3.1 Parameter Settings for Finite Length Axes ..... 9-6
9.3.2 Setting the Zero Point for a Finite Length Axis ..... 9-9
9.3.3 Turning ON the Power after Setting the Zero Point of Machine Coordinate System ..... 9-14
9.4 Absolute Position Detection for Infinite Length Axes ..... 9-15
9.4.1 Simple Absolute Infinite Length Position Control ..... 9-15
9.4.2 Parameter Settings for Simple Absolute Infinite Length Position Control ..... 9-17
9.4.3 Setting the Zero Point and Turning ON Power as Simple Absolute Positions ..... 9-20
9.4.4 Turning ON the Power after Setting the Zero Point- ..... 9-21
9.4.5 Infinite Length Position Control without Simple Absolute Positions ..... 9-21
10 Inverter Operation ..... 10-1
10.1 Connection Specifications ..... 10-2
10.2 Parameters for Inverter Operation ..... 10-3
10.2.1 Types of Motion Parameters ..... 10-3
10.2.2 Motion Parameter Registers ..... 10-3
10.2.3 Motion Parameter List ..... 10-4
10.2.4 Motion Parameter Details ..... 10-19
10.3 Main Commands and Subcommands ..... 10-27
10.3.1 List of Commands ..... 10-27
10.3.2 Main Command Details ..... 10-29
10.3.3 Subcommand Details ..... 10-37
10.3.4 Applicable Combinations of Main Commands and Subcommands ..... 10-44
10.3.5 Precautions for Inverter Operation ..... 10-45
10.4 Setup Procedure ..... 10-47
10.4.1 Check Items before Setup ..... 10-47
10.4.2 Inverter Settings ..... 10-47
10.4.3 I/O Options ..... 10-54
10.5 Alarm and Warning Codes for Inverter ..... 10-56
10.5.1 A1000 ..... 10-56
10.5.2 V1000 ..... 10-60
10.5.3 Varispeed G7, Varispeed F7, and VS mini V7 ..... 10-63
10.6 MECHATROLINK Option Card/Option Unit Settings ..... 10-66
11 Utility Functions ..... 11-1
11.1 Controlling Vertical Axes ..... 11-3
11.1.1 Holding Brake Function of the SERVOPACK ..... 11-3
11.1.2 Connections to $\Sigma$-II Series SGDH SERVOPACKs, $\Sigma$-III Series SGDS SERVOPACKs, $\Sigma$-V Series SGDV SERVOPACKs, and $\Sigma-7$ Series SGD7S SERVOPACKs ..... 11-3
11.1.3 Connections to $\Sigma$-I Series SGDB SERVOPACK ..... 11-5
11.1.4 Connections to $\Sigma$-I Series SGD SERVOPACK ..... 11-7
11.2 Overtravel Function ..... 11-9
11.2.1 Connections to $\Sigma$-II Series SGDH SERVOPACKs, $\Sigma$-III Series SGDS SERVOPACKs, $\Sigma$-V Series SGDV SERVOPACKs, and $\Sigma-7$ Series SGD7S SERVOPACKs ..... 11-9
11.2.2 Connections to $\Sigma$-I Series SGDB or SGD SERVOPACK ..... 11-12
11.3 Software Limit Function ..... 11-14
11.3.1 Fixed Parameter Settings ..... 11-14
11.3.2 Effects of the Software Limit Function ..... 11-14
11.3.3 Processing after an Alarm Occurs ..... 11-15
11.4 Modal Latch Function ..... 11-16
11.5 Bank Switching Function ..... 11-17
11.5.1 Bank Switching Specifications ..... 11-17
11.5.2 Bank Switching Function Unsupported Motion Commands ..... 11-17
11.5.3 SERVOPACK Parameter Settings for Bank Switching ..... 11-17
11.5.4 Bank Member Setting- ..... 11-19
11.6 Parameters That Are Automatically Updated ..... 11-22
11.6.1 Parameters Updated when a MECHATROLINK Connection Is Established (1) (User Constants Self-writing Function Enabled)- ..... 11-22
11.6.2 Parameters Updated when a MECHATROLINK Connection Is Established (2) (Regardless of the User Constants Self-writing Function) ..... 11-23
11.6.3 Parameters Updated when a Setting Parameter Is Changed (MECHATROLINK-II Operating at 10 Mbps in 32-byte Mode with User Constants Self-writing Function Enabled) ..... 11-23
11.6.4 Parameters Updated when a Motion Command Is Executed ..... 11-24
11.6.5 Parameters Updated during Self-configuration ..... 11-25
11.7 Precautions When Using $\Sigma$-V-series SGDV SERVOPACKs ..... 11-28
11.7.1 Software Limit Settings ..... 11-28
11.7.2 When the Tuning-less Function is Enabled ..... 11-28
11.7.3 Saving the Parameter Bank Data ..... 11-28
11.7.4 Motion Command Operation for External Latches with DC Power Input $\Sigma$-V-series SERVOPACKs ..... 11-29
11.8 Precautions When Using $\Sigma$-7-series SGD7S SERVOPACKs with Rotary Servomotors ..... 11-30
11.8.1 SGD7S Electronic Gear Ratio Settings ..... 11-30
11.8.2 Assignment ..... 11-30
11.8.3 Number of Pulses per Motor Rotation ..... 11-30
11.8.4 Motion Image ..... 11-30
11.8.5 Software Limit Settings ..... 11-31
11.8.6 When the Tuning-less Function is Enabled ..... 11-31
11.8.7 Saving the Parameter Bank Data ..... 11-31
12 Troubleshooting ..... 12-1
12.1 Troubleshooting Motion Errors ..... 12-2
12.1.1 Overview of Motion Errors ..... 12-2
12.1.2 Causes of Command Error End Alarms (IWロロ09 Bit 3) ..... 12-3
12.1.3 Motion Errors Details and Corrections ..... 12-6
12.1.4 SERVOPACK Status/SERVOPACK Error Codes ..... 12-14
12.2 Troubleshooting System Errors ..... 12-25
12.2.1 Overview of System Errors ..... 12-25
12.2.2 System Register Configuration and Error Status ..... 12-27
12.3 Motion Program Alarm ..... 12-43
12.3.1 Structure of Motion Program Alarms ..... 12-43
12.3.2 Motion Program Alarm Codes ..... 12-43
Appendices ..... A-1
Appendix A System Registers Lists ..... A-3
A. 1 System Service Registers ..... A-3
A. 2 Scan Execution Status and Calendar ..... A-5
A. 3 Program Software Numbers and Remaining Program Memory Capacity Name- ..... A-5
Appendix B Settings When Connecting MECHATROLINK Compatible I/O Modules, MYVIS, and MP940 ..... A-6
B. 1 Settings in the Module Configuration Definition Window ..... A-6
B. 2 I/O Register Configuration ..... A-7
Appendix C Initializing the Absolute Encoder ..... A-12
C. $1 \Sigma$-III, $\Sigma$-V, and $\Sigma-7$ Series SERVOPACKs ..... A-12
C. 2 г-II SERVOPACK ..... A-14
C. 3 上-I SERVOPACK ..... A-16
Appendix D Setting the Multiturn Limit ..... A-18
D. 1 Overview ..... A-18
D. 2 Setting Method ..... A-18
Appendix E Fixed Parameter Setting According to Encoder Type and Axis Type ..... A-20
Appendix F SVB Module Throughput ..... A-22
F. 1 For Servos and Inverters ..... A-22
F. 2 For I/Os ..... A-22
Appendix G Settings when Connecting MECHATROLINK-II Compatible Stepping Motor Drivers ..... A-23
G. 1 Required Firmware and Engineering Tool Versions ..... A-23
G. 2 Applicable Communication Methods and Cycles ..... A-23
G. 3 Module Configuration Definition ..... A-24
G. 4 Restrictions on the Use of Motion Parameters ..... A-25
G. 5 Availability When Using M-II Steppers ..... A-27
G. 6 Motion Command Details ..... A-29
G. 7 Automatic Parameter Updating Function ..... A-30
G. 8 Writing and Changing Parameters During Self-configuration ..... A-31
G. 9 M-II Stepper Parameters ..... A-32
Appendix H Wild Card Servos ..... A-35
H. 1 Required Firmware and Engineering Tool Versions ..... A-35
H. 2 Applicable Communication Methods and Cycles ..... A-35
H. 3 Link Assignment ..... A-36
H. 4 Invalid Motion Parameters When Using Wild Card Servos ..... A-36
H. 5 Availability When Using Wild Card Servos ..... A-37
Appendix I Servo Driver Transmission Reference Mode ..... A-39
I. 1 What is Servo Driver Transmission Reference Mode? ..... A-39
I. 2 MECHATROLINK Communication Management by the System ..... A-39
I.3 Motion Parameters That Can be Used in Servo Driver Transmission Reference Mode ..... A-40
I. 4 MECHATROLINK Commands That Cannot Be Used ..... A-40
I. 5 Operation Procedure in Servo Driver Transmission Reference Mode ..... A-41
I. 6 Precautions When Using Servo Driver Transmission Reference Mode ..... A-43
Appendix J Terminology ..... A-44
Appendix K Functions Added to $\Sigma$-V-series SERVOPACKs ..... A-46
Index

## Overview

This chapter provides an overview and the features of the SVB Module.
1.1 SVB Module Overview and Features ..... 1-2
1.1.1 SVB Modules ..... 1-2
1.1.2 Built-in SVB and Slot-mounting Optional SVB ..... 1-2
1.1.3 Features ..... 1-2
1.1.4 System Configuration Example ..... 1-3
1.1.5 Devices and Cables Connectable to MECHATROLINK ..... 1-4
1.1.6 Synchronization between Modules ..... 1-7
1.2 Specifications ..... 1-9
1.2.1 SVB-01 Module Hardware Specifications ..... 1-9
1.2.2 Specifications of SVB Module ..... 1-10
1.3 SVR Virtual Motion Module ..... 1-13
1.3.1 Overview ..... 1-13
1.3.2 Example of SVR Usage ..... 1-14
1.3.3 System Configuration Example ..... 1-14
1.3.4 SVR Operation ..... 1-15

### 1.1 SVB Module Overview and Features

### 1.1.1 SVB Modules

The SVB Module is a motion module used to control SERVOPACKs, stepping motor drivers, inverters, distributed I/O devices, etc. via MECHATROLINK interface MECHATROLINK-I or -II.
The MECHATROLINK-II enables position, speed, torque, and phase control for highly accurate synchronized control. In addition, sophisticated machine operations can be performed by switching the control mode while the axis is moving.


### 1.1.2 Built-in SVB and Slot-mounting Optional SVB

The SVB Modules are of two types: The built-in SVB (hereinafter referred to as Built-in SVB) and the slot-mounting optional SVB (hereinafter referred to as Optional SVB)
A built-in SVB Module is incorporated in the MP2000-series Machine Controller.*
The Optional SVB is one of the optional modules for the Machine Controller. The SVB-01 Module is an Optional SVB.

* The MP2100M and MP2101M have the SVB board equipped with the SVB function. This manual describes the SVB board as the built-in SVB.


### 1.1.3 Features

- Up to 21 slave stations can be connected to a single Module (the SERVOPACKs can be connected up to 16 axes).

| Machine Controller | Number of SVB-01 Modules which can be Mounted |
| :--- | :--- |
| MP2100M | If an extension rack is used, up to 14 SVB-01 Modules can be mounted in optional slots. |
| MP2101M |  |
| MP2101TM | If an extension rack is used, up to 16 SVB-01 Modules can be mounted in optional slots. |
| MP2200 | Up to 2 SVB-01 Modules can be mounted in optional slots. |
| MP2300 | Up to 3 SVB-01 Modules can be mounted in optional slots. |
| MP2310 | One SVB-01 Module can be mounted in optional slot. |
| MP2300S |  |
| MP3100 (16 axes) |  |
| MP3300/CPU-301 (16 axes) | If an extension rack is used, up to 15 SVB-01 Modules can be mounted in optional slots. |
| MP3300/CPU-302 (16 axes) |  |
| MP3100 (32 axes) |  |
| MP3200 | If an extension rack is used, up to 14 SVB-01 Modules can be mounted in optional slots. |
| MP3300/CPU-301 (32 axes) |  |
| MP3300/CPU-302 (32 axes) |  |

- Synchronization between Modules is also supported, making it suitable for both synchronous control and interpolation across Modules.
- An SVB-01 Module used as a slave can be connected to a host controller equipped with MECHATROLINK communication functions.
- Self-configuration enables automatic allocation of setting data for the slave device that is connected to MECHATROLINK.
- SERVOPACK parameters can be managed over networks.


### 1.1.4 System Configuration Example

The following diagram shows a system configuration example.


- Use the specified cables and connectors. Refer to 1.1.5 (4) Cables to select appropriate cables and connectors to connect each device.
- The SERVOPACK models that can be connected through MECHATROLINK-I differ from those connected through MECHATROLINK-II. Refer to 1.1.5 Devices and Cables Connectable to MECHATROLINK to select appropriate SERVOPACK models for the MECHATROLINK interface to be used.
- If both MECHATROLINK-I (4 Mbps) compatible devices and MECHATROLINK-II (10 Mbps) compatible devices are connected in a system, make the settings in accordance with MECHATROLINK-I specifications.
- When connecting a servo to an SVB Module via MECHATROLINK, connect signals such as overtravel, homing deceleration switch, and external latch to the servo. Refer to the relevant SERVOPACK manual for details on the connections.
- When connecting $\Sigma$-II series SERVOPACKs (SGDH+NS100 or SGDH+NS115), do not connect a hand-held type digital operator and SigmaWin+. If connected, alarms A. 95 (command warning) and A.ED (execution not completed) will occur for the commands sent from the SVB Module, and normal operation will be interrupted. If a digital operator or SigmaWin+ must be connected to a $\Sigma$-II series SERVOPACK, disconnect the SERVOPACK from the SVB Module.


## 1．1．5 Devices and Cables Connectable to MECHATROLINK

The devices and standard cables that are compatible with MECHATROLINK and can be connected to the SVB Module are listed below．
（1）Compatible SERVOPACKs

| Model Number | Details | MECHATROLINK－I | MECHATROLINK－II |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SGD-पロपN } \\ & \text { SGDB-ロロAN } \end{aligned}$ | MECHATROLINK－I－compatible AC SERVOPACK | Yes | No |
| $\begin{aligned} & \hline \text { SGDH-पロपE } \\ & + \\ & \text { JUSP-NS100 } \end{aligned}$ | $\begin{aligned} & \hline \text { इ-II Series SGDH SERVOPACK } \\ & + \\ & \text { NS100 MECHATROLINK-I Application Module } \end{aligned}$ | Yes | No |
| $\begin{aligned} & \text { SGDH-पロपE } \\ & + \\ & \text { JUSP-NS115 } \end{aligned}$ | $\begin{aligned} & \Sigma \text {-II Series SGDH SERVOPACK } \\ & + \\ & \text { NS115 MECHATROLINK-II Application Module } \end{aligned}$ | Yes | Yes |
| SGDS－पロロ1ロロ | $\Sigma$－III－series SGDS SERVOPACKs with MECHATROLINK－II Communications References | Yes | Yes |
| SJDE－口पAND | JUNMA series SJDE SERVOPACKs with MECHATROLINK－II Communications References | No | Yes |
| SGDV－ロロロロ1ロロ | $\Sigma$－V－series SGDV SERVOPACKs with <br> MECHATROLINK－II Communications References | Yes | Yes |
| SGD7S－पロロロ10ロ | $\Sigma$－7－series SGD7S SERVOPACKs with MECHATROLINK－II Communications References | Yes | Yes |

## （ 2 ）Compatible Inverters

| Model Number | Details | MECHATROLINK－I | MECHATROLINK－II |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CIMR-G7AD } \\ & + \\ & \text { SI-T } \end{aligned}$ | Varispeed G7 Inverter <br> MECHATROLINK－II Communication Option Card | Yes | Yes |
| $\begin{aligned} & \text { CIMR-F7AD } \\ & + \\ & \text { SI-T } \end{aligned}$ | Varispeed F7 Inverter <br> MECHATROLINK－II Communication Option Card | Yes | Yes |
| $\begin{aligned} & \text { CIMR-V7AAロ } \\ & + \\ & \text { SI-T/V7 } \end{aligned}$ | Varispeed V7 Inverter <br> MECHATROLINK－II Communication Option Card | Yes | Yes |
| $\begin{aligned} & \text { CIMR-AD } \\ & + \\ & \text { SI-T3 } \end{aligned}$ | High Performance Vector Control Drive A1000 <br> MECHATROLINK－II Communication Option Card | Yes | Yes |
| $\begin{aligned} & \text { CIMR-VD } \\ & + \\ & \text { SI-T3/V } \end{aligned}$ | Compact Vector Control Drive V1000 $+$ <br> MECHATROLINK－II Communication Option Card | Yes | Yes |

## ( 3 ) Compatible Modules

| Model Number | Details | MECHATROLINK-I | MECHATROLINK-II |
| :---: | :---: | :---: | :---: |
| JEPMC-IO350 | 64-point I/O Module <br> 24 VDC, 64 inputs, 64 outputs (sink) | Yes | No |
| JAMSC-120DDI34330 | DC Input Module 12/24 VDC, 16 inputs | Yes | No |
| JAMSC-120DDO34340 | DC Output Module 12/24 VDC, 16 outputs | Yes | No |
| JAMSC-120DAI53330 | AC Input Module $100 \mathrm{VAC}, 8$ inputs | Yes | No |
| JAMSC-120DAI73330 | AC Input Module $200 \mathrm{VAC}, 8$ inputs | Yes | No |
| JAMSC-120DAO83330 | AC Output Module 100/200 VAC, 8 outputs | Yes | No |
| JAMSC-120DRA83030 | Relay Module Wide voltage range relay contacts, 8 contact outputs | Yes | No |
| JAMSC-120AVI02030 | A/D Module <br> Analog inputs, -10 to $10 \mathrm{~V}, 4$ channels | Yes | No |
| JAMSC-120AVO01030 | D/A Module <br> Analog outputs, -10 to $10 \mathrm{~V}, 2$ channels | Yes | No |
| JAMSC-120EHC21140 | Counter Module <br> Reversible counter, 2 channels | Yes | No |
| JAMSC-120MMB20230 | Pulse Output Module, Pulse output, 2 channels | Yes | No |
| JEPMC-IO2310(-E) | 64-point I/O Module <br> 24 VDC, 64 inputs, 64 outputs (sink) | Yes | Yes |
| JEPMC-IO2330(-E) | 64-point I/O Module <br> 24 VDC, 64 inputs, 64 outputs (source) | Yes | Yes |
| JEPMC-PL2900(-E) | Counter Module <br> Reversible counter, 2 channels | Yes | Yes |
| JEPMC-PL2910(-E) | Pulse Output Module Pulse output, 2 channels | Yes | Yes |
| JEPMC-AN2900(-E) | A/D Module <br> Analog inputs, -10 to $10 \mathrm{~V}, 4$ channels | Yes | Yes |
| JEPMC-AN2910(-E) | D/A Module <br> Analog outputs, -10 to $10 \mathrm{~V}, 2$ channels | Yes | Yes |
| JAPMC-IO2900-E | DC Input Module 24 VDC, 16 inputs | Yes | Yes |
| JAPMC-IO2910-E | DC Output Module $24 \mathrm{VDC}, 16$ outputs | Yes | Yes |
| JAMSC-IO2920-E | 8-point I/O Module 24 VDC, 8 inputs, 8 outputs | Yes | Yes |
| JAPMC-IO2950-E | Relay Module <br> Wide voltage range relay contacts, 8 contact outputs | Yes | Yes |
| AB023-M1 | MECHATROLINK Bit decentralization I/O terminal (by Anywire Corporation) | Yes | Yes |
| JAPMC-MC2310(-E) | SVB-01 Motion Module | Yes | Yes |
| JEVSA-YV250(-E) | MYVIS YV250 Machine Vision System | Yes | Yes |
| JEVSA-YV260-E | MYVIS YV260 Machine Vision System | Yes | Yes |
| JEPMC-REP2000(-E) | MECHATROLINK-II repeater | Yes | Yes |
| JEPMC-MC400 | MP940 Machine Controller | Yes | No |

## ( 4 ) Cables

| Name and Specification |  | Model Number | Length |
| :--- | :--- | :--- | :---: |
| MECHATROLINK Cable |  |  |  |
| MECHATROLINK Connector - MECHATROLINK Connector |  | JEPMC-W6002-A5-E | 0.5 m |

### 1.1.6 Synchronization between Modules

## (1) Overview

The Machine Controllers have a function that can synchronize hardware between the CPU and an optional module. This function enables MECHATROLINK communications in synchronization with high-speed scans. As a result, synchronization between a built-in SVB Module and an SVB-01 Module, or among multiple SVB-01 Modules, can be enabled.


When synchronized mode is used, the start of the high-speed scan and the various communication cycles are synchronized. This means that commands from the high-speed scan will be sent at consistent points in communication cycle processing and simplifies distribution processing for interpolation commands.

## ( 2 ) Conditions Under Which Synchronization Is Possible

The following table shows the combinations of high-speed scan times and MECHATROLINK communication cycles that allow synchronization between modules in the synchronization mode.

| High-speed scan <br> (RTC: 0.5 ms ) | MECHATROLINK Communication Cycle |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 0.5 ms | 1 ms | 1.5 ms | 2 ms |
| 1.0 ms | Yes | Yes | - | Yes |
| 1.5 ms | Yes | - | Yes | - |
| 2.0 ms | Yes | Yes | - | Yes |
| 2.5 ms | Yes | - | - | - |
| 3.0 ms | Yes | Yes | Yes | - |
| 3.5 ms | Yes | - | - | - |
| 4.0 ms | Yes | Yes | - | Yes |
| 4.5 ms | Yes | - | Yes | - |
| 5.0 ms | Yes | Yes | - | - |
| 5.5 ms | Yes | - | - | - |
| 6.0 ms | Yes | Yes | Yes | Yes |
| $:$ |  |  |  |  |

## ( 3 ) Timing At Which Modules Are Synchronized

Modules are automatically synchronized when the power supply is turned OFF and ON again.
( 4 ) Operation when High-speed Scan Cycle Is Changed
MECHATROLINK communication with SVB Modules will continue even if the high-speed scan cycle is changed. However, the speed waveform at execution of interpolation command will be disordered. When changing the highspeed scan cycle, do so either with the CPU stopped or when motion command are not being executed.
Change the high-speed scan setting and then save the settings to flash memory and turn the power supply OFF and ON when operation changes from synchronized to asynchronized or from asynchronized to synchronized.
(5) Operation When the MECHATROLINK Communication Cycle Is Changed

- Changing the MECHATROLINK Communication Cycle of the SVB in the CPU

Synchronization may be lost when a change is made even if synchronization is possible for the high-speed scan and communication cycle combination. When a change is made, save the settings to flash memory and then turn the power supply OFF and ON.

- Changing the MECHATROLINK Communication Cycle of the SVB-01 Module

Operation will be automatically synchronized when a change is made if synchronization is possible for the high-speed scan and communication cycle combination. It is not necessary to turn the power supply OFF and ON.

## ( 6 ) Conditions when the Power Supply Must Be Turned OFF and ON

When any of the following operations is performed, save the settings to flash memory and then turn the power supply OFF and ON.

- After executing a self-configuration command from the MPE720 after turning ON the power supply
- After loading a Module definition after turning ON the power supply
- After changing the SVB communication cycle in the CPU after turning ON the power supply
- After operation changes from synchronized to asynchronized or from asynchronized to synchronized when the high-speed scan setting is changed


## (7) Precaution

- Observe the following precautions when the scan time over counter error occurs.

When an H Scan Time Over Counter error or L Scan Time Over Counter error occurs, the MECHATROLINK communication cycle is disturbed and a communication error may occur.
These scan time errors can be checked in the SW00044 and SW00046 registers.

### 1.2 Specifications

### 1.2.1 SVB-01 Module Hardware Specifications

| Item |  | Specifications |
| :---: | :---: | :---: |
| Description |  | SVB-01 |
| Model Number |  | JAPMC-MC2310(-E) |
| Module Appearance |  |  |
| Max. No. of Modules to be mounted |  | Refer to 2.2 Applicable Machine Controllers for SVB-01 Modules on page 2-6. |
| MECHATROLINK Motion Network |  | Motion network: 1 channel <br> Communication ports: 2 ports <br> SERVOPACK and I/O: <br> Up to 21 stations connectable (SERVOPACK for up to 16 axes) <br> Baud rate: <br> 4 Mbps (MECHATROLINK-I) or 10 Mbps (MECHATROLINK-II) |
| Indicators |  | RUN (green) <br> ERR (red) <br> TX (green) |
| Switches | DIP Switch | M/S (Master/Slave) <br> SIZE (Number of transfer bytes) <br> SPD (Baud rate) |
|  | Rotary Switch | $\times 1$ (slave address) <br> $\times 10$ (slave address) |
| Environmental Conditions | Ambient Operating Temperature | $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ |
|  | Ambient Storage Temperature | $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
|  | Ambient Operating Humidity | $30 \%$ to $95 \%$ RH (with no condensation) |
|  | Ambient Storage Humidity | 5\% to 95\% RH (with no condensation) |
|  | Pollution level | Pollution level 2 (conforming to JIS B 3502) |
|  | Corrosive Gas | There must be no combustible or corrosive gas. |
|  | Operating Altitude | 2,000 m above sea level or lower |
| Mechanical <br> Operating <br> Conditions | Vibration Resistance | Conforms to JIS B 3502. <br> Vibration amplitude/acceleration: <br> $10 \leq \mathrm{f}<57 \mathrm{~Hz}$, Single-amplitude of 0.075 mm <br> $57 \leq \mathrm{f} \leq 150 \mathrm{~Hz}$, Fixed acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ <br> 10 sweeps ( 1 sweep $=1$ octave per minute) each in the $\mathrm{X}, \mathrm{Y}$, and Z directions |
|  | Shock Resistance | Conforms to JIS B 3502. <br> Peak acceleration of $147 \mathrm{~m} / \mathrm{s}^{2}$ twice for 11 ms each in the $\mathrm{X}, \mathrm{Y}$, and Z directions |
| Electrical Operating Conditions | Noise Resistance | Complying with EN 61000-6-2, EN 61000-6-4, EN 55011 (Group 1, Class A) |
| Installation Requirements | Ground | Ground to $100 \Omega$ max. |
|  | Cooling Method | Natural cooling |

(cont'd)

| Item | Specifications |
| :--- | :--- |
| Dimensions $(\mathrm{mm})$ | $125 \times 95(\mathrm{H} \times \mathrm{D})$ |
| Mass | 80 g |

- For more information on the hardware specifications for the built-in SVB Module, refer to the manual for your machine controller.


### 1.2.2 Specifications of SVB Module

This section describes the specifications of the built-in and the optional SVB modules are as follows.

## (1) Motion Control Function



* 1. Only for the SVB-01 Module.

|  | Item | Details |
| :---: | :---: | :---: |
| $\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Communication Method | Single-send (communication cycle $=$ transmission cycle) synchronous communication Transmission/communication error detection (hardware) provided. <br> Synchronous communication error detection (software) provided. <br> Automatic recovery function not provided (recovery when alarm is cleared). |
|  | I/O Registers | Input/output using motion registers (synchronized on high-speed scan) |
|  | Command Mode | Motion Command Mode/Servo Driver Transmission Reference Mode |
|  | Supported Servomotors | Standard motors/linear motors/DD motors |
|  | Control Type | Position control, speed control, torque control, and phase control |
|  | Motion Commands | Positioning, External Positioning, Zero Point Return, Interpolation, Interpolation with Position Detection, JOG operation, STEP operation, Speed Reference ${ }^{* 2}$, Torque Reference $^{* 2}$, Phase Control ${ }^{* 2}$, etc. |
|  | Acceleration/Deceleration Method | One-step asymmetric trapezoidal acceleration/deceleration, exponential acceleration/ deceleration filter, moving average filter |
|  | Position Unit | pulse, mm, inch, degree, $\mu \mathrm{m}$ |
|  | Speed Unit | Reference units $/ \mathrm{s}, 10^{\mathrm{n}}$ reference units $/ \mathrm{min}$, percentage of rated speed |
|  | Acceleration Unit | Reference units/s ${ }^{2}$, ms (acceleration from 0 until rated speed reached) |
|  | Torque Unit | Percentage of rated torque |
|  | Electronic Gear | Provided. |
|  | Position Control Method | Finite length position control, infinite length position control, absolute system infinite length position control, and simple absolute system infinite length position control |
|  | Software Limit | Positive/negative direction for each point |
|  | Zero Point Return Method | 13 types |
|  | SERVOPACK Parameter Management | Parameters can be managed in the MPE720's SERVOPACK Parameter Window. |
|  | Communication Method | Single-send (communication cycle $=$ transmission cycle) asynchronous communication Transmission/communication error detection (hardware) provided. Synchronous communication error detection (software) not provided. Automatic recovery function not provided (recovery when alarm cleared). |
|  | I/O Registers | Input/output using motion registers (synchronized on high-speed scan) |
|  | Command Mode | Motion Command Mode/Servo Driver Transmission Reference Mode |
|  | Control Type | Speed control only (V/F, vector control and other control methods use inverter settings.) |
|  | Motion Commands | Inverter I/O control, etc. |
|  | Speed Unit | The speed unit depends on the inverter settings. |
| $\begin{aligned} & \text { 으 } \\ & \text { O} 0 \end{aligned}$ | Communication Method | Single-send (communication cycle $=$ transmission cycle) asynchronous communication Transmission/communication error detection (hardware) provided. <br> Synchronous communication error detection not provided. <br> Automatic recovery function provided. |
|  | 1/O Registers | Input/output using I/O registers and synchronized on the high-speed scan or low-speed scan (selectable). |
| Self-configuration Function |  | Module and slave devices can be automatically allocated. |
| Synchronization between Modules |  | Synchronization supported (enabled when power is cycled) when high-speed scan cycle $=$ communication cycle times n . |

* 2. Only with MECHATROLINK-II


## ( 2 ) MECHATROLINK Communication Specifications

| Item | MECHATROLINK-I | MECHATROLINK-II |
| :--- | :--- | :--- |
| Topology | Bus | Twis |
| Transmission Media | Twisted-pair cable | 50 m max. <br> (Can be extended to 100 m with repeaters) |
| Transmission Distance | 50 m max. <br> (Can be extended to 100 m with repeaters) | 0.5 m |
| Minimum Distance <br> between Stations | 0.3 m | 10 Mbps |
| Baud Rate | 4 Mbps | $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 1.5 \mathrm{~ms}$, or 2 ms |
| Communication Cycle | 2 ms | Up to 21 stations <br> * (SERVOPACK for up to 16 |
| Number of Connectable <br> Stations | Up to 14 stations | Cyclic |
| Communication Control <br> Method | Cyclic | $2: \mathrm{N}$ |
| Media Access Control <br> Method | $1: \mathrm{N}$ | Control communication |
| Communication Mode | Control communication | CRC check |
| Error Control | CRC check |  |

* Up to 16 stations can be connected if a JEPMC-REP2000(-E) MECHATROLINK-II Repeater is not used. Refer to Machine Controller MP2000/3000 Series Distributed I/O Module User's Manual MECHATROLINK System (Manual No. SIEP C880732 13) for details.


## (3) Maximum Number of Slave Stations

The maximum numbers of slave stations that can be connected to the SVB Module are listed below.

- MECHATROLINK Communication Setting and Maximum No. of Slave Stations

| MECHATROLINK Communication Setting |  | Maximum Number of Slave Stations |  |
| :--- | :--- | :--- | :---: |
| Communication Method | Baud Rate |  |  |
| MECHATROLINK-I | 4 Mbps | 2 ms | 14 |
| MECHATROLINK-II <br> (17-byte Mode) | 10 Mbps | 0.5 ms | 6 |
|  |  | 15 |  |
|  | 10 Mbps | 1 ms | 4 |
|  |  | 1.5 ms | 9 |
|  |  | 21 (SERVOPACK for up to 16 axes) |  |

- Refer to 3.4.2 MECHATROLINK Transmission Definition Window for information on how to set MECHATROLINK transmission settings.
- Transmission Distance and Maximum No. of Slave Stations

| Communication Method | Transmission Distance (Total Network Length) | Maximum Number of Slave <br> Stations |
| :--- | :--- | :---: |
| MECHATROLINK-I | 50 m | 14 |
| MECHATROLINK-II | 30 m <br> (Can be extended to 100 m with repeaters) | $16(21)^{*}$ |
|  | 50 m <br> (Can be extended to 100 m with repeaters) | $15(21)^{*}$ |

* The values in parentheses apply when a JEPMC-REP2000(-E) Repeater is used.

The Repeater must be used if 17 or more slave stations are connected when using MECHATROLINK-II communication.

### 1.3 SVR Virtual Motion Module

### 1.3.1 Overview

The Virtual Motion Module is a software module provided as a standard feature with the Machine Controllers. It is not connected to a motor, but provides a virtual axis interface.
The SVR is configured in the same way as the built-in SVB with fixed parameters, setting parameters, and monitoring parameters, and can be accessed from application programs using I/O registers.

- Refer to items marked with $\mathbb{R}$ in Chapter 4 Motion Parameters for information on SVR motion parameters.
- Refer to Chapter 6 Motion Commands for information on how to use SVR motion commands.

The SVR can be used to control up to 16 virtual axes in the high-speed scan control cycle.
<Display Example of the Slot for SVR Module on the MP2300 Module Configuration Definition Window>


- If the SVR is not used, MP2300 processing time can be reduced by setting the Module Type for SVR to UNDEFINED in the Module Configuration Definition Window.



### 1.3.2 Example of SVR Usage

The SVR is used in the following two applications.

- Program testing: Results are easily obtained without mounting a motor.
- Generating commands: If the SVR is used in applications where motion modules are required only for generating commands, such as master axis for phase control or multi-axis synchronous control, then Motion Modules on real axes are no longer required.
The following table lists application examples of the SVR.

| Slot <br> Number | Application Example | Application Method |
| :---: | :--- | :--- |
| 1 | Master axis for phase control | Electronic cam or shaft operation can be achieved by using the SVR for the virtual <br> master axis. |
| 2 | Multi-axis synchronous <br> control | Multi-axis synchronous control can be achieved by controlling the SVR from a <br> motion program and then using the ladder program to copy position commands of the <br> SVR to other axes. |
| 3 | Sine curve commands | If the motion program is used to perform circular interpolation with the SVR, the axis <br> will operate with a sine curve command. |

- The software limit function and machine lock function cannot be used with the SVR. The position error will always be 0.


### 1.3.3 System Configuration Example

The following figure shows an example of system configuration using a Machine Controller MP2300 with a SVR Module mounted.


### 1.3.4 SVR Operation

## ( 1 ) SVR Execution Timing

The SVR is processed at the beginning of the high-speed scan. SVR processing is performed in the next scan after specifying and the processing results are reflected in the monitoring parameters.


## (2) Processing Time

When fixed parameter No. 0 (Selection of Operation Modes) is set to 0 (Normal Operation Mode), services are started for each of the 16 SVR module virtual axes.

- The default for the Selection of Operation Modes parameter is 1 (Axis Unused).

The following table gives guidelines for the processing time required for each SVR axis.

| Command | MP2300 |
| :---: | :---: |
| NOP | $35+14 \times$ Number of axes $(\mu \mathrm{s})$ |
| POSING | $35+36 \times$ Number of axes $(\mu \mathrm{s})$ |

- Number of axes: The number of axes (1 to 16 ) when Selection of Operation Modes (fixed parameter No.0) is set to Normal Operation Mode (0).
The formula listed above do not apply when the number of axes is 0 .
- Differences from SVB Simulation Mode

Simulation mode does not have a positioning function, so the position data is refreshed in one scan to the final target position. The SVR has its own positioning function that performs distribution, so like a real module, position data is refreshed each scan for the final target position.

## Settings and Installation

This chapter explains the LED indicators and switch settings of the SVB-01 Module and how to install or remove it.
2.1 LED Indicators and Switch Settings ..... -2-2
2.1.1 External Appearance ..... 2-2
2.1.2 Indicators ..... 2-2
2.1.3 SVB-01 Module Status Indication ..... 2-2
2.1.4 Switch Settings ..... 2-4
2.2 Applicable Machine Controllers for SVB-01 Modules ..... 2-6
2.2.1 MP2000 Series ..... 2-6
2.2.2 MP3000 Series ..... 2-6
2.3 Mounting/Removing SVB-01 Modules ..... 2-8
2.3.1 Mounting an SVB-01 Module ..... 2-8
2.3.2 Replacing and Adding an SVB-01 Module ..... 2-9

### 2.1 LED Indicators and Switch Settings

### 2.1.1 External Appearance

The following figure shows the external appearance of the SVB-01 Module.


### 2.1.2 Indicators

The following table shows the indicators that show the operating status of the SVB-01 Module and error information.

- Refer to the relevant Machine Controller manual for the LED indicators on the built-in SVB Module.

| Indicators | Indicator Name | Color | Significance when Lit | Significance when Not Lit |
| :---: | :---: | :---: | :---: | :---: |
| RUN ERRTX | RUN | Green | Lights during normal operation of the microprocessor used for control. | An error has occurred in the microprocessor for control. |
|  | ERR | Red | Lights/blinks for failures. Not lit during normal operation. | Normally operating |
|  | TX | Green | MECHATROLINK transmission in progress | MECHATROLINK transmission being stopped |

### 2.1.3 SVB-01 Module Status Indication

The SVB-01 Module status is indicated by the combination of LED indicators as shown in the following table.

| Status | Indication |  | SVB-01 Module Status |  |  |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- |
|  | RUN | ERR |  |  | Description | \left\lvert\, \(\left.\begin{array}{l}Indicates that the power to the SVB-01 Module has <br>

been just turned ON. The ERR LED light will go out <br>
when the initialization process starts. <br>
If the status of the LED stays unchanged, a boot error <br>
has occurred. The SVB-01 firmware needs to be <br>
rewritten.\end{array}\right.\right]\)

| Status | Indication |  |  | SVB－01 Module Status | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | RUN | ERR | TX |  |  |
| 흔 | $\bullet$ | $\bullet$ | $\bullet$ | ＜In Master Mode＞ <br> Servo axis error occurred in one of the servo axes． <br> （1）Warning（Check the parameter ILロロ02．） <br> （2）Alarm（Check the parameter <br> ILD口04．） <br> （3）Command error completed status （Bit 3 of IW $\square \square 09$ is ON， Bit 3 of IW口口0B is ON ） <br> ＜In Slave Mode＞ MECHATROLINK communications error | The indicated status differs depending on the mode， Master or Slave． <br> ＜In Master Mode＞ <br> Indicates that an error has occurred in one of the servo axes．Check the parameters shown on the left to find what kind of error has occurred． <br> （1）Warning <br> The cause of the error is written in each bit of IL $\square \square 02$ ．Find the cause and remove it．Reset the alarm if necessary． <br> （2）Alarm <br> The cause of the error is written in each bit of IL $\square \square 04$ ．Find the cause and remove it．Reset the alarm if necessary． <br> （3）Command Error Completed Status <br> Indicates that an error has occurred during execu－ tion of a motion command or motion subcommand． （Example：A command outside the setting range was sent．） <br> Clear the command（OW口ロ08，OW口ロ0A）． <br> ＜In Slave Mode＞ <br> A MECHATROLINK communication error has occurred．Check the MECHATROLINK cable con－ nection． |
|  | $\bullet$ | $\bullet$ | O | No communication from the master | In slave mode，no communication from the master has been received．Check the master station and the MECHATROLINK cable connection． |
|  | $\star$ | $\star$ | － | Hardware error 1：－ <br> 2：ROM error <br> 3．RAM error <br> 4：CPU error <br> 5：FPU error <br> 6：Shared memory error <br> 7：JL－080 error <br> （Number indicates the number of times blinking） | Hardware failure of the SVB－01 Module occurred． Replace the Module． |
|  | $\bigcirc$ | $\star$ | － | Software error <br> 1：－ <br> 2：Watchdog time timeout <br> 3：Address error（reading）exception <br> 4：Address error（writing）exception <br> 5：FPU exception <br> 6：General illegal instruction exception <br> 7：Slot illegal instruction exception <br> 8：General FPU suppression exception <br> 9：Slot FPU suppression exception <br> 10：Watchdog time timeout（SVB） <br> （Number indicates the number of times blinking） | Software failure of the SVB－01 Module occurred． Replace the Module． |
| －－Lit <br> O：Unlit <br> $\star$ ：Blinks <br> －：Not specified |  |  |  |  |  |

### 2.1.4 Switch Settings

Both the DIP switch and rotary switches set the operating conditions for the SVB-01 Module. Use the default settings when using the Module in Master Mode.

## (1) DIP Switch

SIZE and SPD are valid only in Slave Mode. They will be ignored in Master Mode.


| Name | Status | Operating Mode | Default Setting | Details |
| :---: | :---: | :---: | :---: | :---: |
| - | ON | Reserved. | OFF | Keep turned OFF. |
|  | OFF | Reserved. |  |  |
| M/S | ON | Slave Mode | OFF | Select Master or Slave Mode. |
|  | OFF | Master Mode |  |  |
| SIZE | ON | 17 bytes | OFF | Select the number of send bytes. <br> - Valid only in Slave Mode. |
|  | OFF | 32 bytes |  |  |
| SPD | ON | 4 Mbps | OFF | Select the baud rate. <br> - Valid only in Slave Mode. |
|  | OFF | 10 Mbps |  |  |

Setting Example

| Communication Interface | Link <br> Communication | Switch Settings |
| :---: | :---: | :---: |
| MECHATROLINK-I | 17-byte | $\square$ OFF $\square$ ON $\square$ ON $\square$ ON |
| MECHATROLINK-II | 17-byte | $\square$ OFF $\square$ ON $\square$ ON $\square$ OFF |
|  | 32-byte | $\square$ OFF <br> $\square$ ON  <br> $\square$ OFF <br> $\square$ OFF |

## ( 2 ) Rotary Switches

This rotary switch is valid only in Slave Mode

- It will be ignored in Master Mode.


| Name | Status | Operating Mode | Default <br> Setting | Details |
| :---: | :--- | :--- | :---: | :---: |
| $\times 10$ | 0 to 9 | Local address in Slave Mode <br> (Tens digit) | 0 | Set the tens digit of the local slave address. <br> Example: Turn to " 1 " for the address, 15. |
| $\times 1$ | 0 to 9 | Local address in Slave Mode <br> (Ones digit) | 1 | Set the ones digit of the local slave address. <br> Example: Turn to " 5 " for the address, 15. |

### 2.2 Applicable Machine Controllers for SVB-01 Modules

The following table lists the Machine Controllers on which the SVB-01 Module can be mounted.

### 2.2.1 MP2000 Series

| Name |  | Model | Max. No. of Connectable Modules | Applicable Version |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CPU Module |  | MPE720 |  |
| MP2300 |  |  | JEPMC-MP2300 (-E) | 2 modules | Ver. 2.44 or later | Ver. 5.33 <br> Ver. 6.01 <br> Ver. 7.10 <br> or later | - |
| MP2310 |  | JEPMC-MP2310-E | 3 modules | All versions | - |  |
| MP2300S |  | JEPMC-MP2300S-E | 1 module |  | - |  |
| MP2200*1 | CPU-01 | JAPMC-CP2200 (-E) | 16 modules |  | The maximum number |  |
|  | CPU-02 | JAPMC-CP2210 (-E) |  |  | of connectable Modules |  |
|  | CPU-03 | JAPMC-CP2220-E |  |  | mum expansion to four |  |
|  | CPU-04 | JAPMC-CP2230-E |  |  | racks. ${ }^{*}$ |  |
| MP2100M |  | JAPMC-MC2140 (-E) | 14 modules | Ver. 2.44 or later | The maximum number of connectable Modules is the total for the maximum expansion to three racks. ${ }^{*}$ |  |
| MP2101M |  | JAPMC-MC2142-E |  |  |  | Ver. 5.54 |
| MP2101TM |  | JAPMC-MC2142T-E |  | All versions |  | Ver. 6.24 <br> Ver. 7.10 or later |

* 1. Mount a CPU module on the following base units.

| Name | Model | Remarks |
| :--- | :--- | :--- |
| MBU-01 | JEPMC-BU2200 (-E) | 100/200-VAC input base unit (9 slots) |
| MBU-02 | JEPMC-BU2210 (-E) | 24-VDC input base unit (9 slots) |
| MBU-03 | JEPMC-BU2220-E | 24-VDC input base unit (4 slots) |

* 2 . The following module or board is required between racks.

| Name | Model | Remarks |
| :--- | :--- | :--- |
| EXIOIF | JAPMC-EX2200 (-E) | Inter-rack connection module |
| MP2100MEX | JAPMC-EX2100 (-E) | I/F board for MP2100M, MP2101M, and MP2101TM |

### 2.2.2 MP3000 Series

| Name |  | Model | Max. No. of Connectable Modules | Applicable Version |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CPU Module |  | MPE720 |  |
| MP3100 | MP3100 <br> (16 axes) |  | JAPMC-MC3100-1-E | 15 modules | All versions | Ver. 7.38 or later | The maximum number of connectable Modules is the total for the maximum expansion to three racks. ${ }^{* 2}$ |
|  | MP3100 <br> (32 axes) | JAPMC-MC3100-2-E | 14 modules |  |  |  |
| MP3200 | CPU-201 | JEPMC-CP3201-E | 14 modules | Ver. 1.01 or later | All versions | The maximum number of connectable Modules is the total for the maximum expansion to four racks. ${ }^{*}{ }^{2}$ |  |
|  | CPU-202 | JEPMC-CP3202-E |  | All versions |  |  |  |
| MP3300*1 | CPU-301 <br> (16 axes) | JAPMC-CP3301-1-E | 15 modules |  | Ver. 7.26 or later |  |  |
|  | CPU-301 <br> (32 axes) | JAPMC-CP3301-2-E | 14 modules |  | Ver. 7.28 or later |  |  |
|  | CPU-302 <br> (16 axes) | JAPMC-CP3302-1-E | 15 modules |  | Ver. 7.33 or later |  |  |
|  | $\begin{aligned} & \text { CPU-302 } \\ & \text { (32 axes) } \end{aligned}$ | JAPMC-CP3302-2-E | 14 modules |  |  |  |  |

* 1. Mount a CPU module on the following base units.

| Name | Model | Remarks |
| :--- | :--- | :--- |
| MBU-301 | JEPMC-BU3301-E | 100/200-VAC input base unit (8 slots) |
| MBU-302 | JEPMC-BU3302-E | 24-VDC input base unit (8 slots) |
| MBU-303 | JEPMC-BU3303-E | 24-VDC input base unit (3 slots) |
| MBU-304 | JEPMC-BU3304-E | 24-VDC input base unit (1 slot) |

* 2. The following module or board is required between racks.

| Name | Model | Remarks |
| :--- | :--- | :--- |
| EXIOIF | JAPMC-EX2200 (-E) | Inter-rack connection module |
| MP3100EX | JAPMC-EX3100-E | Can be connected to the Expansion Interface Module and <br> the EXIOIF Module. |
| MP3101EX | JAPMC-EX3101-E | Can be connected to the EXIOIF Module. |

### 2.3 Mounting/Removing SVB-01 Modules

This section describes how to mount, replace, and add an SVB-01 Module.

### 2.3.1 Mounting an SVB-01 Module

Mount an SVB-01 Module by using the following procedure.

- These diagrams show the procedure using the LIO-01 Module, but the procedure is the same for the SVB-01 Module.

1. Hold the top and bottom of the Optional Module to be installed, line up the Module with the left side of the guide rail inside the option slot, and then insert the Module straight in.


- The FG bar inside and on the bottom may be damaged if the Module is not inserted along the guide rail.


2. After the Optional Module is completely inserted, place your hand on the front of the Optional Module and press the Optional Module firmly until it mates with the Mounting Base connectors in the Unit. The front of the Optional Module and the tabs will be aligned if the Optional Module has been installed properly.
3. Place the hole on the bottom of the panel of the Optional Module onto the tab on the bottom of the Unit. Next, hook the hole at the top of the panel of the Optional Module onto the tab on the Unit.


This completes the installation procedure.


- Always use Option Covers (model: JEPMC-OP2300) to cover unused slots.


### 2.3.2 Replacing and Adding an SVB-01 Module

Replace or add an SVB-01 Module by using the following procedure.

- These diagrams show the procedure using the LIO-01 Module, but the procedure is the same for the SVB-01 Module.

- Always create a backup before replacing or adding Optional Modules.
- Back up the program from the Machine Controller to the PC using the MPE720.

1. Turn OFF the power supply and disconnect all cables from the Machine Controller.
2. Pull the notch on the side toward you to remove the battery cover.
```
<MP2200/MP2300>
<MP2310/MP2300S>
```


3. Insert the protruding part of the battery cover into the slot on top of the Optional Module panel to unhook the tab. Face the front of the battery cover toward you for this operation.

4. Pull the top of the Optional Module panel toward you and remove it. A notch on the Optional Module will be visible from the gap with the panel. Hook the round knob on the battery cover into the notch in the Optional Module.

5. Hold the center of the battery cover, and turn it around the round knob while pushing it toward the back to disconnect the Module from the Mounting Base connectors. Then, pull the Module forward.

6. Hold the Optional Module at the top and bottom and pull it straight out. Hold the edges of the Module and avoid touching the components on the Module.


- Put the Module that you removed into the bag that was supplied when you purchased it and store the Module in this bag.


## 3

## Self-configuration and Created Definition Files

This chapter describes the procedures for self-configuration and the definition files that will be created by self-configuration.
3.1 Self-configuration Overview ..... -3-2
3.2 Executing Self-configuration ..... $-3-4$
3.3 System Startup Using Self-Configuration ..... 3-5
3.3.1 Starting the System for First Time ..... 3-5
3.3.2 System Startup when Adding Electronic Devices ..... 3-8
3.3.3 System Startup when Replacing Electronic Devices ..... 3-10
3.4 Self-configuration and Each Window ..... 3-12
3.4.1 Module Configuration Definition Window ..... 3-13
3.4.2 MECHATROLINK Transmission Definition Window ..... 3-16
3.4.3 Motion Parameter Window ..... 3-22
3.4.4 SERVOPACK Parameter Window ..... 3-31

### 3.1 Self-configuration Overview

When the self-configuration function is implemented, the Machine Controller recognizes the mounted optional modules, and automatically creates files of the Module Configuration Definition, MECHATROLINK Transmission Definition, and motion parameters. The self-configuration function greatly reduces the system startup time. The following figure shows how the self-configuration function works.
<Execution of Self-configuration>


The information is automatically written to the Module Configuration Definition.


The information is automatically written to the MECHATROLINK Transmission Definition.
 to motion parameters

| Module Configuration : [MP2200-04] Fix | Fixed Parameter : [MP2200-04]-1 |
| :---: | :---: |
| File 睤 Save to project Import Export |  |
| 12 * | Axis0301 Circuit\#03 Axis\#01 SGDV $-* * * * 11^{*}$ (AC Inpu |
| 0 : Selection of operation modes | 0: Normal operation m.]. |
| $\pm 1$ : Function selection flag 1 | 0000[H] |
| $\pm 2$ : Function selection flag 2 | 0000[H] |
| 4 : Reference unit selection | 0 : pulse |
| 5 : Number of digits below decimal point | 3:0.123 |
| 6 : Travel distance per machine rotation | 10000[pulse] |
| 8 : Servo motor gear ratio | 1[rev] |
| 9 : Machine gear ratio | 1[rev] |
| 10 : Infinite length axis reset position( P ... | 360000[pulse] |
| 12 : Positive software limit value | 2147483647 [pulse] |
| 14 : Negative software limit value | -2147483648[pulse] |
| 16 : Backlash compensation amount | O[pulse] |
| 30 : Encoder selection | 0 : Incremental encoder |
| 34 : Rated motor speed | 3000 [min^-1] |
| 36 : Number of pulses per motor rotati.. | $65536: 16 \mathrm{Bit}$ [pulse/rev] |
| 38 : Maximum number of absolute enc... | 65534[rev] |
| 42 : Feedback speed movement avera.. | $10[\mathrm{~ms}]$ |

- Refer to 3.4.1 Module Configuration Definition Window for details on Module Configuration Definition, 3.4.2 MECHATROLINK Transmission Definition Window for details on MECHATROLINK Transmission Definition, and 3.4.3 Motion Parameter Window for details on motion parameters.

The SERVOPACK parameters will be written in the SERVOPACK's EEPROM or RAM when the self-configuration function is executed.

The self-configuration process is carried out in the following manner.


- The slave stations are detected in order of the servos, I/Os, and inverters for each MECHATROLINK connection.
- The station from which a communication error or no response is returned, because of a duplicated station address or cable disconnection, is recognized as an unconnected station.
- If no slave is detected, communications through MECHATROLINK-I will continue.


### 3.2 Executing Self-configuration

There are two ways to execute self-configuration.

## - Turning ON the Power After Setting the DIP switch "CNFG"

Set the DIP switch "CNFG" on the Machine Controller to ON, and then turn ON the power to execute self-configuration. The setting of the DIP switch "INIT" causes some differences in the results of self-configuration.

| CNFG | INIT | Result |
| :---: | :---: | :---: |
| ON | ON | - Module Configuration Definition will be updated. <br> - All the detected axes (slave devices) will be allocated to the MECHATROLINK Transmission Definition. <br> - Some of the SERVOPACK parameters will be written in the motion parameters. |
| ON | OFF | - Module Configuration Definition will be updated. <br> - The axes that have already been allocated to the MECHATROLINK Transmission Definition will stay unchanged. Only the axes that are newly detected by self-configuration will be newly allocated. <br> - The column showing the deleted axis will appear blank in the MECHATROLINK Transmission Definition Window. <br> - Some SERVOPACK parameters will be written to motion parameters for only the axes that are newly detected. The motion parameters for the axes that have already been allocated to the MECHATROLINK Transmission Definition Window will not be updated. |

After execution of self-configuration, be sure to execute Save to Flash to save the results of self-configuration in the Machine Controller.

- For MP2100, MP2100M, MP2101T, and MP2101TM Machine Controllers, the DIP switch is not commonly used for self-configuration. Use an MPE720 as described below to execute self-configuration.
- For details on the parameters that are written in motion parameters when executing self-configuration, refer to 11.6.5 Parameters Updated during Self-configuration.
■ Using an MPE720
Start the MPE720 and open the Module Configuration Definition Window. Click All modules of the Module Configuration Definition Window, or select a module for which self-configuration is to be executed in the Module Configuration Definition Window and then click specified module.
- Refer to 3.4.1 (1) Opening the Module Configuration Definition Window for information on how to open the Module Configuration Definition Window.
The results of configuration will be as follows.

| Button Name of MPE720 | Result |
| :---: | :---: |
| All modules (Self-configuration for all modules) | - Module Configuration Definitions will be updated. <br> - The axes that have already been allocated to the MECHATROLINK Transmission Definition will remain unchanged. Only the axes that are newly detected by self-configuration will be newly allocated. <br> - The column showing the deleted axis will appear blank in the MECHATROLINK Transmission Definition Window. <br> - Some SERVOPACK parameters will be written to motion parameters for only the axes that are newly detected. The motion parameters for the axes that have already been allocated to the MECHATROLINK Transmission Definition Window will not be updated. |
| specified module (Self-configuration for individual module) | - The slave devices (slave axes) of the selected module will be detected. <br> - The axes that have already been allocated to the MECHATROLINK Transmission Definition will stay unchanged. Only the axes that are newly detected by self-configuration will be newly allocated. <br> - The column showing the deleted axis will appear blank in the MECHATROLINK Transmission Definition Window. <br> - Some SERVOPACK parameters will be written to motion parameters for only the axes that are newly detected. The motion parameters for the axes that have already been allocated to the MECHATROLINK Transmission Definition Window will not be updated. |

- For details on the parameters that are written in motion parameters when executing self-configuration, refer to 11.6 .5 Parameters Updated during Self-configuration.


### 3.3 System Startup Using Self-Configuration

System startup time can be reduced by using self-configuration.
This section describes system startup using self-configuration, in the following three circumstances.

- Starting the system for first time
- Adding an electronic device (e.g., SERVOPACK or optional module)
- Replacing electronic devices


### 3.3.1 Starting the System for First Time

Use the following procedure to startup a new system.

1. Wire and connect electronic devices.

Correctly wire and connect all electronic devices to be used.
2. Make switch settings for MECHATROLINK slaves.

Set the MECHATROLINK communication specifications using the DIP switch and the station address on the rotary switch on each MECHATROLINK slaves.
Example of SERVOPACK Settings (SGDS-ㅁㅁㅁㅁㅁ)

| SW1 | Name | Setting | Contents | Default |
| :---: | :---: | :---: | :---: | :---: |
| Bit 1 | Baud rate | OFF | 4 Mbps | ON |
|  |  | ON | 10 Mbps |  |
| Bit 2 | No. of transmission bytes | OFF | 17 | ON |
|  |  | ON | 32 |  |
| Bit 3 | Station address | OFF | $\begin{aligned} & \text { Station address = } \\ & 40 \mathrm{H}+\mathrm{SW} 1 \end{aligned}$ | OFF |
|  |  | ON | $\begin{aligned} & \text { Station address = } \\ & 50 \mathrm{H}+\mathrm{SW} 1 \end{aligned}$ |  |
| Bit 4 | Reserved (Reserved by the system.) | OFF | - | OFF |



- Refer to each slaves manual for information on the setting details.

3. Start up MECHATROLINK slaves.

Turn ON the power to the MECHATROLINK slaves and check that the electronic devices start up normally.

- If using a new Absolute Encoder, the Absolute Encoder will need to be initialized. Refer to Appendix C Initializing the Absolute Encoder for details.
- The servo adjustment can be performed either in this step or after the self-configuration.

4. Complete the settings on each optional module.

Set the required items, such as communication specifications and station address, using the switches on each optional module mounted on the Machine Controller.
5. Execute self-configuration.

Make sure that all the MECHATROLINK slave devices have started, and then execute self-configuration. With self-configuration, the Machine Controller recognizes the connected MECHATROLINK slave devices and optional modules, and assigns I/O registers. The motion parameters will automatically be set to enable the minimum standard motions.

- For information on how to execute self-configuration, refer to 3.2 Executing Self-configuration.
- For the items allocated to each module, such as I/O register number, line number, motion register number, refer to 4.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers.
- The SERVOPACK's overtravel function (see 11.2 Overtravel Function) will automatically be disabled by executing self-configuration, because the self-configuration is intended to enable immediate operation of slave devices including servo drives. Before operating the machine after execution of self-configuration, enable each SERVOPACK's overtravel function by setting the parameters.

6. Make parameter settings to match the machinery.

Start MPE720 and log on online, then set and save fixed parameters relating to reference units (fixed parameters $4,5,6,8$, and 9).
If the servo gain has not been adjusted in step 3, adjust the servo gain and make any other required adjustments.

- Refer to 4.3.1 Fixed Parameter List and 4.4.1 Motion Fixed Parameter Details for details on fixed parameters, and 5.1 Example Setting of Motion Parameters for the Machine for the settings according to the connected machine specifications.
- Refer to the relevant SERVOPACK manual for information on servo adjustment.

7. Save SERVOPACK parameters to the Machine Controller and save Machine Controller data to flash memory.
After completion of servo adjustment, save the SERVOPACK parameters for each axis to the Machine Controller.
a) Select the axis in the Work Space Pane of the Module Configuration Tab Page (refer to 3.4.1 Module Configuration Definition Window), and then double-click Servo Parameter.


The SigmaWin+ will start and display the SERVOPACK parameters.
b) Click the Controller tab, click $\nabla$ under Write Servo Values to Controller, and then click All Axes.


- The data in the Controller Value column is the SERVOPACK data saved to the Machine Controller and the data in the Servo Value column is the data set to the SERVOPACK.
- Refer to 3.4.4 SERVOPACK Parameter Window for information on the relationship between Controller Value and Servo Value.
- If the Controller Value Column is not displayed, the following dialog box will be displayed. Click OK. The Controller Value Column will be displayed.


The message dialog box is displayed.
c) Click OK.


The MC-Configurator Dialog Box is displayed.
d) Confirm that the device has stopped, and then click OK.


The SERVOPACK values will be written to the RAM of the Machine Controller.
e) In the Main Window of the MPE720, click Online - Save to Flash.


The data in the RAM of the Machine Controller will be written to flash memory.
8. Save ladder programs, and reboot the Machine Controller.
a) In the Main Window of the MPE720, click Online - Transfer - Write to Controller, and then follow the instructions to transfer the ladder program to the Machine Controller.
b) In the Main Window of the MPE720, click Online - Save to Flash.

The ladder program that was transferred and saved in the RAM of the Machine Controller will be written to flash memory.
c) Turn OFF all pins on the DIP switches of the Machine Controller and turn the power supply OFF and ON again.

This completes the system startup procedure.

- After changing the application by editing ladder programs or changing parameter settings, always save the changes to the flash memory. If the Machine Controller's power is turned OFF without having saved the changes in the application to the flash memory, the changed data will be lost from inside the Machine Controller. If this happens, load the application saved in the personal computer to the Machine Controller and save it to the flash memory.
- You are recommended to back up the application whenever convenient. The procedure is given below. MPE720: Log on online to the Machine Controller, then select Online - Transfer - Read from Controller.


### 3.3.2 System Startup when Adding Electronic Devices

Use the following procedure to start the system when adding SERVOPACKs, Optional Modules, and other electronic devices.

1. Back up applications.

Before adding the electronic devices, log on to the Machine Controller online using MPE720 and select Online -
Transfer-Read from Controller to create a backup of the application.
2. Turn OFF the power to the Machine Controller.

After disconnecting MPE720 from the Machine Controller, turn OFF the Machine Controller power.
3. Start the electronic device to be added.

Make the DIP and rotary switch settings for the device to be added. For MECHATROLINK slaves, make the switch settings, and turn ON the power to the slave. Confirm that the device starts correctly and then turn OFF the power.
4. Connect the electronic device.

Connect the electronic device to the Machine Controller and turn ON the power to all the MECHATROLINK slaves.
5. Turn ON the Machine Controller power.

Turn ON the power of the Machine Controller.
6. Executing Self-configuration per Module
a) Make an online connection between the MPE720 and Machine Controller, and open the Module Configuration Tab Page. Next, select the SVB-01 Module that was added or the SVB Module to which the SERVOPACKs were added, and then click specified module.


The MC-Configurator Dialog Box is displayed.
b) Confirm the module name and click OK.


Self-configuration will be executed for the specified module. When self-configuration is completed, an MCConfigurator Dialog Box similar to following screenshot will be displayed.
c) Click OK.


The results of the self-configuration will be saved in the MPE720.

- When executing the Module Self-configuration command, existing definitions for SERVOPACKs will not be refreshed and existing parameters will be saved. However, SERVOPACKs must be started up normally before self-configuration.
- If I/O addresses are changed for an existing application using MPE720 after the initial self-configuration has been executed, the I/O addresses are updated when self-configuration is subsequently executed. If SVR is set to disabled, the setting will return to enabled. It is recommended that settings are checked again, including settings for existing electronic devices, after self-configuration has been executed.

Refer to steps 7 to 9 under 3.3.1 Starting the System for First Time for details of the rest of this procedure (steps 6 to 8).
7. Make parameter settings to match machinery.
8. Save SERVOPACK parameters to the Machine Controller and save Machine Controller data to flash memory.
9. Save ladder programs and reboot the Machine Controller.

This completes the system startup procedure when electronic devices have been added.

### 3.3.3 System Startup when Replacing Electronic Devices

Use the following procedure to start the system when replacing SERVOPACKs, Optional Modules, and other electronic devices due to malfunctions and other causes.

1. Back up applications.

Before replacing the electronic devices, log on to the Machine Controller online using MPE720 and select Online - Transfer - Read from Controller to create a backup of the application.
2. Turn OFF the power to the Machine Controller.

Once the application has been backed up, disconnect MPE720 from the Machine Controller, and turn OFF the Machine Controller power.
3. Start the electronic device to be added.

Make the DIP and rotary switch settings required for the device to be added.
For MECHATROLINK slaves, make the switch settings, and turn ON the power to the slave. Confirm that the device starts correctly and then turn OFF the power.
4. Replace the electronic device.

Remove the electronic device to be replaced, connect the new device to the Machine Controller, and turn ON the power to all MECHATROLINK slaves.
5. Turn ON the Machine Controller power.

Turn ON the power of the Machine Controller.
6. Save SERVOPACK parameters to the Machine Controller and save Machine Controller data to flash memory.

If a SERVOPACK has been replaced, use the following procedure to write the SERVOPACK parameters saved to the Machine Controller to the new SERVOPACK.
a) Select the axis in the Work Space Pane of the Module Configuration Tab Page (refer to 3.4.1 Module Configuration Definition Window), and then double-click Servo Parameter.


The SigmaWin+ will start and display the SERVOPACK parameters.
b) Click the Controller tab, click $\nabla$ under Write Controller Values to Servo, and then click All Axes.


- The data in the Controller Value column is the SERVOPACK data saved to the Machine Controller and the data in the Servo Value column is the data set to the SERVOPACK.
- Refer to 3.4.4 SERVOPACK Parameter Window for information on the relationship between Controller Value and Servo Value.
- If the Controller Value Column is not displayed, the following dialog box will be displayed. Click OK. The Controller Value Column will be displayed.


The message dialog box is displayed.
c) Click OK.


The SERVOPACK settings data for the Machine Controller will be written to all SERVOPACKs. When the data is written to the SERVOPACKs, a dialog box will be displayed.
d) Click OK.


The dialog box will be closed.
7. Turn ON the power to the Machine Controller and SERVOPACKs.

Turn ON (OFF to ON) the power to the Machine Controller and SERVOPACKs and then enable the parameters written to the SERVOPACKs.

This completes the system startup procedure when electric devices have been replaced.

### 3.4 Self-configuration and Each Window

When executing self-configuration, the Machine Controller automatically recognizes all the connected optional modules, and the files of the Module Configuration Definition, MECHATROLINK Transmission Definition, and motion parameters will accordingly be automatically created.
Each file contains the following information.

## Module Configuration Definition

Information on all the optional modules connected to the Machine Controller Refer to 3.4.1 Module Configuration Definition Window for details.

- MECHATROLINK Transmission Definition

Information of allocations related to MECHATROLINK transmission (master and slaves)
Refer to 3.4.2 MECHATROLINK Transmission Definition Window for details.

- Motion Parameters

Information on motion parameters to control axes such as SERVOPACKs, linear servomotors, inverters, and distributed I/Os that are connected to the SVB Module
Refer to 3.4.3 Motion Parameter Window for details.

This section describes the setting window for each file.

- Refer to Chapter 10 Inverter Operation for information on the inverter settings.
- Refer to Appendix B Settings When Connecting MECHATROLINK Compatible I/O Modules, MYVIS, and MP940 for information on MECHATROLINK slave module settings.
- Refer to Appendix G Settings when Connecting MECHATROLINK-II Compatible Stepping Motor Drivers for information on MECHATROLINK-II stepper motor settings.


### 3.4.1 Module Configuration Definition Window

## (1) Opening the Module Configuration Definition Window

Open the Module Configuration Definition Window by the following procedure.

1. Make an online connection between the MPE720 and Machine Controller.

- For details, refer to Machine Controller MP2000/MP3000 Series Engineering Tool MPE720 Version 7 User's Manual (Manual No.: SIEP C880761 03).

2. Click Module Configuration on the My Tool View.

Online MP2200-04


The Module Configuration Definition Window will open.


## (2) Module Configuration Definition Window

The following table describes the items that are displayed in the Module Configuration Definition Window.


| No. | Item |  | Display/Setting Item | Setting Range/Settings | Editing |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | Module |  | Displays the Module that is set for the slot. ${ }^{* 1}$ | Any Module | Possible |
| (2) | Function Module/Slave |  | Displays the Function Modules and slaves that are used by the Module. ${ }^{* 1}$ | Any Function Module or slave | Possible |
| (3) | Status |  | In Online Mode, displays the status of the Function Modules and the communications status of MECHATROLINK slave devices. | Refer to 3.4.1 (1) [a] Status Display Contents on page 3-15. | Not possible |
| (4) | Circuit No./Axis Address | Start | Displays the first circuit number that is assigned to the Module. | Circuit No. 1 to 16 | Possible |
|  |  | Occupied circuits | Displays the number of circuits that are assigned to the Module. | 1 to 2 | Possible |
| (5) | Motion Register |  | Displays the first and last register numbers of the motion parameters. | The parameter is automatically set based on the circuit numbers. | Not possible |
| (6) | Register <br> (Input/ <br> Output) | Disabled | Used to disable inputs or outputs by selecting the check boxes. | Selected or not selected | Possible |
| (7) |  | Start - End | Displays the range of registers that is used as an I/O area by the Function Module. For the SVB, the first and last registers of the I/O Modules that are connected to MECHATROLINK are displayed. | 0000H to 7FFFH max. <br> 400 H words per SVB Module ${ }^{* 2}$ | Possible |
| (8) |  | Size | Displays the number of words in the I/O area. | The size depends on the function of the Module. | Possible |
| (9) |  | Scan | Displays the scan in which the I/O service is performed for the I/O device. | High or Low | Possible |
| (10) | Comment |  | Displays the user comment. | You can enter up to 16 characters for a Function Module. You can enter up to 32 characters for a MECHATROLINK slave. | Possible |

* 1. For the built-in SVB, CPU-01 is displayed for Module and SVB is displayed for Function Module/Slave. For the Optional SVB, SVB-01 is displayed for Module and SVB01 is displayed for Function Module/Slave.
* 2. Set I/O registers so that the same registers are not used by more than one Function Module.
- Precautions When Setting the Parameters
- Always save all settings to the flash memory after changing them.
- When changing the settings, be careful not to set register numbers that overlap with other Modules.
- Set I/O start and end registers even if a I/O Module is not connected to the MECHATROLINK network.
- *****//O and *****SERVO in Function Module/Slave column

The following slave devices (I/O Modules) do not have model codes. Therefore, "*****//O"(wild card I/O) will be displayed in Function Module/Slave column for these devices after execution of self-configuration.

- JEPMC-IO350
- JAMSC-120DAI53330
- JAMSC-120DAI73330
- JAMSC-120DAO83330
- JAMSC-120DRA83030

For a servo with customized specifications that could not be recognized by self-configuration, "*****SERVO" (wild card servo) will be displayed in Function Module/Slave column.
For a device displayed as "***** I/O" or "****** SERVO", right-click the Function Module/Slave Cell and click Select Device. The Slaves Dialog Box will be displayed. Reassign the correct device.

## [ a ] Status Display Contents

The following status is displayed for Function Modules.

| Display |  |
| :--- | :--- |
| ---- | The Function Module is not defined. |
| Empty | The Function Module is defined, but it is not mounted. |
| Driving | The Function Module is operating normally. |
| Failure | An error was detected in the Function Module. |
| $\times$ | A Function Module is operating, but it is not the Function Module that was defined. |
| Initializing | The Function Module is defined, but there is no Detailed Function Module Definition. |
| Driving Stop | The CPU Module is stopped (The user programs are stopped). |

### 3.4.2 MECHATROLINK Transmission Definition Window

(1) Opening the MECHATROLINK Transmission Definition Window

In the Module Configuration Definition Window, double-click the SVB or SVB01 cell in the Function Module/Slave field. The MECHATROLINK Transmission Definition Window will open.

- If several SVB Modules are mounted, select the SVB Module to be checked.
- For the built-in SVB, CPU-01 is displayed for Module and SVB is displayed for Function Module/Slave. For the Optional SVB, SVB-01 is displayed for Module and SVB01 is displayed for Function Module/Slave.
- Clicking $J_{\text {Icon }}$ displays the MECHATROLINK Transmission Definition Window too.



## ( 2 ) MECHATROLINK Transmission Definition Window Details

The MECHATROLINK Transmission Definition Window has three tabs: Transmission Parameters, I/O Map, and Status. Click the tab to view each.
[ a ] Transmission Parameters Tab
The parameters required to use the MECHATROLINK transmission system are displayed.
<Communication Method in MECHATROLINK-II> <Communication Method in MECHATROLINK-I>


The items shown on the Transmission Parameters Tab are described in the following table. For items whose input fields are available, the settings can be changed. Always save the settings to the flash memory after changing them.

| Item | Display during Self-configuration | Options and Precautions on Settings |
| :---: | :---: | :---: |
| Communication Type | Displays the detected communication method. | Select MECHATROLINK-II (32 Byte Mode), MECHATROLINK-II (17 Byte Mode), or MECHATROLINK-I. |
| Master/Slave | Displays whether the selected SVB Module is used as a Master station or Slave station. | Select either Master or Slave. A built-in SVB is fixed to Master. |
| My station address <br> (Local station address) | Displays the local station address set by using the rotary switches. | For Master station, fixed to 0 . <br> For slave stations, set a number between 1 and the number of slave stations. |
| Transmission Speed | Displays the transmission speed: <br> MECHATROLINK-II (32-byte mode): 10 Mbps MECHATROLINK-II (17-byte mode): 10 Mbps MECHATROLINK-I: 4 Mbps | Cannot be set. |
| Transmission Bytes (Hidden for MECHATROLINK-I) | Displays the number of transmission bytes. <br> The number of transmission bytes depends on the communication type and the station type, Master or Slave. <br> Refer to -Transmission Bytes, Communication Cycle, <br> Number of Retries to Slaves, Number of Slaves for details. | Cannot be set. |
| Communication Cycle | Displays the communication cycle. <br> The number of transmission bytes depends on the communication type and the station type, Master or Slave. Refer to Transmission Bytes, Communication Cycle, Number of Retries to Slaves, Number of Slaves for details. | Can be set only for the Master station and when MECHATROLINK-II is selected as the communication type. The value that can be set differs depending on whether the SVB Module is a built-in SVB Module or optional SVB Module. Refer to Communication Cycle That Can be Set for details. |
| Message Confidence Level (Hidden for MECHATROLINK-II) | Not used for MECHATROLINK transmission. | Set to 0 (default). |
| SigmaWin (Hidden for MECHATROLINK-I) | For MECHATROLINK-II communications, displays whether or not to use SigmaWin+ for communication via MECHATROLINK-II adapter such as JUSP-NP115. | Select either use or not use. |


| Item | Display during Self-configuration | Options and Precautions on Settings |
| :--- | :--- | :--- |
| Number of <br> Retries Slaves <br> (Hidden for <br> MECHATROLINK-I) | Displays the maximum number of slave stations to which <br> the Master can retry transmission in one transmission <br> cycle when the Master has not received a normal <br> response from a slave. | Only for Master station. Set a number <br> between 0 and 7. Cannot set for Slaves. |
| Number of Slaves | Displays the number of slave stations that can be con- <br> nected. <br> Determined by communication type, communication <br> cycle, use of SigmaWin+, and number of attempts to retry <br> transmission to slaves. | Cannot be set. |
| Wait for Monitor Data <br> Update <br> (Hidden for built-in <br> SVB Modules) | Displays whether or not to suspend CPU processing for <br> the scan delay time of monitoring parameters of an <br> optional SVB Module. Suspended when enabled, not sus- <br> pended when disabled. | Select either Enable or Disable. <br> Refer to $\boldsymbol{\square}$ Wait for Monitor Data Update <br> for details on this function. |

- For items whose input fields are available, the settings can be changed. Always save the settings to the flash memory after changing them.


## Transmission Bytes, Communication Cycle, Number of Retries to Slaves, Number of Slaves

Transmission bytes, communication cycle, number of retries to slaves, and number of slaves at execution of self-configuration will be automatically set according to conditions including communication type, station type (Master or Slave), and the largest slave station number (the largest number among the detected slave station numbers).

## <For Master Station>

| Item | MECHATROLINK-II <br> (32-byte mode) |  |  |  | MECHATROLINK-II <br> (17-byte mode) |  | MECHATRO- <br> LINK-I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Largest Slave Station Number | 1 to 8 | 9 | 10 to 16 | 17 to 21 | 1 to 14 | 15 |  |
| Transmission Bytes | 31 bytes |  |  |  | 16 bytes |  | - |
| Communication Cycle | 1 ms | 1 ms | 2 ms | 2 ms | 1 ms | 1 ms | 2 ms |
| Number of Retries to Slaves | 1 | 0 | 5 | 21-The largest slave station number | 1 | 0 | 14 |
| Number of Slaves | 8 | 9 | 16 | The largest slave station number | 14 | 15 | 14 |

<For Slave Stations>

| Item | MECHATROLINK-II <br> (32-byte mode) | MECHATROLINK-II <br> (17-byte mode) | MECHATROLINK-I |
| :--- | :---: | :---: | :---: |
| Transmission <br> Bytes | - | - | - |
| Communication <br> Cycle | 1 ms | 1 ms | 2 ms |
| Number of <br> Slaves | 30 | 30 | 15 |

## Communication Cycle That Can be Set

The communication cycle that can be set will differ depending on the SVB Module type (built-in SVB or optional SVB) and the communication type as follows.

| SVB Module Type | Built-in SVB |  | Optional SVB |  |
| :--- | :---: | :---: | :---: | :---: |
| MECHATROLINK-II <br> Communication Mode | 32-byte mode | 17-byte mode | 32-byte mode | 17-byte mode |
| Communication Cycle <br> That Can be Set | $1 \mathrm{~ms}, 1.5 \mathrm{~ms}$, or 2 ms | Fixed to 1 ms | $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 1.5 \mathrm{~ms}$, or <br> 2 ms | 0.5 ms or 1 ms |

- Communication Cycle can only be set for Master.
- The communication cycle for MECHATROLINK-I is fixed to 2 ms .


## Wait for Monitor Data Update

The SVB-01 Module (optional SVB) exchanges data with the Machine Controller's CPU using the real shared memory. In this process, the time until the motion parameters created on the SVB-01 Module can be monitored in CPU applications is one scan longer than when using a built-in SVB Module. (See the following diagram.)
<Data Exchange Process with Built-in SVB Module>

<Data Exchange Process with Optional SVB Module>


The Wait for Monitor Data Update Mode (when Wait for Monitor Data Update is enabled) solves the problem of this one-scan delay, so the motion monitoring parameters can be monitored with the same timing as a built-in SVB Module. The time required for CPU high-speed scan processing, however, will be longer because the CPU's application execution start time is suspended until the SVB- 01 Module motion processing is completed.

## [ b ] I/O Map Tab

The status allocated to I/O registers is displayed.

- The I/O Map Tab is used for monitoring (read-only). Do not change the displayed settings.

<Displayed Meaning>
HI: High-speed scan input
HO: High-speed scan output
LI: Low-speed scan input
LO: Low-speed scan output


## [ c ] Status Tab Page

This tab page allows you to check the assignment settings for all slave devices that were detected during self-configuration (MECHATROLINK-connected devices, such as SERVOPACKs or distributed I/O).


| Item | Description |
| :--- | :--- |
| ST\# | Station number <br> Displays the number of lines which are set as Number of slaves in the Transmission Parameters Tab Page. |
| TYPE | Displays the slave device type. |
| D | Displays the I/O register's enable/disable status. |
| INPUT $:$ Disabled |  |

## STS

In online mode MECHATROLINK transmission status information is displayed in hexadecimal.

- In offline mode, nothing will be displayed.

The meaning of each bit is shown below.


### 3.4.3 Motion Parameter Window

The motion parameters (motion fixed parameters, motion setting parameters, and motion monitoring parameters) control motion axes such as the SERVOPACK, inverter, and stepper.

- Refer to Chapter 4 Motion Parameters for details on motion parameters.


## (1) Opening the Motion Parameter Window

Open the Motion Parameter by the following procedure.

1. In the Module Configuration Tab Page (refer to 3.4.1 (1) Opening the Module Configuration Definition Window), click the [+] Button for the Function Module/Slave Cell labeled SVB or SVB01.


The slaves connected to that Module will be displayed.
2. Double-click the cell of the device with the Motion Parameter Tab Page to display.


The Function List Dialog Box is displayed.
3. Click the motion parameters to display (Fixed Parameter, Setting Parameter, or Monitor Parameter icon).


- Refer to the relevant SERVOPACK manual for details on the SERVOPACK.
- When the SteppingMotorDRV(M-I/M-II) Cell is double-clicked, the Stepping Motor Parameter icon is displayed in the Function List Dialog Box.
Click this icon to display the parameter and monitor tabs for the stepping motor.
The selected motion parameters will be displayed in a new tab.

- Circuit \# and Axis \# displayed on the Motion Parameter Tab pages correspond to the following elements on the Module Configuration Tab Page.
<Motion Parameter Window>

<Module Configuration Definition Window>


The circuit number is displayed here.

- The Monitor Parameter tab pages are for viewing parameters only.
- Refer to 3.4.4 SERVOPACK Parameter Window.


## （2）Environmental Requirements of SGDV SERVOPACKs

## ［a］Compatible Versions

## ■ When using $\Sigma$－V Series SERVOPACKs

Specification：$\Sigma$－V Series MECHATROLINK－II Communications Reference（Max．allowable motor capacity is 15 kW ．）
Model：SGDV－ロロロF1ロロ，－－

| Controller | Model | Version |
| :--- | :--- | :--- |
| MP2100 | JAPMC－MC2100（－E） | Version 2．61 or later |
| MP2100M | JAPMC－MC2140（－E） | Version 2．61 or later |
| MP2300 | JEPMC－MP2300（－E） | Version 2．61 or later |
| MP2300S | JEPMC－MP2300S－E | Version 2．61 or later |
| MP2310 | JEPMC－MP2310－E | Version 2．61 or later |
| MP2400 | JEPMC－MP2400－E | Version 2．61 or later |
| MP2000 series SVB－01 module | JAPMC－MC2310（－E） | Version 1．22 or later |


| Engineering Tool | Model | Version |
| :--- | :--- | :--- |
| MPE720 Version 5 | CPMC－MPE720 | Version 5．39 or later |
| MPE720 Version 6 | CPMC－MPE770（D） | Version 6.05 or later |
| MPE720 Version 7 | CPMC－MPE780（D） | Version 7．10 or later |

－When using $\Sigma$－V Series SERVOPACKs for Use with Large－Capacity
Specification：$\Sigma$－V Series for Use with Large－Capacity MECHATROLINK－II Communications Reference（Max． allowable motor capacity is 22 kW or higher．）
Model：SGDV－$\square \square \square$ J1 $\square \square$

| Controller | Model | Version |
| :--- | :--- | :--- |
| MP2100 | JAPMC－MC2100（－E） | Version 2．81 or later |
| MP2100M | JAPMC－MC2140（－E） | Version 2．81 or later |
| MP2300 | JEPMC－MP2300（－E） | Version 2．81 or later |
| MP2300S | JEPMC－MP2300S－E | Version 2．81 or later |
| MP2310 | JEPMC－MP2310－E | Version 2．81 or later |
| MP2400 | JEPMC－MP2400－E | Version 2．81 or later |
| MP2000 series SVB－01 module | JAPMC－MC2310（－E） | Version 1．30 or later |


| Engineering Tool | Model | Version |
| :--- | :--- | :---: |
| MPE720 Version 5 | CPMC－MPE720 | Not supported． |
| MPE720 Version 6 | CPMC－MPE770（D） | Version 6．33 or later． |
| MPE720 Version 7 | CPMC－MPE780（D） | Version 7．14 or later． |

－When using DC Power Input $\Sigma$－V Series SERVOPACKs
Specification：DC Power Input $\Sigma$－V Series MECHATROLINK－II Communications Reference Model：SGDV－$\square \square \square E 1 \square \square$

| Controller | Model | Version |
| :--- | :--- | :--- |
| MP2100 | JAPMC－MC2100（－E） | Version 2．81 or later |
| MP2100M | JAPMC－MC2140（－E） | Version 2．81 or later |
| MP2300 | JEPMC－MP2300（－E） | Version 2．81 or later |
| MP2300S | JEPMC－MP2300S－E | Version 2．81 or later |
| MP2310 | JEPMC－MP2310－E | Version 2．81 or later |
| MP2400 | JEPMC－MP2400－E | Version 2．81 or later |
| MP2000 series SVB－01 module | JAPMC－MC2310（－E） | Version 1．30 or later |


| Engineering Tool | Model | Version |
| :--- | :--- | :--- |
| MPE720 Version 5 | CPMC-MPE720 | Not supported. |
| MPE720 Version 6 | CPMC-MPE770 (D) | Version 6.32 or later |
| MPE720 Version 7 | CPMC-MPE780 (D) | Version 7.13 or later |

## [b] Allocations

- Communication Method and Cycle

O: Available, $\times$ : Not available

| Controller | M-I | M-II (17 bytes) | M-II (32 bytes) |
| :--- | :---: | :---: | :---: |
| MP2100 | O | O | O |
| MP2100M | O | O | O |
| MP2300 | O | O | O |
| MP2300S | O | O | O |
| MP2310 | O | O | O |
| MP2400 | O | O | O |
| MP2000 series SVB-01 module | O | O | O |

M-II (17 bytes)

| Controller | Communication Cycle |  |
| :--- | :---: | :---: |
|  | 0.5 ms | 1.0 ms |
| MP2100 | $\times$ | O |
| MP2100M (built-in CPU) | $\times$ | O |
| MP2100M (option) | O | O |
| MP2300 | $\times$ | O |
| MP2300S | O | O |
| MP2310 | O | O |
| MP2400 | O | O |
| MP2000 series SVB-01 module | O |  |

## M-II (32 bytes)

| Controller | Communication Cycle |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 0.5 ms | 1.0 ms | 1.5 ms | 2.0 ms |
| MP2100 | $\times$ | 0 | $\bigcirc$ | $\bigcirc$ |
| MP2100M (built-in CPU) | $\times$ | $\bigcirc$ | 0 | $\bigcirc$ |
| MP2100M (option) | 0 | 0 | 0 | $\bigcirc$ |
| MP2300 | $\times$ | 0 | 0 | $\bigcirc$ |
| MP2300S | $\bigcirc$ | 0 | $\bigcirc$ | 0 |
| MP2310 | 0 | 0 | $\bigcirc$ | 0 |
| MP2400 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 |
| MP2000 series SVB-01 module | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ |

- SVB modules for the MP2000 series are activated when the communication cycle and transmission cycle are the same length.


## Allocation

Open the Module Configuration Tab Page in the MPE720，and set the model of the SERVOPACK that connects to the slave cell to assign to a Function Module／Slave Cell．
The settings depend on the model of SERVOPACK that is connected and the version of the MPE720．

| Connected SERVOPACK Type | SERVOPACK Model | Version of MPE720 | Displayed Setting of Function Module／Slave |
| :---: | :---: | :---: | :---: |
| $\Sigma$－V－series SERVOPACK <br> （SERVOPACK with MECHATROLINK－ <br> II Communications with Maximum Mo－ tor Capacity of 15 kW ） | SGDV－ロロロF1ロロ <br> SGDV－ロロロA1ロロ <br>  | Ver．5．62，Ver．6．31，or Ver． 7.11 or earlier | SGDV－＊＊＊＊1＊ |
|  |  | Ver． 6.32 or Ver． 7.13 or later | SGDV－＊＊＊＊1口＊ <br> （AC input：under 15 kW ） |
| $\Sigma$－V－series SERVOPACK for use with large－capacity <br> （SERVOPACK with MECHATROLINK－ <br> II Communications with Maximum Mo－ tor Capacity of 22 kW or Higher） | SGDV－पロロJ1ロロ | Ver．5．62，Ver．6．32，or Ver． 7.13 or earlier | ＊＊＊＊SERVO |
|  |  | Ver． 6.33 or Ver． 7.14 or later | SGDV－＊＊＊＊1口＊ <br> （AC input：over 22 kW ） |
| DC Power Input $\Sigma$－V－series SERVO－ PACK <br> （SERVOPACK with MECHATROLINK－ <br> II Communications） | SGDV－ロロロE1ロロ | Ver．5．62，Ver．6．31，or Ver． 7.11 or earlier | ＊＊＊＊SERVO |
|  |  | Ver． 6.32 or Ver． 7.13 or later | ＜SVB－01 Module：Ver． 1.29 or earlier，Built－in SVB Mod－ ule：Ver． 2.79 or earlier＞ ＊＊＊＊SERVO |
|  |  |  | ＜SVB－01 Module：Ver． 1.30 or later，Built－in SVB Mod－ ule：Ver． 2.81 or later＞ SGDV－＊＊＊E11＊（DC input） |

－Wrong assignments（SVB－01 Modules with version 1.24 or later and Built－in SVB Modules with version 2.64 or later）
 kW）＂is assigned），the SVB Module will recognize the unit correctly and process it as the SGDV－पロロE1ロロ．How－ ever，a Detected Servo Driver Type Error alarm（Monitoring Parameter ILDロ04，bit 1D）will be detected，synchro－ nized communications will not start，and the Motion Controller Operation Ready bit（Monitoring Parameter IWロロ00， bit 0 ）will be 0 （operation not ready）．
－Difference for rotary and linear servomotors Although the model number for SERVOPACKs are different for rotary and linear servomotors，allocate SGDV－＊＊＊＊1＊＊ for both types in the Module Configuration Definition Window of the MPE720 Ver． 7.13 or earlier．

Self－configuration
If you execute self－configuration when a $\Sigma$－V－series SERVOPACK for use with large－capacity or a DC Power Input $\Sigma$－ V－series SERVOPACK is connected，the setting that is displayed in the Function Module／Slave cell in the Module Configuration Definition Window will be as shown below depending on the version of the SVB Module and the MPE720．

| Connected SERVOPACK Type | SERVOPACK Model | Version of SVB－01 Module or Built－in SVB Module | Version of MPE720 | Displayed Setting of Function Module／Slave |
| :---: | :---: | :---: | :---: | :---: |
| $\Sigma$－V－series SERVOPACK for use with large－capacity （SERVOPACK with MECHATROLINK－II Communi－ cations with Maximum Motor Capacity of 22 kW or Higher） | SGDV－ <br> ㅁロำ1ロロ | SVB－01 Module： <br> Ver． 1.29 or earlier， Built－in SVB Module： Ver． 2.79 or earlier | － | ＊＊＊＊SERVO |
|  |  | SVB－01 Module： <br> Ver． 1.30 or later， Built－in SVB Module： Ver． 2.81 or later | Ver．5．62，Ver．6．32，or Ver． 7.13 or earlier | Nothing is displayed． |
|  |  |  | Ver． 6.33 or Ver． 7.14 or later | $\begin{aligned} & \text { SGDV-****11* } \\ & \text { (AC input: over } 22 \mathrm{~kW} \text { ) } \end{aligned}$ |
| DC Power Input $\Sigma$－V－series SERVOPACK （SERVOPACK with MECHATROLINK－II Communi－ cations） | SGDV－ <br>  | SVB－01 Module： <br> Ver． 1.29 or earlier， Built－in SVB Module： Ver． 2.79 or earlier | － | ＊＊＊＊SERVO |
|  |  | SVB－01 Module： <br> Ver． 1.30 or later， Built－in SVB Module： Ver． 2.81 or later | Ver．5．62，Ver．6．31，or Ver． 7.11 or earlier | Nothing is displayed． |
|  |  |  | Ver． 6.32 or Ver． 7.13 or later | $\begin{aligned} & \begin{array}{l} \text { SGDV-***E11* } \\ \text { (DC input) } \end{array} \end{aligned}$ |

## [c] Restrictions

The following functions cannot be used with SGDV SERVOPACKs.

- Gain switching ${ }^{*}$
- Backlash compensation ${ }^{* 2}$
- Saving parameter bank data in the nonvolatile memory
* 1. Gain switching is different between SGDS and SGDV SERVOPACKs. SGDS SERVOPACKs: 2 bits (4 points) SGDV SERVOPACKs: 1 bit (2 points)
* 2. However, if you use an SGDV-**** $1^{* *}$ with software version 0023 or later, you can use the backlash compensation function in the SERVOPACK.


## ( 3 ) Environmental Requirements of SGD7S SERVOPACKs

## [a] Compatible Versions

Specification: $\Sigma$ - 7 -series SERVOPACKs with MECHATROLINK-II Communications References


| Controller | Model | Version |  |
| :---: | :---: | :---: | :---: |
|  |  | When Connected to Rotary Servomotor | When Connected to Linear Servomotor |
| MP2100 | JAPMC-MC2100 (-E) | Version 2.89 or later | Version 2.92 or later |
| MP2100M | JAPMC-MC2140 (-E) | Version 2.89 or later | Version 2.92 or later |
| MP2101 | JAPMC-MC2102-E | Version 2.89 or later | Version 2.92 or later |
| MP2101M | JAPMC-MC2142-E | Version 2.89 or later | Version 2.92 or later |
| MP2300 | JEPMC-MP2300 (-E) | Version 2.89 or later | Version 2.92 or later |
| MP2300S | JEPMC-MP2300S-E | Version 2.89 or later | Version 2.92 or later |
| MP2310 | JEPMC-MP2310-E | Version 2.89 or later | Version 2.92 or later |
| MP2400 | JEPMC-MP2400-E | Version 2.89 or later | Version 2.92 or later |
| MP2000 series SVB-01 module | JAPMC-MC2310 (-E) | Version 1.33 or later | Version 1.34 or later |


| Engineering Tool | Model | Version |  |
| :--- | :--- | :--- | :--- |
|  |  | When Connected to <br> Rotary Servomotor | When Connected to <br> Linear Servomotor |
| MPE720 Version 6 | CPMC-MPE770 (D) | Version 6.38 or later | Version 6.39 or later |
| MPE720 Version 7 | CPMC-MPE780 (D) | Version 7.30 or later | Version 7.31 or later |

[b] Allocations

## Communication Method and Cycle

| O: Available, $\times$ : Not availabl |  |  |  |
| :---: | :---: | :---: | :---: |
| Controller | M-I | M-II (17 bytes) | M-II (32 bytes) |
| MP2100 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2100M | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2101 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2101M | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2300 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2300S | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2310 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2400 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2000 series SVB-01 module | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

## M－II（17 bytes）

| Controller | Communication Cycle |  |
| :--- | :---: | :---: |
|  | 0.5 ms | 1.0 ms |
| MP2100 | $\times$ | $\bigcirc$ |
| MP2100M（built－in CPU） | $\times$ | $\bigcirc$ |
| MP2100M（option） | $\bigcirc$ | $\bigcirc$ |
| MP2101 | $\bigcirc$ | $\bigcirc$ |
| MP2101M（built－in CPU） | $\bigcirc$ | $\bigcirc$ |
| MP2101M（option） | $\bigcirc$ | $\bigcirc$ |
| MP2300 | $\times$ | $\bigcirc$ |
| MP2300S | $\bigcirc$ | $\bigcirc$ |
| MP2310 | $\bigcirc$ | $\bigcirc$ |
| MP2400 | $\bigcirc$ | $\bigcirc$ |
| MP2000 series SVB－01 module | $\bigcirc$ | $\bigcirc$ |

## M－II（32 bytes）

| Controller | Communication Cycle |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 0.5 ms | 1.0 ms | 1.5 ms | 2.0 ms |
| MP2100 | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2100M（built－in CPU） | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2100M（option） | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2101 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2101M（built－in CPU） | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2101M（option） | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ |
| MP2300 | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2300S | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| MP2310 | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ |
| MP2400 | $\bigcirc$ | 0 | 0 | $\bigcirc$ |
| MP2000 series SVB－01 module | O | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

## Allocation

Open the Module Configuration Tab Page in the MPE720，and set the model of the SERVOPACK（SGD7S－＊＊＊＊10＊or SGD7S－＊＊＊＊10＊（Linear））that connects to the slave cell to assign to a Function Module／Slave Cell．
－Wrong assignments
 assigned），the SVB Module will recognize the unit correctly and process it as the SGD7S－पロロロ10․ However，a Detected Servo Driver Type Error alarm（Monitoring Parameter ILDD04，bit 1D）will be detected，synchronized com－ munications will not start，and the Motion Controller Operation Ready bit（Monitoring Parameter IWDO00，bit 0）will be 0 （operation not ready）．
－If you are using an SGD7S，confirm the setting methods for fixed parameters and the precautions．Refer to 11．8 Precautions When Using 5 －7－series SGD7S SERVOPACKs with Rotary Servomotors for details．

### 3.4.4 SERVOPACK Parameter Window

In systems connected to MECHATROLINK, SERVOPACK parameters can be read or written directly from the Machine Controller. (Refer to 11.6 Parameters That Are Automatically Updated.) This means that parameters are saved in the memory areas of both the Machine Controller and the SERVOPACK. It is thus necessary to consider the relationship between the settings in both memory areas.
The following steps show how to display the Servo Parameters Window and the flow of SERVOPACK parameter data under various conditions.

## (1) Opening the SERVOPACK Parameter Window

Open the SERVOPACK Parameter Window by the following procedure.

1. In the Module Configuration Tab Page (refer to 3.4.1 (1) Opening the Module Configuration Definition Window), click the [+] Button for the Function Module/Slave Cell labeled SVB or SVB01.


The slaves connected to that Module will be displayed.
2. Double-click the cell of the device with the Servo Parameter Tab Page to display.


The Function List Dialog Box is displayed.

3．Click the Servo Parameter Icon．

| Function List |  |  | X |
| :---: | :---: | :---: | :---: |
|  | 圆㬰 | 腥 |  |
| Device Select | Fixed Parameter | Setting Parameter |  |
|  |  | $\square$ |  |
| Monitor Parameter | Servo Parameter Pa | Servo <br> Monitor |  |
|  | $\Sigma+$ |  |  |
| Detailed Servo ．．． | Servo <br> Tuning |  |  |

The SigmaWin＋will start and display the servo parameters．

－Set Controller Value to ON to display the values saved in the Machine Controller．This makes it easy to com－ pare the values saved in the Machine Controller with the values saved in the SERVOPACK．
命
YASKAWA SigmaWint Ver．7 Eval01 called from MPE720 MP22200－04 ETHERNET［3］IP192．168．1．1


## (2) Flow of SERVOPACK Parameter Data

## [a] Power ON

- Parameter data saved in the SERVOPACK's EEPROM ${ }^{* 1}$ is copied to SERVOPACK's RAM.
- Parameter data saved in the Machine Controller's flash memory ${ }^{* 1}$ for all axes is copied to SDRAM ${ }^{* 2}$.

Some gain-related settings are sent from the Machine Controller to SERVOPACK RAM*1.


* 1. EEROM and flash memory: Can store data even when the power is turned OFF.
*2. RAM, SRAM, and SDRAM: Can lose data when the power is turned OFF.
- $\square$ indicates data has been written.
[b] Normal Operation
- Control software of the SERVOPACK operates in accordance with on the parameter data held in the SERVOPACK's RAM.
- Some setting parameters and commands of the Machine Controller temporarily change SERVOPACK parameters. The RAM in the SERVOPACK is also changed. (Refer to Chapter 4 Motion Parameters for details.)

- Parameters held in the SERVOPACK's RAM are displayed on a Digital Operator connected to the SERVOPACK. Press the DATE/ENTER Key to write the parameters to the EEPROM.
- $\quad$ indicates data has been written.


## [ c ] When the SERVOPACK Parameter Window Is Open

The data flow for SERVOPACK parameters is as follows when the SERVOPACK Parameter Window is open (refer to 3.4.3 ( 1 ) Opening the Motion Parameter Window for details on how to open the SERVOPACK Parameter Window).

- The value of the SERVOPACK's RAM for the relevant axis is displayed in the Servo Value column and the value of the Machine Controller's SDRAM is displayed in the Controller Value column.

[ d ] When Saving SERVOPACK Parameters
The data flow for SERVOPACK parameters is as follows when the parameters are saved on the SERVOPACK Parameter Window (refer to 3.4.4 (1) Opening the SERVOPACK Parameter Window for details on how to open the SERVOPACK Parameter Window).
- The values in the Controller Value or Servo Value column displayed on the SERVOPACK Parameter Window of the relevant axis are written to the followings.
- HDD (hard disk) of the personal computer
- SDRAM of Machine Controller
- RAM and EEPROM of the SERVOPACK
- The operation on the Servo Parameters Window determines whether to write the controller values or servo values. The Servo Parameters Window has the SERVOPACK Tab Page and the Controller Tab Page. Select the tab page with the parameters to write and follow the displayed instructions.



## [ e ] Saving Data to Flash Memory

The Machine Controller writes the parameters data held in SDRAM to flash memory.


- Save to flash memory also after having changed set data of SERVOPACK parameter.
- $\square$ indicates data has been written.


## Motion Parameters

This chapter explains each of the motion parameters
4.1 Motion Parameters Register Numbers ..... 4-2
4.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers ..... 4-2
4.2 Motion Parameters Setting Window ..... 4-4
4.2.1 Opening the Motion Parameter Setting Windows ..... 4-5
4.2.2 Motor Type and Related Alarms ..... 4-6
4.3 Motion Parameter Lists ..... 4-7
4.3.1 Fixed Parameter List ..... 4-7
4.3.2 Setting Parameter List ..... 4-9
4.3.3 Monitoring Parameter List ..... 4-15
4.4 MP2000 Series Machine Controller Parameter Details ..... 4-19
4.4.1 Motion Fixed Parameter Details ..... 4-19
4.4.2 Motion Setting Parameter Details ..... 4-26
4.4.3 Motion Monitoring Parameter Details ..... 4-58

### 4.1 Motion Parameters Register Numbers

### 4.1.1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers

The leading motion parameter register numbers (I or O register numbers) are determined by the circuit number and axis number.
The leading register numbers for each axis's motion parameters can be obtained using the following equation.

```
Leading motion parameter register number
= I (or O)W8000 + (circuit number - 1) }\times800h+(\mathrm{ axis number - 1) }\times80
```

The following tables lists the motion parameters register numbers.

| Circuit No. | Axis No. 1 | Axis No. 2 | Axis No. 3 | Axis No. 4 | Axis No. 5 | Axis No. 6 | Axis No. 7 | Axis No. 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & 8000 \text { to } \\ & 807 \mathrm{~F} \end{aligned}$ | $8080 \text { to }$ <br> 80FF | $\begin{aligned} & 8100 \text { to } \\ & 817 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 8180 \text { to } \\ & 81 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & 8200 \text { to } \\ & 827 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 8280 \text { to } \\ & 82 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & 8300 \text { to } \\ & 837 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 8380 \text { to } \\ & 83 \mathrm{FF} \end{aligned}$ |
| 2 | $\begin{aligned} & 8800 \text { to } \\ & 887 \mathrm{~F} \end{aligned}$ | 8880 to 88FF | $\begin{aligned} & 8900 \text { to } \\ & 897 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 8980 \text { to } \\ & 89 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & \text { 8A00 to } \\ & \text { 8A7F } \end{aligned}$ | $\begin{aligned} & 8 \mathrm{~A} 80 \text { to } \\ & 8 \mathrm{AFF} \end{aligned}$ | $\begin{aligned} & \text { 8B00 to } \\ & \text { 8B7F } \end{aligned}$ | 8B80 to 8BFF |
| 3 | $\begin{aligned} & 9000 \text { to } \\ & 907 \mathrm{~F} \end{aligned}$ | $9080 \text { to }$ <br> 90FF | $\begin{aligned} & 9100 \text { to } \\ & 917 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 9180 \text { to } \\ & 91 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & 9200 \text { to } \\ & 927 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 9280 \text { to } \\ & 92 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & 9300 \text { to } \\ & 937 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 9380 \text { to } \\ & 93 \mathrm{FF} \end{aligned}$ |
| 4 | $\begin{aligned} & 9800 \text { to } \\ & 987 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 9880 \text { to } \\ & 98 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & 9900 \text { to } \\ & 997 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 9980 \text { to } \\ & 99 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & \text { 9A00 to } \\ & \text { 9A7F } \end{aligned}$ | $\begin{aligned} & 9 \mathrm{~A} 80 \text { to } \\ & 9 \mathrm{AFF} \end{aligned}$ | $\begin{aligned} & \text { 9B00 to } \\ & \text { 9B7F } \end{aligned}$ | $\begin{aligned} & 9 \mathrm{~B} 80 \text { to } \\ & 9 \mathrm{BFF} \end{aligned}$ |
| 5 | $\begin{aligned} & \text { A000 to } \\ & \text { A07F } \end{aligned}$ | A080 to <br> A0FF | $\begin{aligned} & \text { A100 to } \\ & \text { A17F } \end{aligned}$ | $\begin{aligned} & \text { A180 to } \\ & \text { A1FF } \end{aligned}$ | $\begin{aligned} & \text { A200 to } \\ & \text { A27F } \end{aligned}$ | $\begin{aligned} & \text { A280 to } \\ & \text { A2FF } \end{aligned}$ | $\begin{aligned} & \text { A300 to } \\ & \text { A37F } \end{aligned}$ | $\begin{aligned} & \text { A380 to } \\ & \text { A3FF } \end{aligned}$ |
| 6 | $\begin{aligned} & \text { A800 to } \\ & \text { A87F } \end{aligned}$ | A880 to <br> A8FF | $\begin{aligned} & \text { A900 to } \\ & \text { A97F } \end{aligned}$ | $\begin{aligned} & \text { A980 to } \\ & \text { A9FF } \end{aligned}$ | $\begin{aligned} & \text { AA00 to } \\ & \text { AA7F } \end{aligned}$ | AA80 to <br> AAFF | $\begin{aligned} & \text { AB00 to } \\ & \text { AB7F } \end{aligned}$ | $\mathrm{AB} 80 \text { to }$ <br> ABFF |
| 7 | $\begin{aligned} & \text { B000 to } \\ & \text { B07F } \end{aligned}$ | B080 to <br> B0FF | $\begin{aligned} & \text { B100 to } \\ & \text { B17F } \end{aligned}$ | B180 to <br> B1FF | $\begin{aligned} & \text { B200 to } \\ & \text { B27F } \end{aligned}$ | $\begin{aligned} & \text { B280 to } \\ & \text { B2FF } \end{aligned}$ | $\begin{aligned} & \text { B300 to } \\ & \text { B37F } \end{aligned}$ | B380 to B3FF |
| 8 | $\begin{aligned} & \text { B800 to } \\ & \text { B87F } \end{aligned}$ | B880 to <br> B8FF | $\begin{aligned} & \text { B900 to } \\ & \text { B97F } \end{aligned}$ | B980 to <br> B9FF | $\begin{aligned} & \text { BA00 to } \\ & \text { BA7F } \end{aligned}$ | BA80 to <br> BAFF | $\begin{aligned} & \text { BB00 to } \\ & \text { BB7F } \end{aligned}$ | BB80 to <br> BBFF |
| 9 | $\begin{aligned} & \text { C000 to } \\ & \text { C07F } \end{aligned}$ | $\begin{aligned} & \text { C080 to } \\ & \text { C0FF } \end{aligned}$ | $\begin{aligned} & \text { C100 to } \\ & \text { C17F } \end{aligned}$ | $\begin{aligned} & \text { C180 to } \\ & \text { C1FF } \end{aligned}$ | $\begin{aligned} & \mathrm{C} 200 \text { to } \\ & \mathrm{C} 27 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & \text { C280 to } \\ & \text { C2FF } \end{aligned}$ | $\begin{aligned} & \text { C300 to } \\ & \text { C37F } \end{aligned}$ | $\begin{aligned} & \text { C380 to } \\ & \text { C3FF } \end{aligned}$ |
| 10 | $\begin{aligned} & \text { C800 to } \\ & \text { C87F } \end{aligned}$ | $\mathrm{C} 880 \text { to }$ C8FF | $\begin{aligned} & \text { C900 to } \\ & \text { C97F } \end{aligned}$ | C980 to <br> C9FF | $\begin{aligned} & \text { CA00 to } \\ & \text { CA7F } \end{aligned}$ | CA80 to <br> CAFF | CB00 to <br> CB7F | CB80 to <br> CBFF |
| 11 | $\begin{aligned} & \text { D000 to } \\ & \text { D07F } \end{aligned}$ | D080 to <br> D0FF | $\begin{aligned} & \text { D100 to } \\ & \text { D17F } \end{aligned}$ | $\begin{aligned} & \text { D180 to } \\ & \text { D1FF } \end{aligned}$ | $\begin{aligned} & \text { D200 to } \\ & \text { D27F } \end{aligned}$ | $\begin{aligned} & \text { D280 to } \\ & \text { D2FF } \end{aligned}$ | $\begin{aligned} & \text { D300 to } \\ & \text { D37F } \end{aligned}$ | D380 to <br> D3FF |
| 12 | $\begin{aligned} & \text { D800 to } \\ & \text { D87F } \end{aligned}$ | $\begin{aligned} & \text { D880 to } \\ & \text { D8FF } \end{aligned}$ | $\begin{aligned} & \text { D900 to } \\ & \text { D97F } \end{aligned}$ | $\begin{aligned} & \text { D980 to } \\ & \text { D9FF } \end{aligned}$ | $\begin{aligned} & \text { DA00 to } \\ & \text { DA7F } \end{aligned}$ | DA80 to <br> DAFF | $\begin{aligned} & \text { DB00 to } \\ & \text { DB7F } \end{aligned}$ | DB80 to <br> DBFF |
| 13 | $\begin{aligned} & \text { E000 to } \\ & \text { E07F } \end{aligned}$ | E080 to E0FF | E100 to E17F | E180 to <br> E1FF | $\begin{aligned} & \text { E200 to } \\ & \text { E27F } \end{aligned}$ | $\begin{aligned} & \text { E280 to } \\ & \text { E2FF } \end{aligned}$ | $\begin{aligned} & \text { E300 to } \\ & \text { E37F } \end{aligned}$ | E380 to E3FF |
| 14 | $\begin{aligned} & \text { E800 to } \\ & \text { E87F } \end{aligned}$ | E880 to E8FF | $\begin{aligned} & \text { E900 to } \\ & \text { E97F } \end{aligned}$ | E980 to E9FF | $\begin{aligned} & \text { EA00 to } \\ & \text { EA7F } \end{aligned}$ | EA80 to EAFF | $\begin{aligned} & \text { EB00 to } \\ & \text { EB7F } \end{aligned}$ | EB80 to EBFF |
| 15 | $\begin{aligned} & \text { F000 to } \\ & \text { F07F } \end{aligned}$ | F080 to F0FF | $\begin{aligned} & \text { F100 to } \\ & \text { F17F } \end{aligned}$ | F180 to F1FF | $\begin{aligned} & \text { F200 to } \\ & \text { F27F } \end{aligned}$ | $\begin{aligned} & \text { F280 to } \\ & \text { F2FF } \end{aligned}$ | $\begin{aligned} & \text { F300 to } \\ & \text { F37F } \\ & \hline \end{aligned}$ | F380 to <br> F3FF |
| 16 | $\begin{aligned} & \text { F800 to } \\ & \text { F87F } \end{aligned}$ | F880 to F8FF | $\begin{aligned} & \text { F900 to } \\ & \text { F97F } \end{aligned}$ | F980 to <br> F9FF | FA00 to <br> FA7F | FA80 to <br> FAFF | $\begin{aligned} & \text { FB00 to } \\ & \text { FB7F } \end{aligned}$ | FB80 to <br> FBFF |


| Circuit No. | Axis No. 9 | Axis No. 10 | Axis No. 11 | Axis No. 12 | Axis No. 13 | Axis No. 14 | Axis No. 15 | Axis No. 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & 8400 \text { to } \\ & 847 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 8480 \text { to } \\ & 84 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & 8500 \text { to } \\ & 857 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 8580 \text { to } \\ & 85 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & 8600 \text { to } \\ & 867 \mathrm{~F} \end{aligned}$ | $8680 \text { to }$ <br> 86FF | $\begin{aligned} & 8700 \text { to } \\ & 877 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 8780 \text { to } \\ & 87 \mathrm{FF} \end{aligned}$ |
| 2 | $\begin{aligned} & 8 \mathrm{C} 00 \text { to } \\ & 8 \mathrm{C} 7 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 8 \mathrm{C} 80 \text { to } \\ & 8 \mathrm{CFF} \end{aligned}$ | $\begin{aligned} & \text { 8D00 to } \\ & \text { 8D7F } \end{aligned}$ | 8D80 to 8DFF | $\begin{aligned} & 8 \mathrm{E} 00 \text { to } \\ & 8 \mathrm{E} 7 \mathrm{~F} \end{aligned}$ | $8 \mathrm{E} 80 \text { to }$ <br> 8EFF | $\begin{aligned} & 8 \mathrm{~F} 00 \text { to } \\ & 8 \mathrm{~F} 7 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & \text { 8F80 to } \\ & 8 \mathrm{FFF} \end{aligned}$ |
| 3 | $\begin{aligned} & 9400 \text { to } \\ & 947 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 9480 \text { to } \\ & 94 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & 9500 \text { to } \\ & 957 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 9580 \text { to } \\ & 95 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & 9600 \text { to } \\ & 967 \mathrm{~F} \end{aligned}$ | 9680 to 96FF | $\begin{aligned} & 9700 \text { to } \\ & 977 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 9780 \text { to } \\ & 97 \mathrm{FF} \end{aligned}$ |
| 4 | $\begin{aligned} & 9 \mathrm{C} 00 \text { to } \\ & 9 \mathrm{C} 7 \mathrm{~F} \end{aligned}$ | $\begin{aligned} & 9 \mathrm{C} 80 \text { to } \\ & 9 \mathrm{CFF} \end{aligned}$ | $\begin{aligned} & \text { 9D00 to } \\ & \text { 9D7F } \end{aligned}$ | 9D80 to 9DFF | $\begin{aligned} & \text { 9E00 to } \\ & 9 \mathrm{E} 7 \mathrm{~F} \end{aligned}$ | $9 \mathrm{E} 80 \text { to }$ <br> 9EFF | $\begin{aligned} & \text { 9F00 to } \\ & \text { 9F7F } \end{aligned}$ | 9F80 to 9FFF |
| 5 | $\begin{aligned} & \text { A400 to } \\ & \text { A47F } \end{aligned}$ | $\begin{aligned} & \text { A480 to } \\ & \text { A4FF } \end{aligned}$ | $\begin{aligned} & \text { A500 to } \\ & \text { A57F } \end{aligned}$ | $\begin{aligned} & \text { A580 to } \\ & \text { A5FF } \end{aligned}$ | $\begin{aligned} & \text { A600 to } \\ & \text { A67F } \end{aligned}$ | A680 to <br> A6FF | $\begin{aligned} & \text { A700 to } \\ & \text { A77F } \end{aligned}$ | $\begin{aligned} & \text { A780 to } \\ & \text { A7FF } \end{aligned}$ |
| 6 | $\begin{aligned} & \text { AC00 to } \\ & \text { AC7F } \end{aligned}$ | AC80 to ACFF | AD00 to AD7F | AD80 to ADFF | AE00 to <br> AE7F | AE80 to AEFF | AF00 to AF7F | AF80 to AFFF |
| 7 | $\begin{aligned} & \text { B400 to } \\ & \text { B47F } \end{aligned}$ | $\begin{aligned} & \text { B480 to } \\ & \text { B4FF } \end{aligned}$ | $\begin{aligned} & \text { B500 to } \\ & \text { B57F } \end{aligned}$ | B580 to <br> B5FF | $\begin{aligned} & \text { B600 to } \\ & \text { B67F } \end{aligned}$ | $\begin{aligned} & \text { B680 to } \\ & \text { B6FF } \end{aligned}$ | $\begin{aligned} & \text { B700 to } \\ & \text { B77F } \end{aligned}$ | $\begin{aligned} & \text { B780 to } \\ & \text { B7FF } \end{aligned}$ |
| 8 | BC00 to <br> BC7F | BC80 to <br> BCFF | $\begin{aligned} & \text { BD00 to } \\ & \text { BD7F } \end{aligned}$ | BD80 to <br> BDFF | BE00 to <br> BE7F | BE80 to BEFF | BF00 to <br> BF7F | BF80 to <br> BFFF |
| 9 | $\begin{aligned} & \text { C400 to } \\ & \text { C47F } \end{aligned}$ | C480 to <br> C4FF | $\begin{aligned} & \text { C500 to } \\ & \text { C57F } \end{aligned}$ | $\begin{aligned} & \text { C580 to } \\ & \text { C5FF } \end{aligned}$ | $\begin{aligned} & \text { C600 to } \\ & \text { C67F } \end{aligned}$ | C680 to <br> C6FF | $\begin{aligned} & \text { C700 to } \\ & \text { C77F } \end{aligned}$ | C780 to <br> C7FF |
| 10 | $\mathrm{CC} 00 \text { to }$ <br> CC7F | CC80 to CCFF | CD00 to <br> CD7F | CD80 to CDFF | CE00 to CE7F | CE80 to CEFF | CF00 to CF7F | CF80 to CFFF |
| 11 | $\begin{aligned} & \text { D400 to } \\ & \text { D47F } \end{aligned}$ | $\begin{aligned} & \text { D480 to } \\ & \text { D4FF } \end{aligned}$ | $\begin{aligned} & \text { D500 to } \\ & \text { D57F } \end{aligned}$ | $\begin{aligned} & \text { D580 to } \\ & \text { D5FF } \end{aligned}$ | $\begin{aligned} & \text { D600 to } \\ & \text { D67F } \end{aligned}$ | $\begin{aligned} & \text { D680 to } \\ & \text { D6FF } \end{aligned}$ | $\begin{aligned} & \text { D700 to } \\ & \text { D77F } \end{aligned}$ | $\begin{aligned} & \text { D780 to } \\ & \text { D7FF } \end{aligned}$ |
| 12 | $\begin{aligned} & \text { DC00 to } \\ & \text { DC7F } \end{aligned}$ | DC80 to <br> DCFF | $\begin{aligned} & \text { DD00 to } \\ & \text { DD7F } \end{aligned}$ | DD80 to <br> DDFF | DE00 to <br> DE7F | DE80 to <br> DEFF | DF00 to <br> DF7F | DF80 to <br> DFFF |
| 13 | $\begin{aligned} & \text { E400 to } \\ & \text { E47F } \end{aligned}$ | E480 to <br> E4FF | $\begin{aligned} & \text { E500 to } \\ & \text { E57F } \end{aligned}$ | E580 to <br> E5FF | $\begin{aligned} & \text { E600 to } \\ & \text { E67F } \end{aligned}$ | E680 to <br> E6FF | $\begin{aligned} & \text { E700 to } \\ & \text { E77F } \end{aligned}$ | E780 to <br> E7FF |
| 14 | EC00 to <br> EC7F | EC80 to ECFF | $\begin{aligned} & \text { ED00 to } \\ & \text { ED7F } \end{aligned}$ | ED80 to EDFF | EE00 to <br> EE7F | EE80 to EEFF | EF00 to <br> EF7F | EF80 to EFFF |
| 15 | $\begin{aligned} & \text { F400 to } \\ & \text { F47F } \end{aligned}$ | F480 to <br> F4FF | $\begin{aligned} & \text { F500 to } \\ & \text { F57F } \end{aligned}$ | $\begin{aligned} & \text { F580 to } \\ & \text { F5FF } \end{aligned}$ | $\begin{aligned} & \text { F600 to } \\ & \text { F67F } \end{aligned}$ | F680 to F6FF | $\begin{aligned} & \text { F700 to } \\ & \text { F77F } \end{aligned}$ | F780 to <br> F7FF |
| 16 | FC00 to <br> FC7F | FC80 to FCFF | FD00 to <br> FD7F | FD80 to FDFF | FE00 to <br> FE7F | FE80 to FEFF | FF00 to FF7F | FF80 to FFFF |

### 4.2 Motion Parameters Setting Window

Set or monitor the motion parameters in the Fixed Parameters, Setting Parameters, and Monitor Parameters tabs of the Module Configuration Definition Window.


Fig. 4.1 Fixed Parameters Tab Page


Fig. 4.2 Setting Parameters Tab Page


Fig. 4.3 Monitor Parameters Tab Page (Read-Only)

### 4.2.1 Opening the Motion Parameter Setting Windows

Refer to 3.4.1 Module Configuration Definition Window and 3.4.3 Motion Parameter Window for information on how to open motion parameter setting windows.

## 4．2．2 Motor Type and Related Alarms

## （ 1 ）Alarm When Motor Type is Unmatched

If the following three settings do not match，an alarm＊will activate．
－Servo Type in the SVB Definition Window
－Motor type for actually connected SERVOPACK
The setting method differs depending on the SERVOPACK type．

| SERVOPACK Type |  | Setting Method | Remark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { SGDH } \\ & \text { (SGDH + } \\ & \text { NS100 or } \\ & + \text { NS115) } \end{aligned}$ | S－II | Pn000 $=$ n． $\mathrm{X} \square \square \square$ <br> （rotary／linear startup selection） | $\text { Pn000 = n. } 0 \square \square \square$ <br> （Started as a rotary SERVOPACK．） $\operatorname{Pn} 000=\text { n. } 1 \square \square \square$ <br> （Started as a linear SERVOPACK．） |
| SGDS | S－III | SERVOPACK model | SGDS－＊＊＊12A：Rotary SERVOPACK SGDS－＊＊＊15A：Linear SERVOPACK |
| SJDE | JUNMA | － | Setup not required because only rotary－type SERVOPACKs are supported． |
| SGDV | $\Sigma-\mathrm{V}$ | SERVOPACK model | SGDV－＊＊＊＊11＊：Rotary SERVOPACK <br> SGDV－＊＊＊＊15＊：Linear SERVOPACK |
|  | г－V Large－Capacity Model | － | Setup not required because only rotary－type SERVOPACKs are supported． |
|  | DC Power Input $\Sigma$－V Series |  |  |
| SGD7S | S－7 | － | Setup not required because the connected motor is determined automatically． |

－Actually connected motor type
＊Two types of alarm：Monitoring parameter ILDC04，bit 1E（Motor Type Set Error）and bit 1F（Connected Encoder Type Error）
These alarms cannot be cleared by executing Alarm Clear．The way to clear the alarm will differ depending on the sit－ uation．If either or both of these alarms occur，refer to the following table for how to clear the alarm．

| Setting Value |  | Actually Connected Servomotor | Alarm That Can Occur | How to Clear Alarm |
| :---: | :---: | :---: | :---: | :---: |
| Module Configuration Definition Window | Motor Type for Actually Connected SERVOPACK＊ |  |  |  |
| Rotary type | Linear type | Linear type | ILDロ04，bit 1E and ILロ口04，bit 1F | Change the motor type setting for the Module Con－ figuration Definition Window，and then save the change． |
| Linear type | Rotary type | Rotary type |  |  |
| Rotary type | Rotary type | Linear type |  | －Change the SERVOPACK parameter Pn000＝ |
| Linear type | Linear type | Rotary type | ILDC04，bit 1E （Motor Type Set Error） | Or replace the SERVOPACK with a correct model． <br> －Change the motor type setting for the Module Configuration Definition Window，and then save the change． <br> After saving the changes，restart the SERVO－ PACK and execute Alarm Clear． |
| Rotary type | Linear type | Rotary type | ILロ口04，bit 1F <br> （Connected <br> Encoder Type <br> Error） | Change the SERVOPACK parameter Pn000＝ n． $\mathrm{X} \square \square \square$ setting，and then save the change． Or replace the SERVOPACK with a correct model． Then，restart the SERVOPACK and execute Alarm Clear． |
| Linear type | Rotary type | Linear type |  |  |

＊The setting method of the supported Servomotor type depends on the SERVOPACK model．Refer to the previous table for details．

### 4.3 Motion Parameter Lists

### 4.3.1 Fixed Parameter List

The following table provides a list of SVB and SVR motion fixed parameters.

- Refer to the section numbers indicated in the Reference column for details of each fixed parameter.
- For information on SVR, refer to 1.3 SVR Virtual Motion Module.

| No. | Name | Contents | SVB | SVR | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Selection of Operation Modes | 0: Normal Operation Mode | Yes | Yes | 4.4.1 ( 1 ) |
|  |  | 1: Axis unused | Yes | Yes |  |
|  |  | 2: Simulation mode | Yes | - |  |
|  |  | 3: Servo Driver Transmission Reference Mode | Yes | - |  |
|  |  | 4 and 5: Reserved for system use. | - | - |  |
| 1 | Function Selection Flag 1 | Bit 0 : Axis Selection (0: Finite length axis/1: Infinite length axis) <br> - Set to 0 for linear type. | Yes | Yes | 4.4.1 ( 2 ) |
|  |  | Bit 1: Soft Limit (Positive Direction) Enable/Disable (0: Disabled/1: Enabled) | Yes | - |  |
|  |  | Bit 2: Soft Limit (Negative Direction) Enable/Disable (0: Disabled/1: Enabled) | Yes | - |  |
|  |  | Bit 3: Overtravel Positive Direction Enable/Disable (0: Disabled/1: Enabled) | Yes | - |  |
|  |  | Bit 4: Overtravel Negative Direction Enable/Disable (0: Disabled/1: Enabled) | Yes | - |  |
|  |  | Bits 5 to 7: Reserved for system use. | - | - |  |
|  |  | Bit 8: Interpolation Segment Distribution Processing | Yes | - |  |
|  |  | Bit 9: Simple ABS Rotary Pos. Mode (Simple absolute infinite axis position control) (0: Disabled/1: Enabled) <br> - Set to 0 for linear type. | Yes | - |  |
|  |  | Bit A: User Constants Self-writing Function | Yes | - |  |
|  |  | Bits B to F: Reserved for system use. | - | - |  |
| 2 | Function Selection Flag 2 | Bit 0: Communication Abnormality Detection Mask | Yes | - | 4.4.1 ( 3 ) |
|  |  | Bit 1: WDT Abnormality Detection Mask | Yes | - |  |
|  |  | Bits 2 to 4: Reserved for system use. | - | - |  |
|  |  | Bit 5: Multiturn Limit Mismatch Detection Mask For Finite Length Axis | Yes | - |  |
|  |  | Bit 6 to F: Reserved for system use. | - | - |  |
| 3 | - | Reserved for system use. | - | - | - |
| 4 | Reference Unit Selection | 0: pulse 3: inch <br> 1:mm $4: \mu \mathrm{m}$ <br> 2: deg  <br> - For linear type, 0 (pulse), $1(\mathrm{~mm})$, and $4(\mu \mathrm{~m})$ can be used. If 2 (deg.) or 3 (inch) is selected, the selected unit will be converted to mm . | Yes | Yes |  |
| 5 | Number of Digits below Decimal Point | $1=1$ digit | Yes | Yes |  |
| 6 | Travel Distance per Machine Rotation (rotary motor) | $1=1$ user unit | Yes | Yes | 4.4.1 ( 4 ) |
|  | Linear Scale Pitch (linear motor) | $1=1$ user unit | Yes | Yes |  |
| 8 | Servo Motor Gear Ratio | $\begin{aligned} & \hline \text { 1 }=1 \text { rev } \\ & \text { • Invalid for linear type } \end{aligned}$ | Yes | Yes |  |
| 9 | Machine Gear Ratio | $\begin{aligned} & \text { 1 }=1 \text { rev } \\ & \text { - Invalid for linear type } \end{aligned}$ | Yes | Yes |  |
| 10 | Infinite Length Axis Reset Position (POSMAX) | $\begin{aligned} & \hline \text { 1 = } 1 \text { user unit } \\ & \text { - Invalid for linear type } \end{aligned}$ | Yes | Yes | 4.4.1 ( 5 ) |

(cont'd)

| No. | Name | Contents | SVB | SVR | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | Positive Software Limit Value | $1=1$ user unit | Yes | - | 4.4.1 ( 6 ) |
| 14 | Negative Software Limit Value | $1=1$ user unit | Yes | - |  |
| 16 | Backlash Compensation Amount | $1=1$ user unit | Yes | - | 4.4.1 ( 7 ) |
| 18 to 29 | - | Reserved for system use. | - | - | - |
| 30 | Encoder Selection | 0 : Incremental encoder <br> 1: Absolute encoder <br> 2: Absolute encoder (Incremental encoder is used.) <br> 3: Reserved (External encoder) | Yes | - | 4.4.1 ( 8 ) |
| 31 to 33 | - | Reserved for system use. | - | - | - |
| 34 | Rated Motor Speed (Rotary Motor) | $1=1 \mathrm{~min}^{-1}$ | Yes | Yes | 4.4.1 (9) |
|  | Rated Speed (Linear Motor) | $1=0.1 \mathrm{~m} / \mathrm{s}, 0.1 \mathrm{~mm} / \mathrm{s}$ | Yes | Yes |  |
| 36 | Number of Pulses per Motor Rotation (Rotary Motor) | $\begin{aligned} & 1=1 \text { pulse/rev } \\ & \text { Set the value after multiplication. } \end{aligned}$ | Yes | Yes |  |
|  | Number of Pulses per Linear Scale Pitch (Linear Motor) | $1=1$ pulse/scale pitch | Yes | Yes |  |
| 38 | Maximum Number of Absolute Encoder Turns Rotation | $1=1 \mathrm{rev}$ <br> - Set to 0 when a direct drive motor is being used. <br> - Invalid for linear type | Yes | - |  |
| 40 to 41 | - | Reserved for system use. | - | - | - |
| 42 | Feedback Speed Movement Averaging Time Constant | $1=1 \mathrm{~ms}$ | Yes | Yes | 4.4.1 (9) |

## 4．3．2 Setting Parameter List

The following table provides a list of SVB and SVR motion setting parameters．
－Refer to the section numbers indicated in the Reference column for details of each setting parameter．
－Refer to 1．3 SVR Virtual Motion Module for information on SVR．
－The register number＂OWDD00＂indicates the leading output register number＋00．Refer to 4．1．1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers for information on how to obtain the leading output regis－ ter number．

| Register No． | Name | Contents | SVB | SVR | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OWपロ00 | RUN Command Setting | Bit 0：Servo ON（0：OFF／1：ON） | Yes | Yes | 4．4．2（ 1 ） |
|  |  | Bit 1：Machine Lock（0：Normal Operation／1：Machine Lock） | Yes | － |  |
|  |  | Bits 2 to 3：Reserved for system use | － | － |  |
|  |  | Bit 4：Latch Detection Demand（0：OFF／1：ON） | Yes | － |  |
|  |  | Bit 5：Reserved for system use | － | － |  |
|  |  | Bit 6：POSMAX Turn Number Presetting Demand （0：OFF／1：ON） | Yes | Yes |  |
|  |  | Bit 7：Request ABS Rotary Pos．Load（Absolute system infinite length position information LOAD） <br> （0：OFF／1：ON） <br> －Set to 0 for linear type | Yes | － |  |
|  |  | Bit 8：Forward Outside Limiting Torque／Thrust Input（Forward external torque／thrust input） $(0: \mathrm{OFF} / 1: \mathrm{ON})$ | Yes | － |  |
|  |  | Bit 9：Reverse Outside Limiting Torque／Thrust Input（Forward external torque／thrust input） <br> （0：OFF／1：ON） | Yes | － |  |
|  |  | Bit A：Reserved for system use | － | － |  |
|  |  | Bit B：Integration Reset（0：OFF／1：ON） | Yes | － |  |
|  |  | Bit C：Reserved for system use | － | － |  |
|  |  | Bit D：Latch Completion Status Clear Request（0：OFF／1：ON） | Yes | － |  |
|  |  | Bit E：Communication Reset（0：OFF／1：ON） | Yes | － |  |
|  |  | Bit F：Alarm Clear | Yes | Yes |  |
| OWDロ01 | Mode Setting 1 | Bit 0：Excessive Deviation Error Level Setting （0：Alarm／1：Warning） | Yes | － | 4．4．2（ 2 ） |
|  |  | Bits 1 to 2：Reserved for system use． | － | － |  |
|  |  | Bit 3：Speed Loop P／PI Switch | Yes | － |  |
|  |  | Bit 4：Gain Switch | Yes | － |  |
|  |  | Bit 5：Gain Switch 2 | Yes | － |  |
|  |  | Bit 6：Latch Mode Selection | Yes | － |  |
|  |  | Bits 7 to F：Reserved for system use． | － | － |  |
| OWロロ02 | Mode Setting 2 | Bit 0：Monitor 2 Enabled（0：Disabled／1：Enabled） | Yes | － | 4．4．2（ 3 ） |
|  |  | Bits 1 to 7：Reserved for system use． | － | － |  |
|  |  | Bits 8 to F：Stop Mode Selection | Yes | － |  |

（cont＇d）

| Register No． | Name | Contents | SVB | SVR | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OWपロ03 | Function Setting 1 | Bits 0 to 3：Speed Unit Selection <br> 0 ：Reference unit／s <br> 1： $10^{\mathrm{n}}$ reference unit $/ \mathrm{min}$ <br> 2：Percentage of rated speed $(1=0.01 \%)$ <br> 3：Percentage of rated speed（ $1=0.0001 \%$ ） | Yes | Yes | 4．4．2（ 4 ） |
|  |  | Bits 4 to 7：Acceleration／Deceleration Degree Unit Selection <br> 0 ：Reference unit／$/ \mathrm{s}^{2}$ <br> 1：ms | Yes | Yes |  |
|  |  | Bits 8 to B：Filter Type Selection <br> 0 ：None <br> 1：Exponential acceleration／deceleration filter <br> 2：Moving average filter | Yes | Yes |  |
|  |  | Bits C to F：Torque Unit Selection <br> 0 ：Percentage of rated toque $(1=0.01 \%)$ <br> 1：Percentage of rated toque $(1=0.0001 \%)$ | Yes | Yes |  |
| OWDロ04 | Function Setting 2 | Bits 0 to 3：Latch Detection Signal Selection | － | － | 4．4．2（ 5 ） |
|  |  | 0：－ | － | － |  |
|  |  | 1：－ | － | － |  |
|  |  | 2：Phase－C pulse | Yes | － |  |
|  |  | 3：／EXT1 | Yes | － |  |
|  |  | 4：／EXT2 | Yes | － |  |
|  |  | 5：／EXT3 | Yes | － |  |
|  |  | Bits 4 to 7：External Positioning Signal Setting | － | － |  |
|  |  | 0：－ | － | － |  |
|  |  | 1：－ | － | － |  |
|  |  | 2：Phase－C pulse | Yes | － |  |
|  |  | 3：／EXT1 | Yes | － |  |
|  |  | 4：／EXT2 | Yes | － |  |
|  |  | 5：／EXT3 | Yes | － |  |
|  |  | Bits 8 to B：Reserved for system use． | － | － |  |
|  |  | Bits C to F：Bank Selector | Yes | － |  |
| OWपロ05 | Function Setting 3 | Bit 1：Phase Reference Creation Calculation Disable（0：Enabled／ 1：Disabled） | Yes | － | 4．4．2（ 6 ） |
|  |  | Bits 2 to A：Reserved for system use． | － | － |  |
|  |  | Bit B：Zero Point Return Input Signal（0：OFF／1：ON） | Yes | － |  |
|  |  | Bits C to F：Reserved for system use． | － | － |  |
| $\begin{gathered} \text { OWロप06 } \\ \text { to } \\ \text { owaロ07 } \end{gathered}$ | － | Reserved for system use． | － | － | － |

\begin{tabular}{|c|c|c|c|c|c|}
\hline Register No． \& Name \& Contents \& SVB \& SVR \& Reference \\
\hline OWDロ08 \& Motion Command \& \begin{tabular}{l}
NOP（No Command） \\
POSING（Position Mode）（Positioning）＊ \\
2：EX＿POSING（Latch Target Positioning） \\
（External positioning）＊ \\
：ZRET（Zero Point Return）＊ \\
INTERPOLATE（Interpolation）＊ \\
：ENDOF＿INTERPOLATE（Last Interpolation Segment）＊ \\
（Reserved for the system） \\
6：LATCH（Interpolation Mode with Latch Input）\({ }^{*}\) \\
：FEED（Jog Mode）＊ \\
STEP（Relative Position Mode）（Step mode）＊ \\
ZSET（Set Zero Point） \\
：ACC（Change Acceleration Time） \\
DCC（Change Deceleration Time） \\
SCC（Change Filter Time Constant） \\
CHG＿FILTER（Change Filter Type） \\
KVS（Change Speed Loop Gain） \\
KPS（Change Position Loop Gain） \\
KFS（Change Feed－forward） \\
17：PRM＿RD（Read User Constant） \\
（Read SERVOPACK parameter） \\
18：PRM＿WR（Write User Constant \\
（Write SERVOPACK parameter） \\
19：ALM＿MON（Alarm Monitor） \\
：ALM＿HIST（Alarm History Monitor） \\
ALMHIST＿CLR（Clear Alarm History） \\
ABS＿RST（Absolute Encoder Reset） \\
VELO（Speed Reference）\({ }^{*}\) \\
TRQ（Torque／Thrust Reference）\({ }^{*}\) \\
PHASE（Phase Reference）＊ \\
KIS（Change Position Loop Integral Time Constant） \\
：PPRM＿WR（Stored Parameter Write） \\
39：MLTTRN＿SET（Multiturn Limit Setting）
\end{tabular} \& Yes \& Yes \& 4．4．2（ 7 ） \\
\hline \multirow{8}{*}{OWロロ09} \& \multirow{8}{*}{Motion Command Control Flag} \& Bit 0：Holds a Command（0：OFF／1：ON） \& Yes \& Yes \& \multirow{8}{*}{4．4．2（ 8 ）} \\
\hline \& \& Bit 1：Interrupt a Command（0：OFF／1：ON） \& Yes \& Yes \& \\
\hline \& \& Bit 2：Moving Direction（JOG／STEP）（0：Forward rotation／1： Reverse rotation） \& Yes \& Yes \& \\
\hline \& \& Bit 3：Zero point Direction Selection（0：Reverse rotation／1：For－ ward rotation） \& Yes \& － \& \\
\hline \& \& Bit 4：Latch Zone Effective Selection（0：Disabled／1：Enabled） \& Yes \& － \& \\
\hline \& \& Bit 5：Position Reference Type （0：Incremental Value Add Method／1：Absolute Value Set Method） \& Yes \& Yes \& \\
\hline \& \& \begin{tabular}{l}
Bit 6：Phase Compensation Type \\
（0：Incremental Value Add Method／1：Absolute Value Set Method）
\end{tabular} \& Yes \& － \& \\
\hline \& \& Bits 7 to F：Reserved for system use． \& － \& － \& \\
\hline \multirow[b]{2}{*}{OWDロ0A} \& \multirow[b]{2}{*}{Motion Subcommand} \& 0：NOP（No command） \& Yes \& Yes \& \multirow[b]{2}{*}{4．4．2（ 9 ）} \\
\hline \& \& ```
1: PRM_RD (Read User Constant) (Read SERVOPACK
parameter)
PRM_WR (User Constant) (Write SERVOPACK parameter)
Reserved
SMON (Status monitor)
5: FIXPRM_RD (Read Fixed Parameters)
``` \& Yes

Yes \& Yes \& <br>
\hline OW口ロ0B \& － \& Reserved for system use． \& － \& － \& － <br>
\hline
\end{tabular}

＊These commands are move commands．
（cont＇d）

| Register No． | Name | Contents | SVB | SVR | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OLDप0C | Torque／Thrust Reference Setting | Unit is according to OWDप03，bits C to F（Torque Unit Setting）． | Yes | Yes |  |
| OWDL0E | Speed Limit Setting at the Torque／Thrust Reference | $1=0.01 \%$（percentage of rated speed） | Yes | － | 4．4．2（ 10 ） |
| OWDロ0F | － | Reserved for system use． | － | － | － |
| OLDロ10 | Speed Reference Setting | Unit is according to OWDD03，bits 0 to 3 （Speed Unit Selection）． | Yes | Yes | 4．4．2（11） |
| OWDロ12 to OWロロ13 | － | Reserved for system use． | － | － | － |
| OLDC14 | Positive Side Limiting Torque／ThrustSetting at the Speed Refer－ ence | Unit is according to OWD－03，bits C to F （Torque Unit）． | Yes | － | 4．4．2（ 12 ） |
| OLDロ16 | Secondly Speed Compensation | Unit is according to OWDC03，bits 0 to 3 （Speed Unit Selection）． | Yes | Yes | 4．4．2（ 13 ） |
| OWDロ18 | Override | $1=0.01 \%$ | Yes | － | 4．4．2（ 14 ） |
| OWDप19 to OWロロ1B | － | Reserved for system use． | － | － | － |
| OLDロ1C | Position Reference Setting | $1=1$ reference unit | Yes | Yes | 4．4．2（ 15 ） |
| OLDロ1E | Width of Positioning Completion | $1=1$ reference unit | Yes | － | 4．4．2（ 16 ） |
| OLDC20 | NEAR Signal Output Width | $1=1$ reference unit | Yes | － | 4．4．2（ 17 ） |
| OLDप22 | Error Count Alarm Detection | $1=1$ reference unit | Yes | － | 4．4．2（ 18 ） |
| OLDロ24 | － | Reserved for system use． | － | － | － |
| OWDロ26 | Positioning Completion Check Time | $1=1 \mathrm{~ms}$ | Yes | － | 4．4．2（ 19 ） |
| OWपロ27 | － | Reserved for system use． | － | － | － |
| OLDप28 | Phase Correction Setting | $1=1$ reference unit | Yes | － | 4．4．2（ 20 ） |
| OLDロ2A | Latch Zone Lower Limit Setting | $1=1$ reference unit | Yes | － |  |
| OLロロ2C | Latch Zone Upper Limit Setting | $1=1$ reference unit | Yes | － |  |
| OWロロ2E | Position Loop Gain | $1=0.1 / \mathrm{s}$ | Yes | － |  |
| OWロロ2F | Speed Loop Gain | $1=1 \mathrm{~Hz}$ | Yes | － |  |
| OWDロ30 | Speed Feedforward Amends | $1=0.01 \%$（percentage of distribution segment） | Yes | － | 4．4．2（22） |
| OWDロ31 | Speed Compensation | $1=0.01 \%$（percentage of rated speed） | Yes | Yes |  |
| OWDロ32 | Position Integration Time Constant | $1=1 \mathrm{~ms}$ | Yes | － |  |
| OWDロ33 | － | Reserved for system use． | － | － | － |
| OWDロ34 | Speed Integration <br> Time Constant | $1=0.01 \mathrm{~ms}$ | Yes | － | 4．4．2（ 22 ） |
| OWDロ35 | － | Reserved for system use． | － | － | － |


| （cont＇d） |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Register No． | Name | Contents | SVB | SVR | Reference |
| OLDロ36 | Straight Line Acceleration／ Acceleration Time Constant | Units depends on the setting of OWDD03，bits 4 to 7 （Accelera－ tion／Deceleration Degree Unit Selection）． | Yes | Yes | 4．4．2（23） |
| OLDロ38 | Straight Line <br> Deceleration／ Deceleration Time Constant | Units depends on the setting of OWDD03，bits 4 to 7 （Accelera－ tion／Deceleration Degree Unit Selection）． | Yes | Yes |  |
| OWロロ3A | Filter Time Constant | $1=0.1 \mathrm{~ms}$ | Yes | Yes | 4．4．2（24） |
| OWDロ3B | Bias Speed for Expo－ nential Acceleration／ Deceleration Filter | Unit is according to OWDD03，bits 0 to 3 （Speed Unit Selection）． | － | Yes |  |
|  | Zero Point Return Method | ```0: DEC1 + C (DEC1 and C-Phase) 1: ZERO (Zero signal) 2: DEC1 + ZERO (DEC1 and ZERO Signal) 3: C (C-pulse)``` | Yes | － | 4．4．2（25） |
|  |  | 4 to 10：Reserved for system use． | － | － |  |
| OWロロ3C |  | 11：C Pulse Only <br> 12：POT \＆C Pulse <br> 13：POT Only <br> 14：HOME LS \＆C Pulse <br> 15：HOME Only | Yes | － |  |
|  |  | 16：NOT \＆C Pulse <br> 17：NOT Only <br> 18：INPUT \＆C Pulse <br> 19：INPUT Only | Yes | － |  |
| OWロロ3D | Width of Starting Point Position Output | $1=1$ reference unit | Yes | Yes |  |
| OLDロ3E | Approach Speed | Unit is according to OWDप03，bits 0 to 3 （Speed Unit Selection）． | Yes | － |  |
| OLDロ40 | Creep Rate | Unit is according to OWDप03，bits 0 to 3 （Speed Unit Selection）． | Yes | － |  |
| OLDप42 | Zero Point Return Travel Distance | $1=1$ reference unit | Yes | － |  |
| OLDप44 | Step Travel Distance | $1=1$ reference unit | Yes | Yes | 4．4．2（26） |
| OLDप46 | External Positioning Final Travel Distance | $1=1$ reference unit | Yes | － | 4．4．2（27） |
| OLDप48 | Zero Point Position in Machine Coordinate Offset | $1=1$ reference unit | Yes | Yes | 4．4．2（28） |
| OLDロ4A | Work Coordinate System Offset | $1=1$ reference unit | Yes | Yes |  |
| OLロロ4C | Number of POSMAX Turns Presetting Data | $1 \text { = } 1 \text { turn }$ <br> －Invalid for liner type | Yes | Yes |  |
| OWDロ4E | Servo User Monitor Setting | Bits 0 to 3：Monitor 1 （Cannot be set．） <br> Bits 4 to 7：Monitor 2 <br> Bits 8 to B：Monitor 3 （Cannot be set．） <br> Bits C to F：Monitor 4 | Yes | － | 4．4．2（29） |
| OWDロ4F | Servo Driver Alarm Monitor No． | Set the number of the alarm to monitor． | Yes | － |  |
| OWDロ50 | Servo Driver User Constant No． （SERVOPACK parameter No．for motion command） | Set the number of the SERVOPACK parameter． | Yes | － | 4．4．2（ 30 ） |


| Register No． | Name | Contents | SVB | SVR | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OWपロ51 | Servo Driver User Constant Size （SERVOPACK parameter size for motion command） | Set the number of words in the SERVOPACK parameter． | Yes | － |  |
| OLDप52 | Servo Driver User Constant Set Point （SERVOPACK parameter setting value for motion command | Set the setting for the SERVOPACK parameter． | Yes | － |  |
| OWपロ54 | Servo Driver for Assistance User Constant No． （SERVOPACK parameter No．for motion subcommand） | Set the number of the SERVOPACK parameter number． | Yes | － | 4．4．2（ 30 ） |
| OWपロ55 | Servo Driver for Assistance User Constant Size （SERVOPACK parameter size for motion subcommand） | Set the number of words in the SERVOPACK parameter． | Yes | － |  |
| OLDप56 | Servo Driver for <br> Assistance User <br> Constant Set Point <br> （SERVOPACK <br> parameter setting <br> value for motion <br> subcommand） | Set the setting for the SERVOPACK parameter． | Yes | － |  |
| $\begin{gathered} \text { OWDप58 } \\ \text { to } \\ \text { owabi } \end{gathered}$ | － | Reserved for system use． | － | － | － |
| OWD－55 | Fixed Parameter Number | Set the number of the fixed parameter to read with the FIXPRM＿RD motion subcommand． | Yes | Yes | 4．4．2（ 31 ） |
| OWDロ5D | － | Reserved for system use． | － | － | － |
| OLDロ5E | Encoder Position When Power is OFF （Lower 2 words） | $1=1 \text { pulse }$ <br> －For linear type，do not set this register． | Yes | － |  |
| OLDロ60 | Encoder Position When Power is OFF （Upper 2 words） | $1=1$ pulse <br> －For linear type，do not set this register． | Yes | － | （ ） |
| OLDप62 | Pulse Position When Power is OFF （Lower 2 words） | $1=1$ pulse <br> －For linear type，do not set this register． | Yes | － | 4．4．2（32） |
| OLDप64 | Pulse Position When Power is OFF（Up－ per 2 words） | $1=1$ pulse <br> －For linear type，do not set this register． | Yes | － |  |
| $\begin{aligned} & \hline \text { OLDप66 to } \\ & \text { OLロप6E } \end{aligned}$ | － | Reserved for system use． | － | － | － |
| OWロロ70 <br> to OWDロ7F | Command Buffer for Servo Driver Transmission Reference Mode | This area is used for command data when MECHATROLINK servo commands are specified directly． | Yes | － | 4．4．2（ 33 ） |

## 4．3．3 Monitoring Parameter List

The following table provides a list of SVB and SVR motion monitoring parameters．
－Refer to the section numbers indicated in the Reference column for details of each monitoring parameter．
－Refer to 1．3 SVR Virtual Motion Module for information on SVR．
－Register number＂IWロロ00＂indicates the leading input register number＋ 00.
－Refer to 4．1．1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers for information on how to find the leading input register number．

| Register No． | Name | Contents | SVB | SVR | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IWपロ00 | RUN Status | Bit 0 Motion Controller Operation Ready | Yes | Yes | 4．4．3（ 1 ） |
|  |  | Bit 1：Running（At Servo ON） | Yes | Yes |  |
|  |  | Bit 2：System BUSY | Yes | － |  |
|  |  | Bit 3：Servo Ready | Yes | － |  |
|  |  | Bit 4：Latch Mode | Yes | － |  |
|  |  | Bits 5 to F：Reserved for system use． | － | － |  |
| IWロロ01 | Parameter Number When Range Over is Generated | Setting parameters： 0 or higher Fixed Parameters： 1000 or higher | Yes | Yes | 4．4．3（ 2 ） |
| ILロロ02 | Warning | Bit 0：Excessive Deviation | Yes | － | 4．4．3（ 3 ） |
|  |  | Bit 1：Set Parameter Error（Setting parameter error） | Yes | Yes |  |
|  |  | Bit 2：Fixed Parameter Error | Yes | Yes |  |
|  |  | Bit 3：Servo Driver Error | Yes | － |  |
|  |  | Bit 4：Motion Command Set Error | Yes | Yes |  |
|  |  | Bit 5：Reserved for system use． | － | － |  |
|  |  | Bit 6：Positive Direction Overtravel | Yes | － |  |
|  |  | Bit 7：Negative Direction Overtravel | Yes | － |  |
|  |  | Bit 8：Servo ON Incomplete | Yes | － |  |
|  |  | Bit 9：Servo Driver Communication Warning | Yes | － |  |
|  |  | Bit A：Servo Driver Stop Signal Input | Yes | － |  |
|  |  | Bits B to 1F：Reserved for system use． | － | － |  |
| ILロロ04 | Alarm | Bit 0：Servo Driver Error | Yes | － | 4．4．3（ 4 ） |
|  |  | Bit 1：Positive Direction Overtravel | Yes | － |  |
|  |  | Bit 2：Negative Direction Overtravel | Yes | － |  |
|  |  | Bit 3：Positive Direction Software Limit | Yes | － |  |
|  |  | Bit 4：Negative Direction Software Limit | Yes | － |  |
|  |  | Bit 5：Servo OFF | Yes | Yes |  |
|  |  | Bit 6：Positioning Time Over | Yes | － |  |
|  |  | Bit 7：Excessive Positioning Moving Amount | Yes | － |  |
|  |  | Bit 8：Excessive Speed | Yes | － |  |
|  |  | Bit 9：Excessive Deviation | Yes | － |  |
|  |  | Bit A：Filter Type Change Error | Yes | － |  |
|  |  | Bit B：Filter Time Constant Change Error | Yes | － |  |
|  |  | Bit C：Reserved for system use． | － | － |  |
|  |  | Bit D：Zero Point Unsetting <br> －Invalid for linear type． | Yes | － |  |
|  |  | Bit E and F：Reserved for system use． | － | － |  |
|  |  | Bit 10：Servo Driver Synchronization Communications Error | Yes | － |  |
|  |  | Bit 11：Servo Driver Communication Error | Yes | － |  |
|  |  | Bit 12：Servo Driver Command Timeout Error | Yes | － |  |

（cont＇d）

| Register No． | Name | Contents | SVB | SVR | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ILロロ04 <br> （Cont＇d） | Alarm | Bit 13：Excessive ABS Encoder Rotations <br> －Invalid for linear type | Yes | － | 4．4．3（ 4 ） |
|  |  | Bits 14 to 1C：Reserved for system use． | － | － |  |
|  |  | Bit 1D：Detected Servo Driver Type Error | Yes | － |  |
|  |  | Bit 1E：Motor Type Set Error | Yes | － |  |
|  |  | Bit 1F：Connected Encoder Type Error | Yes | － |  |
| ILロロ06 | － | Reserved for system use． | － | － | － |
| IWロロ08 | Motion Command Response Code | Same as OWD－08（Motion Command）． | Yes | Yes | 4．4．3（ 5 ） |
| IWロロ09 | Motion Command Status | Bit 0：Command Execution Flag | Yes | Yes | 4．4．3（ 6 ） |
|  |  | Bit 1：Command Hold Completed（HOLDL） | Yes | Yes |  |
|  |  | Bit 2：Reserved for system use． | － | － |  |
|  |  | Bit 3：Command Error Completed Status（FAIL）（Command Encoder Type Error） | Yes | Yes |  |
|  |  | Bits 4 to 6：Reserved for system use． | － | － |  |
|  |  | Bit 7：Reset Absolute Encoder Completed | Yes | － |  |
|  |  | Bit 8：Command Execution Completed（COMPLETE） | Yes | Yes |  |
|  |  | Bits 9 to F：Reserved for system use． | － | － |  |
| IWロロ0A | Motion Subcom－ mand Response Code | Same as OWD－0A（Motion Subcommand）． | Yes | Yes | 4．4．3（ 7 ） |
| IWDロ0B | Subcommand Status | Bit 0：Command Executing Flag | Yes | Yes | 4．4．3（8） |
|  |  | Bits 1 to 2：Reserved for system use． | － | － |  |
|  |  | Bit 3：Command Error Completed Status（Command Error Occurrence） | Yes | Yes |  |
|  |  | Bits 4 to 7：Reserved for system use． | － | － |  |
|  |  | Bit 8：Command Execution Completed | Yes | Yes |  |
|  |  | Bits 9 to F：Reserved for system use． | － | － |  |
| IWロロ0C | Position Manage－ ment Status | Bit 0：Discharging Completed（DEN） | Yes | Yes | 4．4．3（9） |
|  |  | Bit 1：Positioning Completed（POSCOMP） | Yes | Yes |  |
|  |  | Bit 2：Latch Complete（LCOMP） | Yes | － |  |
|  |  | Bit 3：NEAR Position（NEAR） | Yes | Yes |  |
|  |  | Bit 4：Zero Point Position（ZERO） | Yes | Yes |  |
|  |  | Bit 5：Zero Point Return（Setting）Completed（ZRNC） | Yes | Yes |  |
|  |  | Bit 6：During Machine Lock（MLKL） | Yes | － |  |
|  |  | Bit 7：Reserved for system use． | － | － |  |
|  |  | Bit 8：ABS Rotary Pos．LOAD Complete（ABS System Infinite Length Position Control Information Load Completed）（ABSLDE） <br> －Invalid for linear type | Yes | － |  |
|  |  | Bit 9：POSMAX Turn Preset Complete（TPRSE） <br> －Invalid for linear type | Yes | Yes |  |
|  |  | Bits A to F：Reserved for system use． | － | － |  |
| IWロロ0D | － | Reserved for system use． | － | － | － |
| ILロロ0E | Target Position in Machine Coordinate System（TPOS） | $1=1$ reference unit | Yes | Yes |  |
| ILロロ10 | Calculated Position in Machine Coordinate System（CPOS） | 1 ＝ 1 reference unit | Yes | Yes | 4．4．3（10） |
| ILD민 | Machine Coordinate <br> System Reference <br> Position（MPOS） | $1=1$ reference unit | Yes | Yes |  |
| ILロロ14 | CPOS for 32 bit | $1=1$ reference unit | Yes | Yes |  |


| Register No． | Name | Contents | SVB | SVR | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ILD미6 | Machine Coordinate System Feedback Position（APOS） | $1=1$ reference unit | Yes | Yes | 4．4．3（ 10 ） |
| ILDO18 | Machine Coordinate System Latch Position（LPOS） | $1=1$ reference unit | Yes | － |  |
| ILロロ1A | Position Error （PERR） | 1 ＝ 1 reference unit | Yes | － |  |
| ILロロ1C | Target Position Difference Monitor | 1 ＝ 1 reference unit | － | Yes |  |
| ILロロ1E | Number of POSMAX Turns | $\begin{aligned} & \text { 1 = } 1 \text { turn } \\ & \text { - Invalid for linear type } \end{aligned}$ | Yes | Yes |  |
| ILDロ20 | Speed Reference Output Monitor | pulse／s | Yes | － | 4．4．3（ 11 ） |
| $\begin{gathered} \hline \text { ILDप22 to } \\ \text { ILロロ2A } \end{gathered}$ | － | Reserved for system use． | － | － | － |
| IWロロ2C | Servo Driver Status | Bit 0：ALM（Alarm） <br> Bit 1：WARN（Warning） <br> Bit 2：CMDRY（Command Ready） <br> Bit 3：SVON（Servo ON） <br> Bit 4：PON（Main Power Supply ON） <br> Bit 5：MLOCK（Machine Lock） <br> Bit 6：ZPOINT（Zero Position） <br> Bit 7：PSET（Locating Complete） <br> （Positioning completed／V－CMP（Speed Coincidence） <br> Bit 8：DEN（Commanded Profile Complete） <br> （Distribution completed）／SZPD（Zero Speed） <br> Bit 9：T＿LIM（Torque Restriction） <br> Bit A：L＿CMP（Latch Complete） <br> Bit B：NEAR（Locating Neighborhood） <br> （NEAR Position）／V＿LIM（Speed Limit） <br> Bit C：P＿SOT（Position Software Limit） <br> Bit D：N＿SOT（Negative Software Limit） | Yes | － | 4．4．3（ 12 ） |
|  |  | Bits E and F：Reserved for system use | － | － | － |
| IWロロ2D | Servo Driver Alarm Code | Stores the alarm code from the SERVOPACK． | Yes | － | 4．4．3（ 13 ） |
| IWCL2E | Servo Driver I／O Monitor | Bit 0：Forward Side Limit Switch Input <br> Bit 1：Reverse Side Limit Switch Input <br> Bit 2：Deceleration Dog Switch Input <br> Bit 3：Encoder Phase－A Signal Input <br> Bit 4：Encoder Phase－B Signal Input <br> Bit 5：Encoder Phase－C Signal Input <br> Bit 6：EXT1 Signal Input <br> Bit 7：EXT2 Signal Input <br> Bit 8：EXT3 Signal Input <br> Bit 9：Brake State Output <br> Bit A：Stop Signal（HWBB），Available only for SGDV and SGD7S SERVOPACKs except for SGDV－ <br> ㅁㅁ밈ㅁ SERVOPACKs． <br> Bit B：Reserved for system use <br> Bit C：CN1 Input Signal（IO12） <br> Bit D：CN1 Input Signal（IO13） <br> Bit E：CN1 Input Signal（IO14） <br> Bit F：CN1 Input Signal（IO15） | Yes | － | 4．4．3（ 14 ） |
| IWロロ2F | Servo Driver User Monitor Information | Bits 0 to 3：Monitor 1 Bits 4 to 7：Monitor 2 Bits 8 to B：Monitor 3 Bits C to F：Monitor 4 | Yes | － | 4．4．3（ 15 ） |

（cont＇d）

| Register No． | Name | Contents | SVB | SVR | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ILロロ30 | Servo Driver User Monitor 2 | Stores the result of the selected monitor． | Yes | － |  |
| ILDロ32 | Servo Driver User Monitor 3 | Reserved for system use． | － | － |  |
| ILDロ34 | Servo Driver User Monitor 4 | Stores the result of the selected monitor． | Yes | － |  |
| IWロロ36 | Servo Driver User Constant No． | Stores the number of the parameter being processed． | Yes | － |  |
| IWロロ37 | Supplementary Servo Driver User Constant No． | Stores the number of the parameter being processed． | Yes | － |  |
| ILロロ38 | Servo Driver User Constant Reading Data | Stores the data of the parameter being read． | Yes | － |  |
| ILDロ3A | Supplementary Servo Driver User Constant Reading Data | Stores the data of the parameter being read． | Yes | － | 4．4．3（ 16 ） |
| IWロロ3F | Motor Type | Stores the type of motor actually connected． <br> 0 ：Rotation type motor <br> 1：Linear motor | Yes | － |  |
| ILロロ40 | Feedback Speed | Unit is according to OWDप03，bits 0 to 3 （Speed Unit Selection）． | Yes | Yes |  |
| ILDロ42 | Feedback Torque／ Thrust | Unit is according to OWD－03，bits C to F（Torque Unit Selection）． | Yes | Yes |  |
| ILロロ44 | Latch Completion Sequence Number | $1=1$ time | Yes | － |  |
| ILロロ45 | Number of Continu－ ous Latch Sequence Completion Cycles | $1=1$ cycle | Yes | － |  |
| $\begin{aligned} & \hline \text { IWロप46 to } \\ & \text { IWロप55 } \end{aligned}$ | － | Reserved for system use． | － | － | － |
| ILDD56 | Fixed Parameter Monitor | Stores the data of the fixed parameter when FIXPRM＿RD has been specified in the Motion Subcommand． | Yes | Yes | 4．4．3（ 17 ） |
| $\begin{aligned} & \text { IWपם58 to } \\ & \text { IWロa5C } \end{aligned}$ | － | Reserved for system use． | － | － | － |
| ILロロ5E | Encoder Position When the Power is OFF（Lower 2 words） | $1=1$ pulse | Yes | － |  |
| ILロロ60 | Encoder Position When the Power is OFF（Upper 2 words） | $1=1$ pulse | Yes | － |  |
| ILロロ62 | Pulse Position When the Power is OFF （Lower 2 Words） | $1=1$ pulse | Yes | － | 4．4．3（18） |
| ILロロ64 | Pulse Position When the Power is OFF （Upper 2 Words） | 1 ＝ 1 pulse | Yes | － |  |
| IWロप66 to IWロロ6F | － | Reserved for system use． | － | － | － |
| IWロロ70 to IWロロ7F | Response Buffer for Servo Driver Transmission Reference Mode | Stores the response data when MECHATROLINK Servo commands are specified directly． | Yes | － | 4．4．3（ 19 ） |

### 4.4 MP2000 Series Machine Controller Parameter Details

This section provides details for each motion parameter (fixed parameters, setting parameters, and monitoring parameters).

### 4.4.1 Motion Fixed Parameter Details

The following tables provide details of motion fixed parameters.

- Refer to 4.3.1 Fixed Parameter List for a list of motion fixed parameters.
- $\mathbb{R}$ in the following tables indicates that the item is also compatible with SVR.
- The software versions with which the parameters for linear type can be set for SVR are limited to:
- MP2000 series Machine Controller software version 2.50 or later
- MPE720 version 5.37 or later


## (1) Run Mode

| No. |  |  |  | Defau |
| :---: | :---: | :---: | :---: | :---: |
| Selection of Operation Modes |  | 0 to |  |  |
| Description | Specify the application method of the axis. <br> 0: Normal Operation Mode (default) R <br> Use this setting when actually using an axis. <br> 1: Axis Unused $\mathbf{R}$ <br> No control will be performed for an axis set to this mode, and monitoring parameters will not be updated. If an axis is changed from any other run mode to this mode, the monitoring parameters will be held at the current status except for the RUN Status (monitoring parameter IWDロ00), which will be cleared to zeros. <br> Set any axis that is not being used to this mode (Axis Unused) to reduce the processing time. <br> 2: Simulation Mode <br> In Simulation Mode, position information will be stored in the monitoring parameters even if a Servo Driver is not connected. <br> This mode is used to virtually check the operation of the applications program. <br> - In Simulation Mode, axis motions cannot be simulated. If a positioning command is executed, for example, the execution of the command will enter completed status at the next scan. Use an SVR Module to check axis motions. <br> 3: Servo Driver Transmission Reference Mode <br> Servo Driver Transmission Reference Mode is used to directly control the command-response communication with the MECHATROLINK SERVOPACK from the application. <br> No processing other than communication processing with the SERVOPACK will be performed in this mode. Position control and other processing must be performed in the application. <br> Commands to the SERVOPACK are set in the area starting with setting parameter OWDロ70 or later and responses are stored in the area starting with monitoring parameter IWप्प70 or later. <br> - Refer to Appendix I Servo Driver Transmission Reference Mode for details on Servo Driver Transmission Reference Mode. |  |  |  |

## - Terminology: Store

The use of "store" here refers to information that is automatically transferred by the CPU system without any action by the user. This term is mainly used with this meaning in describing motion monitoring parameters.

## ( 2 ) Function Selection 1

| No. 1 |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Function Selection Flag 1 |  |  | - | - | 0000H |
| Description | Bit 0 | Axis Selection $\mathbb{R}$ <br> Set whether or not there is a limit on controlled axis travel. <br> 0 : Finite length axis (default); The axis will have limited movement. The software limit function is enabled <br> 1: Infinite length axis; The axis will have unlimited movement. The software limit function is disabled. <br> If an infinite length axis is set, the position information will be reset each time the position exceeds the value set for the Infinite Length Axis Reset Position (fixed parameter 10). <br> - Set to 0 for linear type. |  |  |  |
|  | Bit 1 | Soft Lim <br> Set wh <br> Set the <br> This s <br> The so tion (I 0 : <br> 1: | positive directio (fixed parameter axis. <br> g a Zero Point <br> ils of the softwa | ). <br> rn or Zero <br> limit functio | Setting opera- |
|  | Bit 2 | Soft Lim <br> Set wh <br> Set the <br> This s <br> The so tion (I | negative directio (fixed paramet axis. <br> g a Zero Point <br> ils of the Softw | 4). <br> rn or Zero P <br> Limit Funct | Setting opera- |
|  | Bit 3 | Overtra <br> Set wh in the If this 0 : 1: | in the positive di ut, an alarm will the overtravel | ion. A setting <br> occur, but a <br> nction. | st also be made <br> ning will occur |
|  | Bit 4 | Overtrav <br> Set wh in the If this 0 : 1: | in the negative di put, an alarm wil f the overtravel | tion. A setting <br> t occur, but a <br> nction. | st also be made ning will occur |
|  | Bit 8 | Interpolation Segment Distribution Processing <br> When executing an interpolation command (INTERPOLATE, LATCH or PHASE), converts reference value that is generated with high-speed scan to a reference value for the MECHATROLINK communication cycle. Set to 0 when using an interpolation command. <br> 0 : Enabled (default) <br> 1: Disabled |  |  |  |


| No. 1 |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Function Selection Flag 1 (cont'd) | (cont'd)

## (3) Function Selection Flag 2

| No. 2 Function Selection Flag 2 |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - | - | 0000H |
| Description | Bit 0 | Communication Abnormality Detection Mask <br> Masks MECHATROLINK communication errors detected at the Machine Controller. <br> 0: Disabled (default) <br> 1: Enabled |  |  |  |
|  | Bit 1 | WDT Abnormality Detection Mask <br> Masks MECHATROLINK watchdog timeout errors detected at the Machine Controller. <br> 0 : Disabled (default) <br> 1: Enabled |  |  |  |
|  | Bit 5 | Multiturn Limit Mismatch Detection Mask For Finite Length Axis <br> (Valid for SVB-01 module version 1.33 or later and built-in SVB version 2.89 or later) <br> When using the axis as a finite length axis, set whether or not to detect a multiturn limit mismatch alarm. <br> 0 : Not detected (default) <br> 1: Detected |  |  |  |

(4) Reference Unit Selection

| No. 4 R |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: |
| Reference Unit Selection |  | 0 to 4 | - | 0 |
| Description | Set the unit for the reference. <br> The minimum reference unit is determined by this parameter and the Number of Digits Below Decimal Point setting (fixed parameter No.5). If pulse is selected, the Electronic Gear Ratio (fixed parameters 8 and 9) will be disabled. <br> 0 : pulse (electronic gear disabled) <br> 1: mm <br> 2: deg <br> 3: inch <br> 4: $\mu \mathrm{m}$ <br> - Refer to 5.1.1 Reference Unit for details. <br> - For linear type, 0 (pulse), 1 (mm), and $4(\mu \mathrm{~m})$ can be used. If 2 (deg) or 3 (inch) is selected, the selected unit will be converted to mm . |  |  |  |
| No. 5 R <br> Number of Digits Below Decimal Point |  | Setting Range | Setting Unit | Default Value |
|  |  | 0 to 5 | - | 3 |
| Description | Set the number of digits below the decimal point in the reference unit. <br> The minimum reference unit is determined by this parameter and the Reference Unit Selection (fixed parameter 4). Example: When the Reference Unit Selection is set to mm and the Number of Digits Below Decimal Point is set to 3, a reference unit of 1 will be 0.001 mm . <br> The setting of this parameter is disabled if the Reference Unit Selection is set to pulse in fixed parameter 4. <br> - Refer to 5.1.1 Reference Unit for details. |  |  |  |
| No. 6 (Rotary Motors) Travel Distance per Machine Rotation |  | Setting Range | Setting Unit | Default Value |
|  |  | 1 to $2^{31}-1$ | User unit | 10000 |
| Description | Specify the amount of travel in the load as the number of reference units for each turn of the load shaft. <br> - Refer to 5.1.2 Electronic Gear for details. |  |  |  |
| No. 6 (Linear Motors) Linear Scale Pitch |  | Setting Range | Setting Unit | Default Value |
|  |  | 1 to $2^{31}-1$ | User unit | 10000 |
| Description | Set a value in accordance with the linear scale specifications. <br> When the reference unit is set to pulse, set the scale pitch in units of either $\mu \mathrm{m}$ or nm . |  |  |  |
| No. 8 R <br> Servo Motor Gear Ratio <br> No. 9 R <br> Machine Gear Ratio |  | Setting Range | Setting Unit | Default Value |
|  |  | 1 to 65535 | rev (revolutions) | 1 |
| Description | Set the gear ratio between the motor and the load. <br> The following two values are set for a configuration in which the load shaft will turn n times in response to m turns of the motor shaft. <br> - Servo motor gear ratio <br> - Machine gear ratio The setting of this parameter is disabled if the Reference Unit Selection is set to pulse in fixed parameter 4. <br> - Refer to 5.1.2 Electronic Gear for details. <br> - Invalid for linear type. |  |  |  |

## （5）Infinite Length Axis Reset Position

| No． 10 R <br> Infinite Length Axis Reset Position（POSMAX） |
| :--- |
| Set the reset position when an infinite length axis is set． <br> Enabled when bit 0 of the Function Selection Flag 1（fixed parameter 1）is set to infinite axis．The position data for <br> infinite axes is controlled in the range from 0 to POSMAX． |
| Description |

## （ 6 ）Software Limits

| No． 12 |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: |
| Positive Software Limit Value |  | $-2^{31}$ to $2^{31}-1$ | User unit | $2^{31}-1$ |
| Description | Set the position to be detected for the software limit in the positive direction at the Machine Controller． <br> If an axis attempts to move in the positive direction past the position set here，a positive direction software limit alarm （ILDロ04，bit 3）will occur． <br> Enabled when bit 1 of the Soft Limit（Positive Direction）Enabled／Disabled（fixed parameter 1，bit 1）is set to 1 （enabled）． |  |  |  |
| No． 14 <br> Negative Software Limit Value |  | Setting Range | Setting Unit | Default Value |
|  |  | $-2^{31}$ to $2^{31}-1$ | User unit | $-2^{31}$ |
| Description | Set the position to be detected for the software limit in the negative direction at the Machine Controller． <br> If an axis attempts to move in the negative direction past the position set here，a negative direction software limit alarm （ILD口04，bit 4）will occur． <br> Enabled when bit 2 of the Soft Limit（Negative Direction）Enabled／Disabled（fixed parameter 1，bit 2）is set to 1 （enabled）． |  |  |  |

Outline of Software Limit

－The software limit function is enabled only after completing a Zero Point Return or Zero Point Setting operation （IWロロ0C，bit 5 is ON）．
－For details，refer to 11．3 Software Limit Function．

## (7) Backlash Compensation

| No. 16 <br> Backlash Compensation Amount |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $-2^{31}$ to $2^{31}-1$ | User unit | 0 |
| Description | Set the backlash compensation in reference units. Backlash co parameter to 0 . <br> For backlash compensation, use the backlash compensation functio compensation only when you use one of the following SERVOPAC <br> - SGDH + NS115 <br> - SGDS <br> - SGDV-****1** with software version 0023 or later <br> - SGD7S <br> If you use any other SERVOPACK model, this parameter is disabl <br> If you use the SGDH + NS115, the SGDS, or the SGD7S, use this fix be automatically written to the SERVOPACK parameter (SGDH + communications are established with the SERVOPACK. <br> If you use the SGDV-****1** with software version 0023 or later, VOPACK parameters: Pn230, Pn231, and Pn233. <br> <Using Backlash Compensation in the Forward Direction> <br> <Using Backlash Compensation in the Reverse Direction> | pensation can <br> in the SERVOP K models. <br> and the parame <br> ed parameter. Th S115: Pn81B, S <br> et both this fixed <br> Zero P <br> 6 <br> mpensation | t be perform <br> K. You can pe <br> setting is igno <br> etting of this fix <br> S: Pn214, SG <br> arameter and <br> sition <br> Return Direc <br> Reverse dire <br> ne <br> Motor axis | by setting this <br> m backlash <br> parameter will <br> : Pn231) when <br> llowing SER- |

## ( 8 ) Servo Driver Settings

| Fixed Parameter 30 Encoder Selection |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0 to 3 | - | 0 |
| Description | Set the type of encoder that is being used. <br> 0 : Incremental encoder <br> 1: Absolute encoder) <br> 2: Absolute encoder (Incremental encoder is used.) <br> 3: Reserved (External encoder) <br> - For linear motors, set the encoder type that matches the settings of the linear scale and SERVOPACK being used. |  |  |  |

## (9) Encoder Settings

| No. 34 (Rotary Motor) R Rated Motor Speed |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 to 32000 | $\mathrm{min}^{-1}$ | 3000 |
| Description | Set the rated motor speed in $1 \mathrm{~min}^{-1}$ units. <br> Set this parameter based on the specifications of the motor that is used. |  |  |  |
| No. 34 (Linear Motor) R Rated Speed |  | Setting Range | Setting Unit | Default Value |
|  |  | 1 to 32000 | $0.1 \mathrm{~m} / \mathrm{s}$, $0.1 \mathrm{~mm} / \mathrm{s}$ | 3000 |


| Description | Set the rated speed. <br> Set the rated speed in accordance with the specifications of the linear servomotor to be used. <br> - When the reference unit is set to pulse: The setting unit is either $0.1 \mathrm{~m} / \mathrm{s}$ or $0.1 \mathrm{~mm} / \mathrm{s}$. Use units of $0.1 \mathrm{~m} / \mathrm{s}$ when the linear scale pitch is set in units of $\mu \mathrm{m}$. Use units of $0.1 \mathrm{~mm} / \mathrm{s}$ when the linear scale pitch is set in units of nm . <br> - When reference unit is set to mm : The setting unit is $0.1 \mathrm{~m} / \mathrm{s}$. <br> - When reference unit is set to $\mu \mathrm{m}$ : The setting unit is $0.1 \mathrm{~mm} / \mathrm{s}$. <br> - Refer to 5.1.8 Linear Scale Pitch and Rated Speed for details. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| No. 36 (Rotary Motor) R Number of Pulses per Motor Rotation |  | Setting Range | Setting Unit | Default Value |
|  |  | 1 to $2^{31}-1$ | pulse | 65536 |


| Description | Set the number of feedback pulses per motor rotation. <br> Set the value after multiplication to match the specifications of the motor used. <br> (For example, if a 16-bit encoder is used, set $\left.2^{16}=65536.\right)$ |  |  |
| :--- | :--- | :---: | :---: | :---: |
| No. 36 (Linear Motor) $\mathbb{R}$ <br> Number of pulses per Linear Scale Pitch | Setting Range | Setting Unit | Default Value |
|  | 1 to $2^{31}-1$ | pulses/scale <br> pitch | 65536 |


| Description | Set the number of pulses equivalent to the value set for No.6: Linear Scale Pitch. <br> Set the value in accordance with the specifications of the linear motor to be used |  |  |
| :--- | :---: | :---: | :---: | :---: |
| No. 38 <br> Maximum Number of Absolute Encoder Turns Rotation | Setting Range | Setting Unit | Default Value |
|  | 1 to $2^{31}-1$ | rev | 65534 |


| Description | Set the maximum number of rotations for the absolute encoder to the highest number that the encoder can manage. <br> Set this parameter to match the settings of the encoder being used. <br> - $\Sigma$-I series: Set to 99999 (fixed). <br> - $\Sigma$-II, $\Sigma$-III, $\Sigma$-V, or $\Sigma-7$ Series: Set to the same value as the multiturn limit in the SERVOPACK. <br> <Example> <br> For axes set as infinite axes (bit 0 of fixed parameter Function Selection Flag 1 set to 1), set to 65534 max. (same value as Pn205). <br> Finite Axes <br> Infinite Axes |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Parameter 38 and Pn205 $=65535$ | Parameter 38 and Pn205 $=65535$ |  |  |
|  | Multiturn data |  |  |  |
| No. 42 <br> Feedback Speed Movement Averaging Time Constant |  | Setting Rang | Setting Un | Default Value |
|  |  | 0 to 32 | ms | 10 |
| Description | Set the moving average time constant for the feedback speed. <br> The Feedback Speed (monitoring parameter ILDロ40) is the value determined by this parameter and the unit-converted difference between feedback positions of each high-speed scan. |  |  |  |

## 4．4．2 Motion Setting Parameter Details

The following tables provide details of motion setting parameters．
－Refer to 4．3．2 Setting Parameter List for a list of the motion setting parameters．
－Register number＂OWロロ00＂indicates the leading output register number＋00．Other register numbers listed below indicate output register numbers in the same way．Refer to 4．1．1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers for information on how to find the leading output register number．
－ $\mathbb{R}$ in the following tables indicates that the item is also compatible with SVR．
－Position Phase Speed Torque in the following descriptions indicate that parameter is enabled in position control， phase control，speed control，or torque control．
－Similarly，Position Phase Speed Torque in the following descriptions indicate that parameter is disabled in position control，phase control，speed control，or torque control．
（1）RUN Command Setting

| OWDロ00 |  |  | P | Setting Range | Setting Unit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RUN Command Setting |  |  | Speed Torq | － | － | 0000H |
| Description | Bit 0 | Servo ON R <br> Sends a SERVO ON command to the SERVOPACK． <br> 0：Servo OFF（default） <br> 1：Servo ON |  |  |  |  |
|  | Bit 1 | Machine Lock <br> 0 ：Machine lock mode released（default） <br> 1：Machine lock mode <br> During the machine lock mode，the Calculated Position in Machine Coordinate System（CPOS）（monitoring parameter ILD（10）will be updated but no movement will occur on the axis． A change in the machine lock mode is valid after all pulses have been distributed．The machine lock mode can－ not be changed during speed or torque control． |  |  |  |  |
|  | Bit 4 | Latch Detection Demand <br> 0 ：OFF（default） <br> 1：ON <br> When this bit is set to $1(\mathrm{ON})$ ，the position at the moment the latch signal turns ON will be reported to the mon－ itoring parameter ILDC18＂Machine Coordinate System Latch Position（LPOS）．＂ <br> When the position is detected and reported，bit 2 ＂Latch Completed＂of the monitoring parameter IWDD0C ＂Position Management Status＂will turn ON． <br> To detect the position again，reset this bit to 0 （OFF）and then set to 1 （ON）again． <br> Use bits 0 to 3 （Latch Detection Signal Selection）of the setting parameter OWDप04（Function Setting 2）to set the latch signal to be used． <br> This function is enabled only through MECHATROLINK－II in 32 －byte mode because this function is imple－ mented using the servo command expanded area． <br> During processing，the following values will be stored in monitoring parameter IWप—0A＂Motion Subcom－ mand Response Code．＂ <br> Latch request：IWDC0A $=25$ <br> Cancel latch request： $\mathrm{IW} \square \square 0 \mathrm{~A}=26$ <br> －Do not set this bit to 1 （ON）while the motion commands＂Zero Point Return，＂＂External Posi－ tioning，＂or＂Latch＂are being executed．Otherwise，a warning may occur in the SERVOPACK． <br> －With SVB－01 module version 1.20 or later and built－in SVB version 2.50 or later，the subcom－ mands＂Latch request＂and＂Cancel latch request＂have priority over other subcommands． Care must be taken in an application where the ON／OFF operation of the latch request is repeated because processing for other subcommands may be suspended． <br> －Refer to 11．4 Modal Latch Function for details of the latch function． |  |  |  |  |


| （cont＇d） |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OW口ロ00 Position Phase |  |  | Setting Range | Setting Unit | Default Value |
| RUN Command Setting（cont＇d） |  |  | － | － | 0000H |
| Description | Bit 6 | POSMAX Turn Number Presetting Demand $\mathbb{R}$ <br> 0：OFF（default） <br> 1：ON <br> Preset the Number of POSMAX Turns（monitoring parameter ILDD1E）to the value set for the Number of POSMAX Turns Presetting Data（setting parameter OLDO4C）． <br> －Set to 0 for linear type． |  |  |  |
|  | Bit 7 | Request ABS Rotary Pos．Load <br> When an infinite length axis is used with an absolute encoder，this bit can be set to 1 to reset the position infor－ mation with the data（encoder position and pulse position）that was set when the power was last turned OFF． When processing has been completed for this bit，the ABS Rotary Pos．LOAD Complete bit will be turned ON in the Position Management Status（monitoring parameter IWपロ0C bit 8）． <br> 0 ：OFF（default） <br> 1：ON <br> －Refer to 9．4．5［b］Turning the System Back ON（Turning the Servo Back ON）for details on how to use． <br> －Set to 0 for linear type． |  |  |  |
|  | Bit 8 | Forward Outside Limiting Torque／Thrust Input <br> Limit the torque by the value set in the SERVOPACK parameters． <br> The setting is enabled when the move command or the SERVO ON command is sent． <br> There is no torque limit switch parameter in the Servo command option area in the SGD－N，SGDB－N，or SGDH＋NS100／NS115 SERVOPACKs，so the torque limit input cannot be used． <br> 0 ：OFF（default） <br> 1：ON |  |  |  |
|  | Bit 9 | Reverse Outside Limiting Torque／Thrust Input <br> Limit the torque by the value set in the SERVOPACK parameters． <br> The setting is enabled when the move command or the SERVO ON command is sent． <br> There is no torque limit switch parameter in the Servo command option area in the SGD－N，SGDB－N，or SGDH＋NS100 SERVOPACKs，so the torque limit input cannot be used． <br> 0 ：OFF（default） <br> 1：ON |  |  |  |
|  | Bit B | Integration Reset <br> Reset the position loop integral items for the SERVOPACK． <br> The setting is enabled when the move command or the SERVO ON command is sent． <br> The Integration Reset（Position Loop Integration Reset）is supported only by the SGDS SERVOPACK and can－ not be used for other SERVOPACKs． <br> 0：Integration Reset OFF（default） <br> 1：Integration reset ON |  |  |  |
|  | Bit D | Latch Completion Status Clear Request $0: \text { OFF }$ 1: ON <br> Available only for SGDV and SGD7S SERVOPACKs． |  |  |  |

(cont'd)


## （ 2 ）Mode Setting 1

| OW口ロ01 |  | Position Phase | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mode Setting 1 |  | Speed Torque | － | － | 0000H |
| Description | Bit 0 | Excessive Deviation Error Level Setting <br> Set whether excessively following errors are treated as warnings or as alarms． <br> 0 ：Alarm（default）：Axis stops operating when an excessively following error is detected． <br> 1：Warning：Axis continues to operate even if an excessively following error is detected． <br> －Related Parameters <br> OLDC22：Error Count Alarm Detection <br> ILロロ02，bit 0：Warning（Excessive deviation） <br> ILDロ04，bit 9：Alarm（Excessive deviation） |  |  |  |
|  | Bit 3 | Speed Loop P／PI Switch <br> Switch the SERVOPACK＇s speed loop between PI control and P control． <br> The setting is enabled when the move command or the SERVO ON command is sent． <br> 0：PI control（default） <br> 1： P control |  |  |  |
|  | Bit 4 | Gain Switch <br> Switch the gain to the Second Gain set in the SERVOPACK parameters． <br> The setting is enabled when the move command or the SERVO ON command is sent． <br> There is no gain switch parameter in the Servo command option area in the SGD－N，SGDB－N，or SGDH＋NS100 SERVOPACKs，so the Gain Switch cannot be used． <br> When SGDV or SGD7S SERVOPACKs are used and the tuning－less function is available，this setting is ignored． <br> 0：Gain switch OFF（default） <br> 1：Gain switch ON |  |  |  |
|  | Bit 5 | Gain Switch 2 （Valid with SVB－01 module version 1.20 or later and built－in SVB version 2.50 or later） <br> 0 ：Gain switch OFF（default） <br> 1：Gain switch ON <br> Can be used only when using an SGDS SERVOPACK．（Not available for SGDV and SGD7S SERVOPACKs．） In combination with bit 4，four types of gain switches can be set． |  |  |  |
|  | Bit6 | Latch Mode Selection <br> 0 ：Usual latch <br> 1：Continuous latch <br> Available only for SGDV and SGD7S SERVOPACKs． |  |  |  |

［ a ］Continuous Latch Function of SGDV and SGD7S SERVOPACKs
By selecting Latch Detection Demand in the parameter RUN Command Setting（OWDロ00，bit 4），the Continuous Latch Function is enabled．
This function is for SGDV and SGD7S SERVOPACKs，so the appropriate parameter settings must be made in the SGDV and SGD7S SERVOPACKs．

## －Related Parameters

－Motion setting parameters

| Register No． | Name | Setting Range | Default Value | Meaning | Description |
| :---: | :---: | :---: | :---: | :--- | :--- |
| OWロロ00 | RUN <br> Command <br> Setting | Bit setting | 0 | Bit 4：Latch Detection <br> Demand | 0：OFF 1：ON |
|  |  | Bit D：Latch Completion <br> Status Clear Request | 0：OFF 1：ON |  |  |
| OWロロ01 | Mode <br> Setting 1 | Bit setting | 0 | Bit 6：Latch Mode Selection | 0：Usual latch <br> 1：Continuous latch |
| OWロロ04 | Function <br> Setting 2 | 2 to 5 | 3 | Bits 0 to 3：Latch Detection <br> Signal Selection | 2：Phase－C pulse input signal <br> 3：／EXT1 <br> 4：／EXT2 <br> 5：／EXT3 |

－Monitoring parameters

| Register No． | Name | Setting Range | Meaning | Description |
| :---: | :---: | :---: | :---: | :---: |
| IWロロ00 | RUN Status | Bit setting | Bit 4：Latch Mode | － |
| IWロロ0C | Position Management Status | Bit setting | Bit 2：Latch Com－ plete（LCOMP） | － |
| ILロロ18 | Machine Coordinate System Latch Position（LPOS） | $-2^{31}$ to $2^{31}-1$ | 1 ＝ 1 reference unit | － |
| IWロロ44 | Latch Completion Sequence Number | 0 to 32767 | $1=1$ time | Available for SGDV and SGD7S SERVOPACKs with MECHATROLINK－II communica－ tions（32 bytes）． |
| IWロロ45 | Number of Continuous Latch Sequence Completion Cycles | 0 to 32767 | － | Available for SGDV and SGD7S SERVOPACKs with MECHATROLINK－II communica－ tions（ 32 bytes）． |

－Servo parameters

| Parameter No． | Digit | Name |  | Size | Description | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pn850 |  | Latch Sequence Number |  | 2 | Min．$=0$, Max．$=8$ | 0 |
| Pn851 |  | Continuous Latch Count |  | 2 | Min．$=0$, Max．$=255$ | 0 |
| Pn852 | Latch Sequence Signal 1 to 4 Setting |  |  | 2 | Min．$=0000 \mathrm{H}, \mathrm{Max} .=3333 \mathrm{H}$ | 0000H |
|  | 0 | Latch sequence 1 signal selection | 0 | － | Phase C | 0 |
|  |  |  | 1 | － | EXT1 signal |  |
|  |  |  | 2 | － | EXT2 signal |  |
|  |  |  | 3 | － | EXT3 signal |  |
|  | 1 | Latch sequence 2 signal selection |  | － | Same as latch sequence 1 signal selection． | 0 |
|  | 2 | Latch sequence 3 signal selection |  | － | Same as latch sequence 1 signal selection． | 0 |
|  | 3 | Latch sequence 4 signal selection |  | － | Same as latch sequence 1 signal selection． | 0 |
| Pn853 | Latch Sequence Signal 5 to 8 Setting |  |  | 2 | Min．$=0000 \mathrm{H}, \mathrm{Max} .=3333 \mathrm{H}$ | 0000H |
|  | 0 | Latch sequence 5 signal selection | 0 | － | Phase C | 0 |
|  |  |  | 1 | － | EXT1 signal |  |
|  |  |  | 2 | － | EXT2 signal |  |
|  |  |  | 3 | － | EXT3 signal |  |
|  | 1 | Latch sequence 6 signal selection |  | － | Same as latch sequence 5 signal selection． | 0 |
|  | 2 | Latch sequence 7 signal selection |  | － | Same as latch sequence 5 signal selection． | 0 |
|  | 3 | Latch sequence 8 signal selection |  | － | Same as latch sequence 5 signal selection． | 0 |

The latch mode can be set to Usual or Continuous with the Latch mode selection（bit 6）of the motion setting parameter， Mode Setting 1 （OWロロ01）．
In the continuous latch mode，set the continuous latch with Pn850．The latch signal settings can be set in Pn852 and Pn853．Bits 0 to 3 of OW口प04 are not required to set latch signals．

OWDロ01．bit 6


| Pn850 Setting | Latch Operation | Latch Single Setting |
| :--- | :--- | :--- |
| $=0$ | - （Error） | - |
| $>0$ | Continuous Latch Operation | Setting with Pn852 and Pn853 |

## ［ b ］Details of Latch Operations

## ■ Usual Latch Operation

Check the completion of the latch with bit 2 of IWपロ0C．
To repeat latching again，set bit 4 of OWDD00 to 1 ．

## ＜Example＞

－Condition：Latch at phase－C pulse
－Settings：
Motion setting parameters

| Register No． | Name | Setting value |
| :---: | :--- | :--- |
| OWロロ01 | Mode Setting 1 | Bit 6：Latch mode selection $=0$（usual latch） |
| OW口ロ04 | Function Setting 2 | Bits 0 to 3：Latch Detection Signal Selection＝2（Phase－C pulse） |

Servo parameters

| Parameter No． | Name | Setting value |
| :---: | :--- | :--- |
| Pn850 | Latch Sequence Number | Disabled |
| Pn851 | Continuous Latch Count | Disabled |
| Pn852 | Latch Sequence Signal 1 to 4 Setting | Disabled |
| Pn853 | Latch Sequence Signal 5 to 8 Setting | Disabled |

－Operation
To repeat latch operations，set bit 4 of OWDप00 to 1 ．
For usual latch operations，IWDप44 and IWDप45 are set to 0 ．



## ［ c ］Continuous Latch Operation

For continuous latch operations，bit 2 of IW $\square \square 0 \mathrm{C}$ is set to 1 ．With this setting，however，the parameters ILDD18， IW $\square \square 44$ ，and IW $\square \square 45$ are updated when latching，so the completion of latching can be checked with those parame－ ters．
If checking the completion with bit 2 of IW $\square \square 0 \mathrm{C}$ ，reset the bit settings with the following procedures．
－When bit 2 of IW $\square \square 0 \mathrm{C}$ is detected as 1 ，set bit D of OWロロ00 to 1 to clear the Latch Complete bit．

## －Precautions

When continuous latching is done for a short time，the sign of latch completion may not be detected because the update of the communication cycle or H scan cycle is delayed．
To check if the latch was successfully completed，use IWロप44 or IWロप45．
If the current value is one greater than that of the previous cycle，then latching was successfully completed．

## Example 1

－Condition：Latch at phase－C pulse
－Settings：
Motion setting parameters

| Register No． | Name | Setting value |
| :---: | :--- | :--- |
| OWロロ01 | Mode Setting 1 | Bit 6：Latch mode selection $=1$（Continuous latch） |
| OWロロ04 | Function Setting 2 | Bits 0 to 3： Latch detection signal selection $=$ Disabled $^{*}$ |

＊When using a continuous latch，the settings of bits 0 to 3 are disabled．
Servo parameters

| Parameter No． | Name | Setting value |
| :---: | :--- | :--- |
| Pn850 | Latch Sequence Number | 1 |
| Pn851 | Continuous Latch Count | 0 （No limit） |
| Pn852 | Latch Sequence Signal 1 to 4 Setting | ロロロ0h |
| Pn853 | Latch Sequence Signal 5 to 8 Setting | ロロロロh |

－A square（ $\square$ ）indicates an unspecified value．
－Operation
For continuous latch operations，bit 4 of OWD口00 is set to 1 ．After the latch has been confirmed as being com－ pleted，set bit 10 of OWDด 00 to 1 and bit 2 of IWDप0C is forced OFF．


Example 2
－Condition：Sequence latch at phase－C pulse and EXT1 signal
－Settings：
Motion setting parameters

| Register No． | Name | Setting value |
| :---: | :--- | :--- |
| OW口ロ01 | Mode Setting 1 | Bit 6：Latch mode selection $=1($ Continuous latch $)$ |
| OW口ロ04 | Function Setting 2 | Bits 0 to 3： Latch detection signal selection $=$ Disabled $^{*}$ |

＊When using a continuous latch，the settings of bits 0 to 3 are disabled．

## Servo parameters

| Parameter No． | Name | Setting value |
| :---: | :--- | :--- |
| Pn850 | Latch Sequence Number | 2 |
| Pn851 | Continuous Latch Count | 0 （No limit） |
| Pn852 | Latch Sequence Signal 1 to 4 Setting | ロロ10h |
| Pn853 | Latch Sequence Signal 5 to 8 Setting | ロロロロh |

－A square（ $\square$ ）indicates an unspecified value．
－Operation
For continuous latch operations，bit 4 of OWD口00 is set to 1 ．After the latch has been confirmed as being com－ pleted，set bit 10 of OWD $\square 00$ to 1 and bit 2 of IWロप0C is forced OFF．
If the latch cycle is too short to match the scan cycle，the latch positions may not be recognized．To check if the latch was successfully completed in the set sequence，use IWDप44 or IWDด45．

＊This example shows when the output for the phase－C and EXT1 latches are constant and the latching action of the EXT1 latch is bypassed．
The reported latching position（3）is created by the phase－C latch and it can be checked at IWDO44． If the EXT latch is executed，the setting of IWロロ45 changes from 0 to 1 ．

## ( 3 ) Mode Setting 2

|  |  | Position Phase | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mode Setting 2 |  | Speed Torque | - | - | 0000H |
| Description | Bit 0 | Monitor 2 Enabled <br> Disable/enable Monitor 2 in the Servo User Monitor Setting (setting parameter OWDロ4E, bits 4 to 7). <br> 0 : Disabled (default) <br> 1: Enabled <br> This bit is valid only when the communication mode is MECHATROLINK-I or MECHATROLINK-II 17-byte Mode. This bit is ignored for MECHATROLINK-II 32-byte Mode. |  |  |  |
|  | Bit 8 to Bit F | Stop Mode Selection <br> SVB-01 modules: Available for SVB module version 1.2 Built-in SVB modules: Available for SVB module versio <br> Selects the stopping method for the axes controlled by move This function is only available for MECHATROLINK com For details on functions that can be used with the SERVOP the manual of the SERVOPACK being used. <br> - When using the speed reference (VELO) (OWDロ08 = <br> 0 : Decelerate to a stop according to the linear de <br> 1: Stop immediately <br> - When using the speed reference and this se will stop in accordance with the action speci <br> - When using any move commands other than the speed r <br> 0 : Decelerate to a stop according to the linear de <br> 1: Stop immediately <br> 2: Stop in accordance with the value of Linear Dece <br> * The relevant servo parameter (Pn827 when be set beforehand. | or later 2.60 or later commands. atible SERVOPA CK, refer to the 3) leration time ing is set to a for the 0 set erence (VELO) leration time <br> eleration Cons n883.0 = 0 and | s. tion on the H <br> stant (default) <br> e other than <br> stant (default) <br> 1 for Stoppi <br> 840 when | command in <br> or 1 , the motor <br> $3.0=1)$ must |

［ a ］SERVOPACKs with Stop Mode Selection（OWロロ02，bit 8 to F）

| SERVOPACK | Stop Mode Selections |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: |
|  | 0 ：Decelerate to a stop according to the linear deceler－ ation time con－ stant | 1：Stop immediately | 2：Stop in accor－ dance with the value of Linear Deceleration Con－ stant 1 for Stop－ ping |  |
| SGD－पロロ | 0 | $\times$ | $\times$ | When setting 1 or 2 is unavailable，the default setting（ 0 ）will be used and the motor will stop in accordance with the specified for the 0 setting． |
| SGDB－पロAN | 0 | $\times$ | $\times$ | When setting 1 or 2 is unavailable，the default setting（0）will be used and the motor will stop in accordance with the specified for the 0 setting． |
| SGDH－ロロロE＋NS100 | 0 | $\times$ | $\times$ | When setting 1 or 2 is unavailable，the default setting（0）will be used and the motor will stop in accordance with the specified for the 0 setting． |
| SGDH－ロロロE＋NS115 | 0 | $\bigcirc$ | $\times$ | When setting 1 or 2 is unavailable，the default setting（ 0 ）will be used and the motor will stop in accordance with the specified for the 0 setting． |
|  | $\bigcirc$ | $\bigcirc$ | $\begin{gathered} \text { O"1 }^{\text {(Pn827) }} \end{gathered}$ | － |
| SGDS－ㅁㅁ밈 | 0 | $\bigcirc$ | $\begin{gathered} \hline \text { O }^{* 1} \\ \text { (Pn827) } \end{gathered}$ | － |
| SJDE－ロपAND | 0 | O | $\times$ | When setting 1 or 2 is unavailable，the default setting（ 0 ）will be used and the motor will stop in accordance with the specified for the 0 setting． |
| SGDV－ㅁำロ11ロ | $\bigcirc$ | $\bigcirc$ | $\begin{gathered} \mathrm{O}^{* 3} \\ (\operatorname{Pn} 827 / \operatorname{Pn} 840) \end{gathered}$ | － |
| SGDV－ロロロロ15 | 0 | $\bigcirc$ | $\begin{gathered} \mathrm{O}^{* 3} \\ (\mathrm{Pn} 827 / \mathrm{Pn} 840) \end{gathered}$ | － |
|  | 0 | $\bigcirc$ | $\begin{gathered} \hline \mathrm{O}^{* 3} \\ (\operatorname{Pn} 827 / \mathrm{Pn} 840) \end{gathered}$ | － |
| MECHATROLINK－II Compatible Stepping Motor Driver | ＊2 | ＊2 | ＊2 | － |

＊1．Available for SERVOPACKs with MECHATROLINK Communications interface version 0011 or later．
＊2．This product＇s stopping modes differ from those of other SERVOPACKs．
＊3．The setting of Pn827 is used if Pn883．0 is set to 0 and Pn840 is used if Pn883．0 is set to 1 ．
－ O ：Available，$\times$ ：Not available
－When a move command other than the speed reference（VELO）is executed and the stop mode is changed，the tim－ ing in which the setting is enabled will vary depending on the SERVOPACK being used．

## ［ b ］Timing of Stop Mode Selection（OWDC02，bit 8 to F）

The following table shows when the selected stop mode will be enabled while a move command is executed．

| Move Commands | When a command is interrupted． <br> （OWDロ09 Bit 1 ＝ON） | When a command is changed． | When an error occurs． |
| :---: | :---: | :---: | :---: |
| POSING（Positioning） | Stops according to the stop mode selected． | Stops according to the stop mode selected． | Stops according to the stop mode selected． |
| EX＿POSING（External input po－ |  |  |  |
| ZRET（Zero point return） |  |  |  |
| INTERPOLATE（Interpolation） | － | － | Stops according to the stop mode selected． |
| ENDOF＿INTERPOLATE （For system use） |  |  |  |
| LATCH（Latch） |  |  |  |
| FEED（JOG operation） | Stops according to the stop mode selected． | Stops according to the stop mode selected． | Stops according to the stop mode selected． |
| STEP（STEP operation） |  |  |  |
| VELO（Speed reference） | Stops according to the stop mode selected．Only avail－ able when the stop mode is set to 0 or 1 ． | Stops according to the stop mode selected．Only avail－ able when the stop mode is set to 0 or 1 ． | Stops according to the stop mode selected．Only avail－ able when the stop mode is set to 0 or 1 ． |
| TRQ（Torque／thrust reference） | Stops according to the stop mode selected． | Stops according to the stop mode selected． | Stops according to the stop mode selected． |
| PHASE（Phase reference） | － | － | Stops according to the stop mode selected． |

## （ 4 ）Function Setting 1

| OW口口03 |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Function Setting 1 |  |  | － | － | 0011H |
| Description | Bit 0 to Bit 3 | Speed Unit Selection R <br> Set the unit for speed references． <br> 0：Reference unit／s <br> 1： $10^{n}$ reference unit／min（default）$(n=$ number of decimal places／fixed parameter 5 ） <br> 2：0．01\％ <br> 3：0．0001\％ <br> －Refer to 5．1．5 Speed Reference for setting examples when also setting of the combination with the number of digits below the decimal point． |  |  |  |
|  | Bit 4 to Bit 7 | Acceleration／Deceleration Degree <br> Set whether to specify acceleration tion／deceleration commands． <br> 0 ：Reference units／s ${ }^{2}$ <br> 1：ms（default） | celeration／dec | ion time con | s for accelera－ |
|  | Bit 8 to Bit B | Filter Type Selection $\mathbb{R}$ <br> Set the acceleration／deceleration fi The set filter type changes when th <br> 0 ：None（default） <br> 1：Exponential acceleration／d <br> 2：Moving average filter <br> －When a filter is used，set Filter Type． <br> For details，refer to 6．2． | ange Filter Typ <br> eter and exe <br> （CHG＿FILTER） | xecuted． <br> the motion | mand Change |
|  | Bit C to Bit F | Torque Unit Selection $\mathbb{R}$ <br> Set the unit for torque references． $\begin{aligned} & \text { 0: 0.01\% (default) } \\ & \text { 1: 0.0001\% } \end{aligned}$ |  |  |  |

## （ 5 ）Function Setting 2

| OW口ロ04 Position Phase |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Function Setting 2 |  | Speed Torque | － | － | 0033H |
| Description | Bit 0 to Bit 3 | Latch Detection Signal Selection <br> Set the latch signal type． <br> 0：－ <br> 1：－ <br> 2：Phase－C pulse <br> 3：／EXT1（default） <br> 4：／EXT2 <br> 5：／EXT3 <br> －The signal is input to the SERVOPACK．The SGD－N and SGDB－N SERVOPACKs support only the／EXT1 latch signal，so the／EXT2 and／EXT3 latch signals cannot be used．If a signal that is not supported is selected，the following warning will occur：Setting Parameter Error． <br> －This setting is enabled when executing the motion command Latch and when using the modal latch function． |  |  |  |
|  | Bit 4 to Bit 7 | External Positioning Signal Setting <br> Set the external signal for external positioning． <br> 0 ：－ <br> 1：－ <br> 2：Phase－C pulse <br> 3：／EXT1（default） <br> 4：／EXT2 <br> 5：／EXT3 <br> －The signal is input to the SERVOPACK．The only the／EXT1 latch signal，so the／EXT2 and that is not supported is selected，the following | SGD－N and SG ／EXT3 latch s warning will o | －N SERVO <br> ls cannot $r$ ：Setting P | Ks support ed．If a signal eter Error． |
|  | Bit C to Bit F | Bank Selector <br> Select a parameter bank number from the parameter bank （Number of Parameter Banks）in the range between 0 to 1 <br> －Refer to 11．5 Bank Switching Function for de | numbers set in 4. ails of parame | ERVOPACK <br> bank． | ameter No． 900 |

（6）Function Setting 3

| OW口口05 Position Phase |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Function Setting 3 Speed Torque |  |  | － | － | 0000H |
| Description | Bit 1 | Phase Reference Creation Calculation Disable <br> Set whether to disable or enable phase reference generation processing when executing phase reference com－ mands． <br> Enable this processing when an electronic shaft is being used．Disable the processing when an electronic cam is being used． <br> 0 ：Enabled（default） <br> 1：Disabled <br> Speed feed forward compensation cannot be used for the SGD－N or SGDB－N SERVOPACK，so the Phase Reference Creation Calculation Disable setting cannot be used． |  |  |  |
|  | Bit B | Zero Point Return Input Signal <br> This bit functions as the INPUT signal when the INPUT used for the Zero Point Return operation． <br> 0：OFF（default） <br> 1：ON | C pulse metho | INPUT Only | hod is being |

## (7) Motion Commands



* These commands are move commands.
( 8 ) Motion Command Control Flag

| OW口口09 |  |  | Position Phase | Setting Range | Setting Unit | Default Val |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motion Command Control Flag |  |  | Speed Torque | - | - | 0000H |
| Description | Bit 0 | Holds a Command $\mathbb{R}$ <br> The axis will decelerate to a stop if this bit is changed to 1 while an axis is moving during positioning, external positioning, STEP operation, speed reference, or torque reference. <br> While this bit is 1 , the command is held. When this bit is changed to 0 , the hold is canceled and positioning restarts. After the axis has been stopped, the Command Hold Completed bit will turn ON in the Motion Command Status (monitoring parameter IW $\square \square 09$, bit 1). <br> 0: OFF (default) <br> 1: ON |  |  |  |  |
|  | Bit 1 | Interrupt a The axis positioning remaining 0: OFF 1: ON | bit is changed to ration, STEP ope | while an axis is tion, speed refe | ving during <br> e, or torque | oning, extern nce, and the |
|  | Bit 2 | Moving Dire <br> Set the mo <br> 0: Forw <br> 1: Reve | STEP. |  |  |  |
|  | Bit 3 | Zero Point R <br> Set the dire ZERO, DE <br> 0: Reve <br> 1: Forw | t return. This setti | is valid for zer | int returns | $\mathrm{DEC} 1+\mathrm{C},$ |
|  | Bit 4 | Latch Zone Effective Selection <br> Disable/enable the area where the external signal is valid for external positioning (called the latch zone). <br> This parameter writes the set values for OLDप2A/OLDप2C in the SERVOPACK parameters (Pn820, Pn822) when it is enabled. This setting is valid each time a new external positioning command is executed. <br> When this parameter is disabled, sets the SERVOPACK parameters Pn820 and Pn822 to the same value (zero). <br> 0 : Disabled (default) <br> 1: Enabled <br> Always disable this parameter when sending latch commands (latch, zero point return) other than those for external positioning. <br> - Related Parameters <br> Latch Zone Lower Limit Setting (setting parameter OLDD2A) and Latch Zone Upper Limit Setting (setting parameter OLDD2C) |  |  |  |  |
|  | Bit 5 | Position Reference Type $\boldsymbol{R}$ <br> Specify whether the value set for the Position Reference Setting (setting parameter OLDC1C) is an Incremental Addition Mode value (calculated by adding the movement amount to the current position) or an Absolute Mode value (an absolute position). <br> Always select Incremental Addition Mode if the SVB-01 module is mounted to an MP2000-series Machine Controller, a motion program is used, and an infinite length axis is used. For details, refer to 5.1.4 Position Reference. <br> 0: Incremental Value Add Method (default) <br> 1: Absolute Value Set Method |  |  |  |  |


| OW口D09 |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Motion Command Control Flag（cont＇d）Speed To |  |  |  |  | 0000H |
| Description | Bit 6 | Phase Compensation Type（Valid with SVB－01 module version 1.13 or later and built－in SVB version 2.40 or later） <br> Select a setting method for Phase Correction Setting（OLDC28）． <br> 0：Incremental Value Add Method（default） <br> 1：Absolute Value Set Method <br> This bit is valid when the electronic cam function is enabled（setting：OWDप05，bit $1=1$ ）． If using an electronic shaft（ $O W \square \square 05$ ，bit $1=0$ ），the incremental value of Phase Correction Setting （OLDC28），which is the difference between the values from the previous H scan and the current H scan，is added to the target position regardless of the setting of this bit． <br> －Precautions if using as an electronic cam（OWロロ05，bit $1=1$ ） <br> －If Absolute value 1 is selected for the Phase Compensation Type when using an electronic cam，always take measures to prevent a sudden and extreme change in the target position before executing the move com－ mand．For example，set the Phase Correction Setting（OLDC28）to the same value as CPOS in 32 bit （ILD미）．If preventive measures are not taken，the axis may abruptly move，resulting in a serious situa－ tion． <br> －If using the electronic cam function，do not change the setting of this bit while the move command is being executed．Although the setting of this bit can be changed at any time，changing the setting while the move command is being executed may move the axis abruptly，resulting in serious situation． <br> －Precautions if using as an electronic shaft（OWロロ05，bit $1=0$ ） <br> －The setting method of Phase Correction Setting（OLDC28）for the SVA－01 Module and that for the SVB／ SVB－01 Modules are different．For the SVA－01 Module，the set value of Phase Correction Setting （OLDप28）is simply added to the target position． |  |  |  |

## （ 9 ）Motion Subcommands



## （ 10 ）Torque Reference

|  |  | Setting Range |  | g Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $-2^{31}$ to $2^{31}-1$ | Depends on the torque unit set in Function Setting 1 （setting parameter OW $\square \square 03$ ，bits C to F）． |  | 0 |
| Description | The meaning will depend on the command． <br> －Set the torque reference for torque reference commands． <br> Refer to 6．2．23 Torque／Thrust Reference（TRQ）for details． <br> －Set the torque feed forward gain＊for interpolation commands． <br> ＊Torque Feed Forward Gain Function <br> Torque feed forward gain can be used when interpolation commands（INTERPOLATE，LATCH）are sent using SGDS，SGDV，and SGD7S SERVOPACKs． <br> ＜Conditions of Use＞ <br> －SERVOPACK parameter Pn002．0＝ 2 <br> －SGDS communication interface version 8 or later <br> －The setting unit for this parameter depends on the Torque Unit Selection（OWロロ03，bits C to F），but the result of applying the torque unit setting is not shown here． |  |  |  |  |
| OWロロ0E    <br> Speed Limit Setting at the Torque／ Position Phase <br> Thrust Reference Speed Torque    |  | Setting Range-32768 to 32767 |  | Setting | e |
|  |  | 0．01\％ | 1500 |
| Description | Set the speed limit for torque／thrust references as a percentage of the rated speed． <br> Torque control is used to control the Servomotor to output the specified torque，so it does not control the motor speed． Therefore，when an excessive reference torque is set relative to the load torque of the machine，the machine＇s torque is overpowered by the torque reference and the motor speed rapidly increases． <br> The torque reference speed limit functions to limit the Servomotor speed during torque control to protect the machine． <br> －The setting is enabled when a torque reference command is executed． <br> －The absolute value of the setting is the speed limit value． <br> ＜No speed limit＞ <br> Related Parameters <br> For SGDS，SGDH＋NS115，SGDH＋NS110， <br> SGDV，SGD7S SERVOPACKs： <br> Pn002．1 <br> ＜Speed limit used＞ <br> For SGD－N，SGDB－N SERVOPACKs： <br> Cn－02，bit 2 <br> $\mathrm{Cn}-14$ |  |  |  |  |

## ( 11 )Speed Reference


( 12 )Positive Side Limiting Torque/Thrust Setting at the Speed Reference

| OLDㅁㅁ <br> Positive Side Limiting Torque/Thrust Setting at the Speed Reference |  |  | Setting Rang | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sesition Phase | $-2^{31}$ to $2^{31}-1$ | Depends on the torque unit set in Function Setting 1 (setting parameter OWDロ03, bits C to F). | 30000 |
| Description | Set the torque limit for the speed reference command. The same value is used for both the forward and reverse directions. <br> This parameter is used when a torque limit is required at specific timing during operation of the machine, such as applications for pushing a load to stop it or holding a workpiece. <br> - The setting unit for this parameter depends on the Torque Unit Selection (OWDロ03, bits C to F), but the result of applying the torque unit setting is not shown here. <br> - The setting is enabled when a speed reference command is executed. <br> - When the SGDV or SGD7S SERVOPACK is used and the SERVOPACK parameters are set, the torque limit is enabled when the following motion commands are executed: <br> POSING, EX_POSING, ZRET, INTERPOLATE, LATCH, FEED, STEP and PHASE |  |  |  |  |

## Setting and Changing Torque Limit during SGDV or SGD7S SERVOPACK Operations

The torque limit can be set or changed during SERVOPACK operations if the following parameter settings have been made.

- Pn81F. $1=1$ (Position Control Command TFF/TLIM Function Allocation is enabled.)
- Pn002.0 $=1$ (PTLIM and NTLIM operate as the torque limit values.)

Or

- Pn81F. $1=1$ (Position Control Command TFF/TLIM Function Allocation is enabled.)
- Pn002.0 = 3 (When P-CL and N-CL are available, PTLIM and NTLIM operate as the torque limit value.)

Specify the torque limit value with the motion setting parameter OLDप14.
The torque limit can be set or changed during the execution of one of the following motion commands.

- Positioning (POSING)
- External input positioning (EX_POSING)
- Zero Point Return (ZRET)
- Interpolation (INTERPOLATE)
- Last Interpolation Segment (ENDOF_INTERPOLATE)
- Latch (LATCH)
- JOG operation (FEED)
- STEP operation (STEP)
- Speed control
- Position control

Related parameters
－Setting parameters

| Register No． | Name | Setting Range | Default Value | Setting Unit | Remarks |
| :---: | :--- | :--- | :--- | :--- | :--- |
| OLロロ14 | Positive Side Limiting <br> Torque／Thrust <br> Setting at the Speed Ref－ <br> erence | $-2^{31}$ to $2^{31}-1$ | 30000 | $1=0.01 \%$ <br> or $0.0001 \%$ | To enable the setting，the <br> SERVOPACK parameter <br> also needs to be set． |

SERVOPACK Parameter Setting
Pn002．0

| $=0$ | The set value of PTLIM，NTLIM， <br> and TFF are ignored． |
| :--- | :--- |



The actual torque limit is the lowest one of the values listed in a category in the following table．

| Pn002 Setting | Forward Torque Limit |  | Reverse Torque Limit |  |
| :---: | :---: | :---: | :---: | :---: |
|  | When OPTION．P＿CL $=0$ | When OPTION．P＿CL＝ 1 | When OPTION．N＿CL＝ 0 | When OPTION．N＿CL＝ 1 |
| n．पロप० or | Pn402 setting | Pn402 setting， Pn404 setting | Pn403 setting | Pn403 setting value， Pn405 setting value， |
| n．$\square \square \square 1$ | Pn402 setting， PTLIM（TLIM） | Pn402 setting， Pn404 setting， PTLIM（TLIM） | Pn403 setting， <br> NTLIM（TLIM） | Pn403 setting value， Pn405 setting value， NTLIM（TLIM） |
| n．$\square \square \square 3$ | Pn402 setting | Pn402 setting， Pn404 setting， PTLIM（TLIM） | Pn403 setting | Pn403 setting value， Pn405 setting value， NTLIM（TLIM） |

－For linear servomotors，the parameter numbers are different．Use Pn482 instead of Pn402 and Pn483 instead of Pn403．

## （ 13 ）Secondly Speed Compensation

| OLDप16 R <br> Secondly Speed Compensation |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Position Phase Speed Torque | $-2^{31}$ to $2^{31}-1$ | Depends on the speed unit set in Function Set－ ting 1 （setting parameter OWDロ03，bits 0 to 3 ）． | 0 |
| Description | Set the speed feed forward amount for the Phase Reference（PHASE），Interpolation（INTERPOLATE），and Latch （LATCH）commands． <br> The setting unit for Speed Compensation（setting parameter OWDC31）is $0.01 \%$（fixed）．The unit for this parameter， however，can be selected using Speed Unit Selection． <br> When used at the same time as OWロロ31，speed compensation can be performed twice． <br> －The setting unit for this parameter depends on the Speed Unit Selection（OWロロ03，bits 0 to 3），but the result of applying the speed unit setting is not shown here． |  |  |  |  |

## （ 14 ）Override

| OWDロ18 Override |  |  |  | Setting Range | Setting Un | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 0 to 32767 | 0．01\％ | 10000 |
| Description | Set the percentage of the Speed Reference Setting（OLDC10）to output in units of $0.01 \%$ ． <br> The override value is always enabled．Set to 10000 （fixed）when not using the override function． <br> Speed reference setting（OLロロ10）$\times$ Override（OWロロ18）$=$ Output speed <br> This parameter can be changed at any time to any value during execution of speed reference，and accelera－ tion／deceleration is performed immediately according to the set value． <br> When the override is set to 0 ，the output speed is 0 and the motor will not operate． |  |  |  |  |  |

（ 15 ）Position Reference Setting

| OLDC1C R <br> Position Reference Setting |  | Position Phase | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Speed Torque | $-2^{31}$ to $2^{31}-1$ | Reference unit | 0 |
| Description | Set the position reference．This parameter is used for the following motion commands．1：POSING Position Mode（Positioning） <br> 2：EX＿POSING Latch Target Positioning（External positioning） <br> 4：INTERPOLATE Interpolation <br> 6：LATCH Interpolation Mode with Latch Input <br> Related Parameters  <br> OWロロ09，bit 5：Position Reference Type  ？ |  |  |  |  |

## （ 16 ）Width of Positioning Completion

| OL口口1E Position |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: |
| Width of Positioning Completion Speed Torque |  | 0 to 65535 | Reference unit | 100 |
| Description | This bit shows the set value of a SERVOPACK parameter． <br> Refer to 11．6 Parameters That Are Automatically Updated for details． <br> When the Positioning Completed Signal（IWD $\square 2 \mathrm{C}$ ，bit 7）turns ON after position reference distribution has completed for position control，the Positioning Completed bit（IWDロ0C，bit 1）turns ON． <br> Set values that are appropriate for all machines in the system．If the value is too small，a long time will be required for positioning to complete． <br> Related Parameters <br> Fixed Parameter 4：Reference Unit Selection <br> Fixed Parameter 5：Number of Digits below Decimal Point <br> Fixed Parameter 6：Travel Distance per Machine Rotation <br> Fixed Parameter 8：Servo Motor Gear Ratio <br> Fixed Parameter 9：Machine Gear Ratio <br> OWDD2E：Position Loop Gain <br> IW $\square \square 0 \mathrm{C}$ ，bit 0：Discharging Completed <br> IW $\square \square 0 \mathrm{C}$ ，bit 1：Positioning Completed（POSCOMP） |  |  |  |

## （ 17 ）NEAR Signal Output Width

| OLDロ20 |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: |
| NEAR Signal Output Width Sperser |  | 0 to 65535 | Reference unit | 0 |
| Description | NEAR Position（IWDप0C，bit 3）will be turned ON when the ab mand position and the feedback position is less than the value <br> If the NEAR Signal Output Width is set to 0 ，the NEAR Position bi turned ON when reference pulses have been distributed．（monitorin If the NEAR Signal Output Width is set to a value other than 0 ，this the Machine Coordinate System Feedback Position（APOS）（monit nate System Reference Position（MPOS）（monitoring parameter IL even if the reference pulses have not been distributed． <br> This parameter has no relation to the SERVOPACK parameter Posi | olute value of et here． （monitoring par parameter IWD bit will be turned ing parameter I 12）is less th on Proximity（N me g me <br> －Related IWロロ0 | difference be neter IW $\square \square 0 \mathrm{C}$ 0 C ，bit 0 ）． ON when the res $\square 16$ ）from the the NEAR Sign <br> AR）Signal Wid <br> arameter <br> bit 3：NEAR P | een the com－ <br> t 3）will be of subtracting achine Coordi－ Output width， |

## （ 18 ）Error Count Alarm Detection

| OLD $\square 22$ |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Error Count Alarm Detection |  | Speed Torqu | 0 to $2^{31}-1$ | Reference unit | $2^{31}-1$ |
| Description | Set the value to detect an excessively following error during position control． <br> The Excessive Deviation（ILDロ04，bit 9）is set to $1(\mathrm{ON})$ if the Position Error（monitoring parameter ILD口1A）is greater than the Error Count Alarm Detection．An excessive error will not be detected if this value is set to 0 ． <br> －Related Parameters <br> An excessive error can be set to be treated either as a warning or as an alarm in the Excessive Deviation Error Level Set－ ting in Mode Setting 1 （setting parameter OWD $\square 01$ ，bit 0 ）． <br> OWDロ01，bit $0=0$ ：Alarm（default）（stops axis operation） <br> OW口ロ01，bit $0=1$ ：Warning（continues axis operation） |  |  |  |  |

## （ 19 ）Positioning Completion Check Time

| OW口ロ26 |  |  | Setting Rang | Setting Un |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Position Completion Check Time |  | Speed Torq | 0 to 65535 | ms | 0 |
| Description | Set the time to detect a positioning time over error． <br> If the Positioning Completed bit does not turn ON within the time set here after reference pulses have been distributed during position control，a Positioning Time Over alarm（monitoring parameter ILDC04，bit 6）will occur．The comple－ tion of positioning will not be checked if this parameter is set to 0 ． |  |  |  |  |

## （ 20 ）Phase Correction Setting

| OLDロ28 |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: |
| Phase | ction Setting Speed | $-2^{31}$ to $2^{31}-1$ | Reference unit | 0 |
| Description | Set the phase correction amount in reference units for phase reference commands． <br> ＜Using as Electronic Shaft＞ <br> Use this parameter to compensate for reference pulses in control systems without rigidity，in which higher gain cannot be applied． <br> ＜Using as Electronic Cam＞ <br> Use this parameter as the target position for the cam pattern with incremental addition． <br> －Refer to 6．2．24 Phase References（PHASE）for details on phase reference commands． |  |  |  |

（ 21 ）Latch

| OLD口2A |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Latch Zone Lower Limit Setting |  | Speed Torque | $-2^{31}$ to $2^{31}-1$ | Reference unit | $-2^{31}$ |
| Description | Set the range in which the latch signal is valid（position from the zero position）for external positioning． <br> The set value here is written to the SERVOPACK parameters each time an external positioning command is executed as long as the latch zone is enabled in the Latch Zone Effective Selection bit in Motion Command Control Flag（setting parameter OWDप 09 ，bit 4）． <br> The SERVOPACK parameters for the latch zone setting can be used for SGDS，SGDV，and SGD7S SERVOPACKs． <br> Latching Area Lower Limit：Pn822 <br> Latching Area Upper Limit：Pn820 |  |  |  |  |
| OLロロ2C <br> Latch Zone Upper Limit Setting |  | Positi | Setting Range | Setting Unit | Default Value |
|  |  | Speed Torque | $-2^{31}$ to $2^{31}-1$ | Reference unit | $2^{31}-1$ |
| Description | Same as for OLDप2A． |  |  |  |  |

## （ 22 ）Gain and Bias Settings




The following figure shows the relationship between the above related parameters.

( 23 ) Acceleration/Deceleration Settings


The following two methods can be used to specify the acceleration/deceleration speed.

1. Setting the acceleration/deceleration speed

Set the speed within the range of 0 to 2147483647 reference units $/ \mathrm{s}^{2}$.
When a negative value is set, the setting parameter warning will be generated and the axis will move at the maximum acceleration or maximum deceleration speed.
2. Setting the time to reach the rated speed from zero speed.

Set the time within the range of 0 to 32767 ms .
When a negative value is set, the setting parameter warning will be generated and the axis will move as it does when 0 is set.
When a value larger than 32767 is set, the setting parameter warning will be generated and the axis will move as it does when 32767 is set.


- For details on each acceleration/deceleration parameter, refer to 5.1.6 Acceleration/Deceleration Settings and 5.1.7 Acceleration/Deceleration Filter Settings.


## Changing the maximum value of acceleration and deceleration for SGDV or SGD7S SERVOPACKs

When the SERVOPACK parameter Pn833.0 is set to 1 (Accel/Decel Constant Selection = Uses Pn834 to Pn840), a wilder range of speed for acceleration and deceleration can be obtained by raising the upper limit of acceleration and deceleration for the following motion commands.

- Positioning (POSING)
- External input positioning (EX_POSING)
- Zero Point Return (ZRET)
- JOG operation (FEED)
- STEP operation (STEP)

After communications have been established between the SVB module and SERVOPACK, the SVB module reads the setting of Pn833.0 and changes the applicable parameters. Use the following SERVOPACK parameters to set the acceleration and deceleration.

- Parameters to set acceleration and deceleration when $\operatorname{Pn} 833=n . \square \square \square 0$

| Parameter <br> No. | Name | Size | Min. | Max. | Unit | Default <br> Value |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Pn80A | 1st Linear Acceleration Con- <br> stant | 2 | 1 | 65535 | 10000 Reference unit/s 2 | 100 |
| Pn80B | 2nd Linear Acceleration Con- <br> stant | 2 | 1 | 65535 | 10000 Reference unit/s ${ }^{2}$ | 100 |
| Pn80C | Acceleration Constant Switch- <br> ing Speed | 2 | 0 | 65535 | 100 Reference unit/s | 0 |
| Pn80D | 1st Linear Deceleration Con- <br> stant | 2 | 1 | 65535 | 10000 Reference unit/s ${ }^{2}$ | 100 |
| Pn80E | 2nd Linear Deceleration Con- <br> stant | 2 | 1 | 65535 | 10000 Reference unit/s 2 | 100 |
| Pn80F | Deceleration Constant Switch- <br> ing Speed | 2 | 0 | 65535 | 100 Reference unit/s | 0 |
| Pn827 | Linear Deceleration Constant 1 <br> for Stopping | 2 | 0 | 65535 | 10000 Reference unit/s 2 | 100 |

- Parameters to set acceleration and deceleration when Pn833 = n. प- प1

| Parameter <br> No. | Name | Size | Min. | Max. | Unit | Default <br> Value |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Pn834 | 1st Linear Acceleration Con- <br> stant 2 | 4 | 1 | 20971520 | 10000 Reference unit/s $\mathrm{s}^{2}$ | 100 |
| Pn836 | 2nd Linear Acceleration Con- <br> stant 2 | 4 | 1 | 20971520 | 10000 Reference unit/s $\mathrm{s}^{2}$ | 100 |
| Pn838 | Acceleration Constant Switch- <br> ing Speed 2 | 4 | 0 | 2097152000 | Reference unit/s | 0 |
| Pn83A | 1st Linear Deceleration Con- <br> stant 2 | 4 | 1 | 20971520 | 10000 Reference unit/s 2 | 100 |
| Pn83C | 2nd Linear Deceleration Con- <br> stant 2 | 4 | 1 | 20971520 | 10000 Reference unit/s 2 | 100 |
| Pn83E | Deceleration Constant Switch- <br> ing Speed 2 | 4 | 0 | 2097152000 | Reference unit/s | 0 |
| Pn840 | Linear Deceleration Constant 2 <br> for Stopping | 4 | 0 | 20971520 | 10000 Reference unit/s 2 | 100 |

- To enable the new setting for Pn833, the SERVOPACK must be restarted.
- When connecting SGDV or SGD7S SERVOPACKs and executing self-configuration for the first time, set Pn833.0 to 1.

Example: Total time until the reference reaches the rated $3000 \mathrm{~min}^{-1}$ when using a 17 bit encoder.
The maximum acceleration of Pn80B: $65535 \times 10000 \mathrm{pulse} / \mathrm{s}^{2}=10 \mathrm{~ms}$
The maximum acceleration of Pn836: $20971520 \times 10000 \mathrm{pulse} / \mathrm{s}^{2}=30 \mu \mathrm{~s}$
（ 24 ）Filter

| OWDロ3A R |  |  | Setting Rang | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Filter Time Constant |  |  | 0 to 65535 | 0.1 ms |  |
| Description | Set the acceleration／deceleration filter time constant． <br> Always make sure that pulse distribution has been completed（i．e．，that monitoring parameter IWDD0C，bit 0 is ON ） before changing the time constant． <br> The actual machine operation depends on the settings in the SERVOPACK parameters．Refer to 11.6 Parameters That Are Automatically Updated for information on user constants self－writing function． <br> The setting range is limited by the specifications of the SERVOPACK being used． <br> －When using SGD－N，SGDB－N，SGDH＋NS100／115，SGDS，SGDV，or SGD7S SERVOPACK，the set－ ting range is between 0 and 5100 ． <br> Change the time constant for the filter set using the motion command Change Filter Type． <br> After setting the filter type to be used，change the time constant． <br> The overall flow for setting the filter time constant is as follows： <br> 1．Select the filter type in Function Setting 1 （setting parameter OWD $\square 03$ ，bits 8 to B）． <br> $\downarrow$ <br> 2．Execute the motion command Change Filter Type． <br> $\downarrow$ <br> 3．Set the Filter Time Constant（setting parameter OWD $\square$ 3A）． <br> $\downarrow$ <br> 4．Execute the motion command Change Filter Time Constant． <br> Once the filter type is set using the motion command，the setting is held until the power is turned OFF or the filter type is changed． |  |  |  |  |
| OWDロ3B（ R only） <br> Bias Speed for Exponential Acceleration／Deceleration Filter |  | Setting Rang |  |  | Default Valu |
|  |  | 0 to 32767 |  | ction（setting |  |
| Description | Set the bias speed for the exponential acceleration／deceleration filter． <br> －The setting unit for this parameter depends on the Speed Unit Selection（OWDD03，bits 0 to 3），but the result of applying the speed unit setting is not shown here． |  |  |  |  |

－There are two types of acceleration／deceleration filter：an exponential acceleration／deceleration filter and a moving average filter．
－For details on each acceleration／deceleration parameter，refer to 5．1．6 Acceleration／Deceleration Settings and 5．1．7 Acceleration／Deceleration Filter Settings．

## （ 25 ）Zero Point Return

| OWDロ3C <br> Zero Point Return Method |  | ion | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Speed Torque | 0 to 19 | － | 0 |
| Description | Set the operation method when the Zero Point Return（ZRET）motion command is executed． <br> With an incremental encoder，there are 13 different methods that can be performed for the Zero Point Return operation． <br> －Refer to 6．2．3 Zero Point Return（ZRET）for information on each method． <br> With an absolute encoder，the axis is returned to the zero point of the machine coordinate system regardless of which method is being used． |  |  |  |  |
| OWロロ3D R <br> Width of Starting Point Position Output |  | osition Phase | Setting Range | Setting Unit | Default Value |
|  |  | Speed Torque | 0 to 65535 | Reference unit | 100 |
|  |  |  |  |  |  |
| OLDロ3E <br> Approach Speed |  | Position Phase | Setting Range | Setting Unit | Default Value |
|  |  |  | $-2^{31}$ to $2^{31}-1$ | Depends on Speed Units． | 1000 |
| Description | Set the approach speed for a zero point return operation after the deceleration LS is passed． <br> －The setting unit for this parameter depends on the Speed Unit Selection（OWロロ03，bits 0 to 3），but the result of applying the speed unit setting is not shown here． |  |  |  |  |

(cont'd)

| OLㅁㅁㅁㅇ <br> Creep Rate |  | Position Phase | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Speed Torque | $-2^{31}$ to $2^{31}-1$ | Depends on Speed Units. | 500 |
| Description | Set the creep speed for a zero point return operation after the ZERO signal is detected. <br> - The setting unit for this parameter depends on the Speed Unit Selection (OWDロ03, bits 0 to 3), but the result of applying the speed unit setting is not shown here. |  |  |  |  |
|  <br> Zero Point Return Travel Distance |  | Position Phase | Setting Range | Setting Unit | Default Value |
|  |  | Speed Torque | $-2^{31}$ to $2^{31}-1$ | Reference unit | 0 |
| Description | Set the distance from where the signal is detected to the zero point position. |  |  |  |  |

A typical example of a zero point return operation is shown below.

- Refer to 6.2.3 Zero Point Return (ZRET) for details.



## ( 26 )Step Travel Distance



## （ 27 ）External Positioning Final Travel Distance



## （ 28 ）Coordinate System Settings

| OLロ48 |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Zero Point Position in Machine Coordinate System Offset |  | Speed Torque | $-2^{31}$ to $2^{31}-1$ | Reference unit | 0 |
| Description | Set the offset to shift the machine coordinate system． <br> －This parameter is always enabled，so be sure that the setting is correct． |  |  |  |  |
| OLDC4A R <br> Work Coordinate System Offset |  | Position Phase | Setting Range | Setting Unit | Default Value |
|  |  | Speed Torque | $-2^{31}$ to $2^{31}-1$ | Reference unit | 0 |
| Description | Set the offset to shift the work coordinate system． <br> －This parameter is always enabled，so be sure that the setting is correct． |  |  |  |  |
| OLDロ4C R <br> Number of POSMAX Turns Presetting Data |  | Position Phase | Setting Range | Setting Unit | Default Value |
|  |  | Speed Torque | $-2^{31}$ to $2^{31}-1$ | Turn | 0 |
| Description | When the POSMAX Turn Number Presetting Demand bit（setting parameter OWDD00，bit 6 ）is set to 1 ，the val－ ue set here will be preset as the Number of POSMAX Turns（monitoring parameter ILDロ1E）． <br> This parameter is invalid for linear type． |  |  |  |  |

[^0]
## ( 29 )SERVOPACK User Monitor

| OW口ロ4E Position |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Servo User Monitor Setting Speed Torqu |  |  |  |  | 0E00H |
| Description | Bit 4 to Bit 7 | Monitor 2 <br> Monitor 2 is used with the MECHATROLINK-I and the MECHATROLINK-II in 17-byte Mode when bit 0 of OWD $\square 02$ is 1 . <br> 0 : Reference position in command coordinate system (reference unit) (default) <br> 1: Reference position in machine coordinate system (reference unit) <br> 2: Following error (reference unit) <br> 3:Feedback position in machine coordinate system (reference unit) <br> 4:Feedback latch position in machine coordinate system (reference unit) <br> 5: Reference position in command coordinate system (reference unit) <br> 6: Target position in command coordinate system (reference unit) <br> 7: <br> 8:Feedback speed (position/torque control: reference units/s, speed control: maximum speed/40000000H) <br> 9: Command speed (position/torque control: reference units/s, speed control: maximum speed/40000000H) <br> A:Target speed (position/torque control: reference units/s, speed control: maximum speed/40000000H) <br> B:Torque reference (position/speed control: reference units/s, torque control: maximum torque $/ 40000000 \mathrm{H}$ ) <br> C: <br> D: <br> E:Option Monitor 1 <br> F:Option Monitor 2 <br> (The information that can be monitored will differ depending on individual SERVOPACK specifications. Refer to the relevant SERVOPACK user's manual for details.) |  |  |  |
|  | Bit $C$ to Bit $F$ | Monitor 4 <br> Monitor 4 is used only with the MECHATROLINK0 to F : Same as for Monitor 2. | 32-byte Mode |  |  |

## （ 30 ）SERVOPACK Commands

| OW口口4F |  | Position Ph | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Servo Driver Alarm Monitor No． |  | Speed Torque | 0 to 9 | － | 0 |
| Description | Set the number of the alarm to monitor． <br> Set the number of the alarm or warning to mo The result of monitoring will be stored as the <br> －Refer to Chapter 6 Motion Comm | or for the ALM＿M rvo Driver Alarm ds for details． | or ALM＿H ode（monitorin | otion com <br> meter IW |  |
| OW口口50 |  | ion | Setting Range | Setting Un | Default Value |
| Servo Driver User Constant No． |  | Speed Torqu | 0 to 65535 | － | 0 |
| Description | Set the number of the SERVOPACK parameter． <br> Set the number of the SERVOPACK parameter to be processed for the PRM＿RD，PRM＿WR or PPRM＿WR motion com－ mand． <br> －Refer to Chapter 6 Motion Commands for details． |  |  |  |  |
| OWロロ51 <br> Servo Driver User Constant Size |  | osition Phase | Setting Range | Setting Unit | Default Value |
|  |  | Speed Torque | 1，2 | － | 1 |
| Description | Set the number of words in the SERVOPACK parameter． <br> Set the number of words in the SERVOPACK parameter to be processed for the PRM＿RD，PRM＿WR or PPRM＿WR motion command． <br> －Refer to Chapter 6 Motion Commands for details． |  |  |  |  |
| OLDロ52 <br> Servo Driver User Constant Set Point |  | osition | Setting Range | Setting Unit | Default Value |
|  |  | Speed Torque | $-2^{31}$ to $2^{31}-1$ | － | 0 |
| Description | Set the setting for the SERVOPACK parameter． <br> Set the setting value to be written to the SERVOPACK parameter with the PRM＿WR，PPRM＿WR motion command． <br> －Refer to Chapter 6 Motion Commands for details． |  |  |  |  |
| OW口ロ54 <br> Servo Driver for Assistance User Constant No． |  | Position Phase | Setting Range | Setting Unit | Default Value |
|  |  | Speed Torque | 0 to 65535 | － | 0 |
| Description | Set the number of the SERVOPACK parameter． <br> Set the number of the SERVOPACK parameter to be processed for the PRM＿RD or PRM＿WR motion subcommand． <br> －Refer to Chapter 6 Motion Commands for details． |  |  |  |  |
| OWロप55 <br> Servo Driver for Assistance User Constant Size |  | Position Phase | Setting Range | Setting Unit | Default Value |
|  |  | Speed Torque | 1， 2 | － | 1 |
| Description | Set the number of words in the SERVOPACK parameter． <br> Set the number of words in the SERVOPACK parameter to be processed for the PRM＿RD or PRM＿WR motion subcom－ mand． <br> －Refer to Chapter 6 Motion Commands for details． |  |  |  |  |
| OLDロ56 <br> Servo Driver for Assistance User Constant Set Point |  | Position Phase | Setting Range | Setting Unit | Default Value |
|  |  | Speed Torque | $-2^{31}$ to $2^{31}-1$ | － | 0 |
| Description | Set the setting for the SERVOPACK parameter． <br> Set the setting value to be written to the SERVOPACK parameter with the PRM＿WR motion subcommand． <br> －Refer to Chapter 6 Motion Commands for details． |  |  |  |  |

（ 31 ）Supplemental Settings

| OWDロ5C R |  | ion Phase | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fixed Parameter Number |  | Speed Torque | 0 to 65535 |  | 0 |
| Description | Set the number of the fixed parameter to be read with the motion subcommand FIXPRM＿RD． <br> The results of the Read Fixed Parameters operation are stored in the Fixed Parameter Monitor（monitoring parameter IWロロ56）． <br> －For details，refer to 6．3 Motion Subcommands and 6．4 Motion Subcommand Details． |  |  |  |  |

## （ 32 ）Absolute Infinite Length Axis Position Control Information

| OLDロ5E <br> Encoder Position when Power is OFF （Lower 2 words） |  |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Speed Torque | $-2^{31}$ to $2^{31}$ | pulse | 0 |
| Description | This is the information for infinite length axis position control when an absolute encoder is used． <br> The encoder position is stored in 4 words． <br> If the Request ABS Rotary Pos LOAD bit is set to 1 in the RUN Command Setting（setting parameter OW $\square \square 00$ ，bit 7）， the position information will be recalculated with the values set here and the Pulse Position when Power is OFF （OLDロ62 and OLDロ64）． <br> －Refer to 9．4 Absolute Position Detection for Infinite Length Axes for details． <br> －Set to 0 for linear type． |  |  |  |  |
| OLDロ60 <br> Encoder Position when Power is OFF （Upper 2 words） |  |  | Setting Range | Setting Unit | Default Value |
|  |  | Speed Torque | $2^{31}$ to $2^{31}-1$ | pulse | 0 |
| DescriptionSame as for OLD口5E． <br>  <br> $\quad$ • Refer to 9.4 Absolute Position Detection for Infinite Length Axes for details． |  |  |  |  |  |
| OLDロ62  <br> Pulse Position When Power is OFF（Lower 2 words） Position Phase <br> Speed Torque  |  |  | Setting Range | Setting Unit | Default Value |
|  |  |  | $-2^{31}$ to $2^{31}-1$ | pulse | 0 |
| Description | This is the information for infinite length axis position control when an absolute encoder is used． <br> The axis position in pulses managed internally by the controller is stored in 4 words． If the Request ABS Rotary Pos．LOAD bit is set to 1 in the Run Command Setting（setting parameter OWDD00，bit 7）， the position information will be recalculated with the values set here and the Encoder Position when Power is OFF （OLDD5E and OLDD60）． <br> －Refer to 9．4 Absolute Position Detection for Infinite Length Axes for details． <br> －Set to 0 for linear type． |  |  |  |  |
| OLD口64 |  | Tion | Setting Range | Setting Unit | Default Value |
| Pulse Position When Power is OFF（Upper 2 words） |  | Speed Torque | $-2^{31}$ to $2^{31}-1$ | pulse | 0 |
| Description | Same as for OLDप62． <br> －Refer to 9．4 Absolute Position Detection for Infinite Length Axes for details． <br> －Set to 0 for linear type． |  |  |  |  |

（ 33 ）Command Buffer for Servo Driver Transmission Reference Mode

| OW口ロ70 to OW口ロ7E | to OW口ロ7E |  | Setting Range | Setting Unit | Default Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Command Buffer for Servo Driver Transmission Position Phase |  |  | － | － | 0 |
| Description | This area is used for response data wh <br> －MECHATROLINK－I and MECHATRO <br> －MECHATROLINK－II，32－byte Mode： | CHATROLINK Se <br> ，17－byte Mode：D <br> $=$ OWDᄆ70 to | vo commands ta area $=O W \square$ W口ロ7E | specified di <br> to OW口ᄆ |  |

## 4．4．3 Motion Monitoring Parameter Details

The motion monitoring parameter details are listed in the following table．
－Refer to 4．3．3 Monitoring Parameter List for a list of motion monitoring parameters．
－Register number IWロロ00 indicates the leading input register number +00 ．Other register numbers listed below indicate input register numbers in the same way．
－Refer to 4．1．1 Motion Parameter Register Numbers for MP2000 Series Machine Controllers for information on how to find the leading input register number．
－ $\mathbf{R}$ in the following tables indicates that the item is also compatible with SVR．

## （ 1 ）RUN Status

| IWロロ00 <br> Run Status |  |  | Range | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Description | Bit 0 | Motion Controller Operation Ready $\mathbf{R}$ <br> 0 ：Operation not ready <br> 1：Operation ready <br> This bit turns ON when RUN preparations for the Motion Module have been completed． <br> This bit will be OFF under the following conditions： <br> －Major damage has occurred． <br> －Axis that is not used was selected． <br> －Motion fixed parameter setting error <br> －Motion fixed parameters are being changed． <br> －Communication is not synchronized． <br> －SERVOPACK parameters are being accessed by a command from an MPE720． <br> －The Motion Parameter Window is being opened． <br> －Configure an OR circuit with IWロロ00，bit 2 when using as a Servo ON interlock． |  |  |
|  | Bit 1 | Running（At Servo ON）R <br> This bit is ON while the axis is in Servo ON status． <br> 0 ：Stopped <br> 1：Running（Servo ON） |  |  |
|  | Bit 2 | System BUSY <br> 0：System not busy <br> 1：System busy <br> This bit is ON when the system is processing and cannot execute a motion command．This bit is ON for the fol－ lowing conditions． <br> －Fixed parameters are being changed． <br> －SERVOPACK parameters are being read by a command from an MPE720． <br> －SERVOPACK parameters are being written by a command from an MPE720． |  |  |
|  | Bit 3 | Servo Ready <br> 0 ：Servo not ready <br> 1：Servo ready <br> This bit is ON when all of the following conditions are satisfied． <br> －Communication is synchronized． <br> －The main power supply for the SERVOPACK is ON． <br> －There are no alarms in the SERVOPACK． |  |  |
|  | Bit 4 | Latch Mode（Valid with SVB－01 module version 1.20 or later and built－in SVB version 2.50 or later） 0 ：Latch detection demand reception not completed，1：Latch detection demand reception completed This bit turns ON when the request by the setting parameter OWロロ00，bit 4 （Latch Detection Demand）has been accepted． |  |  |

## （ 2 ）Over Range Parameter Number

| IWDC01 R Parameter Number When Range Over is Generated |  | Rang |  |
| :---: | :---: | :---: | :---: |
|  |  | 0 to 6553 |  |
| Description | Stores the number of a parameter set outside the setting range． <br> －Setting parameters： 0 or higher <br> －Fixed Parameters： 1000 or higher <br> This parameter stores the number of the setting or fixed parameter that exceeds the setting range either individually or in combination with the settings of other parameters． <br> When motion fixed parameters are used，the parameter stores the parameter number plus 1000 ． |  |  |

## (3) Warning


－For an SGDV or SGD7S SERVOPACK，the following servo parameter settings must be used．
The setting of Pn50A is equal to that of H2881（A P－OT warning is activated when Cn1－8 is low）．
The setting of Pn50B is equal to that of H8881（A N－OT warning is activated when Cn1－7 is low）．
－The fixed parameters of the MP2300 machine controller use the following settings．
Fixed parameter No．1：Bit 3 is set to 0 （disabled）．
Bit 4 is set to 0 （disabled）．
The bits for the positive／negative direction overtravel warnings will be turned ON in the following order．
1．The servomotor power is ON ．
2．A motion command，such as one for positioning or constant feed，is executed．
3．The servomotor moves in the forward（P－OT）or reverse（N－OT）direction．
4．A SERVOPACK P－OT or N－OT signal is input．

## Stop Signal Input Warning for SGDV and SGD7S SERVOPACKs

When an HWBB signal（stop signal）is input，bit A of ILDロ02 is turned ON，and a warning is issued． The warning（Servo Driver Stop Signal Input）indicates that the SERVOPACK is being stopped forcibly． This warning is cleared automatically when the HWBB signal turns OFF．
The status of the HWBB signal can be checked with the stop signal（HWBB）of the Servo Driver I／O Monitor．
－Monitoring Parameters

| Register No． | Name | Meaning |
| :---: | :--- | :--- |
| ILロロ02 | Warning | Bit A：Servo Driver Stop Signal Input |
| IWロロ2E | Servo Driver I／O Monitor | Bit A：Stop signal（HWBB） |

When an HWBB signal（stop signal）is sent，the SERVOPACK cannot be ON．Also，if an HWBB signal is sent when the SERVOPACK is running，the SERVOPACK is turned OFF．
－Servo ON and NOP mid－operation
When the SERVOPACK is ON and a No Operation（NOP）motion command is issued during operations，a warning is issued（ILDD02，bit $8=1$ ）．To clear the warning，turn the HWBB signal OFF，and set bit 0 of OWD口00 to 1 ．
－Axis Movement by the Motion Command
When axis movement results from a motion command being issued，and the following warnings or alarms will occur．
－Servo Driver Error（ILロロ02，bit 3）
－Servo ON Incomplete（ILロロ02，bit 8）
－Servo OFF（ILDロ04，bit 5）
And then the following motion command will be executed：Command Error Completed Status（IWपロ09，bit 3）． To clear the error，turn the HWBB signal OFF and do the following procedures．

1．Change the motion command to NOP $(O W \square \square 08=0)$
2．Servo OFF（OWDप00，bit 0 to 0 ）
3．Clear the alarm（ $\mathrm{OW} \square \square 00$ ，bit $\mathrm{F}=0 \rightarrow 1 \rightarrow 0$ ）
4．Servo ON（OWDロ00，bit 0 to 1 ）
(4) Alarm



| ILDロ04 <br> Alarm（cont＇d） | （cont＇d） |  |
| :--- | :--- | :--- | :---: | :---: |
| Description | Bit 1F | Connected Encoder Type Error <br> 0：Matched（OFF） <br> 1：Unmatched（ON） <br> This bit turns ON when the motor type set in the Module Configuration Definition Window does not match the <br> （onnected motor type． <br> Refer to 4．2．2（1）for corrective action when this alarm occurs． |

## （5）Motion Command Response Code

| IWDロ08 R <br> Motion Command Response Code |  | Range | Unit |
| :---: | :---: | :---: | :---: |
|  |  | 0 to 65535 | － |
| Description | Stores the motion command code for the command that is currently being executed． <br> This is the motion command code that is currently being executed and is not necessarily the same as the Motion Com－ mand（setting parameter OWD口08）． <br> Response codes are also stored when the following processing is executed． <br> －Servo ON： 29 <br> －Servo OFF： 30 <br> －Alarm Clear： 31 |  |  |

## （ 6 ）Motion Command Status

| IWロロ09 <br> Motion Command Status |  |  | Range | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | － |  |
| Description | Bit 0 | Command Execution Flag $\mathbb{R}$ <br> 0 ：READY（completed） <br> 1：BUSY（processing） <br> This bit indicates the servo module command status．Refer to Chapter 6 Motion Commands for details on com－ mand timing charts． <br> This bit turns ON during execution of commands that have been completed or during abort processing． |  |  |
|  | Bit 1 | Command Hold Completed（HOLDL）R <br> 0 ：Command hold processing not completed <br> 1：Command hold completed <br> This bit turns ON when command hold processing has been completed．Refe for details on command timing charts． | Chapter | Commands |
|  | Bit 3 | Command Error Completed Status（FAIL）R <br> 0 ：Normal completion <br> 1：Abnormal completion <br> This bit turns ON if motion command processing does not complete normal If motion command execution ends in an error，the axis will stop any motio mands for details on command timing charts． | fer to | tion Com－ |
|  | Bit 7 | Reset Absolute Encoder Completed <br> 0 ：Reset not completed <br> 1：Reset completed <br> This bit turns ON when the Reset Absolute Encoder command（ABS＿RST） completed． <br> Refer to Chapter 6 Motion Commands for details on command timing char | ecuted | tion is |
|  | Bit 8 | Command Execution Completed（COMPLETE）R <br> 0 ：Normal execution not completed <br> 1：Normal execution completed <br> This bit turns ON when motion command processing was completed norm Commands for details on command timing charts． | fer | otion |

## （ 7 ）Motion Subcommand Response Code

| IWDロOA R Motion Subcommand Response Code |  | Range | Unit |
| :---: | :---: | :---: | :---: |
|  |  | 0 to 65535 | － |
| Description | Stores the motion subcommand code for the command that is being executed． <br> This is the motion subcommand code that is currently being executed and is not necessarily the same as the Motion Sub－ command（setting parameter OWDD0A）． |  |  |

## （ 8 ）Subcommand Status

| IWロロ0B <br> Subcommand Status |  |  | Range | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | － | － |
| Description | Bit 0 | Command Execution Flag $\mathbb{R}$ <br> 0：READY（completed） <br> 1：BUSY（processing） <br> This bit indicates the motion subcommand status． <br> This bit turns ON during execution of commands that have been completed or during abort processing． |  |  |
|  | Bit 3 | Command Error Completed Status（FAIL） $\mathbb{R}$ <br> 0 ：Normal completion <br> 1：Abnormal completion <br> This bit turns ON if motion subcommand processing does not complete normally． |  |  |
|  | Bit 8 | Command Execution Completed（COMPLETE）R <br> 0 ：Normal execution not completed <br> 1：Normal execution completed <br> This bit turns ON when motion subcommand processing was completed normally． |  |  |

## （9）Position Management Status




## ( 10 )Position Information

| ILDD0E R <br> Target Position in Machine Coordinate System (TPOS) |  | Range | Un |
| :---: | :---: | :---: | :---: |
|  |  | $-2^{31}$ to $2^{31}-1$ | Reference unit |
| Description | Stores the target position in the machine coordinate system managed by the Motion Module. <br> This is the target position per scan for INTERPOLATE or LATCH commands. <br> - This parameter will be set to 0 when the power supply is turned ON. <br> - The data is refreshed even when the machine lock mode is enabled. <br> - This parameter will not be reset even when an infinite length axis type is selected. |  |  |
| ILDロ10 R <br> Calculated Position in Machine Coordinate System (CPOS) |  | Range | Un |
|  |  | $-2^{31}$ to $2^{31}-1$ | Reference unit |
| Description | Stores the calculated position in the machine coordinate system managed by the Motion Module. <br> The position data stored in this parameter is the target position for each scan. <br> - This parameter will be set to 0 when the power supply is turned ON. <br> - The data is updated even when the machine lock mode is enabled. <br> - When an infinite length axis type is selected, a range of 0 to (Infinite Length Axis Reset Position (POSMAX) - 1) is stored. <br> - Refer to Chapter 9 Absolute Position Detection when using an absolute encoder. |  |  |


|  |  |  | （cont＇d） |
| :---: | :---: | :---: | :---: |
| ILロロ12 R |  | Range | Unit |
| Machine Coordinate System Reference Position（MPOS） |  | $-2^{31}$ to $2^{31}-1$ | Reference unit |
| Description | Stores the reference position in the machine coordinate system managed by the Motion Module． <br> －This parameter will be set to 0 when the power supply is turned ON． <br> －This data is not updated when the machine lock mode is enabled．（When the machine lock mode is enabled，the posi－ tion reference data is not output externally．） <br> －When the machine lock mode function is not used，this position is the same as that in ILDप10． |  |  |
| ILDC14 <br> CPOS for 32 bit（DPOS） |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | Reference unit |
| Description | Stores the reference position in the machine coordinate system managed by the Motion Module． <br> For a finite length axis，this is the same as the target position（CPOS）． <br> For both finite and infinite length axes，the value is refreshed between $-2^{31}$ and $2^{31}-1$ ． |  |  |
| ILロロ16 R <br> Machine Coordinate System Feedback Position（APOS） |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | Reference unit |
| Description | Stores the feedback position in the machine coordinate system managed by the Motion Module． <br> －This parameter will be set to 0 when a Zero Point Return（ZRET）is executed． <br> －When an infinite length axis type is selected，a range of 0 to（Maximum Value of Rotary Counter（POSMAX）－1）is stored． <br> －Refer to Chapter 9 Absolute Position Detection when using an absolute encoder． |  |  |
| ILDロ18 <br> Machine Coordinate System Latch Position（LPOS） |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | Reference unit |
| Description Stores the latch position when the latch has been completed．$_{\text {d }}$ |  |  |  |
| ILDロ1A <br> Position Error（PERR） |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | Reference unit |
| Description | Stores the following error（the result of Machine Coordinate System Reference Position（MPOS）（ILDD12）－Machine Coordinate System Feedback Position（APOS）（ILDD16）converted to reference unit）managed by the Motion Module． |  |  |
| ILロロ1C（ $\mathbb{R}^{\text {only }}$ ） <br> Target Position Difference Monitor |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | Reference unit |
| Description | Stores the number of pulses distributed each scan． |  |  |
| IWロロ1E R <br> Number of POSMAX Turns |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | turn |
| Description | This parameter is valid for an infinite length axis． <br> The count stored in this parameter goes up and down every time the current position exceeds the Infinite Length Axis Reset Position（POSMAX）． <br> －Invalid for linear type |  |  |

## －Terminology：Machine Coordinate System

The basic coordinate system that is set according to Zero Point Return（ZRET）command execution or Zero Point Setting （ZSET）command execution．The Machine Controller manages the positions using this machine coordinate system．

## （ 11 ）Reference Monitor

| ILロロ20 <br> Speed Reference Output Monitor |  | Range | Unit |
| :---: | :---: | :---: | :---: |
|  |  | $-2^{31}$ to $2^{31}-1$ | pulse／s |
| Description | Stores the speed reference that is being output． <br> This parameter monitors the speed being output to the MECHATROLINK．This parameter will be 0 for interpolation or phase control． |  |  |

## ( 12 )Servo Driver

| IWロロ2C <br> Servo Driver Status |  |  | Range | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | - | - |
| Description | Bit 0 | Alarm (ALM) <br> 0 : No alarm occurred. <br> 1: Alarm occurred. |  |  |
|  | Bit 1 | Warning (WARNING) <br> 0 : No warning occurred. <br> 1: Warning occurred. |  |  |
|  | Bit 2 | Command Ready (CMDRDY) <br> 0 : Command cannot be received. <br> 1: Command can be received. |  |  |
|  | Bit 3 | $\begin{gathered} \hline \text { Servo ON (SVON) } \\ \text { 0: Servo OFF. } \\ \text { 1: Servo ON. } \end{gathered}$ |  |  |
|  | Bit 4 | ```Main Power Supply ON (PON) 0: Main power OFF. 1: Main power ON.``` |  |  |
|  | Bit 5 | ```Machine Lock (MLOCK) 0: Machine lock mode released. 1: Machine lock mode.``` |  |  |
|  | Bit 6 | Zero Position (ZPOINT) <br> 0: Outside Zero Point Position Range. <br> 1: In Zero Point Position Range. |  |  |
|  | Bit 7 | Locating Completed (PSET) <br> 0: Outside Width of Positioning Completion <br> 1: In Width of Positioning Completion (for position control). |  |  |
|  |  | Speed Coincidence (V-CMP) <br> 0 : Speed does not agree. <br> 1: Speed agrees (for speed control). |  |  |
|  | Bit 8 | Commanded Profile Complete (DEN) <br> 0: Distributing pulses. <br> 1: Distribution completed (for position control). |  |  |
|  |  | ```Zero Speed (ZSPD) 0: Zero speed not detected. 1: Zero speed detected (for speed control).``` |  |  |
|  | Bit 9 | Torque Restriction (T_LIM) <br> 0 : Torque not being limited. <br> 1: Torque being limited. |  |  |
|  | Bit A | Latch Complete (L_CMP) <br> 0 : Latch not completed. <br> 1: Latch completed. |  |  |
|  | Bit B | Locating Neighborhood (NEAR) <br> 0: Outside NEAR Signal Output Width. <br> 1: In NEAR Signal Output Width. |  |  |
|  |  | Speed Limit (V_LIM) <br> 0 : Speed limit not detected. <br> 1: Speed limit detected. |  |  |
|  | Bit C | Position Software Limit (P_SOT) <br> 0: In Positive Direction Software Limit Range. <br> 1: Outside Positive Direction Software Limit Range. |  |  |
|  | Bit D | Negative Software Limit (N_SOT) <br> 0: In Negative Direction Software Limit Range. <br> 1: Outside Negative Direction Software Limit Range. |  |  |

## （ 13 ）Servo Driver Information

| IWロロ2D <br> Servo Driver Alarm Code |  | Range | Unit |
| :---: | :---: | :---: | :---: |
|  |  | －32768 to 32767 | － |
| Description | Stores the alarm code（leftmost 2 digits）from the SERVOPACK in hexadecimal <br> Example：The code for a communication error that occurs in an SGDS，SGDV，or SGD7S SERVOPACK is E6． Refer to the manual for the SERVOPACK for details on alarms． <br> －When the motion command ALM＿MON（Monitor SERVOPACK Alarms）or ALM＿HIST（Monitor SER－ VOPACK History）is executed，the monitored alarm code will be written as it is．（Three digits for a SGDS，SGDV，or SGD7S SERVOPACK．） <br> －When in Simulation Mode，the alarm code will be H99． |  |  |

## （ 14 ）Servo Driver I／O Monitor

Stores I／O information of the SERVOPACK．

| IWロロ2E <br> Servo Driver I／O Monitor |  |  | Range | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | － | － |
| Description | Bit 0 | Forward Side Limit Switch Input（P＿OT）$\begin{aligned} & 0: \mathrm{OFF} \\ & 1: \mathrm{ON} \end{aligned}$ |  |  |
|  | Bit 1 | $\begin{aligned} & \text { Negative Reverse Side Limit Switch Input (N_OT) } \\ & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$ |  |  |
|  | Bit 2 | $\begin{aligned} & \text { Deceleration Dog Switch Input (DEC) } \\ & 0: \text { OFF } \\ & 1: \text { ON } \end{aligned}$ |  |  |
|  | Bit 3 | $\begin{aligned} & \text { Encoder Phase-A Signal Input (PA) } \\ & 0: \text { OFF } \\ & \text { 1: ON } \end{aligned}$ |  |  |
|  | Bit 4 | ```Encoder Phase-B Signal Input (PB) 0: OFF 1: ON``` |  |  |
|  | Bit 5 | ```Encoder Phase-C Signal Input (PC) 0: OFF 1:ON``` |  |  |
|  | Bit 6 | EXT 1 Signal Input <br> 0：OFF <br> 1：ON |  |  |
|  | Bit 7 | $\begin{aligned} & \text { EXT } 2 \text { Signal Input } \\ & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$ |  |  |
|  | Bit 8 | $\begin{aligned} & \text { EXT } 3 \text { Signal Input (EXT3) } \\ & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$ |  |  |
|  | Bit 9 | $\begin{aligned} & \text { Brake State Output (BRK) } \\ & 0: \text { OFF } \\ & 1: \text { ON } \end{aligned}$ |  |  |
|  | Bit A | Stop Signal（HWBB），Available only for SGDV and SGD7 ㅁㅁ믈ㅁㅁ SERVOPACKs． <br> 0：OFF <br> 1：ON <br> CN1 Input Signal（IO12）selected in parameter Pn81E． 0 <br> 0：OFF <br> 1：ON | except fo |  |
|  | Bit C |  |  |  |
|  | Bit D | CN1 Input Signal（IO13）selected in parameter Pn81E． 1 $0: \text { OFF }$ 1: ON |  |  |
|  | Bit E |  |  |  |
|  | Bit F | CN1 Input Signal（IO15）selected in parameter Pn81E． 3 0：OFF 1：ON |  |  |

## （ 15 ）Servo Driver User Monitor Information

The Monitor Selection made by the user when using a SERVOPACK for MECHATROLINK communication is stored in this parameter．

| IWロロ2F |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Servo Driver User Monitor Information | Range | Unit |  |  |
| Description | Bit 0 to Bit 3 | Monitor 1 | - |  |
|  | Bit 4 to Bit 7 | Monitor 2 |  |  |
|  | Bit 8 to Bit B | Monitor 3 |  |  |
|  | Bit C to Bit F | Monitor 4 |  |  |

（ 16 ）Servo Driver Information 2

| ILロロ30 |  | Range | Unit |
| :---: | :---: | :---: | :---: |
| Servo Driver User Monitor 2 |  | $-2^{31}$ to $2^{31}-1$ | － |
| Description | Stores the result of the selected monitor． <br> This parameter stores the result of the monitor selected for Monitor 2 in the Servo User Monitor Setting（setting parame－ ter OW口ロ4E，bits 4 to 7）． <br> This parameter can be used when the communication method is MECHATROLINK－I or MECHATROLINK－II，17－byte Mode and bit 0 of OW $\square \square 02$ is set to 1 （1：Enabled）． |  |  |
| ILロロ32 <br> Servo Driver User Monitor 3 |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | － |
| Description | Used by the system． |  |  |
| ILロロ34 <br> Servo Driver User Monitor 4 |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | － |
| Description | Stores the result of the selected monitor． <br> This parameter stores the result of the monitor selecte ter OWDD4E，bits C to F）． | Monitor Settin | g para |
| IWロロ36 <br> Servo Driver User Constant No． |  | Range | Unit |
|  |  | 0 to 65535 | － |
| Description | Stores the number of the parameter being processed． <br> This parameter stores the number of the SERVOPACK parameter being read or written using the MECHATROLINK command area．Refer to Chapter 6 Motion Commands for details． |  |  |
| IWロロ37 <br> Supplementary Servo Driver User Constant No． |  | Range | Unit |
|  |  | 0 to 65535 | － |
| Description | Stores the number of the parameter being processed． <br> This parameter stores the number of the SERVOPACK parameter being read or written using the MECHATROLINK sub－ command area．Refer to Chapter 6 Motion Commands for details． |  |  |
| ILロロ38 <br> Servo Driver User Constant Reading Data |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | － |
| Description | Stores the data of the parameter being read． <br> This parameter stores the data of the SERVOPACK parameter read using the MECHATROLINK command area．Refer to Chapter 6 Motion Commands for details． |  |  |
| ILロロ3A <br> Supplementary Servo Driver User Constant Reading Data |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | － |
| Description | Stores the data of the parameter being read． <br> This parameter stores the data of the SERVOPACK parameter read using the MECHATROLINK subcommand area． Refer to Chapter 6 Motion Commands for details． |  |  |
| IWロロ3F <br> Motor Type |  | Range | Unit |
|  |  | 0， 1 | － |
| Description | Stores the type of motor that is actually connected <br> 0 ：Rotation type motor <br> 1：Linear motor |  |  |

（cont＇d）

| ILロロ40 R Feedback Speed |  |  | Range |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $-2^{31}$ to $2^{31}-1$ | Depends | on speed unit． |
| Description | Stores the feedback speed． <br> The value is determined by the moving average time constant（fixed parameter 42）and unit set from the difference with the Machine Coordinate System Feedback Position（APOS）（monitoring parameter ILDC16）in each scan． <br> －The setting unit for this parameter depends on the Speed Unit Selection（OWDロ03，bits 0 to 3），but the result of applying the speed unit setting is not shown here． |  |  |  |  |
| ILロロ42 R <br> Feedback Torque／Thrust |  |  | Range |  | Unit |
|  |  |  | $-2^{31}$ to $2^{31}-1$ | Depends on | the Torque Unit |
| Description | Stores the value of the torque reference． <br> The Feedback Torque／Thrust is achieved using the Servo command expansion area and can be executed only with the MECHATROLINK－II，32－byte Mode communication method． <br> －The setting unit for this parameter depends on the Torque Unit Selection（OWDD03，bits C to F），but the result of applying the torque unit setting is not shown here． <br> －To use this parameter，the relevant servo parameter must be set to the value given in the following table． <br> The Controller will automatically set the parameter when the MECHATROLINK connection is estab－ lished between the Controller and SERVOPACK．Do not change the automatically set value． |  |  |  |  |
|  | SERVOPACK | Relevant Servo Parameter |  |  | Set Value |
|  | SGDH＋NS100 or SGDH＋NS115 | Pn003（Function Selection Application Switches 3） |  |  | 0002H |
|  | SGDS，SGDV，or SGD7S | Pn824（Option Monitor 1 Selection） |  |  |  |
| IWロロ44 <br> Latch Completion Sequence Number |  |  | Range |  | Unit |
|  |  |  | 0 to 32767 |  | 1 time |
| Description | Available for SGDV and SGD7S SERVOPACKs with MECHATROLINK－II communications（ 32 bytes）． |  |  |  |  |
| IWロロ45 <br> Latch Completion Sequence Number |  |  | Range |  | Unit |
|  |  |  | 0 to 32767 |  | 1 cycle |
| Description | Available for SGDV and SGD7S SERVOPACKs with MECHATROLINK－II communications（ 32 bytes）． |  |  |  |  |

## （ 17 ）Additional Information

| ILDロ56 R |  |  |
| :--- | :--- | :---: | :---: |
| Fixed Parameter Monitor | Range | Unit |
| Description | Stores the data of the specified fixed parameter number． <br> This parameter stores the data of the fixed parameter when the Read Fixed Parameter（FIXPRM－RD）is selected in the <br> Motion Subcommand（setting parameter OWロロ0A）． |  |

## （ 18 ）Absolute Infinite Length Axis Position Control Information

| ILロロ5E <br> Encoder Position When the Power is OFF（Lower 2 words） |  | Range | Unit |
| :---: | :---: | :---: | :---: |
|  |  | $-2^{31}$ to $2^{31}-1$ | pulse |
| Description | Stores information used for infinite length axis position control when an absolute encoder is used． The encoder position is normally stored in 4 words． |  |  |
| ILロロ60 <br> Encoder Position When the Power is OFF（Upper 2 words） |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | pulse |
| Description Same as for ILロप5E． |  |  |  |
| ILロロ62 <br> Pulse Position When the Power is OFF（Lower 2 words） |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | pulse |
| Description | Stores information used for infinite length axis position control when an absolute encoder is used． These parameters store the axis position managed by the Machine Controller in pulses in 4 words． |  |  |
| ILロロ64 <br> Pulse Position When the Power is OFF（Upper 2 words） |  | Range | Unit |
|  |  | $-2^{31}$ to $2^{31}-1$ | pulse |
| Description | Same as for ILDप62． |  |  |

## （ 19 ）Servo Driver Transmission Reference Mode

| IWロロ70 to IWロロ7E <br> Response Buffer for Servo Driver Transmission Reference Mode |  | Range | Unit |
| :--- | :--- | :---: | :---: |
| Description | This area is used for response data when MECHATROLINK Servo commands are specified directly． <br> $\bullet$ <br> $\bullet$ MECHATROLINK－I and MECHATROLINK－II，17－byte Mode：Data area $=$ IWロロ70 to IWロロ77 |  |  |

## Motion Parameter Setting Examples

This chapter gives setting examples of the motion parameters for each machine.
5.1 Example Setting of Motion Parameters for the Machine ..... 5-2
5.1.1 Reference Unit ..... 5-2
5.1.2 Electronic Gear ..... 5-2
5.1.3 Axis Type Selection ..... 5-4
5.1.4 Position Reference ..... 5-5
5.1.5 Speed Reference ..... 5-9
5.1.6 Acceleration/Deceleration Settings ..... 5-11
5.1.7 Acceleration/Deceleration Filter Settings ..... 5-13
5.1.8 Linear Scale Pitch and Rated Speed ..... 5-14

### 5.1 Example Setting of Motion Parameters for the Machine

Set the following eight motion parameters to enable motion control that suits the machine's specifications.

- Reference unit
- Electronic gear
- Axis Type Selection
- Position Reference
- Speed Reference
- Acceleration/Deceleration Settings
- Acceleration/Deceleration Filter Settings
- Linear Scale Pitch/Rated Speed (When using a linear motor.)

The following tables provide details of setting examples for the above items.

### 5.1.1 Reference Unit

Pulses, millimeters, degrees, inches, or micrometers can be used as the reference unit for motion control. The reference unit is specified in Reference Unit Selection (motion fixed parameter 4).
The minimum reference unit that can be specified is determined by the setting of Number of Digits below Decimal Point (motion fixed parameter 5).


### 5.1.2 Electronic Gear

In contrast to the reference unit input to the Machine Controller, the moving unit in the mechanical system is called the "output unit." The electronic gear converts position or speed units from reference units to output units for the mechanical system without going through an actual mechanism, such as a gear.
When the axis at the motor has rotated $m$ times and the mechanical configuration allows the axis at the load to rotate $n$ times, this electronic gear function can be used to make the reference unit equal to the output unit.
The electronic gear function is enabled when the following settings are made:

- Fixed Parameter 6: Travel Distance per Machine Rotation $\mathbb{R}$
- Fixed Parameter 8: Servo Motor Gear Ratio $\mathbb{R}$
- Fixed Parameter 9: Machine Gear Ratio $\mathbb{R}$
- The electronic gear is disabled when pulse is specified for the Reference Unit Selection.

The following setting example uses ball screw and rotating table workpieces.

## (1) Parameter Setting Example Using Ball Screw

- Machine specifications: Ball screw axis rotates 5 times for each 7 rotations of the motor axis (Refer to the following figure.)
- Reference unit: 0.001 mm


To move the workpiece 0.001 mm for 1 reference unit input under the conditions outlined above, i.e., for 1 reference unit $=1$ output unit, make the following settings for fixed parameters 6,8 , and 9 .

- Fixed Parameter 6: Travel Distance per Machine Rotation $=6 \mathrm{~mm} / 0.001 \mathrm{~mm}=6000$ (reference units)
- Fixed Parameter 8: Servo Motor Gear Ratio $=\mathrm{m}=7$
- Fixed Parameter 9: Machine Gear Ratio $=n=5$
- Set the SERVOPACK gear ratio to $1: 1$. However, if you are using a $\Sigma$ - 7 -series SERVOPACK, refer to 11.8 Precautions When Using $\Sigma$-7-series SGD7S SERVOPACKs with Rotary Servomotors and set the SERVOPACK's electronic gear.


## ( 2 ) Parameter Setting Example Using Rotating Table

- Machine specifications: Rotating table axis rotates 10 times for each 30 rotations of the motor axis (Refer to the following figure.)
- Reference unit: $0.1^{\circ}$


To rotate the table $0.1^{\circ}$ for 1 reference unit input under the conditions outlined above, i.e., for 1 reference unit $=1$ output unit, make the following settings for fixed parameters 6,8 , and 9 .

- Fixed Parameter 6: Travel Distance per Machine Rotation $=360^{\circ} / 0.1^{\circ}=3600$ (reference units)
- Fixed Parameter 8: Servo Motor Gear Ratio $=m=30$
- Fixed Parameter 9: Machine Gear Ratio $=\mathrm{n}=10$
- The gear ratio for fixed parameters 8 and $9(m / n)$ may be constant, e.g., $m=3$ and $n=1$.
- Set the SERVOPACK gear ratio to 1:1. However, if you are using a $\Sigma$-7-series SERVOPACK, refer to 11.8 Precautions When Using $\Sigma$-7-series SGD7S SERVOPACKs with Rotary Servomotors and set the SERVOPACK's electronic gear.


### 5.1.3 Axis Type Selection

There are two types of position control: Finite length position control for return and other operations that are performed only within a specified range, and infinite length position control, which is used for moving in one direction only. Infinite length position control can reset the position to 0 after one rotation, e.g., belt conveyors, or move in one direction only, without resetting position after one rotation. The axis type selection sets which of these types of position control is to be used.
The details of the Axis Type Selection are listed in the following table.

| Parameter Type | Parameter No. <br> (Register No.) | Name | Description <br> Value |  |
| :--- | :--- | :--- | :--- | :--- |
| Motion Fixed | No. 1, bit 0 R | Function Selection <br> Flag 1, Axis Selec- <br> tion | Specify the position control method for the controlled <br> axis. <br> 0: Finite Length Axis <br> Set a finite length axis if control is performed within a <br> limited length or for an axis that uses infinite length <br> control in one moving direction only without resetting <br> the position every rotation. <br> When an absolute encoder is used with the infinite <br> position control method for motion in one direction, <br> set the reference unit to pulse. <br> If it is set to anything other than pulse, position error <br> may occur. | 01: Infinite Length Axis <br> Set an infinite length axis for an axis that uses infinite <br> length control while resetting the position every rota- <br> tion. |

## 5．1．4 Position Reference

The target position value for position control is set for the Position Reference Setting（motion setting parameter OLDD1C）．There are two methods that can be set for using the Position Reference Setting：Directly setting the coordi－ nate of the target position value as an absolute value or adding the moving amount from the previous command posi－ tion as a incremental value．
The following table lists the parameter details relating to position references．

| Parameter Type | Parameter No． （Register No．） | Name | Description | Default Value |
| :---: | :---: | :---: | :---: | :---: |
|  |  <br> bit 5 R | Position Refer－ ence Type | Specify the type of position data． <br> 0：Incremental Addition Mode <br> Adds the present moving amount value to the previ－ ous value of OLDD1C and sets the result in OLD믿． <br> 1：Absolute Mode <br> Sets the coordinate of the target position in OLD믿． <br> －Always select 0 if the SVB－01 module is mounted to an MP2000－series Machine Con－ troller and a motion program is used． | 0 |
| Motion Setting <br> Parameters | OLD－1C R | Position Refer－ ence Setting | Set the position data． <br> －Incremental Addition Mode（OWDロ09，bit 5 ＝ 0 ） <br> The moving amount（incremental distance）specified this time will be added to the previous value of OLD믿． <br> OLㅁㅁㅁㅣ $\leftarrow$ Previous OLD민＋Incremental dis－ tance <br> Example： <br> If a travel distance of 500 is specified and the previ－ ous value of OLDD1C is 1000 ，the following will occur： <br> OLDㅁㅁ $1 \mathrm{C} \leftarrow 1000+500=1500$ <br> －Absolute Mode（OWDप09，bit $5=1$ ） <br> The coordinate value of the target position is set． Example： <br> Set 10000 to move to a coordinate value of 10000 ． OLDCl $1 \mathrm{C} \leftarrow 10000$ | 0 |

The following table compares the advantage and disadvantage of incremental addition mode and absolute mode．

| Position Reference <br> Type | Advantage | Disadvantage |
| :--- | :--- | :--- |
| Incremental <br> Addition Mode | It is not necessary to consider the relationship <br> between OLDロ1C and the current position when <br> canceling a move． <br> Incremental addition mode can be used for finite or <br> infinite length axis type． | OLDロ1C does not necessarily equal the coordinate <br> value of the target position，so the position reference <br> can be difficult to understand intuitively． |
| Absolute Mode | The coordinate of the target position is specified <br> directly，making it easy to understand intuitively． | The current position must be set in OLDD1C when－ <br> ever the power supply is turned ON or a move is can－ <br> celed．If this is not done，the axis may move suddenly <br> when a move command is started． |

Setting of the target position when using an infinite length axis is described below．

## （ 1 ）Setting the Target Position When Using an Infinite Length Axis：Method 1

 Executing a POSING command while no command（NOP）is being executed－When the incremental addition mode is selected for the Position Reference Type（OWDロ09，bit $5=0$ ），execute a POSING command in distribution completed status（IWロロ0C，bit $0=1$ ）．
When the absolute mode is selected for the Position Reference Type（OW $\square \square 09$ ，bit $5=1$ ），a POSING command can be exe－ cuted whether or not the distribution is completed（IW $\square \square 0 \mathrm{C}$ ，bit $0=0$ ）．
－Incremental Addition Mode（OWDロ09，bit $5=0$ ）
Incremental value $=$ Target position（a value between 0 and POSMAX $)-\operatorname{ILD} \square 10(C P O S)+$ POSMAX $\times \mathrm{n}$ OLDด1C＝OLD口1C＋Incremental value
－ n refers to the number of POSMAX complete turns needed to move from the current position（CPOS）to the tar－ get position．When the distance between the target position and the current position is within the first turn， n is 0.

## －Absolute Mode（OWDप09，bit $5=1$ ）

Incremental value $=$ Target position（a value between 0 and POSMAX $)-\operatorname{ILD} \square 10(C P O S)+$ POSMAX $\times \mathrm{n}$ OLDロ1C＝ILDロ14（DPOS）＋Incremental value
－$n$ refers to the number of POSMAX complete turns needed to move from the current position（CPOS）to the tar－ get position．When the distance between the target position and the current position is within the first turn， n is 0.
＜Example when $\mathrm{n}=2$＞

（ 2 ）Setting the Target Position When Using an Infinite Length Axis：Method 2
Changing the target position while a POSING command is being executed by specifying another target position on the base of the original target position
－When the absolute mode has been set for the Reference Position Type（OWDD09，bit $5=1$ ），the absolute mode must also be set after having changed the target position．
－Incremental Addition Mode（OWロロ09，bit $5=0$ ）
Incremental value $=$ New target position（a value between 0 and POSMAX）- Original target position before change（a value between 0 and POSMAX）+ POSMAX $\times n$
OLDด1C＝OLロロ1C＋Incremental value
－Original target position before change：The value that was directly designated or the value that was stored in $M$ register，etc．
－$n$ refers to the number of POSMAX complete turns needed to move from the current position（CPOS）to the tar－ get position．When the distance between the target position and the current position is within the first turn， n is 0.
－Absolute Mode（OWロप09，bit $5=1$ ）
Incremental value $=$ New target position（a value between 0 and POSMAX）- Original target position before change（a value between 0 and POSMAX）+ POSMAX $\times n$
OLDロ1C＝OLDD1C＋Incremental value
－Original target position before change：The value that was directly designated or the value that was stored in $M$ register，etc．
－ n refers to the number of POSMAX complete turns needed to move from the current position（CPOS）to the tar－ get position．When the distance between the target position and the current position is within the first turn， n is 0.
＜Example when $\mathrm{n}=2$＞
（ 3 ）Setting the Target Position When Using an Infinite Length Axis：Method 3 Changing the target position while a POSING command is being executed by specifying another target position on the base of the current position

> - When the incremental addition mode is selected for Position Reference Type (OWDロ09, bit $5=0$ ), execute aPOSING command in distribution completed status (IWロロOC, bit $0=1$ ).
> When the absolute mode is selected for Position Reference Type $(O W \square \square 09$, bit $5=1)$, a POSING command can be executed if the distribution is not completed (IWロロ0C, bit $0=0$ ).

The method is the same as for（1）Setting the Target Position When Using an Infinite Length Axis：Method 1.
（ 4 ）Setting the Target Position When Using an Infinite Length Axis：Method 4 Switching a command that is being executed to a POSING command

[^1]The method is the same as for（1）Setting the Target Position When Using an Infinite Length Axis：Method 1.

## 5．1．5 Speed Reference

There are two methods of setting the speed reference for the feed speed or other speeds．One method involves using reference units and the other method involves setting the percentage（\％）of the rated speed．
The following table shows the parameters relating to speed references．

| Parameter Type | Parameter No． <br> （Register No．） | Name | Description | Default Value |
| :---: | :---: | :---: | :---: | :---: |
| Motion Fixed Parameters | No． 5 R | Number of Digits below Decimal Point | Set the number of digits below the decimal point in the refer－ ence unit being input．The minimum reference unit is deter－ mined by this parameter and the Reference Unit Selection （fixed parameter 4）． <br> Example： <br> Reference Unit Selection $=\mathrm{mm}$ ，Number of Digits below <br> Decimal Point $=3$ <br> 1 reference unit $=0.001 \mathrm{~mm}$ | 3 |
|  | No． 34 R | Rated Motor Speed | Set the number of rotations when the motor is rotated at the rated speed（ $100 \%$ speed）．Confirm the motor specifications before setting this parameter． | 3000 |
|  | No． 36 R | Number of Pulses per Motor Rotation | Set the number of pulses（the value after multiplication）per motor rotation． <br> Example： <br> For a 16 －bit encoder，set $2^{16}=65536$ ． | 65536 |
| Motion Setting Parameters | OWロロ03 <br> Bits 0 to 3 R | Speed Unit Selection | ```Set the unit for reference speeds. 0 : Reference unit/s \(1: 10^{\mathrm{n}}\) reference units/min ( n : Number of Digits below Decimal Point) 2: 0.01\% 3: \(0.0001 \%\)``` | 1 |
|  | OLDロ10 R | Speed <br> Reference Setting | Set the feed speed．The unit for this parameter is set in OW $\square \square 03$ ，bits 0 to 3 ． <br> Example： <br> When the Number of Digits below Decimal Point is set to 3， units are as follows for the setting of the Speed Unit： <br> －Speed Unit Set to 0：Reference units／s <br> pulse unit： $1=1$ pulse／s <br> mm unit： $1=0.001 \mathrm{~mm} / \mathrm{s}$ <br> deg unit： $1=0.001 \mathrm{deg} / \mathrm{s}$ <br> inch unit： $1=0.001 \mathrm{inch} / \mathrm{s}$ <br> $\mu \mathrm{m}$ unit： $1=0.001 \mu \mathrm{~m} / \mathrm{s}$ <br> －Speed Unit Set to $1: 10^{\mathrm{n}}$ reference units／min <br> pulse unit： $1=1000$ pulse $/ \mathrm{min}$ <br> mm unit： $1=1 \mathrm{~mm} / \mathrm{min}$ <br> deg unit： $1=1 \mathrm{deg} / \mathrm{min}$ <br> inch unit： $1=1 \mathrm{inch} / \mathrm{min}$ <br> $\mu \mathrm{m}$ unit： $1=1 \mu \mathrm{~m} / \mathrm{min}$ <br> －Speed Unit Set to 2：0．01\％ <br> Set as a percentage of the rated speed $(1=0.01 \%)$ unre－ lated to the reference unit setting． | 3000 |
|  | OWDロ18 | Override | Setting an output ratio（\％）for the setting allows the posi－ tioning speed to be changed without changing the Speed Ref－ erence setting． <br> Setting unit： $1=0.01 \%$ | 10000 |

## ( 1 ) Speed Reference (OLDD10) Setting Examples

- No. 5: Number of digits below decimal point $=3$
- No. 34: Rated motor speed $=3000 \mathrm{R} / \mathrm{min}$
- No. 36: Number of pulses per motor rotation $=65536 \mathrm{P} / \mathrm{R}$

The following table shows examples of settings for Speed Reference Setting (OLDD10) to obtain the target feed speed (reference speed).

| Speed Unit Setting | Reference Unit | Reference Speed | Speed Reference Parameter Settings (OLロप10) Method |
| :---: | :---: | :---: | :---: |
| 0Reference unit/s | pulse | $500 \mathrm{R} / \mathrm{s}$ | $\begin{aligned} & 500(\mathrm{R} / \mathrm{s}) \times 65536(\mathrm{pulse} / \mathrm{R}) \\ & =37268000(\mathrm{pulse} / \mathrm{s}) \end{aligned}$ |
|  |  | $1500 \mathrm{R} / \mathrm{min}$ | $\begin{aligned} & 1500(\mathrm{R} / \mathrm{min}) \times 65536(\text { pulse } / \mathrm{R}) \div 60(\mathrm{~s}) \\ & =1638400(\text { pulse } / \mathrm{s}) \end{aligned}$ |
|  | mm | Feed speed of $500 \mathrm{~mm} / \mathrm{s}$ with a machine that travels 10 mm for each rotation | $\begin{aligned} & 500(\mathrm{~mm} / \mathrm{s}) \div 0.001 \\ & =500000(0.001 \mathrm{~mm} / \mathrm{s}) \end{aligned}$ <br> Determined by feed speed and number of digits below decimal point ( 0.001 in the above equation), regardless of machine configuration. |
|  |  | Feed speed of $900 \mathrm{~mm} / \mathrm{min}$ with a machine that travels 10 mm for each rotation | $\begin{aligned} & 900(\mathrm{~mm} / \mathrm{min}) \div 0.001 \div 60(\mathrm{~s}) \\ & =15000(0.001 \mathrm{~mm} / \mathrm{s}) \end{aligned}$ <br> Determined by feed speed and number of digits below decimal point ( 0.001 in the above equation), regardless of machine configuration. |
| 1 <br> $10^{n}$ reference units/ min <br> ( n : Number of digits below decimal point) (=3) | pulse* | $500 \mathrm{R} / \mathrm{s}$ | $\begin{aligned} & 500(\mathrm{R} / \mathrm{s}) \times 65536(\mathrm{pulse} / \mathrm{R}) \div 1000 \times 60(\mathrm{~s}) \\ & =1966080(1000 \mathrm{pulse} / \mathrm{min}) \end{aligned}$ |
|  |  | $1500 \mathrm{R} / \mathrm{min}$ | $\begin{aligned} & 1500(\mathrm{R} / \mathrm{min}) \times 65536(\text { pulse } / \mathrm{R}) \div 1000 \\ & =98304(1000 \mathrm{pulse} / \mathrm{min}) \end{aligned}$ |
|  | mm | Feed speed of $500 \mathrm{~mm} / \mathrm{s}$ with a machine that travels 10 mm for each rotation | $\begin{aligned} & 500(\mathrm{~mm} / \mathrm{s}) \times 0.001 \times 1000 \times 60(\mathrm{~s}) \\ & =30000(\mathrm{~mm} / \mathrm{min}) \end{aligned}$ <br> Determined by feed speed and number of digits below decimal point ( 0.001 in the above equation), regardless of machine configuration. |
|  |  | Feed speed of $900 \mathrm{~mm} / \mathrm{min}$ with a machine that travels 10 mm for each rotation | $\begin{aligned} & 900(\mathrm{~mm} / \mathrm{min}) \times 0.001 \times 1000 \\ & =900(\mathrm{~mm} / \mathrm{min}) \\ & \text { Determined by feed speed, regardless of machine con- } \\ & \text { figuration. } \end{aligned}$ |
| 0.01\% ${ }^{2}$ | - | 1500 R/min | $\begin{aligned} & 1500(\mathrm{R} / \mathrm{min}) \div 3000(\mathrm{R} / \mathrm{min}) \times 100(\%) \div 0.01 \\ & =5000(0.01 \%) \\ & \text { Determined by what percentage the feed speed is of the } \\ & \text { rated speed. } \end{aligned}$ |

* When reference unit is set to "pulse" and Speed Unit is set to "10n reference units/min," the unit for OLDO10 will be 1000 pulses/min, regardless of the number of places after the decimal point.


## ( 2 ) Override (OW口प18) Setting Example

The Override parameter (OWDD18) can set the speed as a percentage (output ratio) of the target feed speed, in $0.01 \%$ units. Override is set independently of Reference Unit Selection, Number of Digits below Decimal Point, and other parameters.

- Override cannot be set for SVR (Virtual Motion Module).

A typical example of Override setting is shown below.
Setting Example
Output ratio $25 \%: 25 \div 0.01=2500$

$$
50 \%: 50 \div 0.01=5000
$$

$$
75 \%: 75 \div 0.01=7500
$$

$$
100 \%: 100 \div 0.01=10000
$$

## 5．1．6 Acceleration／Deceleration Settings

The acceleration／deceleration can be set to either the rate of acceleration／deceleration or the time required to reach the rated speed from 0 ．The settings method used depends on the related parameter settings．
The parameters related to acceleration／deceleration settings are listed in the following table．

| Parameter Type | Parameter No． （Register No．） | Name | Description | Default Value |
| :---: | :---: | :---: | :---: | :---: |
| Motion Fixed Parameters | No． 5 R | Number of Digits below Decimal Point | Set the number of digits below the decimal point in the input reference unit．The minimum reference unit is determined by this parameter and the Reference Unit Selection（fixed param－ eter 4）． <br> Example： <br> Reference Unit Selection＝mm，Number of Digits below Decimal Point $=3$ <br> 1 reference unit $=0.001 \mathrm{~mm}$ |  |
|  | No． 34 R | Rated Motor Speed | Set the number of rotations when the motor is rotated at the rated speed（ $100 \%$ speed）．Confirm the motor specifications before setting this parameter． | 3000 |
|  | No． 36 R | Number of Pulses per Motor Rotation | Set the number of pulses（the value after multiplication）per motor rotation． <br> Example： <br> For a 16 －bit encoder，set $2^{16}=65536$ ． | 65536 |
| Motion Setting <br> Parameters | OWロロ03 <br> Bits 4 to 7 R | Acceleration／ Deceleration Degree Unit Selection | Set the unit for acceleration／deceleration． <br> 0 ：Reference units／s ${ }^{2}$ <br> 1：ms | 1 |
|  | OLDロ36 | Straight Line <br> Acceleration／ <br> Acceleration <br> Time Constant | Set the rate of acceleration or acceleration time constant according to the setting of OWDロ03，bits 4 to 7 ． <br> －Acceleration／Deceleration Degree Unit Selection is set to 0 （Reference units $/ \mathrm{s}^{2}$ ），set the rate of accelera－ tion． <br> pulse unit： $1=1 \mathrm{pulse} / \mathrm{s}^{2}$ <br> mm unit： $1=1$ reference unit／s ${ }^{2}$ <br> deg unit： $1=1$ reference unit $/ \mathrm{s}^{2}$ <br> inch unit： $1=1$ reference unit $/ \mathrm{s}^{2}$ <br> $\mu \mathrm{m}$ unit： $1=1$ reference unit $/ \mathrm{s}^{2}$ <br> Example：Number of Digital below Decimal Point $=3$ <br> mm unit： $1=0.001 \mathrm{~mm} / \mathrm{s}^{2}$ <br> deg unit： $1=0.001 \mathrm{deg} / \mathrm{s}^{2}$ <br> inch unit： $1=0.001$ inch $/ \mathrm{s}^{2}$ <br> $\mu \mathrm{m}$ unit： $1=0.001 \mu \mathrm{~m} / \mathrm{s}^{2}$ <br> －When Acceleration／Deceleration Degree Unit Selec－ tion is set to $1(\mathrm{~ms})$ ，set the time constant to go from 0 to the rated speed without relation to the reference unit． | 0 |
|  | OLDL38 ${ }_{\text {R }}$ | Straight Line Deceleration／ Deceleration Time Constant | Set the rate of deceleration or deceleration time constant according to the setting of OWDロ03，bits 4 to 7 ． <br> －Acceleration／Deceleration Degree Unit Selection is set to 0 （Reference units／s ${ }^{2}$ ）， <br> set the rate of deceleration． <br> pulse unit： $1=1 \mathrm{pulse} / \mathrm{s}^{2}$ <br> mm unit： $1=1$ reference unit／s ${ }^{2}$ <br> deg unit： $1=1$ reference unit $/ \mathrm{s}^{2}$ <br> inch unit： $1=1$ reference unit $/ \mathrm{s}^{2}$ <br> $\mu \mathrm{m}$ unit： $1=1$ reference unit $/ \mathrm{s}^{2}$ <br> －When Acceleration／Deceleration Degree Unit Selec－ tion is set to 1 （ms）， <br> set the time constant to go from 0 to the rated speed with－ out relation to the reference unit． | 0 |

## （ 1 ）Acceleration／Deceleration Degree Unit Selection and Speed Changes Over Time

The Straight Line Acceleration Time Constant（OLDD36）and Straight Line Deceleration Time Constant（OLDD38） settings change depending on the Acceleration／Deceleration Degree Unit Selection（OWDロ03，bits 4 to 7）setting as shown in the following figure．
－When the Acceleration／Deceleration Degree Unit Selection（OWDロ03，Bits 4 to 7）Set to 0：Refer－ ence Unit／s ${ }^{2}$

Set values of OLDप36 and OLDロ38 are handled as the linear acceleration rate and linear deceleration rate．

－When the Acceleration／Deceleration Degree Unit Selection（OWロロ03，Bits 4 to 7）Set to 1：ms
Set value of OLDप36 is handled as the linear acceleration time constant required to reach rated speed from zero using linear acceleration．Set value of OLDD38 is handled as the linear deceleration time constant required to reach zero from the rated speed using linear deceleration．

－For the following commands，acceleration／deceleration processing is carried out by the SERVOPACK．
1：POSING
2：EX＿POSING
3：ZRET
7：FEED
8：STEP
The unit conversion is applied to the linear acceleration time constant and linear deceleration time constant specified in the setting parameters，and the converted values will be written in the corresponding SERVOPACK parameters ＂2nd－step Linear Acceleration Constant＂and＂2nd－step Deceleration Constant．＂
The actual acceleration／deceleration will be restricted by the corresponding SERVOPACK parameter setting range and the unit，so the actual axis motion may not be exactly as specified by the setting parameters．

## 5．1．7 Acceleration／Deceleration Filter Settings

There are two types of acceleration／deceleration filter：The exponential acceleration／deceleration filter and the mov－ ing average filter．These filter settings can be used to set non－linear acceleration／deceleration curves．The parameters related to the acceleration／deceleration filter settings are listed in the following table．

| Parameter Type | Parameter No． （Register No．） | Name | Description | Default Value |
| :---: | :---: | :---: | :---: | :---: |
| Motion Setting <br> Parameters | OWDロ03 <br> Bits 8 to B R | Filter Type Selection | Set the acceleration／deceleration filter type． <br> 0：None <br> 1：Exponential acceleration／deceleration filter <br> 2：Moving average filter <br> －The Change Filter Type command（OWDロ08＝13） must be executed in advance to enable the Filter Type． | 0 |
|  | OWDL3A R | Filter Time Constant | Sets the acceleration／deceleration filter time constant． Always make sure that pulse distribution has been com－ pleted（i．e．，that monitoring parameter IWロप0C，bit 0 is ON（1））before changing the time constant． | 0 |

The following figure shows the relationship between acceleration／deceleration patterns and each parameter．

|  | Filter Type Selection |  |  |
| :---: | :---: | :---: | :---: |
|  | OWDロ03，bits 8 to $B=0$ （No filter） | OWपロ03，bits 8 to $B=1$ <br> （Exponential acceleration／deceleration filter） | OWDロ03，bits 8 to $B=2$ <br> （Moving average filter） |
| No Acceleration／ Deceleration OLDロ36＝ 0 <br> OLロロ38 $=0$ | ＊Step input |  |  |
| With Acceleration／ Deceleration |  |  <br> Curvature depends on relationship between OWロप3A，OLロロ36，and OLDロ38 |  |

### 5.1.8 Linear Scale Pitch and Rated Speed

When using a linear motor, set the linear scale pitch (fixed parameter No. 6), the rated speed (fixed parameter No. 34), and the number of pulses per scale pitch (fixed parameter No. 36) according to the linear motor specifications.

## (1) Setting Example 1

The following table gives a setting example for these linear motor specifications.

- Linear scale pitch: 20 ( $\mu \mathrm{m}$ )
- Serial converter resolution: 8 (bit)
- Rated speed: 1.5 (m/s)

| Command Unit | Linear Scale Pitch and Rated <br> Speed Setting Units/ <br> Number of Digits below Decimal <br> Point | Settings of Linear Scale Pitch, Rated Speed, <br> and Number of Pulses per Scale Pitch |
| :---: | :---: | :--- |
| pulse | Linear scale pitch: $\mu \mathrm{m}$, <br> Rated speed: $0.1 \mathrm{~m} / \mathrm{s}^{*}$ | Linear Scale Pitch: $20(\mu \mathrm{~m})$ <br> Rated Speed: $15(0.1 \mathrm{~m} / \mathrm{s})$ <br> Number of Pulses per Scale Pitch: $256($ pulse $)=2^{8}$ |
| mm | Number of Digits below Decimal <br> Point: 3 | Linear Scale Pitch: $20(\mu \mathrm{~m})$ <br> Rated Speed: $15(0.1 \mathrm{~m} / \mathrm{s})$ <br> Number of Pulses per Scale Pitch: $256($ pulse $)=2^{8}$ |
| $\mu \mathrm{~m}$ | Number of Digits below Decimal <br> Point: 0 | Linear Scale Pitch: $20(\mu \mathrm{~m})$ <br> Rated Speed: $15000(0.1 \mathrm{~mm} / \mathrm{s})$ <br> Number of Pulses per Scale Pitch: 256 (pulse $)=2^{8}$ |

* When pulse is selected as a reference unit and the Linear Scale Pitch (fixed parameter No. 6) is set in units of $\mu \mathrm{m}$, set the Rated Speed (fixed parameter No. 34) in units of $0.1 \mathrm{~m} / \mathrm{s}$.
When pulse is selected as a reference unit and the Linear Scale Pitch (fixed parameter No. 6) is set in units of nm , set the Rated Speed (fixed parameter No. 34) in units of $0.1 \mathrm{~mm} / \mathrm{s}$.


## ( 2 ) Setting Example 2

The following table gives a setting example for these linear motor specifications.

- Linear scale pitch: 400 (nm)
- Serial converter resolution: 9 (bit)
- Rated speed: 1.5 (m/s)

| Command Unit | Linear Scale Pitch and Rated <br> Speed Setting Units/ <br> Number of Digits below Decimal <br> Point | Settings of Linear Scale Pitch, Rated Speed, <br> and Number of Pulses per Scale Pitch |
| :---: | :--- | :--- |
| pulse | Linear scale pitch: nm <br> Rated speed: $0.1 \mathrm{~mm} / \mathrm{s}^{*}$ | Linear Scale Pitch: $400(\mathrm{~nm})$ <br> Rated Speed: $15000(0.1 \mathrm{~mm} / \mathrm{s})$ <br> Number of Pulses per Scale Pitch: $512($ pulses $)=2^{9}$ |
| mm | Number of Digits below Decimal <br> Point: 5 | Linear Scale Pitch: $40($ user units) <br> $400(\mathrm{~nm})=40(0.00001 \mathrm{~mm})$ <br> Rated Speed: $15(0.1 \mathrm{~m} / \mathrm{s})$ <br> Number of Pulses per Scale Pitch: $512($ pulse $)=2^{9}$ |
| $\mu \mathrm{~m}$ | Number of Digits below Decimal <br> Point: 3 | Linear Scale Pitch: $400($ user unit $)$ <br> $400(\mathrm{~nm})=400(0.001 \mu \mathrm{~m})$ <br> Rated Speed: $15000(0.1 \mathrm{~mm} / \mathrm{s})$ <br> Number of Pulses per Scale Pitch: $512($ pulse $)=2^{9}$ |

* When pulse is selected as a reference unit and the Linear Scale Pitch (fixed parameter No. 6) is set in units of $\mu \mathrm{m}$, set the Rated Speed (fixed parameter No. 34) in units of $0.1 \mathrm{~m} / \mathrm{s}$. When pulse is selected as a reference unit and the Linear Scale Pitch (fixed parameter No. 6) is set in units of nm , set the Rated Speed (fixed parameter No. 34) in units of $0.1 \mathrm{~mm} / \mathrm{s}$.


## Motion Commands

This chapter explains each motion command's operation, related parameters, and timing charts.
6.1 Motion Commands ..... 6-3
6.1.1 Motion Command Table ..... 6-3
6.1.2 Motion Commands Supported by SERVOPACK Models ..... 6-4
6.2 Motion Command Details ..... 6-5
6.2.1 Position Mode (POSING) (Positioning) ..... 6-5
6.2.2 Latch Target Positioning (EX_POSING) (External Positioning) ..... 6-10
6.2.3 Zero Point Return (ZRET) ..... 6-15
6.2.4 Interpolation (INTERPOLATE) ..... 6-35
6.2.5 Interpolation Mode with Latch Input (LATCH) ..... 6-39
6.2.6 Jog Mode (FEED) ..... 6-43
6.2.7 Relative Position Mode (STEP) (Step Mode) ..... 6-47
6.2.8 Set Zero Point (ZSET) ..... 6-51
6.2.9 Change Acceleration Time (ACC) ..... 6-53
6.2.10 Change Deceleration Time (DCC) ..... 6-55
6.2.11 Change Filter Time Constant (SCC) ..... 6-57
6.2.12 Change Filter Type (CHG_FILTER) ..... 6-59
6.2.13 Change Speed Loop Gain (KVS) ..... 6-61
6.2.14 Change Position Loop Gain (KPS) ..... 6-63
6.2.15 Change Feed Forward (KFS) ..... 6-65
6.2.16 Read User Constant (PRM_RD) ..... 6-67
6.2.17 Write User Constant (PRM_WR) ..... 6-69
6.2.18 Alarm Monitor (ALM_MON) ..... 6-71
6.2.19 Alarm History Monitor (ALM_HIST) ..... 6-73
6.2.20 Clear Alarm History (ALMHIST_CLR) ..... 6-75
6.2.21 Absolute Encoder Reset (ABS_RST) ..... 6-77
6.2.22 Speed Reference (VELO) ..... 6-80
6.2.23 Torque /Thrust Reference (TRQ) ..... 6-84
6.2.24 Phase References (PHASE) ..... 6-88
6.2.25 Change Position Loop Integral Time Constant (KIS) ..... 6-92
6.2.26 Stored Parameter Write (PPRM_WR) ..... 6-94
6.2.27 Multiturn Limit Setting (MLTTRN_SET) ..... 6-96
6.3 Motion Subcommands ..... 6-100
6.3.1 Motion Subcommand Table ..... 6-100
6.3.2 Motion Subcommand Settings ..... 6-100
6.4 Motion Subcommand Details ..... 6-101
6.4.1 No Command (NOP) ..... 6-101
6.4.2 Read User Constant (PRM_RD) ..... 6-102
6.4.3 Write User Constant (PRM_WR) ..... 6-104
6.4.4 Status Monitor (SMON) ..... 6-106
6.4.5 Read Fixed Parameters (FIXPRM_RD) ..... -6-108

### 6.1 Motion Commands

### 6.1.1 Motion Command Table

This table shows the motion commands that are supported by the MP2000 series Machine Controllers. Refer to the section numbers indicated in the Reference column for additional command information.

| Command Code |  | Command | Name | Description | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | R | NOP | No command | - | - |
| 1 | R | POSING * | Position Mode (Positioning) | Positions to the specified position using the specified acceleration/deceleration times and the specified speed. | 6.2.1 |
| 2 | R | EX_POSING * | Latch Target Positioning (External positioning) | Positions by moving the external positioning travel distance from the point an external positioning signal was input when already performing a positioning operation. | 6.2.2 |
| 3 | R | ZRET * | Zero Point Return | Returns to the zero point in the machine coordinate system. When using an incremental encoder, there are 13 different zero point return methods that can be used. | 6.2.3 |
| 4 | R | INTERPOLATE * | Interpolation | Performs interpolation feeding using positioning data distributed consecutively from the CPU Module. | 6.2.4 |
| 5 | - | ENDOF INTERPÖLATE * | Reserved | - | - |
| 6 | R | LATCH * | Interpolation Mode with Latch Input | Memorizes the current position when the latch signal is input during an interpolation feed operation. | 6.2.5 |
| 7 | R | FEED * | JOG Mode | Moves the axis at the specified speed in the specified direction until the command is canceled. | 6.2.6 |
| 8 | R | STEP * | Relative Position Mode (Step up mode) | Positions the specified travel distance in the specified direction at the specified speed. | 6.2.7 |
| 9 | R | ZSET | Set Zero Point | Sets the zero point in the machine coordinate system and enables the software limit function. | 6.2.8 |
| 10 | R | ACC | Change Acceleration Time | Changes the acceleration time for linear acceleration/ deceleration. | 6.2.9 |
| 11 | R | DCC | Change Deceleration Time | Changes the deceleration time for linear acceleration/ deceleration. | 6.2.10 |
| 12 | R | SCC | Change Filter Time Constant | Changes the time constant for a moving average filter for acceleration/deceleration. | 6.2.11 |
| 13 | R | CHG_FILTER | Change Filter Type | Changes the acceleration/deceleration filter type. | 6.2.12 |
| 14 | R | KVS | Change Speed Loop Gain | Changes the speed loop gain. | 6.2 .13 |
| 15 | R | KPS | Change Position Loop Gain | Changes the position loop gain. | 6.2.14 |
| 16 | R | KFS | Change Feed Forward | Changes the feed forward control gain. | 6.2 .15 |
| 17 | R | PRM_RD | Read User Constant | Reads a SERVOPACK parameter. | 6.2.16 |
| 18 | R | PRM_WR | Write User Constant | Write a SERVOPACK parameter. | 6.2.17 |
| 19 | R | ALM_MON | Alarm Monitor | Monitors SERVOPACK alarms. | 6.2.18 |
| 20 | R | ALM_HIST | Alarm History Monitor | Monitors SERVOPACK alarm history. | 6.2.19 |
| 21 | R | ALMHIST_CLR | Clear Alarm History | Clears SERVOPACK alarm history data. | 6.2 .20 |
| 22 | R | ABS_RST | Absolute Encoder Reset | Initializes an absolute encoder. | 6.2 .21 |
| 23 | R | VELO * | Speed Reference | Operates with speed control mode. | 6.2 .22 |
| 24 | R | TRQ * | Torque/Thrust Reference | Operates with torque control mode. | 6.2.23 |
| 25 | R | PHASE * | Phase Reference | Operates with phase control mode. | 6.2 .24 |
| 26 | - | KIS | Change Position Loop Integral Time Constant | Changes the integration time constant for the position loop. | 6.2.25 |
| 27 | - | PPRM_WR | Stored Parameter Write | Change a SERVOPACK parameter in the nonvolatile memory. | 6.2.26 |
| 39 | - | MLTTRN_SET | Multiturn Limit Setting | Sets the multiturn limit. | 6.2.27 |

### 6.1.2 Motion Commands Supported by SERVOPACK Models

The following table shows the motion commands supported by each model of SERVOPACK. A Motion Command Setting Error warning will occur if an unsupported command is specified.


[^2]
## 6．2 Motion Command Details

The following describes the procedure for executing motion commands．
－All the following command names and items in the Parameter List displaying an $\mathbb{R}$ are supported by the Virtual Motion Module（SVR）．

## 6．2．1 Position Mode（POSING）（Positioning）R

The POSING command positions the axis to the target position using the specified target position and speed．Parame－ ters related to acceleration and deceleration are set in advance．

When using an SGDV or SGD7S SERVOPACK，the torque limit can be set and changed during SERVOPACK opera－ tion．For details，refer to ■ Setting and Changing Torque Limit during SGDV or SGD7S SERVOPACK Operations of 4．4．2（12）．

## （ 1 ）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | The Servo ON condition． | IW $\square \square 00$ ，bit 1 is ON． |
| 3 | Motion command execution has been completed．${ }^{*}$ | IW $\square \square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF． |

＊This condition is a basic execution condition．Refer to Chapter 7 Switching Commands during Execution when changing the command that is being executed to a POSING command．

2．Set the following motion setting parameters．
Speed Reference Setting：OLDD10
Filter Type Selection：OWD 0 ，bits 8 to B
Speed Loop P／PI Switch：OWDロ01
－The speed reference can be changed during operation．
－An override of between 0\％to $327.67 \%$ can be set for the speed reference．
3．Set OWロロ08 to 1 to execute the POSING motion command．

4．Set the target position（OLDロ1C）．
Positioning will start．IWD－0 08 will be 1 during the positioning．
IW $\square \square 0 \mathrm{C}$ ，bit 3 will turn ON when the axis approaches the target position．
IWDD0C，bit 1 will turn ON when the axis reaches the target position and the positioning has been completed．
－If the Position Reference Type（OWDロ09，bit 5）is set for an absolute mode，the target position can be set before executing the command．
－The target position can be changed during operation．
－When the target position is changed so that there is not sufficient deceleration distance or after the new target position has already been passed，the system will first decelerate to a stop and then reposition according to the new target position．

5．Set OWロロ08 to 0 to execute the NOP motion command to complete the positioning operation． POSING Operating Pattern

－Terminology：Command execution
When a command code is stored in the motion command register（ $O W \square \square 08$ ），execution of the motion command correspond－ ing to that code is started．Used in describing motion command operations．

## （ 2 ）Holding

Axis travel can be stopped during command execution and then the remaining travel can be restarted．A command is held by setting the Holds a Command bit（OWDD09，bit 0）to 1 ．
－Set the Holds a Command bit（OWDロ09，bit 0 ）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the Command Hold Completed bit（IWロप09，bit 1）will turn ON．
－Reset the Command Pause bit（OWDロ09，bit 0 ）to 0 ．The command hold status will be cleared and the remaining portion of the positioning will be restarted．

## （3）Aborting

Axis travel can be stopped during command execution and the remaining travel canceled by aborting execution of a command．A command is aborted by setting the Interrupt a Command bit（OWDप09，bit 1 ）to 1.
－Set the Interrupt a Command bit（OWロロ09，bit 1）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the remaining distance to be traveled will be canceled，and the Positioning Com－ pleted bit（IW口ロ0C，bit 1）will turn ON．
－The positioning will restart if the Interrupt a Command bit（OWDロ09，bit 1 ）is reset to 0 while the command is being aborted．
－This type of operation will also be performed if the motion command is changed during axis movement．

## －Precautions

Be careful to stop the movement during an axis operation by limiting the torque at OLDD14（Positive Side Limiting Torque Setting at the Speed Reference）．When the movement is stopped，the torque is no longer limited and may rap－ idly increase just after stopping．To abort positioning while the torque is limited，use one of the following settings．
－Set the speed reference to 0
－Set bit 0 of OWDप09（Motion Command Control Flag）to 0 and set OWDロ08（Motion Command）to 0 for a No Operation（NOP）command when the axes stop or turn ON the abort request．
For more information on the maximum allowable value for acceleration and deceleration，refer to Changing the max－ imum value of acceleration and deceleration for SGDV or SGD7S SERVOPACKs of 4．4．2（23）．

## （ 4 ）Related Parameters

## ［ a ］Setting Parameters

| Parameter | Name | Setting | SVR |
| :---: | :---: | :---: | :---: |
| OWDC00 Bit 0 | Servo ON | Turn the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor，0：Power OFF to Servomotor <br> Turn ON the power before setting the Motion Command（OWDO 08 ）to 1 ． | R |
| OWDC01 Bit 3 | Speed Loop P／PI Switch | Switch the speed control loop between PI control and P control． 0：PI control，1：P control | － |
| OWDロ03 | Function Setting 1 | Set the speed unit，acceleration／deceleration units，and filter type． | R |
| OWपロ08 | Motion Command | The positioning starts when this parameter is set to 1 ． <br> The operation will be canceled if this parameter is set to 0 during POSING com－ mand execution． | R |
| OWDC09 Bit 0 | Holds a Command | The axis will decelerate to a stop if this bit is set to 1 during POSING command execution． <br> The positioning will restart if this bit is reset to 0 when a command is being held． | R |
| OWDC09 <br> Bit 1 | Interrupt a Command | The axis will decelerate to a stop if this bit is set to 1 during POSING command execution． <br> When this bit is reset to 0 after decelerating to a stop，the operation depends on the setting of the Position Reference Type（OWDप 09 ，bit 5）． | R |
| OWDロ09 Bit 5 | Position Reference Type | Switch the type of position reference． <br> 0 ：Incremental addition mode，1：Absolute mode <br> Set this bit before setting the Motion Command（OWDC08）to 1. | R |
| OLDロ10 | Speed Reference Setting | Specify the speed for the positioning．Only a positive value can be set． <br> This setting can be changed during operation．The unit depends on the Function Setting 1 setting（OWDC03，bits 0 to 3 ）． | R |
| OWDロ18 | Override | This parameter allows the positioning speed to be changed without changing the Speed Reference Setting（OLDप10）．Set the speed as a percentage of the Speed Reference Setting．This setting can be changed during operation． <br> Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$ <br> Example：Setting for $50 \%$ ： 5000 | － |
| OLロロ1C | Position Reference Setting | Set the target position for positioning．This setting can be changed during opera－ tion． <br> The meaning of the setting depends on the status of the Position Reference Type bit OWロप09，bit 5 ． | R |
| OLDロ1E | Width of Positioning Completion | Set the width in which to turn ON the Positioning Completed bit（IWロロ0C，bit 1）． | － |
| OLDप20 | NEAR Signal Output Width | Set the range in which the NEAR Position bit（IWDप0C，bit 3 ）will turn ON． The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here． | － |
| OLロロ36 | Straight Line Acceler－ ation／Acceleration Time Constant | Set the rate of acceleration or acceleration time constant for positioning． | R |
| OLDロ38 | Straight Line Deceler－ ation／Deceleration Time Constant | Set the rate of deceleration or deceleration time constant for positioning． | R |
| OWロロ3A | Filter Time Constant | Set the acceleration／deceleration filter time constant．Exponential acceleration／ deceleration or a moving average filter can be selected in the Function Setting 1 bit（OWDD03，bits 8 to B）． <br> Change the setting only after pulse distribution has been completed for the com－ mand（IWDD0C，bit 0 is ON ）． | R |

## －Terminology：Pulse distribution

Pulse distribution transfers reference values from the Machine Controller registers to the SERVOPACK registers every scan． Used in describing motion command operation．
［ b ］Monitoring Parameters

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWDC00 <br> Bit 1 | Running（At Servo ON） | Indicates the Servo ON status． <br> 1：Power supplied to Servomotor，0：Power not supplied to Servomotor | R |
| ILロロ02 | Warning | Stores the most current warning． | R |
| ILロロ04 | Alarm | Stores the most current alarm． | R |
| IWDロ08 | Motion Command Response Code | Indicates the motion command that is being executed． The response code will be 1 during POSING command execution． | R |
| $\begin{array}{\|l\|} \hline \text { IWロロ09 } \\ \text { Bit } 0 \end{array}$ | Command Execution Flag | Turns ON when abort processing is being performed for POSING command．Turns OFF when abort processing has been completed． | R |
| IWロロ09 <br> Bit1 | Command Hold Completed | Turns ON when a deceleration to a stop has been completed as the result of setting the Holds a Command（OWDC09，bit 0 ）bit to 1 during POSING command execution． | R |
| IWロロ09 Bit 3 | Command Error Completed Status | Turns ON if an error occurs during POSING command execution． <br> The axis will decelerate to a stop if it is moving．Turns OFF when another command is executed． | R |
| IWロロ09 Bit 8 | Command Execu－ tion Completed | Always OFF for POSING command． <br> Use the Positioning Completed bit（IWDC0C，bit 1）to confirm completion of this command． | R |
| $\begin{array}{\|l\|} \hline \text { IWロロ0C } \\ \text { Bit } 0 \end{array}$ | Discharging Completed | Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of the move command． | R |
| $\begin{aligned} & \text { IWロロ0C } \\ & \text { Bit } 1 \end{aligned}$ | Positioning Completed | Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases． | R |
| $\begin{array}{\|l\|l\|} \hline \text { IWロロ0C } \\ \text { Bit } 3 \end{array}$ | NEAR Position | The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLDप20）． <br> OLDC $20=0$ ：Turns ON when pulse distribution has been completed（ $\mathrm{DEN}=\mathrm{ON}$ ）． Otherwise，it turns OFF． <br> OLD믕 $20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS （ILDD12）and APOS（ILDD16）is less than the NEAR Signal Out put Width even if pulse distribution has not been completed． OFF in all other cases． | R |

## （5）Timing Charts

## ［ a ］Normal Execution


[b] Execution when Aborted

[c] Execution when Aborting by Changing the Command


## [ d ] Command Hold


[e] Execution when an Alarm Occurs


## 6．2．2 Latch Target Positioning（EX＿POSING）（External Positioning）R

The EX＿POSING command positions the axis to the target position using the specified target position and speed． Parameters related to acceleration and deceleration are set in advance． If the external positioning signal turns ON during axis movement，the axis will move the distance specified for the External Positioning Final Travel Distance from the point at which the external positioning signal turned ON，and then stop．If the external positioning signal does not turn ON，positioning will be completed to the original target position．

When using an SGDV or SGD7S SERVOPACK，the torque limit can be set and changed during SERVOPACK opera－ tion．For details，refer to ■ Setting and Changing Torque Limit during SGDV or SGD7S SERVOPACK Operations of 4．4．2（12）．Also，refer to ■ Precautions of 6．2．1（3）．
When using a DC Power Input $\Sigma$－V Series SERVOPACK（Model：SGDV－पロपE1ロロ），refer to 11．7．4 Motion Com－ mand Operation for External Latches with DC Power Input $\Sigma$－V－series SERVOPACKs．
For more information on the maximum allowable value for acceleration and deceleration，refer to Changing the max－ imum value of acceleration and deceleration for SGDV or SGD7S SERVOPACKs of 4．4．2（23）．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | The Servo ON condition． | IW $\square 00$, bit 1 is ON． |
| 3 | Motion command execution has been completed．＊ | IW $\square \square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF． |

＊This condition is a basic execution condition．Refer to Chapter 7 Switching Commands during Execution when changing the command that is being executed to an EX＿POSING command．

2．Set the following motion setting parameters．
External Positioning Final Travel Distance：OLDप46
External Positioning Signal Setting：OWロロ04
Speed Reference Setting：OLロロ10
Filter Type Selection：OWD $\square 03$ ，bits 8 to B
Speed Loop P／PI Switch：OWDロ01
Position Reference Setting：OLD口1C
－The Speed Reference Setting can be changed during operation．
－An override of between $0 \%$ to $327.67 \%$ can be set for the speed reference．
－A latch zone can be set as long as it is supported by the SERVOPACK being used．
3．Set OWDप08 to 2 to execute the EX＿POSING motion command to use the preceding settings in the same scan．

4．Turn $O N$ the external positioning signal．
The axis will be moved the External Positioning Final Travel Move Distance and decelerate to a stop． IW $\square \square 09$ ，bit 8 will turn ON when the axis stops and external positioning has been completed．

5．Set OWDロ08 to 0 to execute the NOP motion command to complete the external positioning opera－ tion．


## （ 2 ）Holding

Axis travel can be stopped during command execution and then the remaining travel can be restarted．A command is held by setting the Holds a Command bit（OWDC09，bit 0）to 1.
－Set the Holds a Command bit（OWDロ09，bit 0）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the Command Hold Completed bit（IWロप09，bit 1）will turn ON．
－Reset the Holds a Command bit（OWDD09，bit 0）to 0 ．
The command hold status will be cleared and the remaining portion of the positioning will be restarted．

## （3）Aborting

Axis travel can be stopped during command execution and the remaining travel canceled by aborting execution of a command．A command is aborted by setting the Interrupt a Command bit（OWDD09，bit 1 ）to 1 ．
－Set the Interrupt a Command bit（OWDロ09，bit 1）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the remain travel will be canceled and the Positioning Completed bit（IW $\square \square 0 \mathrm{C}$ ， bit 1）will turn ON．
－This type of operation will also be performed if the motion command is changed during axis movement．

## （4）Related Parameters

## ［a］Setting Parameters

| Parameter | Name | Setting | SVR |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { OWवロ00 } \\ & \text { Bit } 0 \end{aligned}$ | Servo ON | Turn the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor，0：Power OFF to Servomotor <br> Turn ON the power before setting the Motion Command（OW口ロ08）to 2. | R |
| $\begin{aligned} & \hline \text { OWपロ01 } \\ & \text { Bit } 3 \end{aligned}$ | Speed Loop P／PI Switch | Switch the speed control loop between PI control and P control． 0：PI control，1：P control | － |
| OW口ロ03 | Function Setting 1 | Set the speed unit，acceleration／deceleration units，and filter type． | R |
| OW口ロ04 | Function Setting 2 | Set the external positioning signal． <br> 2：phase－C pulse，3：／EXT1，4：／EXT2，5：／EXT3 | R |
| OWロロ08 | Motion Command | The positioning starts when this parameter is set to 2 ． The operation will be canceled if this parameter is set to 0 during EX＿POSING command execution． | R |
| $\begin{aligned} & \text { OWपロ09 } \\ & \text { Bit } 0 \end{aligned}$ | Holds a Command | The axis will decelerate to a stop if this bit is set to 1 during execution of EX＿POSING command execution． <br> The positioning will restart if this bit is reset to 0 when a command is being held． | R |
| OW口ロ09 Bit 1 | Interrupt a Command | The axis will decelerate to a stop if this bit is set to 1 during EX＿POSING com－ mand execution． | R |


| Parameter | Name | Setting | SVR |
| :---: | :---: | :---: | :---: |
| OWロロ09 <br> Bit 4 | Latch Zone Effective Selection | Enable or disable the area where the external positioning signal is valid． If the latch zone is enabled，the external positioning signal will be ignored if it is input outside of the latch zone． <br> 0：Disable，1：Enable | － |
| OWロロ09 <br> Bit 5 | Position Reference Type | Switch the type of position reference． <br> 0 ：Incremental addition mode，1：Absolute mode <br> Set this parameter before setting the Motion Command（OW $\square \square 08$ ）to 2. | R |
| OLDロ10 | Speed Reference Setting | Specify the speed for the positioning．Only a positive value can be set． This setting can be changed during operation．The unit depends on the Function Setting 1 setting（OW口ロ03，bits 0 to 3 ）． | R |
| OWDロ18 | Override | This parameter allows the positioning speed to be changed without changing the Speed Reference Setting（OLD口10）． <br> Set the speed as a percentage of the Speed Reference Setting．This setting can be changed during operation． <br> Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$ | － |
| OLロロ1C | Position Reference Set－ ting | Set the target position for positioning． <br> This setting can be changed during operation．The meaning of the setting depends on the status of the Position Reference Type bit（OW $\square \square 09$ ，bit 5）． | R |
| OLD口1E | Width of Positioning Completion | Set the width in which to turn ON the Positioning Completed bit（IW $\square \square 0 \mathrm{C}$ ， bit 1）． | － |
| OLD口20 | NEAR Signal output Width | Set the range in which the NEAR Position bit（IW $\square \square 0 \mathrm{C}$ ，bit 3）will turn ON． The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here． | － |
| OLDロ2A | Latch Zone Lower Limit Setting | Set the boundary in the negative direction of the area in which the external positioning signal is to be valid． | － |
| OLDロ2C | Latch Zone Upper Limit Setting | Set the boundary in the positive direction of the area in which the external posi－ tioning signal is to be valid． | － |
| OLDロ36 | Straight Line Accelera－ tion／Acceleration Time Constant | Set the rate of acceleration or acceleration time constant for positioning． | R |
| OLDロ38 | Straight Line Decelera－ tion／Deceleration Time Constant | Set the rate of deceleration or deceleration time constant for positioning． | R |
| OWDロ3A | Filter Time Constant | Set the acceleration／deceleration filter time constant．Exponential acceleration／ deceleration or a moving average filter can be selected in OWD $\square 03$ ，bits 8 to B． <br> Change the setting only after pulse distribution has been completed for the command（IWロロ0C，bit 0 is ON ）． | $R$ |
| OLD口46 | External Positioning Final Travel | Set the moving amount after the external positioning signal is input． | － |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWロロ00 <br> Bit 1 | Running（At Servo ON） | Indicates the Servo ON status． <br> 1：Power supplied to Servomotor，0：Power not supplied to Servomotor | R |
| ILロ口02 | Warning | Stores the most current warning． | R |
| ILロ口04 | Alarm | Stores the most current alarm． | R |
| IWロロ08 | Motion Command Response Code | Indicates the motion command that is being executed． <br> The response code is 2 during EX＿POSING command execution． | R |
| $\begin{aligned} & \text { IWपव09 } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | The Command Executing Flag bit will turn ON during EX＿POSING command execu－ tion and then turn OFF when command execution has been completed． | R |
| IWロロ09 <br> Bit 1 | Command Hold Completed | Turns ON when a deceleration to a stop has been completed as the result of setting the Holds a Command bit to 1 （OW口ロ09，bit 1）during EX＿POSING command execu－ tion（IWD口08＝2）． | R |
| IWロロ09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during EX＿POSING command execution． The axis will decelerate to a stop if it is moving．Turns OFF when another command is executed． | R |

## (5) Timing Charts

- With an External Position command (EX_POSING), the value for the External Positioning Final Travel Distance (OLロロ46) is written to the parameters of the SERVOPACK before the axes move. For this reason, a slight time lag occurs before the axes start moving.
[ a] Normal Execution

[b] Execution when Aborted

[ c ] Execution when Aborting by Changing the Command

[d] Execution when an Alarm Occurs



### 6.2.3 Zero Point Return (ZRET) R

When the Zero Point Return command (ZRET) is executed, the axis will return to the zero point of the machine coordinate system.
The operation to detect the position of the zero point is different between an absolute encoder and an incremental encoder.
With an absolute encoder, positioning is performed to the zero point of the machine coordinate system and command execution is completed.
With an incremental encoder, there are 13 different methods (see below) that can be performed for the zero point return operation.
For SVR, the machine coordinate system is initialized and the coordinates of the axis are set to show the axis being at the zero point. As a result, a Zero Point Return operation will not be executed.

When using an SGDV or SGD7S SERVOPACK, the torque limit can be set and changed during SERVOPACK operation. For details, refer to ■ Setting and Changing Torque Limit during SGDV or SGD7S SERVOPACK Operations of 4.4.2 (12).

When using a DC Power Input $\Sigma$-V Series SERVOPACK (Model: SGDV-ㅁㅁ믐ㅁㅁ), refer to 11.7.4 Motion Command Operation for External Latches with DC Power Input $\Sigma$-V-series SERVOPACKs.
For more information on the maximum allowable value for acceleration and deceleration, refer to $■$ Changing the maximum value of acceleration and deceleration for SGDV or SGD7S SERVOPACKs of 4.4.2 (23).

## ( 1 ) Selecting the Zero Point Return Method (with an Incremental Encoder)

When an incremental encoder is selected for the Encoder Selection by fixed parameter No. 30 to 0, the coordinate system data will be lost when the power supply is turned OFF. This command must be executed when the power supply is turned ON again to establish a new coordinate system.
The following table lists the 13 zero point return methods that are supported by the MP2000 Series Machine Controller. Select the best method for the machine according to the setting parameters. Refer to the section numbers indicated in the Reference column for additional command information.

| Setting Parameter OWロロ3C | Name | Method | Signal Meaning | Reference |
| :---: | :---: | :---: | :---: | :---: |
| 0 | DEC1 + C | Applies a 3-step deceleration method using the deceleration limit switch and phase-C pulse. | DEC1 signal: SERVOPACK DEC signal | $\begin{gathered} 6.2 .3 \\ (7)[a] \end{gathered}$ |
| 1 | ZERO | Uses the ZERO signal. | ZERO signal: SERVOPACK EXT1 signal | $\begin{gathered} 6.2 .3 \\ (7)[\mathrm{b}] \end{gathered}$ |
| 2 | DEC1 + ZERO | Applies a 3-step deceleration method using the deceleration limit switch and ZERO signal. | DEC1 signal: SERVOPACK DEC signal ZERO signal: SERVOPACK EXT1 signal | $\begin{gathered} 6.2 .3 \\ (7)[c] \end{gathered}$ |
| 3 | C | Uses the phase-C pulse. | - | $\begin{gathered} 6.2 .3 \\ (7)[d] \end{gathered}$ |
| 4 to 10 | Not used | - | - | - |
| 11 | C pulse Only | Uses only the phase-C pulse. | - | $\begin{gathered} 6.2 .3 \\ (7)[\mathrm{e}] \end{gathered}$ |
| 12 | POT \& C pulse | Uses the positive overtravel signal and phase-C pulse. | P-OT: SERVOPACK P-OT signal | $\begin{gathered} 6.2 .3 \\ (7)[f] \end{gathered}$ |
| 13 | POT Only | Uses only the positive overtravel signal. | P-OT: SERVOPACK P-OT signal This method must not be used if repeat accuracy is required. | $\begin{gathered} 6.2 .3 \\ (7)[\mathrm{g}] \end{gathered}$ |
| 14 | Home LS \& C pulse | Uses the home signal and phase-C pulse. | HOME: SERVOPACK EXT1 signal | $\begin{gathered} 6.2 .3 \\ (7)[\mathrm{h}] \end{gathered}$ |
| 15 | Home Only | Uses only the home signal. | HOME: SERVOPACK EXT1 signal | $\begin{gathered} 6.2 .3 \\ (7)[\mathrm{i}] \end{gathered}$ |
| 16 | NOT \& C pulse | Uses the negative overtravel signal and phase-C pulse. | N-OT: SERVOPACK N-OT signal | $\begin{gathered} 6.2 .3 \\ (7)[\mathrm{j}] \end{gathered}$ |


| （cont＇d） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Setting Parameter OWロロ3C | Name | Method | Signal Meaning | Reference |
| 17 | NOT Only | Uses only the negative overtravel signal． | N－OT：SERVOPACK N－OT signal This method must not be used if repeat accuracy is required． | $\begin{gathered} 6.2 .3 \\ (7)[k] \end{gathered}$ |
| 18 | INPUT \＆ C pulse | Uses the INPUT signal and phase－C pulse． | INPUT：Setting parameter OWDロ05， bit B | $\begin{gathered} 6.2 .3 \\ (7)[1] \\ \hline \end{gathered}$ |
| 19 | INPUT Only | Uses only the INPUT signal． | With this method，a zero point return can be performed without connecting an external signal using setting parameter OWD $\square 05$ ，bit B． <br> This method must not be used if repeat accuracy is required． | $\begin{gathered} 6.2 .3 \\ (7)[\mathrm{m}] \end{gathered}$ |

## （2）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | The Servo ON condition． | IW $\square \square 00$, bit 1 is ON． |
| 3 | Motion command execution has been completed．${ }^{*}$ | IW $\square \square 08$ is 0 and IW $\square 09$, bit 0 is OFF． |

＊This condition is a basic execution condition．Refer to Chapter 7 Switching Commands during Execution when changing the command that is being executed to a ZRET command．

2．When an incremental encoder is selected for the Encoder Selection Type by setting fixed parameter No． 30 to 0，set the zero point return method that will be used in the Zero Point Return Method Home （motion setting parameter OWDロ3C）as described on the previous page．
－The software limit function will be enabled after the zero point return operation has been completed．
3．Refer to 6．2．3（ 7 ）Zero Point Return Operation and Parameters and set the required parameters．
4．Set OWDD08 to 3 to execute the ZRET motion command．
The zero point return operation will start．IWDप08 will be 3 during the operation．
$\mathrm{IB} \square \square 0 \mathrm{C}$ ，bit5 will turn ON when the axis reaches the zero point and zero point return has been completed．
5．Set OWロロ08 to 0 to execute the NOP motion command and then complete the zero point return operation．

## （ 3 ）Holding

Holding execution is not possible during zero point return operation．The Holds a Command bit（OWDロ09，bit 0 ）is ignored．

## （4）Aborting

The zero point return can be canceled by aborting execution of a command．A command is aborted by setting the Inter－ rupt a Command bit（OWDप09，bit 1）to 1.
－Set the Interrupt a Command bit（OWDD09，bit 1）to 1 ．The axis will decelerate to a stop．
－When the axis has decelerated to a stop the remain travel will be canceled and the Positioning Completed bit （IWDロ0C，bit 1）will turn ON．
－This type of operation will also be performed if the motion command is changed during axis movement．

## （5）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting | SVR |
| :---: | :---: | :---: | :---: |
| OWロロ00 <br> Bit 0 | Servo ON | Turn the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor，0：Power OFF to Servomotor <br> Turn ON the power before setting the Motion Command（OWDC08）to 3. | R |
| OWपロ01 Bit 3 | Speed Loop P／PI Switch | Switches the SERVOPACK＇s speed loop between PI control and P control． 0：PI control，1：P control | － |
| OWDロ03 | Function Setting 1 | Set the speed unit，acceleration／deceleration units，and filter type． | R |
| OWपロ08 | Motion Command | Positioning starts when this parameter is set to 3 ． <br> The operation will be canceled if this parameter is set to 0 during ZRET com－ mand execution． | R |
| OWロロ09 <br> Bit 1 | Holds a Command | The axis will decelerate to a stop if this bit is set to 1 during ZRET command execution． | 8 |
| OLロロ36 | Straight Line Accelera－ tion／Acceleration Time Constant | Set the rate of acceleration or acceleration time constant for positioning． | R |
| OLDロ38 | Straight Line Decelera－ tion／Deceleration Time Constant | Set the rate of deceleration or deceleration time constant for positioning． | R |
| OWロロ3A | Filter Time Constant | Set the acceleration／deceleration filter time constant．Exponential acceleration／ deceleration or a moving average filter can be selected in OWDप03，bits 8 to B． Change the setting only after pulse distribution has been completed for the com－ mand（IWDC0C，bit 0 is ON ）． | R |
| OWロロ3D | Width of Starting Point Position Output | Set the width in which the Zero Position bit（IWDロ0C，bit 4）will turn ON． | R |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWロロ00 <br> Bit 1 | Running（At Servo ON） | Indicates the Servo ON status． <br> 1：Power supplied to Servomotor，0：Power not supplied to Servomotor | R |
| ILロロ02 | Warning | Stores the most current warning． | R |
| ILロロ04 | Alarm | Stores the most current alarm． | R |
| IWロロ08 | Motion Command Response Code | Indicates the motion command that is being executed． The response code is 3 during ZRET command execution． | R |
| $\begin{aligned} & \text { IWロप09 } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | The Command Execution Flag bit will turn ON during ZRET command execution and then turn OFF when command execution has been completed． | R |
| $\begin{aligned} & \text { IWDロ09 } \\ & \text { Bit } 1 \end{aligned}$ | Command Hold Completed | Always OFF for ZRET command． | R |
| IWロロ09 <br> Bit 3 | Command Error Com－ pleted Status | Turns ON if an error occurs during ZRET command execution． The axis will decelerate to a stop if it is moving．Turns OFF when another command is executed． | R |
| $\begin{aligned} & \hline \text { IWロप09 } \\ & \text { Bit } 8 \end{aligned}$ | Command Execution Completed | Turns ON when ZRET command execution has been completed． | R |
| $\begin{aligned} & \text { IW口प0C } \\ & \text { Bit } 0 \end{aligned}$ | Discharging Completed | Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command． | R |
| IWロロOC <br> Bit 3 | NEAR Position | The operation depends on the setting of the NEAR Signal Output Width（setting parame－ ter OLDロ20）． <br> OLDप20 $=0$ ：Turns ON when pulse distribution has been completed $(\mathrm{DEN}=\mathrm{ON})$ ． Otherwise，it turns OFF． <br> OLD $\square 20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS （ILDप12）and APOS（ILDप16）is less than the NEAR Signal Output Width even if pulse distribution has not been completed． OFF in all other cases． | R |
| IWロロ0C <br> Bit 4 | Zero Position | Turns ON if the current position after the zero point return operation has been completed is within the Width of Starting Point Position Output from the zero point position．Other－ wise，it turns OFF． | R |
| $\begin{aligned} & \text { IWロप0C } \\ & \text { Bit } 5 \end{aligned}$ | Zero Point Return（Set－ ting）Completed | Turns ON when the zero point return has been completed． | R |

## ( 6 ) Timing Charts

[a] Normal Execution

[b] Execution when Aborted

[ c ] Execution when Aborting by Changing the Command

［d］Execution when an Alarm Occurs
（ZRET）
IWロロ08＝ 3 （ZRET）
IWDC09，bit 0 （BUSY）
IWपロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）
IWロロ0C，bit 0 （DEN）
IWDOOC，bit 1 （POSCOMP）
IWロロ0C，bit 5 （ZRNC）

Alarm


## （ 7 ）Zero Point Return Operation and Parameters

With an incremental encoder，there are 13 different methods that can be performed for the zero point return operation． This section explains the operation that occurs after starting a zero point return and the parameters that need to be set before executing the command．
－None of the methods shown here are available with the SVR because it only supports absolute encoders．
［ a ］DEC1＋C Method（OWDロ3C＝0）

## －Operation after Zero Point Return Starts

Travel is started at the zero point return speed in the direction specified in the parameters． When the rising edge of the DEC1 signal is detected，the speed is reduced to the approach speed．
When the first phase－C pulse is detected after passing the DEC1 signal at the approach speed，the speed is reduced to the creep speed and positioning is performed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the phase－C pulse is detected is set in the Zero Point Return Travel Distance（OLDO42）．
－If an OT signal is detected during the zero point return operation，an OT alarm will occur．

＊1．The SERVOPACK DEC signal．
＊2．The SERVOPACK P－OT signal．
＊3．The SERVOPACK N－OT signal．
Setting Parameters

| Parameter | Name | Setting |
| :---: | :---: | :---: |
| OWDロ3C | Zero Point Return Method | 0：DEC1＋Phase－C |
| OWDロ09，Bit 3 | Zero Point Return Direction Selection | Set the zero point return direction． |
| OLDロ10 | Speed Reference Setting | Set the speed to use when starting a zero point return． Only a positive value can be set；a negative value will result in an error． |
| OWDロ18 | Override | This parameter allows the Zero Point Return speed to be changed without changing the Speed Reference Setting（OLDD10）．Set the speed as a per－ centage of the Speed Reference Setting．This setting can be changed during operation． <br> Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$ Example：Setting for $50 \%$ ： 5000 |
| OLD－3E | Approach Speed | Set the speed to use after detecting the DEC 1 signal． Only a positive value can be set；a negative value will result in an error． |
| OLDロ40 | Creep Rate | Set the speed to use after detecting the first phase－C pulse after passing the DEC1 signal．Only a positive value can be set；a negative value will result in an error． |
| OLD－42 | Zero Point Return Travel Distance | Set the travel distance from the point where the first phase－C pulse is detected after passing the DEC1 signal． <br> If the sign is positive，travel will be toward the zero point return direction；if the sign is negative，travel will be away from the zero point return direction． |

## ［ b ］ZERO Method（OWDロ3C＝1）

## Operation after Zero Point Return Starts

Travel is started at the approach speed in the direction specified in the parameters．
When the rising edge of the ZERO signal is detected，the speed is reduced to the creep speed and positioning is per－ formed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the ZERO signal is detected is set in the Zero Point Return Travel Distance（OLD－42）．
－If an OT signal is detected during the zero point return operation，an OT alarm will occur．

$\mathrm{N}-\mathrm{OT} * 3$
＊1．The SERVOPACK EXT1 signal．
＊2．The SERVOPACK P－OT signal．
＊3．The SERVOPACK N－OT signal．

## Setting Parameters

| Parameter | Name | Setting |
| :---: | :--- | :--- |
| OWロロ3C | Zero Point Return <br> Method | 1：ZERO Signal Method |
| OWロロ09，Bit 3 | Zero Point Return Direc－ <br> tion Selection | Set the zero point return direction． |
| OLロロ3E | Approach Speed | Set the speed to use when starting a zero point return． <br> Only a positive value can be set；a negative value will result in an error． |
| OLロロ40 | Creep Rate | Set the speed to use after detecting the ZERO signal． <br> Only a positive value can be set；a negative value will result in an error． |
| OLロロ42 | Zero Point Return Travel <br> Distance | Set the travel distance from the point where the ZERO signal is detected． <br> If the sign is positive，travel will be toward the zero point return direction；if <br> the sign is negative，travel will be away from the zero point return direction． |

## ［ c ］DEC1＋ZERO Method（OWDD3C＝2）

## Operation after Zero Point Return Starts

Travel is started at the zero point return speed in the direction specified in the parameters．
When the rising edge of the DEC1 signal is detected，the speed is reduced to the approach speed．
When the rising edge of the ZERO signal is detected after passing the $\mathrm{DEC1}$ signal at the approach speed，the speed is reduced to the creep speed and positioning is performed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the ZERO signal is detected is set in the Zero Point Return Travel Distance（OLD－42）．
－If an OT signal is detected during the zero point return operation，an OT alarm will occur．

$\xrightarrow{\mathrm{N}-\mathrm{OT}^{* 4}}$
＊1．The SERVOPACK DEC signal．
＊2．The SERVOPACK EXT1 signal．
＊3．The SERVOPACK P－OT signal．
＊4．The SERVOPACK N－OT signal．

## Setting Parameters

| Parameter | Name | Setting |
| :---: | :---: | :---: |
| OWDロ3C | Zero Point Return Method | 2：DEC1＋ZERO Signal Method |
| OWDロ09，Bit 3 | Zero Point Return Direction Selection | Set the zero point return direction． |
| OLロロ10 | Speed Reference Set－ ting | Set the speed to use when starting a zero point return． Only a positive value can be set；a negative value will result in an error． |
| OW口ロ18 | Override | This parameter allows the Zero Point Return speed to be changed without changing the Speed Reference Setting（OLDロ10）．Set the speed as a per－ centage of the Speed Reference Setting．This setting can be changed during operation． <br> Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$ <br> Example：Setting for $50 \%$ ： 5000 |
| OLD口3E | Approach Speed | Set the speed to use after detecting the DEC1 signal． Only a positive value can be set；a negative value will result in an error． |
| OLD口40 | Creep Rate | Set the speed to use after detecting the ZERO signal after passing the DEC1 signal． <br> Only a positive value can be set；a negative value will result in an error． |
| OLD口42 | Zero Point Return Travel Distance | Set the travel distance from the point where the ZERO signal is detected after passing the DEC 1 signal． <br> If the sign is positive，travel will be toward the zero point return direction；if the sign is negative，travel will be away from the zero point return direction． |

## ［d］C Method（OWDC3C＝3）

## －Operation after Zero Point Return Starts

Travel is started at the approach speed in the direction specified in the parameters．
When the rising edge of the phase－C pulse is detected，the speed is reduced to the creep speed and positioning is per－ formed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the phase－C pulse is detected is set in the Zero Point Return Travel Distance（OLDप42）．
－If an OT signal is detected during the zero point return operation，an OT alarm will occur．


## $\xrightarrow{\mathrm{N}-\mathrm{OT}^{*} 2}$

＊1．The SERVOPACK P－OT signal．
＊2．The SERVOPACK N－OT signal．

## Setting Parameters

| Parameter | Name | Setting |
| :---: | :--- | :--- |
| OWロロ3C | Zero Point Return <br> Method | 3：Phase－C Method |
| OWロロ09，Bit 3 | Zero Point Return <br> Direction Selection | Set the zero point return direction． |
| OLロロ3E | Approach Speed | Set the speed to use when starting a zero point return． <br> Only a positive value can be set；a negative value will result in an error． |
| OLロロ40 | Creep Rate | Set the speed to use after detecting the phase－C pulse． <br> Only a positive value can be set；a negative value will result in an error． |
| OLロप42 | Zero Point Return Travel <br> Distance | Set the travel distance from the point where a phase－C pulse is detected． <br> If the sign is positive，travel will be toward the zero point return direction；if <br> the sign is negative，travel will be away from the zero point return direction． |

［e］C Pulse Only Method（OWロロ3C＝11）
－Operation after Zero Point Return Starts
Travel is started at the creep speed in the direction specified by the sign of the creep speed．When the rising edge of the phase－C pulse is detected，positioning is performed at the positioning speed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the phase－C pulse is detected is set in the Zero Point Return Travel Distance．The posi－ tioning speed is set in the Speed Reference．
－If an OT signal is detected during creep speed operation，an OT alarm will not occur，the direction will be reversed， and a search will be made for the phase－C pulse．
－If an OT signal is detected during positioning speed operation，an OT alarm will occur．

$\mathrm{N}^{-\mathrm{OT}^{*}}$
＜OT Signal Detected during Creep Speed Operation＞

${ }^{\mathrm{N}-\mathrm{OT}^{2}}$
＊1．The SERVOPACK P－OT signal．
＊2．The SERVOPACK N－OT signal．
－The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters．

## Setting Parameters

| Parameter | Name | Setting |
| :---: | :--- | :--- |
| OWロロ3C | Zero Point Return <br> Method | $11:$ C Pulse Only Method |
| OLロロ10 | Speed Reference <br> Setting | Set the positioning speed to use after detecting the phase－C pulse．The sign <br> is ignored． <br> The travel direction will depend on the sign of the Home Offset． |
| OLロロ40 | Creep Rate | Set the speed and travel direction（sign）to use when starting a zero point <br> return． |
| OLロロ42 | Zero Point Return <br> Method | Set the travel distance from the point where a phase－C pulse is detected． <br> The travel direction will depend on the sign． |

## ［ f ］POT \＆C Pulse Method（OWDロ3C＝12）

## Operation after Zero Point Return Starts

Travel is started at the approach speed in the positive direction until the stroke limit is reached．
When the P－OT signal is detected，the direction is reversed to return at creep speed．
When the phase－C pulse is detected during the return after passing the $\mathrm{P}-\mathrm{OT}$ signal，the positioning is performed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the phase－C pulse is detected is set in the Zero Point Return Travel Distance．The posi－ tioning speed is set in the Speed Reference．
－If a negative value is set for the approach speed，the command will end in an error．
－If an OT signal is detected during the positioning speed operation，an OT alarm will occur．


$$
\stackrel{\mathrm{N}-\mathrm{OT}^{* 2}}{ }
$$

＊1．The SERVOPACK P－OT signal．
＊2．The SERVOPACK N－OT signal．
－The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters．
－Setting Parameters

| Parameter | Name | Setting |
| :---: | :--- | :--- |
| OWロロ3C | Zero Point Return <br> Method | 12：P－OT \＆C pulse method |
| OLロロ10 | Speed Reference <br> Setting | Set the positioning to use after detecting the phase－C pulse．The sign is <br> ignored． <br> The zero point return direction will depend on the sign of the Home Offset． |
| OLロロ3E | Approach Speed | Set the speed to use when starting a zero point return． <br> Add a sign so that the travel direction will be positive． |
| OLロप40 | Creep Rate | Set the reverse speed to use at after detecting the P－OT signal． <br> The sign is ignored．The travel direction will be negative． |
| OLロप42 | Zero Point Return Travel <br> Distance | Set the travel distance from the point where a phase－C pulse is detected． <br> The travel direction will depend on the sign． |

## ［ g ］POT Only Method（OWDロ3C＝13）

## －Operation after Zero Point Return Starts

Travel is started at the approach speed in the positive direction until the stroke limit is reached． When the P－OT signal is detected，the direction is reversed to return at Positioning speed．
When a change in the P－OT signal status from ON to OFF is detected during the return，the positioning is performed． When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after a change in the P－OT signal status is detected is set in the Zero Point Return Travel Dis－ tance．The positioning speed is set in the Speed Reference．
－If a negative value is set for the approach speed，the command will end in an error．
－If an OT signal is detected during the positioning speed operation，an OT alarm will occur．
－Detecting the change in the OT signal status is performed using software processing．The position where positioning is completed will depend on the high－speed scan setting，positioning speed，etc．Do not use this method if repeat accuracy is required in the position where the zero point return operation is completed．

＜Starting on the Positive Stroke Limit（P－OT）＞

$\xrightarrow{\mathrm{N}-\mathrm{OT}^{* 2}}$
＊1．The SERVOPACK P－OT signal．
＊2．The SERVOPACK N－OT signal．
－The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters．

## Setting Parameters

| Parameter | Name | Setting |
| :---: | :--- | :--- |
| OWロロ3C | Zero Point Return <br> Method | 13：P－OT Only Method |
| OLロロ10 | Speed Reference <br> Setting | Set the positioning speed to use after detecting the P－OT signal．The sign is <br> ignored． <br> The travel direction will depend on the sign of the Zero Point Travel Distance． |
| OLロロ3E | Approach Speed | Set the speed to use when starting a zero point return． <br> Add a sign so that the travel direction will be positive． |
| OLロロ42 | Zero Point Return <br> Travel Distance | Set the travel distance from the point where the P－OT signal is detected． <br> The travel direction will depend on the sign． |

## [ h ] HOME LS \& C Pulse Method (OWDロ3C = 14)

Operation after Zero Point Return Starts
Travel is started at the approach speed in the direction specified by the sign of the approach speed.
When the rising edge of the home signal is detected, the speed is reduced to creep speed.
When the first phase-C pulse is detected after the falling edge of the home signal, the positioning is performed at positioning speed.
When the positioning has been completed, a machine coordinate system is established with the final position as the zero point.

- The moving amount after the phase-C pulse is detected is set in the Zero Point Return Travel Distance. The positioning speed is set in the Speed Reference.
- If an OT signal is detected during approach speed operation, an alarm will not occur, the direction will be reversed, and a search will be made for the home signal.
- If an OT signal is detected during positioning speed operation, an OT alarm will occur.

<Detecting the OT Signal during Approach Speed Movement>

$\mathrm{N}-\mathrm{OT}^{* 3}$
* 1. The SERVOPACK EXT1 signal.
* 2. The SERVOPACK P-OT signal.
* 3. The SERVOPACK N-OT signal.
- The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters.


## Setting Parameters

| Parameter | Name | Setting |
| :---: | :--- | :--- |
| OW口ロ3C | Zero Point Return <br> Method | Speed Reference <br> Setting |
| OLロロ10 | Set the positioning speed to use after detecting the phase－C pulse．The sign <br> is ignored． <br> The travel direction depends on the sign of the Zero Point Return Travel <br> Distance． |  |
| OLロロ3E | Approach Speed | Set the speed to use when starting a zero point return． <br> The travel direction will depend on the sign of the approach speed． |
| OLロロ40 | Creep Rate | Set the speed to use after detecting the home signal and the travel direction <br> （sign）． |
| OLロロ42 | Zero Point Return Travel <br> Distance | Set the travel distance from the point where a phase－C pulse is detected． <br> The travel direction will depend on the sign． |

## ［i］HOME Only Method（OWDロ3C＝15）

## Operation after Zero Point Return Starts

Travel is started at the creep speed in the direction specified by the sign of the creep speed．
When the rising edge of the home signal is detected，positioning is performed at the positioning speed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the rising edge of the home signal is detected is set in the Zero Point Return Travel Dis－ tance．The positioning speed is set in the Speed Reference Setting．
－If an OT signal is detected during creep speed operation，an alarm will not occur，the direction will be reversed，and a search will be made for the home signal．
－If an OT signal is detected during positioning speed operation，an OT alarm will occur．

＜Detecting the OT Signal during Creep Rate Movement＞

＊1．The SERVOPACK EXT1 signal．
＊2．The SERVOPACK P－OT signal．
＊3．The SERVOPACK N－OT signal．
－The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters．

## Setting Parameters

| Parameter | Name | Setting |
| :---: | :--- | :--- |
| OWロロ3C | Zero Point Return <br> Method | $15:$ HOME LS Only Method |
| OLロロ10 | Speed Reference <br> Setting | Set the positioning speed to use after detecting the home signal．The sign is <br> ignored．The travel direction will depend on the sign of the Zero Point Re－ <br> turn Travel Distance． |
| OLロロ40 | Creep Rate | Set the speed and the travel direction（sign）to use when starting a zero point <br> return． |
| OLロロ42 | Zero Point Return Travel <br> Distance | Set the travel distance from the point where the home signal is detected． <br> The travel direction will depend on the sign． |

## ［j］NOT \＆C Pulse Method（OWDロ3C＝16）

## －Operation after Zero Point Return Starts

Travel is started at the approach speed in the negative direction until the stroke limit is reached．
When the N－OT signal is detected，the direction is reversed to return at the creep speed．
When the phase－C pulse is detected during the return after passing the $\mathrm{N}-\mathrm{OT}$ signal，the positioning is performed． When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the phase－C pulse is detected is set in the Zero Point Return Travel Distance．The posi－ tioning speed is set in the Speed Reference．
－If a positive value is set for the approach speed，the command will end in an error．
－If an OT signal is detected during the positioning speed operation，an OT alarm will occur．

＊1．The SERVOPACK P－OT signal．
＊2．The SERVOPACK N－OT signal．
－The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters．
－Setting Parameters

| Parameter | Name | Setting |
| :---: | :--- | :--- |
| OWロロ3C | Zero Point Return <br> Method | 16：N－OT \＆C pulse Method |
| OLロロ10 | Speed Reference <br> Setting | Set the positioning speed to use after detecting the phase－C pulse．The sign <br> is ignored． <br> The travel direction will depend on the sign of the Zero Point Return Travel <br> Distance． |
| OLロロ3E | Approach Speed | Set the speed to use when starting a zero point return． <br> Add a sign so that the travel direction will be negative． |
| OLロप40 | Creep Rate | Set the speed to use after detecting the N－OT signal． <br> The travel direction will be positive． |
| OLロप42 | Zero Point Return Travel <br> Distance | Set the travel distance from the point where a phase－C pulse is detected． <br> The travel direction will depend on the sign． |

## ［k］NOT Only Method（OWDC3C＝17）

## Operation after Zero Point Return Starts

Travel is started at the approach speed in the negative direction until the stroke limit is reached．
When the N－OT signal is detected，the direction is reversed to return at the positioning speed．
When a change in the N －OT signal status from ON to OFF is detected during the return，the positioning is performed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the change of the N－OT signal status is detected is set in the Zero Point Return Travel Dis－ tance．The positioning speed is set in the Speed Reference．
－If a positive value is set for the approach speed，the command will end in an error．
－If an OT signal is detected during the positioning speed operation，an OT alarm will occur．
－Detecting the change in the OT signal status is performed using software processing．The position where positioning is completed will depend on the high－speed scan setting，positioning speed，etc．Do not use this method if repeat accuracy is required in the position where the zero point return operation is completed．

＊1．The SERVOPACK P－OT signal．
＊2．The SERVOPACK N－OT signal．
－The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters．

## Setting Parameters

| Parameter | Name | Setting |
| :---: | :--- | :--- |
| OWロロ3C | Zero Point Return <br> Method | 17：N－OT Only Method |
| OLロロ10 | Speed Reference <br> Setting | Set the positioning speed to use after detecting the N－OT signal．The sign is <br> ignored． <br> The travel direction will depend on the sign of the Zero Point Return Travel <br> Distance． |
| OLロロ3E | Approach Speed | Set the speed to use when starting a zero point return． <br> Add a sign so that the travel direction will be negative． |
| OLロロ42 | Zero Point Return Travel <br> Distance | Set the travel distance from the point where the N－OT signal is detected． <br> The travel direction will depend on the sign． |

## [1] INPUT \& C Pulse Method (OWDC3C = 18)

## Operation after Zero Point Return Starts

Travel is started at the approach speed in the direction specified by the sign of the approach speed.
When the rising edge of the INPUT signal is detected, the speed is reduced to the creep speed.
When the first phase-C pulse is detected after the falling edge of the INPUT signal, the positioning is performed at positioning speed.
When the positioning has been completed, a machine coordinate system is established with the final position as the zero point.

- The moving amount after the phase-C pulse is detected is set in the Zero Point Return Travel Distance. The positioning speed is set in the Speed Reference Setting.
- If an OT signal is detected during approach speed operation, an OT alarm will not occur, the direction will be reversed, and a search will be made for the Zero Point Return Input Signal.
- If an OT signal is detected during positioning speed operation, an OT alarm will occur.

<Detecting the OT Signal during Approach Speed Movement>

* 1. The SERVOPACK P-OT signal.
* 2. The SERVOPACK N-OT signal.
- The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters.


## Setting Parameters

| Parameter | Name | Setting |
| :---: | :--- | :--- |
| OWロロ3C | Zero Point Return <br> Method | 18：INPUT \＆C pulse Method |
| OLロロ10 | Speed Reference <br> Setting | Set the positioning speed to use after detecting the phase－C pulse．The sign is ignored． <br> The travel direction will depend on the sign of the Zero Point Return Travel Distance |
| OLロロ3E | Approach Speed | Set the speed to use when starting a zero point return． <br> The travel direction will depend on the sign of the approach speed． |
| OLロロ40 | Creep Rate | Set the speed and the travel direction（sign）to use after detecting the Zero Point Return <br> Input Signal． |
| OLロロ42 | Zero Point Return <br> Travel Distance | Set the travel distance from the point where a phase－C pulse is detected． <br> The travel direction will depend on the sign． |
| OWロロ05， <br> Bit B | Zero Point Return <br> Input Signal | This signal must be turned ON from the ladder program． |

［ m ］INPUT Only Method（OWロロ3C＝19）
－Operation after Zero Point Return Starts
Travel is started at the creep speed in the direction specified by the sign of the creep speed．
When the rising edge of the INPUT signal is detected，the positioning is performed at the positioning speed．
When the positioning has been completed，a machine coordinate system is established with the final position as the zero point．
－The moving amount after the rising edge of the Zero Point Return Input Signal is detected is set in the Zero Point Return Travel Distance．The positioning speed is set in the Speed Reference Setting．
－If an OT signal is detected during creep speed operation，an OT alarm will not occur，the direction will be reversed， and a search will be made for the Zero Point Return Input Signal．
－If an OT signal is detected during positioning speed operation，an OT alarm will occur．
－The Zero Point Return Input Signal is allocated to the motion setting parameter OWDO05 bit B，allowing the zero point return operation to be performed without actually wiring a signal．This method can thus be used to temporarily set the zero point during trial operation．
－Detecting the rising edge of the Zero Point Return Input Signal is performed using software processing．The position where positioning is completed will depend on the high－speed scan setting，positioning speed，etc．Do not use this method if repeat accuracy is required in the position where the zero point return operation is completed．

＊1．The SERVOPACK P－OT signal．
＊2．The SERVOPACK N－OT signal．
－The stopping method when the OT signal is detected depends on the setting of SERVOPACK parameters．
－Setting Parameters

| Parameter | Name | Setting |
| :---: | :---: | :---: |
| OWDロ3C | Zero Point Return Method | 19：INPUT Only Method |
| OLロロ10 | Speed Reference Setting | Set the positioning speed to use after detecting the Zero Point Return Input Signal． The sign is ignored．The travel direction will depend on the sign of the Zero Point Return Travel Distance． |
| OLD口40 | Creep Rate | Set the speed and the travel direction（sign）to use when starting a zero point return． |
| OLD口42 | Zero Point Return Travel Distance | Set the distance to travel from the point the Zero Point Return Input Signal is detected． <br> The travel direction will depend on the sign． |
| OW口ロ05，Bit B | Zero Point Return Input Signal | This signal must be turned ON from the ladder program． |

## 6．2．4 Interpolation（INTERPOLATE）R

The INTERPOLATE command positions the axis according to the target position that changes in sync with the high－ speed scan．The positioning data is generated by a ladder program．
－Speed feed forward compensation can be applied．
－Torque feed forward gain can be used when interpolation commands（INTERPOLATE）are sent using SGDS，SGDV， and SGD7S SERVOPACKs．
Torque feed forward gain is set in Torque／Thrust Reference Setting（setting parameter OLDOOC）．The required con－ ditions are as follows：
－SERVOPACK parameter Pn002．0＝ 2
－SGDS communication interface version 8 or later
When using an SGDV or SGD7S SERVOPACK，the torque limit can be set and changed during SERVOPACK opera－ tion．For details，refer to $■$ Setting and Changing Torque Limit during SGDV or SGD7S SERVOPACK Operations of 4．4．2（12）．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | The Servo ON condition． | IW口ロ00，bit 1 is ON． |
| 3 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF． |

2．Set the following motion setting parameters．
Position Reference Setting：OLDロ1C
Filter Type Selection：OW口ロ03，bits 8 to B
Speed Loop P／PI Switch：OWロロ01
Speed Feed Forward Amends：OWDロ30
3．Set the parameter OWपロ08 to 4 to execute an INTERPOLATE command．
4 is stored in IWप्00 during positioning．
4．Refresh the value of OLDप1C（Position Reference Setting）at every high－speed scan．
The target position is updated to the refreshed value of OLDप1C at every high－speed scan．＊
The difference between the target position of one high－speed scan and that of the next high－speed scan will be the moving speed．
When the axis reaches the target position，bit 1 of IW $\square \square 0 \mathrm{C}$ will turn ON and positioning will be completed．
＊When the incremental addition mode is set for bit 5 of OWDD09＂Position Reference Type，＂the following value will be set to the current target position：Previous target position＋Difference between the current value and the previous value of the Position Reference Setting

5．Set OWDप08 to 0 to execute the NOP motion command and then complete the positioning operation． INTERPOLATE Operating Pattern


## （2）Holding and Aborting

The axis will decelerate to a stop if there is no change in the target position each high－speed scan．
The Holds a Command bit（OWD $\square 09$ ，bit 0 ）and the Interrupt a Command bit（OWD $\square 09$ ，bit 1 ）cannot be used．
Change a motion command to stop the interpolation execution．

## （ 3 ）Related Parameters

## ［ a ］Setting Parameters

| Parameter | Name | Setting | SVR |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { OWवप00 } \\ & \text { Bit } 0 \end{aligned}$ | Servo ON | Turns the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor，0：Power OFF to Servomotor <br> Turn ON this bit before setting the Motion Command（OWDロ08）to 4. | R |
| OWDロ03 | Function Setting 1 | Sets the speed unit，acceleration／deceleration units，and filter type． | R |
| OW口ロ08 | Motion Command | The positioning starts when this parameter is set to 4 ． | R |
| $\begin{aligned} & \text { OW口ロ09 } \\ & \text { Bit } 5 \end{aligned}$ | Position Reference Type | Switch the type of position reference． <br> 0 ：Incremental addition mode，1：Absolute mode <br> Set this parameter before setting the Motion Command（OW口ロ08）to 4. | R |
| OLロロ1C | Position Reference Setting | Set the target position for positioning．The setting can be updated every high－speed scan． | R |
| OLロ口1E | Width of Positioning Completion | Set the width in which to turn ON the Positioning Completed bit（IWDD0C，bit 1）． | － |
| OLDロ20 | NEAR Signal Out－ put Width | Set the range in which the NEAR Position bit（IW $\square \square 0 \mathrm{C}$ ，bit 3 ）will turn ON． The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here． | R |
| OWप口31 | Speed Compensa－ tion | Set the feed forward amount as a percentage of the rated speed． The setting unit for this parameter is $0.01 \%$（fixed）． | R |
| OLD口38 | Straight Line Decel－ eration／Decelera－ tion Time Constant | Set the rate of deceleration or deceleration time constant for positioning． Used for deceleration stops when an alarm has occurred． | － |
| OWDロ3A | Filter Time Constant | Set the acceleration／deceleration filter time constant． <br> Exponential acceleration／deceleration or a moving average filter can be selected in the Function Setting 1 （OW $\square \square 03$ ，bits 8 to B）．Change the setting only after pulse distribution has been completed for the command（IWロロ0C，bit 0 is ON ）． | R |

## ［b］Monitoring Parameters

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWロロ00 Bit 1 | Running（At Servo ON） | Indicates the Servo ON status． <br> 1：Power supplied to Servomotor，0：Power not supplied to Servomotor | R |
| ILDロ02 | Warning | Stores the most current warning． | R |
| ILロロ04 | Alarm | Stores the most current alarm． | R |
| IWDロ08 | Motion Command Re－ sponse Code | Indicates the motion command that is being executed． The response code is 4 during INTERPOLATE command execution． | R |
| IWDC09 Bit 0 | Command Executing Flag | Always OFF for INTERPOLATE command． | R |
| IWDC09 Bit 1 | Command Hold Completed | Always OFF for INTERPOLATE command． | R |
| IWロロ09 Bit 3 | Command Error Completed Status | Turns ON if an error occurs during INTERPOLATE command execution． The axis will decelerate to a stop if it is moving．Turns OFF when another command is executed． | R |
| IWDC09 Bit 8 | Command Execution Completed | Always OFF for INTERPOLATE command． | R |
| $\begin{aligned} & \hline \text { IWロप0C } \\ & \text { Bit } 0 \end{aligned}$ | Discharging Completed | Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command． | R |
| $\begin{aligned} & \hline \text { IWロロ0C } \\ & \text { Bit } 1 \end{aligned}$ | Positioning Completed | Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases． | R |
| IWロロ0C Bit 3 | NEAR Position | The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLDप20）． <br> OLDC20 $=0$ ：Turns ON when pulse distribution has been completed（ $\mathrm{DEN}=$ ON）．Otherwise，it turns OFF． <br> OLDC $20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS（ILDD12）and APOS（ILDD16）is less than the NEAR Signal Output Width even if pulse distribution has not been com－ pleted． <br> OFF in all other cases． | R |

## (4) Timing Charts

[a] Normal Execution

[b] Execution when an Alarm Occurs


## 6．2．5 Interpolation Mode with Latch Input（LATCH）R

The LATCH command saves in a register the current position when the latch signal is detected during interpolation positioning．
The latch signal type is set in setting register OWDロ04 and can be set to the phase－C pulse，／EXT1 signal，／EXT2 sig－ nal，or／EXT3 signal．
－Speed feed forward compensation can be applied．
－When executing the LATCH command more than once after latching the current position by the LATCH command， change the Motion Command to NOP for at least one scan before executing LATCH again．
－Torque feed forward gain can be used when LATCH commands are sent using SGDS，SGDV，and SGD7S SERVO－ PACKs．
Torque feed forward gain is set in Torque／Thrust Reference Setting（setting parameter OLDपOC）．The required con－ ditions are as follows：
－SERVOPACK parameter Pn002．0＝ 2
－SGDS communication interface version 8 or later
When using an SGDV or SGD7S SERVOPACK，the torque limit can be set and changed during SERVOPACK opera－ tion．For details，refer to ■ Setting and Changing Torque Limit during SGDV or SGD7S SERVOPACK Operations of 4．4．2（ 12 ）．
 mand Operation for External Latches with DC Power Input $\Sigma$－V－series SERVOPACKs．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :---: | :---: |
| 1 | There are no alarms． | Both ILD $\square 02$ and ILD $\square 04$ are 0 ． |
| 2 | The Servo ON condition． | IW $\square \square 00$ ，bit 1 is ON． |
| 3 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square \square 09$ ，bit 0 is OFF． |

2．Set the following motion setting parameters．
Position Reference Setting：OLDロ1C
Filter Type Selection：OW口ロ03，bits 8 to B
Speed Loop P／PI Switch：OWロロ01
Speed Feed Forward Amends：OWロロ30
Function Setting 2：OWDロ04
3．Set OWDप08 to 6 （Latch）to execute a LATCH motion command．
6 is stored in IW $\square 08$ during positioning．
4．Refresh the value of OLDप1C＂Position Reference Setting．＂
The target position is updated to the refreshed value of OLDप1C at every high－speed scan．＊
The difference between the target position of one high－speed scan and that of the next high－speed scan will be the moving speed．
When the axis reaches the target position，bit 1 of IWD 00 C will turn ON and positioning will be completed．
＊When the incremental addition mode is set for bit 5 of OWDC09＂Position Reference Type，＂the following value will be set to the current target position：Previous target position＋Difference between the current value and the previous value of the Position Reference Setting
－Execute a LATCH command considering the latch process time obtained by the following equation． Latch process time $=2$ scans + MECHATROLINK communication cycle + SERVOPACK＇s processing time（ 4 ms max．）

5．Set OWDप08 to 0 to execute the NOP motion command and then complete the positioning operation．


## （2）Holding and Aborting

The axis will decelerate to a stop if there is no change in the target position each high－speed scan．
The Holds a Command bit（OWDロ09，bit 0）and the Interrupt a Command bit（OWDD09，bit 1）cannot be used． Change a motion command to stop the interpolation execution．

## （3）Related Parameters

## ［a］Setting Parameters

| Parameter | Name | Setting | SVR |
| :---: | :---: | :---: | :---: |
| OWロロ00 Bit 0 | Servo ON | Turn the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor，0：Power OFF to Servomotor <br> Set this bit to 1 before setting the Motion Command（OWDप08）to 6 ． | R |
| OWロロ03 | Function Setting 1 | Sets the speed unit，acceleration／deceleration units，and filter type． | R |
| OWロロ04 | Function Setting 2 | Set the latch signal type． | － |
| OWDロ08 | Motion Command | The positioning starts when this parameter is set to 6 ． | R |
| OWロロ09 Bit 5 | Position Reference Type | Switch the type of position reference． <br> 0 ：Incremental addition mode，1：Absolute mode <br> Set this parameter before setting the Motion Command（OWDロ08）to 6 ． | R |
| OLDロ1C | Position Reference Setting | Set the target position for positioning．The setting can be updated every high－ speed scan． | R |
| OLDロ1E | Width of Positioning Completion | Set the width in which to turn ON the Positioning Completed bit（IWDCOC， bit 1）． | － |
| OLDロ20 | NEAR Signal Output Width | Set the range in which the NEAR Position bit（IWDप0C，bit 3）will turn ON． The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here． | － |
| OW－ロ31 | Speed Compensation | Set the feed forward amount as a percentage of the rated speed． The setting unit for this parameter is $0.01 \%$（fixed）． | R |
| OLDロ38 | Straight Line Decelera－ tion／Deceleration Time Constant | Set the rate of deceleration or deceleration time constant for positioning． Used for deceleration stops when an alarm has occurred． | － |
| OWDロ3A | Filter Time Constant | Set the acceleration／deceleration filter time constant．Exponential acceleration／ deceleration or a moving average filter can be selected in the Function Setting 1 （OWDD03，bits 8 to B ）． <br> Change the setting only after pulse distribution has been completed for the com－ mand（IWDCOC，bit 0 is ON ）． | R |

## ［b］Monitoring Parameters

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWDロ00 <br> Bit 1 | Running（At Servo ON） | Indicates the Servo ON status． <br> 1：Power supplied to Servomotor，0：Power not supplied to Servomotor | R |
| ILDロ02 | Warning | Stores the most current warning． | R |
| ILロロ04 | Alarm | Stores the most current alarm． | R |
| IWロロ08 | Motion Command Response Code | Indicates any alarms that have occurred during execution． The response code is 6 during LATCH operation． | R |
| $\begin{aligned} & \text { IWロप09 } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Always OFF for LATCH operation． | R |
| IWDC09 <br> Bit 1 | Command Hold Completed | Always OFF for LATCH operation． | R |
| IWロロ09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during LATCH operation．The axis will decelerate to a stop if it is moving．Turns OFF when another command is executed． | R |
| IWロロ09 <br> Bit 8 | Command Execution Completed | Always OFF for LATCH operation． | R |
| $\begin{aligned} & \text { IWロपOC } \\ & \text { Bit } 0 \end{aligned}$ | Discharging Completed | Turns ON when distribution has been completed for the move command． Turns OFF during execution of a move command． | $\square$ |
| IWロロ0C <br> Bit 1 | Positioning Completed | Turns ON when distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases． | $\square$ |
| IWロロ0C <br> Bit 2 | Latch Complete | This bit turns OFF when a new latch command is executed and turns ON when the latch has been completed．The latched position is stored as the Machine Coordinate System Latch Position（LPOS）（monitoring parameter ILDD18）． | － |
| $\begin{aligned} & \text { IWロロ0C } \\ & \text { Bit3 } \end{aligned}$ | NEAR Position | The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLDप20）． <br> OLDD20 $=0$ ：Turns ON when pulse distribution has been completed（ $\mathrm{DEN}=\mathrm{ON}$ ）． Otherwise，it turns OFF． <br> OLDD $20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS （ILDC12）and APOS（ILDC16）is less than the NEAR Signal Out－ put Width even if pulse distribution has not been completed． OFF in all other cases． | R |
| ILDロ18 | Machine Coordi－ nate System Latch Position（LPOS） | Stores the current position in the machine coordinate system when the latch signal turned ON． | － |

## (4) Timing Charts

[a] Normal Execution

[b] Execution when an Alarm Occurs


## 6．2．6 Jog Mode（FEED）R

The FEED command starts movement in the specified travel direction at the specified travel speed．Execute the NOP motion command to stop the operation．
Parameters related to acceleration and deceleration are set in advance．

When using an SGDV or SGD7S SERVOPACK，the torque limit can be set and changed during SERVOPACK opera－ tion．For details，refer to ■ Setting and Changing Torque Limit during SGDV or SGD7S SERVOPACK Operations of 4．4．2（12）．Also，refer to ■ Precautions of 6．2．1（3）．
For more information on the maximum allowable value for acceleration and deceleration，refer to $\square$ Changing the max－ imum value of acceleration and deceleration for SGDV or SGD7S SERVOPACKs of 4．4．2（23）．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :---: | :---: |
| 1 | There are no alarms． | Both IL $\square \square 02$ and ILD $\square 04$ are 0 ． |
| 2 | The Servo ON condition． | IW $\square \square 00$ ，bit 1 is ON． |
| 3 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square \square 09$ ，bit 0 is OFF． |

＊This condition is a basic execution condition．Refer to Chapter 7 Switching Commands during Execution when changing the command being executed to a FEED command．

2．Set the following motion setting parameters．
Moving Direction（JOG／STEP）：OWDロ09，bit 2 Speed Reference Setting：OLDロ10
Filter Type Selection：OWD $\square 03$ ，bits 8 to B Speed Loop P／PI Switch：OWロप01
－The speed reference can be changed during operation．
3．Set OWपᄆ08 to 7 to execute the FEED motion command．
JOG operation will start．IWDD 08 will be 7 during the execution．
4．Set OWDロ08 to 0 to execute the NOP motion command．
IWप्00C，bit 1 turns ON and the JOG operation has been completed．
FEED Operating Pattern


## （2）Holding

Holding execution is not possible during FEED command execution．The Holds a Command bit（OWDロ09，bit 0 ）is ignored．

## （3）Aborting

Axis travel can be stopped during FEED command execution by aborting execution of a command．A command is aborted by setting the Interrupt a Command bit（OW $\square \square 09$ ，bit 1 ）to 1 ．
－Set the Interrupt a Command bit（OW $\square \square 09$ ，bit 1）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the Positioning Completed bit（IW $\square \square 0 \mathrm{C}$ ，bit 1 ）will turn ON．
－The JOG operation will restart if the Interrupt a Command bit（OW $\square \square 09$ ，bit 1 ）is reset to 0 during abort pro－ cessing．${ }^{*}$
－This type of operation will also be performed if the motion command is changed during axis movement．
＊Because a delay occurs when sending or receiving commands and responses to and from the CPU and the SVB module，the abort processing may have been completed although an attempt was made to restart the JOG opera－ tion．In this case，IW口ᄆ08（Motion Command Response Code）is set to 7，and bit 8 （Command Execution Com－ pleted）of IWप口09（Motion Command Status）is set to 1．The JOG operation cannot be restarted under these conditions．
To reset the JOG operation，set OW口ᄆ08（Motion Command）to any value other than 7 （such as NOP＝0）and then reset it to 7 ．If an operation is to be frequently aborted and restarted within a short interval，remember to take this delay into consideration．
（4）Related Parameters
［a］Setting Parameters

| Parameter | Name | Setting | SVR |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { OWपロ00 } \\ & \text { Bit } 0 \end{aligned}$ | Servo ON | Turn the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor，0：Power OFF to Servomotor <br> Turn ON the power before setting the Motion Command（OW口ロ08）to 7. | R |
| $\begin{aligned} & \text { OWपロ01 } \\ & \text { Bit } 3 \end{aligned}$ | Speed Loop P／PI Switch | Switches the speed control loop between PI control and P control． 0：PI control，1：P control | － |
| OW口ロ03 | Function Setting 1 | Set the speed unit，acceleration／deceleration units，and filter type． | R |
| OW口ロ08 | Motion Command | The JOG operation starts when this parameter is set to 7 ． The axis is decelerated to a stop and the JOG operation is completed if this parameter is set to 0 during the execution of a FEED command． | R |
| OWपロ09 <br> Bit 1 | Interrupt a Command | The axis is decelerated to a stop if this bit is set to 1 during JOG operation． | R |
| OWロロ09 <br> Bit 2 | Moving Direction（JOG／ STEP） | Set the travel direction for JOG operation． 0 ：Positive direction，1：Negative direction | R |
| OLDロ10 | Setting Reference Setting | Specify the speed for the positioning operation．Only a positive value can be set．This setting can be changed during operation．The unit depends on the Function Setting 1 setting（OW $\square \square 03$ ，bits 0 to 3 ）． | R |
| OWप口18 | Override | This parameter allows the feed speed to be changed without changing the Speed Reference Setting（OLDロ10）． <br> Set the speed as a percentage of the Speed Reference Setting．This setting can be changed during operation． <br> Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$ <br> Example：Setting for 50\％： 5000 | － |
| OLロロ1E | Width Positioning Com－ pletion | Set the width in which to turn ON the Positioning Completed bit（IWロロ0C， bit 1）． | － |
| OLロロ20 | NEAR Signal Output Width | Set the range in which the NEAR Position bit（IW $\square \square 0 \mathrm{C}$ ，bit 3）will turn ON． The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here． | － |
| OLロロ36 | Straight Line Accelera－ tion／Acceleration Time Constant | Set the feed acceleration in acceleration rate or acceleration time． | R |
| OLDロ38 | Straight Line Decelera－ tion／Deceleration Time Constant | Set the feed deceleration in deceleration rate or deceleration time． | R |
| OWDロ3A | Filter Time Constant | Set the acceleration／deceleration filter time constant．Exponential acceleration／ deceleration or a moving average filter can be selected in the Function Setting 1 （OW $\square \square 03$ ，bits 8 to B）． <br> Change the setting only after pulse distribution has been completed for the command（IW口 $\square 0 \mathrm{C}$ ，bit 0 is ON ）． | R |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWDC00 Bit 1 | Running（At Servo ON） | Indicates the Servo ON status． <br> 1：Power supplied to Servomotor，0：Power not supplied to Servomotor | R |
| ILDロ02 | Warning | Stores the most current warning． | R |
| ILDロ04 | Alarm | Stores the most current alarm． | R |
| IWDロ08 | Motion Command Response Code | Indicates the motion command that is being executed． The response code is 7 during FEED command execution． | R |
| $\begin{array}{\|l\|} \hline \text { IWロप09 } \\ \text { Bit } 0 \end{array}$ | Command Execution Flag | Turns ON when abort processing is being performed for FEED command．Turns OFF when abort processing has been completed． | R |
| IWロロ09 Bit 1 | Command Hold Completed | Always OFF for FEED command． | R |
| IWDC09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during FEED command execution．The axis will decel－ erate to a stop if it is moving．Turns OFF when another command is executed． | R |
| IWロロ09 Bit 8 | Command Execution Completed | Always OFF for FEED command． | R |
| $\begin{array}{\|l\|} \hline \text { IWロロOC } \\ \text { Bit } 0 \end{array}$ | Discharging Completed | Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command． | R |
| $\begin{array}{\|l\|} \hline \text { IWロロ0C } \\ \text { Bit } 1 \end{array}$ | Positioning Completed | Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases． | R |
| IWロロ0C <br> Bit 3 | NEAR Position | The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLDप20）． <br> OLDC20 $=0$ ：Turns ON when pulse distribution has been completed $(\mathrm{DEN}=$ ON）．Otherwise，it turns OFF． <br> OLDप $20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS（ILDप12）and APOS（ILDロ16）is less than the NEAR Signal Output Width even if pulse distribution has not been com－ pleted． <br> OFF in all other cases． | R |

## (5) Timing Charts

[a] Normal Execution

[b] Execution when Aborted

[ c ] Execution when an Alarm Occurs


## 6．2．7 Relative Position Mode（STEP）（Step Mode）R

The STEP command executes a positioning for the specified travel direction，moving amount，and travel speed． Parameters related to acceleration and deceleration are set in advance． When using an SGDV or SGD7S SERVOPACK，the torque limit can be set and changed during SERVOPACK opera－ tion．For details，refer to ■ Setting and Changing Torque Limit during SGDV or SGD7S SERVOPACK Operations of 4．4．2（ 12 ）．Also，refer to ■ Precautions of 6．2．1（3）．
For more information on the maximum allowable value for acceleration and deceleration，refer to Changing the max－ imum value of acceleration and deceleration for SGDV or SGD7S SERVOPACKs of 4．4．2（23）．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square 02$ and IL $\square \square 04$ are 0. |
| 2 | The Servo ON condition． | IW口 $\square 00$, bit 1 is ON． |
| 3 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF． |

2．Set the following motion setting parameters．
STEP Travel Distance：OLDロ44
Moving Direction（JOG／STEP）：OWDロ09，bit 2
Speed Reference Setting：OLDロ10
Filter Type Selection：OWD $\square 03$ ，bits 8 to B
Speed Loop P／PI Switch：OWDロ01
－The speed reference Setting bit OLDD10 can be changed during operation．
－An override of between $0 \%$ to $327.67 \%$ can be set for the travel speed．
3．Set OWロロ08 to 8 to execute the STEP motion command．
STEP operation will start．IWDप 08 will be 8 during execution．
IW $\square \square 0 \mathrm{C}$ ，bit 3 will turn ON when the axis reaches the target position．
IWDD 0 C，bit 1 will turn ON when the axis reaches the target position and the positioning has been completed．
4．Set OWDC08 to 0 to execute the NOP motion command and then complete the STEP operation． STEP Operating Pattern


## （2）Holding

Axis travel can be stopped during command execution and then the remaining travel can be restarted．A command is held by setting the Holds a Command（OWDロ09，bit 0 ）to 1 ．
－Set the Holds a Command bit（OWDロ09，bit 0 ）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the Command Hold Completed bit（IWDC09，bit 1）will turn ON．
－Turn OFF the Holds a Command bit（OWD 009 ，bit 0 ）．
The command hold status will be cleared and the remaining portion of the positioning will be restarted．

## （3）Aborting

Axis travel can be stopped during command execution and the remaining travel canceled by aborting execution of a command．A command is aborted by setting the Interrupt a Command bit（OWDロ09，bit 1 ）to 1.
－Set the Interrupt a Command bit（OWロロ09，bit 1）to 1 ．The axis will decelerate to a stop．
－When the axis has stopped，the Positioning Completed bit（IWDロ0C，bit 1）will turn ON．
－This type of operation will also be performed if the motion command is changed during axis movement．

## （4）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting | SVR |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { OWपव00 } \\ & \text { Bit } 0 \end{aligned}$ | Servo ON | Turn the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor，0：Power OFF to Servomotor <br> Turn ON the power before setting the Motion Command（OW口ロ08）to 8 ． | R |
| OWDप01 <br> Bit 3 | Speed Loop P／PI Switch | Switch the speed control loop between PI control and P control． 0：PI control，1：P control | － |
| OW口ロ03 | Function Setting 1 | Set the speed unit，acceleration／deceleration units，and filter type． | R |
| OWロロ08 | Motion Command | The STEP operation starts when this parameter is set to 8 ． <br> The axis will decelerate to a stop and the JOG operation is completed if this parameter is set to 0 during STEP command execution． | R |
| $\begin{aligned} & \text { OWपप09 } \\ & \text { Bit } 0 \end{aligned}$ | Holds a Command | The axis will decelerate to a stop if this bit is set to 1 during STEP operation． The operation will restart if this bit is turned OFF when a command is being held． | R |
| OWㅁㅁ09 <br> Bit 1 | Interrupt a Command | The axis will decelerate to a stop if this bit is set to 1 during the positioning．The operation depends on the setting of the Position Reference Type（OWD $\square 09$ ，bit 5）when turning ON after decelerating to a stop． | R |
| $\begin{aligned} & \hline \text { OWपロ09 } \\ & \text { Bit } 2 \end{aligned}$ | Moving Direction （JOG／STEP） | Set the travel direction for STEP operation． 0：Positive direction，1：Negative direction | R |
| OLDロ10 | Speed Reference Setting | Specify the speed for the positioning operation．Only a positive value can be set． This setting can be changed during operation．The unit depends on the setting of the Function 1 （OW $\square \square 03$ ，bits 0 to 3 ）． | R |
| OWDロ18 | Override | This parameter allows the travel speed to be changed without changing the Speed Reference Setting（OLDロ10）． <br> Set the value as a percentage of the Speed Reference Setting．This setting can be changed during operation． <br> Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$ <br> Example：Setting for $50 \%$ ： 5000 | － |
| OLD口1E | Width Positioning Completion | Set the width in which to turn ON the Positioning Completed bit（IW口ᄆ0C，bit 1）． | － |
| OLDロ20 | NEAR Signal Output Width | Set the range in which the NEAR Position bit（IWDロ0C，bit 3）will turn ON． The NEAR Position bit will turn ON when the absolute value of the difference between the reference position and the feedback position is less than the value set here． | － |
| OLD $\square 36$ | Straight Line Acceler－ ation／Acceleration Time Constant | Set the positioning acceleration in acceleration rate or acceleration time． | R |
| OLD $\square 38$ | Straight Line Deceler－ ation／Deceleration Time Constant | Set the positioning deceleration in deceleration rate or deceleration time． | R |
| OWDロ3A | Filter Time Constant | Set the acceleration／deceleration filter time constant．Exponential acceleration／ deceleration or a moving average filter can be selected in the Function Setting 1 （OW口ロ03，bits 8 to B）． <br> Change the setting only after pulse distribution has been completed for the com－ mand（IW $\square \square 0 \mathrm{C}$ ，bit $0=1$ ）． | R |
| OLD口44 | Step Travel Distance | Set the moving amount for STEP operation． | － |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWロロ00 Bit 1 | Running（At Servo ON） | Indicates the Servo ON status． <br> 1：Power supplied to Servomotor，0：Power not supplied to Servomotor | R |
| ILDロ02 | Warning | Stores the most current warning． | 8 |
| ILロロ04 | Alarm | Stores the most current alarm． | R |
| IWDロ08 | Motion Command Response Code | Indicates the motion command that is being executed． The response code is 8 during STEP command execution． | R |
| $\begin{array}{\|l\|} \hline \text { IWDप09 } \\ \text { Bit } 0 \end{array}$ | Command Execu－ tion Flag | The Command Execution Flag bit will turn ON during STEP command execution and then turn OFF when STEP command execution has been completed． | R |
| IWロロ09 Bit 1 | Command Hold Completed | Turns ON when a deceleration to a stop has been completed as the result of setting the Holds a Command（OWDप09，Bit1）bit to 1 during STEP command execution （IWDD08＝8）． | R |
| IWロロ09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during STEP command execution． The axis will decelerate to a stop if it is moving．Turns OFF when another command is executed． | R |
| IWロロ09 Bit 8 | Command Execu－ tion Completed | Turns ON when STEP command execution has been completed． | R |
| $\begin{aligned} & \text { IWロप0C } \\ & \text { Bit } 0 \end{aligned}$ | Discharging Completed | Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command． | R |
| IWDप0C $\text { Bit } 1$ | Positioning Com－ pleted | Turns ON when pulse distribution has been completed and the current position is within the Width of Positioning Completion．OFF in all other cases． | R |
| IWロロ0C <br> Bit 3 | NEAR Position | The operation depends on the setting of the NEAR Signal Output Width（setting parameter OLDप20）． <br> OLDC20 $=0$ ：Turns ON when pulse distribution has been completed $($ DEN $=$ ON）．Otherwise，it turns OFF． <br> OLDD $20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS（ILDO12）and APOS（ILDC16）is less than the NEAR Signal Output Width even if pulse distribution has not been com－ pleted． <br> OFF in all other cases． | R |

## （5）Timing Charts

［a］Normal Execution

[b] Execution when Aborted

[ c ] Execution when Aborting by Changing the Command

[d] Execution when an Alarm Occurs


## 6．2．8 Set Zero Point（ZSET）R

The ZSET command sets the current position as the zero point of the machine coordinate system．This enables setting the zero point without performing a zero point return operation．
－When using software limits，always execute the zero point or zero point return operation．The software limit function will be enabled after the zero point setting operation has been completed．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square 04$ are 0. |
| 2 | Motion command execution has been completed． | IW $\square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF． |

2．Set OWロロ08 to 9 to execute the ZSET motion command．
A new machine coordinate system will be established with the current position as the zero point．IW $\square \square 08$ will be 9 during the zero point setting operation．IWD口0C，bit 5 will turn ON when zero point setting has been com－ pleted．
The position data when the zero point setting is completed will differ depending on the axis setting，as shown in the following table．

| Axis Setting | Position Data When Zero Point Setting is Completed |
| :--- | :--- |
| With incremental encoder，finite length axis or infinite <br> length axis | Initialized with the zero point offset of the machine coordi－ <br> nate system． |
| With absolute（ABS）encoder，finite length axis | Unchanged |
| With absolute（ABS）encoder，simple ABS infinite length <br> axis | Unchanged |
| With absolute（ABS）encoder，infinite length axis | Initialized with the zero point offset of the machine coordi－ <br> nate system． |

3．Set OWDप08 to 0 to execute the NOP motion command and then complete the zero point setting．

## （2）Holding and Aborting

The Holds a Command bit（OW $\square \square 09$ ，bit 0 ）and the Interrupt a Command bit（OWD $\square 09$ ，bit 1 ）cannot be used．

## （3）Related Parameters

［ a ］Setting Parameters

| Parameter | Name | Setting | SVR |
| :--- | :--- | :--- | :---: |
| OWロロ08 | Motion Command | Set to 9 for ZSET command． | $\mathbb{R}$ |
| OWDロ09 <br> Bit 0 | Command Pause | This parameter is ignored for ZSET command． | $\mathbb{R}$ |
| OWロロ09 <br> Bit 1 | Holds a Command | This parameter is ignored for ZSET command． |  |
| OLロロ48 | Interrupt a Com－ <br> mand | Sets the position offset from the zero point in the machine coordinate system <br> after the setting of the zero point has been completed． | $\mathbb{R}$ |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| ILロロ02 | Warning | Stores the most current warning． | R |
| ILロロ04 | Alarm | Stores the most current alarm． | R |
| IWロロ08 | Motion Command Re－ sponse Code | Indicates the motion command that is being executed． The response code will be 9 during ZSET command execution． | R |
| IWDC09 <br> Bit 0 | Command Execution Flag | Turns ON during ZSET command execution and turns OFF when ZSET com－ mand execution has been completed． | R |
| IWロロ09 Bit 1 | Command Hold Completed | Always OFF for ZSET command． | R |
| IWロロ09 Bit 3 | Command Error Completed Status | Turns ON if an error occurs during ZSET command execution． Turns OFF when another command is executed． | R |
| IWロप09 $\text { Bit } 8$ | Command Execution Completed | Turns ON when ZSET command execution has been completed． | R |
| IWDC0C <br> Bit 5 | Zero Point Return （Setting）Completed | Turns ON when the setting of the zero point has been completed． | R |

## （4）Timing Charts

## ［ a ］Normal Execution

OWDC08＝ 9 （ZSET）
IWロロ08＝ 9 （ZSET）
IWDC09，bit 0 （BUSY）
IWロロ09，bit 3 （FAIL）
IWロप09，bit 8 （COMPLETE）
IWロロ0C，bit 5 （ZRNC）


## 6．2．9 Change Acceleration Time（ACC）

The ACC command transfers the setting of the Straight Line Acceleration Time Constant（motion setting parameter OLDप36）to the Second－step Linear Acceleration Time Constant in the SERVOPACK and enables the setting．
－For the SGD－पחם acceleration time constant．
－MECHATROLINK－II has a function that automatically updates setting parameters if a parameter changes．There is no need to execute the ACC command with this function．For details，refer to bit A（User Constants Self－writing Function）in the 4．4．1（ 2 ）Function Selection 1.

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | Pulse distribution has been completed for the SERVO－ <br> PACK． | IW $\square \square 0 \mathrm{C}$, bit 0 is ON． |
| 3 | Motion command execution has been completed． | IW口ロ08 is 0 and IWロロ09，bit 0 is OFF． |

2．Set OWDロ08 to 10 to execute the ACC motion command．
The ACC command will transfer the setting of the Straight Line Acceleration Time Constant（motion setting parameter OLDD36）to the Second－step Linear Acceleration Time Constant in the SERVOPACK and enable the setting．
IWDC 08 will be 10 during command execution．
IWDロ09，bit 0 will turn ON during the command processing and will turn OFF when the processing has been completed．

3．Set OWDप08 to 0 to execute the NOP motion command and then complete the change of the linear acceleration time constant．
（2）Holding and Aborting
The Holds a Command bit（OWDD09，bit 0）and the Interrupt a Command bit（OWDD09，bit 1）cannot be used．
（3）Related Parameters
［a］Setting Parameters

| Parameter | Name | Setting |
| :--- | :--- | :--- |
| OWロロ03 | Function Setting 1 | Set the speed unit，acceleration／deceleration units，and filter type． |
| OWロロ08 | Motion Command | The linear acceleration time constant is changed when this parameter is set to 10. |
| OWロロ09 <br> Bit 0 | Holds a Command | This parameter is ignored for ACC command． |
| OWロロ09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for ACC command． |
| OLロロ36 | Straight Line Acceler－ <br> ation／Acceleration <br> Time Constant | Set the linear acceleration rate or acceleration time constant．The setting unit is speci－ <br> fied by OW口ロ03． |

［ b ］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :--- | :--- | :--- |
| ILDロ02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWロロ08 | Motion Command <br> Response Code | Indicates the motion command that is being executed． <br> The response code will be 10 during ACC command execution． |
| IWロロ09 <br> Bit 0 | Command Execution <br> Flag | Turns ON during ACC command execution and turns OFF when execution has been <br> completed． |
| IWロロ09 <br> Bit 1 | Command Hold <br> Completed | Always OFF for ACC command． |
| IWロロ09 <br> Bit 3 | Command Error <br> Completed Status | Turns ON if an error occurs during ACC command execution．Turns OFF when another <br> command is executed． |
| IWロロ09 <br> Bit 8 | Command Execution <br> Completed | Turns ON when ACC command execution has been completed． |

## （4）Timing Charts

## ［ a ］Normal End


［ b ］Error End
OWㅁㅁㅇ 08 （ACC）
IWDC08＝ 10 （ACC）
IWDC09，bit 0 （BUSY）
Wロロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）


## 6．2．10 Change Deceleration Time（DCC）

The DCC command transfers the setting of the Straight Line Deceleration Time Constant（motion setting parameter OLDC38）to the Second－step Linear Deceleration Time Constant in the SERVOPACK and enables the setting．
－For the SGD－$\square \square \square N$ and SGDB－प［DN SERVOPACKs，this command cannot be used because these SERVO－ PACKs does not have the parameters for setting the deceleration time constant．
－MECHATROLINK－II has a function that automatically updates setting parameters if a parameter changes．There is no need to execute the DCC command with this function．For details，refer to bit A（User Constants Self－writing Function）in the 4．4．1（2）Function Selection 1.

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :---: | :---: |
| 1 | There are no alarms． | Both ILD $\square 02$ and ILD $\square 04$ are 0 ． |
| 2 | Pulse distribution has been completed for the SERVOPACK． | IW $\square \square 0 \mathrm{C}$ ，bit 0 is ON． |
| 3 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square \square 09$ ，bit 0 is OFF． |

2．Set OWDロ08 to 11 to execute the DCC motion command．
The DCC command will transfer the setting of the Straight Line Deceleration Time Constant（motion setting parameter OLDD38）to the Second－step Linear Deceleration Time Constant in the SERVOPACK and enables the setting．
IWロロ08 will be 11 during command execution．
IWDD09，bit 0 will turn ON during the command processing and will turn OFF when the processing has been completed．

3．Set OWDロ08 to 0 to execute the NOP motion command and then complete the change of the linear deceleration time constant．

## （2）Holding and Aborting

The Holds a Command bit（OWロप09，bit 0 ）and the Interrupt a Command bit（OWD $\square 09$ ，bit 1 ）cannot be used．

## （3）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting |
| :--- | :--- | :--- |
| OWロロ03 | Function Setting 1 | Set the speed unit，acceleration／deceleration units，and filter type． |
| OWロロ08 | Motion Command | The linear deceleration time constant is changed when this parameter is set to 11. |
| OWロロ09 <br> Bit 0 | Holds a Command | This parameter is ignored for DCC command． |
| OWロロ09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for DCC command． |
| OLロロ38 | Straight Line Deceleration／ <br> Deceleration Time Con－ <br> stant | Set the linear deceleration rate or deceleration time constant．The setting unit is <br> specified by OWロロ03． |

［ b ］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILロロ02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWDロ08 | Motion Command Response Code | Indicates the motion command that is being executed． The response code will be 11 during DCC command execution． |
| IWロロ09 Bit 0 | Command Execution Flag | Turns ON during DCC command execution and turns OFF when execution has been completed． |
| IWロロ09 Bit 1 | Command Hold Completed | Always OFF for DCC command． |
| IWロロ09 Bit 3 | Command Error Completed Status | Turns ON if an error occurs during DCC command execution． Turns OFF when another command is executed． |
| IWロप09 $\text { Bit } 8$ | Command Execution Completed | Turns ON when DCC command execution has been completed． |

## （4）Timing Charts

## ［ a ］Normal End


［ b ］Error End
OWDロ08＝ 11 （DCC）
IWDロ08＝ 11 （DCC）
IWDC09，bit 0 （BUSY）
IWDC09，bit 3 （FAIL）
WDロ09，bit 8 （COMPLETE）


## 6．2．11 Change Filter Time Constant（SCC）

The SCC command transfers the setting of the Filter Time Constant（motion setting parameter OWDC3A）to the Mov－ ing Average Time or Exponential Acceleration／Deceleration Time Constant in the SERVOPACK and enables the set－ ting．
－Always execute the CHG＿FILTER command before executing the SCC command．The setting of the servo parame－ ter to be transferred will depend on the set filter type．
－MECHATROLINK－II has a function that automatically updates setting parameters if a parameter changes．There is no need to execute the SCC command with this function．For details，refer to bit A（User Constants Self－writing Function）in 4．4．1（2）Function Selection 1.

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :---: | :---: |
| 1 | There are no alarms． | Both ILD $\square 02$ and ILD $\square 04$ are 0 ． |
| 2 | Pulse distribution has been completed for the SERVOPACK． | IW $\square \square 0 \mathrm{C}$ ，bit 0 is ON． |
| 3 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square \square 09$ ，bit 0 is OFF． |

2．Set OWロロ08 to 12 to execute the SCC motion command．
The parameter to which the value of OWDप3A is transferred will depend on the set filter type：
Without filter or with moving average filter：Moving Average Time
With exponential acceleration／deceleration filter：Exponential Acceleration／Deceleration Time Constant IW $\square \square 08$ will be 12 during command execution．
IWDロ 09 ，bit 0 will turn ON during the command processing and will turn OFF when the processing has been completed．

3．Set OWDロ08 to 0 to execute the NOP motion command and then complete the change of the linear deceleration time constant．

## （2）Holding and Aborting

The Holds a Command bit（OW $\square \square 09$ ，bit 0 ）and the Interrupt a Command bit（OWD $\square 09$ ，bit 1 ）cannot be used．

## （ 3 ）Related Parameters

［ a ］Setting Parameters

| Parameter | Name | Setting |
| :---: | :---: | :---: |
| OW口ロ03 | Function Setting 1 | Set the speed unit，acceleration／deceleration units，and filter type． |
| OWप口08 | Motion Command | The filter time constant is changed when this parameter is set to 12 ． |
| $\begin{aligned} & \text { OWDप09 } \\ & \text { Bit } 0 \end{aligned}$ | Holds a Command | This parameter is ignored for SCC command． |
| OWDप09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for SCC command． |
| OW口ロ3A | Filter Time Constant | Set the filter time constant for acceleration／deceleration． |

［ b ］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILロロ02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWロロ08 | Motion Command Response Code | Indicates the motion command that is being executed． The response code is 12 during SCC command execution． |
| $\begin{array}{\|l\|} \hline \text { IWDप09 } \\ \text { Bit } 0 \\ \hline \end{array}$ | Command Execution Flag | Turns ON during SCC command execution and turns OFF when execution has been completed． |
| IWロロ09 Bit 1 | Command Hold Completed | Always OFF for SCC command． |
| IWDC09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during SCC command execution． Turns OFF when another command is executed． |
| $\begin{array}{\|l\|} \hline \text { IWDप09 } \\ \text { Bit } 8 \\ \hline \end{array}$ | Command Execution Completed | Turns ON when SCC command execution has been completed． |

## （4）Timing Charts

## ［ a ］Normal End


［ b ］Error End
OWDप08＝ 12 （SCC）
IWㅁㅁ08＝ 12 （SCC）
IWDC09，bit 0 （BUSY）
IWDㅁㅁ，bit 3 （FAIL）
IWDD09，bit 8 （COMPLETE）


## 6．2．12 Change Filter Type（CHG＿FILTER）

The CHG＿FILTER command enables the current setting of the Filter Type Selection（motion setting parameter OWपロ03，bits 8 to B）for execution of the following motion commands with the movement：POSING，EX＿POSING， ZRET，INTERPOLATE，LATCH，FEED，and STEP．
－Always execute the CHG＿FILTER command after changing the setting of OWDロ03，bits 8 to B ．If this is not exe－ cuted，the change in the Filter Type setting will not be validated．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | Pulse distribution has been completed for the SERVOPACK． | IW口 $\square 0 \mathrm{C}$ ，bit 0 is ON． |
| 3 | Motion command execution has been completed． | IWロ $\square 08$ is 0 and IW口 $\square 09$ ，bit 0 is OFF． |

2．Set OWDप08 to 13 to execute the CHG＿FILTER motion command．
The Filter Type Selection（motion setting parameter OWDロ03 Bit8 to B）will be enabled．
IWDロ 08 will be 13 during command execution．
IWD－09，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWपロ08 to 0 to execute the NOP motion command and then complete the change of the filter type．

## （2）Holding and Aborting

The Holds a Command bit（OW $\square \square 09$ ，bit 0 ）and the Interrupt a Command bit（OWD $\square 09$ ，bit 1 ）cannot be used．

## （3）Related Parameters

［ a ］Setting Parameters

| Parameter | Name | Setting |
| :---: | :---: | :---: |
| OWप口03 | Function Setting 1 | Set the speed unit，acceleration／deceleration units，and filter type． |
| OWDロ08 | Motion Command | The filter type is changed when this parameter is set to 13 ． |
| $\begin{aligned} & \text { OWवप09 } \\ & \text { Bit } 0 \end{aligned}$ | Holds a Command | This parameter is ignored for CHG＿FILTER command． |
| OWDロ09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for $\mathrm{CHG}_{-}$FILTER command． |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILロロ02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWDロ08 | Motion Command Response Code | Indicates the motion command that is being executed． <br> The response code will be 13 during CHG＿FILTER command execution． |
| $\begin{aligned} & \text { IWपロ09 } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Turns ON during CHG＿FILTER command execution and turns OFF when execution has been completed． |
| IWロロ09 <br> Bit 1 | Command Hold Completed | Always OFF for CHG＿FILTER command． |
| IWロロ09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during CHG＿FILTER command execution．Turns OFF when another command is executed． |
| $\begin{aligned} & \text { IWपロ09 } \\ & \text { Bit } 8 \end{aligned}$ | Command Execution Completed | Turns ON when CHG＿FILTER command execution has been completed． |

## （4）Timing Charts

［ a ］Normal End

［ b ］Error End
OWDप08＝ 13 （CHG－FILTER） IWDロ08＝ 13 （CHG－FILTER） IWロロ09，bit 0 （BUSY）

IWロロ09，bit 3 （FAIL）
IWDロ09，bit 8 （COMPLETE）


## 6．2．13 Change Speed Loop Gain（KVS）

The KVS command transfers the setting of the Speed Loop Gain（motion setting parameter OWDロ2F）to the Speed Loop Gain in the SERVOPACK and enables the setting．
－MECHATROLINK－II has a function that automatically updates setting parameters if a parameter changes．There is no need to execute the KVS command with this function．For details，refer to bit A（User Constants Self－writing Func－ tion）in 4．4．1（ 2 ）Function Selection 1.

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square 04$ are 0. |
| 2 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF． |

2．Set OWपロ08 to 14 to execute the KVS motion command．
The KVS command will transfer the setting of the Speed Loop Gain（motion setting parameter OWDロ2F）to the Speed Loop Gain in the SERVOPACK and enables the setting．
IWDC 08 will be 14 during command execution．
IWDC09，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWロロ08 to 0 to execute the NOP motion command and then complete the change of the speed loop gain．

## （2）Holding and Aborting

The Holds a Command bit（OWDD09，bit 0）and the Interrupt a Command bit（OWDD09，bit 1）cannot be used． When the tuning－less function of the SGDV or SGD7S SERVOPACK is enabled or when the SERVOPACK parameter Pn170．0 is set to 1 （Tuning－less Function Selection is enabled），these settings are disabled and ignored．

## （3）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting |
| :--- | :--- | :--- |
| OWロロ08 | Motion Command | The speed loop gain is changed when this parameter is set to 14． |
| OWロロ09 <br> Bit 0 | Holds a Command | This parameter is ignored for KVS command． |
| OWロロ09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for KVS command． |
| OWロप2F | Speed Loop Gain | Set the gain for the SERVOPACK speed control loop． |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILロ口02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IW $\square \square 08$ | Motion Command Response Code | Indicates the motion command that is being executed． The response code will be 14 during KVS command execution． |
| $\begin{aligned} & \text { IWपप09 } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Turns ON during KVS command execution and turns OFF when execution has been completed． |
| $\begin{aligned} & \text { IWपロ09 } \\ & \text { Bit } 1 \end{aligned}$ | Command Hold Completed | Always OFF for KVS command． |
| $\begin{aligned} & \hline \text { IWपロ09 } \\ & \text { Bit } 3 \end{aligned}$ | Command Error Completed Status | Turns ON if an error occurs during KVS command execution． Turns OFF when another command is executed． |
| $\begin{aligned} & \text { IWपप09 } \\ & \text { Bit } 8 \end{aligned}$ | Command Execution Completed | Turns ON when KVS command execution has been completed． |

（4）Timing Charts
［ a ］Normal End

［ b ］Error End
OWロロ08＝ 14 （KVS）
IWロロ08＝ 14 （KVS）
IWDC09，bit 0 （BUSY）
IWDロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）


## 6．2．14 Change Position Loop Gain（KPS）

The KPS command transfers the setting of the Position Loop Gain（motion setting parameter OWDD2E）to the Posi－ tion Loop Gain in the SERVOPACK and enables the setting．
－MECHATROLINK－II has a function that automatically updates setting parameters if a parameter changes．There is no need to execute the KPS command with this function．For details，refer to bit A（User Constants Self－writing Func－ tion）in 4．4．1（ 2 ）Function Selection 1.
（1）Executing／Operating Procedure
1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square 04$ are 0. |
| 2 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF． |

2．Set OWDロ08 to 15 to execute the KPS motion command．
The KPS command will transfer the setting of the Position Loop Gain（motion setting parameter OWDロ2E）to the Position Loop Gain in the SERVOPACK and enables the setting．
IWपロ 08 will be 15 during command execution．
IWD－09，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWDप08 to 0 to execute the NOP motion command to change the position loop gain．

## （2）Holding and Aborting

The Holds a Command bit（OWロロ09，bit 0 ）and the Interrupt a Command bit（OWDロ09，bit 1 ）cannot be used． When the tuning－less function of the SGDV or SGD7S SERVOPACK is enabled or when the SERVOPACK parameter Pn170．0 is set to 1 （Tuning－less Function Selection is enabled），these settings are disabled and ignored．

## （3）Related Parameters

## ［a］Setting Parameters

| Parameter | Name | Setting |
| :---: | :---: | :---: |
| OW口ロ08 | Motion Command | The position loop gain is changed when this parameter is set to 15 ． |
| $\begin{aligned} & \hline \text { OWपप09 } \\ & \text { Bit } 0 \end{aligned}$ | Holds a Command | This parameter is ignored for KPS command． |
| OWDप09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for KPS command． |
| OW口ロ2E | Position Loop Gain | Set the gain for the SERVOPACK position control loop． |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILロロ02 | Warning | Stores the most current warning． |
| ILロ口04 | Alarm | Stores the most current alarm． |
| IWDロ08 | Motion Command Response Code | Indicates the motion command that is being executed． The response code is 15 during KPS command execution． |
| $\begin{aligned} & \hline \text { IWपव09 } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Turns ON during KPS command execution and turns OFF when execution has been completed． |
| $\begin{aligned} & \hline \text { IWロप09 } \\ & \text { Bit } 1 \end{aligned}$ | Command Hold Completed | Always OFF for KPS command． |
| $\begin{aligned} & \hline \text { IWपᄆ09 } \\ & \text { Bit } 3 \end{aligned}$ | Command Error Completed Status | Turns ON if an error occurs during KPS command execution． Turns OFF when another command is executed． |
| $\begin{array}{\|l} \hline \text { IWपロ09 } \\ \text { Bit } 8 \end{array}$ | Command Execution Completed | Turns ON when KPS command execution has been completed． |

## （4）Timing Charts

［ a ］Normal End

［ b ］Error End
OWDप08＝ 15 （KPS）
IWपロ08＝ 15 （KPS）
IWロロ09，bit 0 （BUSY）
IWロロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）


## 6．2．15 Change Feed Forward（KFS）

The KFS command transfers the setting of the Speed Feed Forward Amends（motion setting parameter OWDロ30）to the Feed Forward in the SERVOPACK and enables the setting．
－MECHATROLINK－II has a function that automatically updates setting parameters if a parameter changes．There is no need to execute the KFS command with this function．For details，refer to bit A（User Constants Self－writing Func－ tion）in 4．4．1（2）Function Selection 1.

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF． |

2．Set OWDロ08 to 16 to execute the KFS motion command．
The KFS command will transfer the setting of the Speed Feed Forward Amends（motion setting parameter OWロロ30）to the Feed Forward in the SERVOPACK and enables the setting．
IWDC 08 will be 16 during command execution．
IW $\square 09$ ，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWロप08 to 0 to execute the NOP motion command and then complete the change of the feed forward．

## （2）Holding and Aborting

The Holds a Command bit（OWDロ09，bit 0）and the Interrupt a Command bit（OWDロ09，bit 1）cannot be used． When the tuning－less function of the SGDV or SGD7S SERVOPACK is enabled or when the SERVOPACK parameter Pn170．0 is set to 1 （Tuning－less Function Selection is enabled），these settings are disabled and ignored．

## （3）Related Parameters

［ a ］Setting Parameters

| Parameter | Name | Setting |
| :---: | :---: | :---: |
| OWDロ08 | Motion Command | The feed forward value is changed when this parameter is set to 16 ． |
| $\begin{aligned} & \hline \text { OWपロ09 } \\ & \text { Bit } 0 \end{aligned}$ | Holds a Command | This parameter is ignored for KFS command． |
| OWDロ09 Bit 1 | Interrupt a Command | This parameter is ignored for KFS command． |
| OWロロ30 | Speed Feed Forward Amends | Set the amount of Servo feed forward（\％）． |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILロロ02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWप口08 | Motion Command Response Code | Indicates the motion command that is being executed． <br> The response code will be 16 during KFS command execution． |
| $\begin{aligned} & \hline \text { IWपロ09 } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Turns ON during KFS command execution and turns OFF when execution has been completed． |
| IWロロ09 <br> Bit 1 | Command Hold Completed | Always OFF for KFS command． |
| $\begin{aligned} & \text { IWपロ09 } \\ & \text { Bit } 3 \end{aligned}$ | Command Error Completed Status | Turns ON if an error occurs during KFS command execution． Turns OFF when another command is executed． |
| $\begin{aligned} & \text { IWपप09 } \\ & \text { Bit } 8 \end{aligned}$ | Command Execution Completed | Turns ON when KFS command execution has been completed． |

（4）Timing Charts
［ a ］Normal End

［ b ］Error End
OWロロ08＝ 16 （KFS）
IWDC08＝ 16 （KFS）
IWDC09，bit 0 （BUSY）
IWロロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）


## 6．2．16 Read User Constant（PRM＿RD）

The PRM＿RD command reads the setting of the SERVOPACK parameter with the specified parameter number and parameter size．It stores the parameter number in Servo Driver User Constants No．（monitoring parameter IWDप36） and the setting in Servo Driver User Constant Reading Data（monitoring parameter ILロロ38）．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square 09$, bit 0 is OFF． |

2．Set OWDप08 to 17 to execute the PRM＿RD motion command．
The PRM＿RD command will store the specified parameter number in the Servo Driver User Constants No． （monitoring parameter IWDC36）and the parameter setting in Servo Driver User Constant Reading Data（moni－ toring parameter ILDD38）．
IW $\square \square 08$ will be 17 during command execution．
IWDロ09，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWDप08 to 0 to execute the NOP motion command and then complete the reading operation．

## （2）Holding and Aborting

The Holds a Command bit（OWDC09，bit 0）and the Interrupt a Command bit（OWDD09，bit 1）cannot be used．

## （3）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting |
| :---: | :---: | :---: |
| OWप口08 | Motion Command | The SERVOPACK parameter is read when this parameter is set to 17 ． |
| $\begin{aligned} & \text { OWपᄆ09 } \\ & \text { Bit } 0 \end{aligned}$ | Hold a Command | This parameter is ignored for PRM＿RD command． |
| OW口ロ09 Bit 1 | Interrupt a Command | This parameter is ignored for PRM＿RD command． |
| OWपロ50 | Servo Driver User Con－ stant No． | Set the number of the SERVOPACK parameter to be read． |
| OWप口51 | Servo Driver User Constant Size | Set the size of the SERVOPACK parameter to be read． Set the size as the number of words． Example：For 4 bytes，set＂ 2 ．＂ |

［ b ］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILロロ02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWDロ08 | Motion Command Response Code | Indicates the motion command that is being executed． The response code will be 17 during PRM＿RD command execution． |
| IWロロ09 Bit 0 | Command Execution Flag | Turns ON during PRM＿RD command execution and turns OFF when execu－ tion has been completed． |
| IWDC09 Bit 1 | Command Hold Completed | Always OFF for PRM＿RD command． |
| IWDC09 Bit 3 | Command Error Completed Status | Turns ON if an error occurs during PRM＿RD command execution．Turns OFF when another command is executed． |
| IWDロ09 <br> Bit 8 | Command Execution Completed | Turns ON when PRM＿RD command execution has been completed． |
| IWロロ36 | Servo Driver User Constant No． | Stores the number of the SERVOPACK parameter that was read． |
| ILDロ38 | Servo Driver User Constant Reading Data | Stores the data of the SERVOPACK parameter that was read． |

## （4）Timing Charts

## ［ a ］Normal End


［ b ］Error End


## 6．2．17 Write User Constant（PRM＿WR）

The PRM＿WR command writes the setting value the relevant SERVOPACK parameter using the specified SERVO－ PACK parameter number，parameter size，and setting data．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both ILD $\square 02$ and IL $\square 04$ are 0. |
| 2 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW口 $\square 09$, bit 0 is OFF． |

2．Set OWDप08 to 18 to execute the PRM＿WR motion command．
The SERVOPACK parameter will be written．
IWDC 08 will be 18 during command execution．
IWDC09，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWロロ08 to 0 to execute the NOP motion command and then complete the writing operation．

## （2）Holding and Aborting

The Holds a Command bit（OWDC09，bit 0）and the Interrupt a Command bit（OWDD09，bit 1）cannot be used．

## （3）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting |
| :---: | :---: | :---: |
| OW口ロ08 | Motion Command | The SERVOPACK parameter is written when this parameter is set to 18 ． |
| $\begin{aligned} & \text { OWपロ09 } \\ & \text { Bit } 0 \end{aligned}$ | Holds a Command | This parameter is ignored for $\mathrm{PRM}_{-}$WR command． |
| OW口ロ09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for $\mathrm{PRM}_{-}$WR command． |
| OWपロ50 | Servo Driver User Constant No． | Set the number of the SERVOPACK parameter to be written． |
| OWप口51 | Servo Driver User Constant Size | Set the size of the SERVOPACK parameter to be written． Set the size as the number of words． <br> Example：For 4 bytes，set＂ 2 ．＂ |
| OLD口52 | Servo Driver User Constant Set Point | Set the data to be set to the SERVOPACK parameter to be written． |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILロロ02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWDロ08 | Motion Command Response Code | Indicates the motion command that is being executed． The response code will be 18 during PRM＿WR command execution． |
| $\begin{aligned} & \text { IWपप09 } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Turns ON during PRM＿WR command execution and turns OFF when execution has been completed． |
| IWप口09 <br> Bit 1 | Command Hold Completed | Always OFF for PRM＿WR command． |
| IW口ロ09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during PRM＿WR command execution． Turns OFF when another command is executed． |
| $\begin{aligned} & \text { IWपप09 } \\ & \text { Bit } 8 \end{aligned}$ | Command Execution Completed | Turns ON when PRM＿WR command execution has been completed． |

## （4）Timing Charts

［ a ］Normal End

［ b ］Error End
OWपロ08＝ 18 （PRM＿WR）
IWपロ08＝ 18 （PRM＿WR） IWロロ09，bit 0 （BUSY） IWDロ09，bit 3 （FAIL） IWロロ09，bit 8 （COMPLETE）


## 6．2．18 Alarm Monitor（ALM＿MON）

The ALM＿MON command reads the alarm or warning that has occurred in the SERVOPACK and stores it in Servo Driver Alarm Code（monitoring parameter IWDप2D）．Three－digit alarm codes，such as SGDS，SGDV，or SGD7S SERVOPACK alarm codes，can also be read out by using this command．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :---: |
| 1 | Motion command execution has been completed． | IW $\square 08$ is 0 and IW $\square 09$, bit 0 is OFF． |

2．Set OWDप08 to 19 to execute the ALM＿MON motion command．
The ALM＿MON command will read the alarm or warning that has occurred in the SERVOPACK and store it in Servo Driver Alarm Code（monitoring parameter IWDC2D）．
IW $\square 08$ will be 19 during command execution．
IWDC09，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWDप08 to 0 to execute the NOP motion command and then complete the monitoring operation．

## （ 2 ）Holding and Aborting

The Holds a Command bit（OWDC09，bit 0）and the Interrupt a Command bit（OWD $\square 09$ ，bit 1）cannot be used．

## （3）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting |
| :--- | :--- | :--- |
| OW口ロ08 | Motion Command | Alarms are monitored when this parameter is set to 19. |
| OW口ロ09 <br> Bit 0 | Holds a Command | This parameter is ignored for ALM＿MON command． |
| OW口ロ09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for ALM＿MON command． |
| OW口ロ4F | Servo Driver Alarm <br> Monitor No． | When several alarms and warnings occur at the same time，set the number of the alarm <br> or warning to be monitored． |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILD口02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWDロ08 | Motion Command Response Code | Indicates the motion command that is being executed． <br> The response code will be 19 during ALM＿MON command execution． |
| $\begin{aligned} & \hline \text { IWपप09 } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Turns ON during ALM＿MON command execution and turns OFF when execution has been completed． |
| IWロप09 <br> Bit 1 | Command Hold Completed | Always OFF for ALM＿MON command． |
| $\begin{aligned} & \hline \text { IWपロ09 } \\ & \text { Bit } 3 \end{aligned}$ | Command Error Completed Status | Turns ON if an error occurs during ALM＿MON command execution． Turns OFF when another command is executed． |
| IW口ᄆ09 <br> Bit 8 | Command Execution Completed | Turns ON when ALM＿MON command execution has been completed． |
| IWロロ2D | Servo Driver Alarm Code | Stores the SERVOPACK alarm or warning code that was read． |

## (4) Timing Charts

[ a ] Normal End

[ b] Error End


## 6．2．19 Alarm History Monitor（ALM＿HIST）

The ALM＿HIST command reads the alarm history stored in the SERVOPACK and stores it in the Servo Driver Alarm
Code（monitor parameter IWप्व2D）．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :---: |
| 1 | Motion command execution has been completed． | IW $\square 08$ is 0 and IW $\square 09$, bit 0 is OFF． |

2．Set OWDप08 to 20 to execute the ALM＿HIST motion command．
The ALM＿HIST command will read the alarm or warning history that is stored in the SERVOPACK and store it in Servo Driver Alarm Code（monitoring parameter IWDC2D）．
IWDC 08 will be 20 during command execution．
IWDD09，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWपロ08 to 0 to execute the NOP motion command and then complete the monitoring operation．

## （2）Holding and Aborting

The Holds a Command bit（OWDC09，bit 0）and the Interrupt a Command bit（OWDD09，bit 1）cannot be used．

## （3）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting |
| :--- | :--- | :--- |
| OW口ロ08 | Motion Command | The alarm history is monitored when this parameter is set to 20． |
| OW口ロ09 <br> Bit 0 | Holds a Command | This parameter is ignored for ALM＿HIST command． |
| OW口ロ09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for ALM＿HIST command． |
| OW口ロ4F | Servo Driver Alarm <br> Monitor No． | Sets the number of the alarm to be monitored． |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILロ口02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWDロ08 | Motion Command Response Code | Indicates the motion command that is being executed． <br> The response code will be 20 during ALM＿HIST command execution． |
| $\begin{aligned} & \text { IWपロ09 } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Turns ON during ALM＿HIST command execution and turns OFF when execution has been completed． |
| IWロロ09 <br> Bit 1 | Command Hold Com－ pleted | Always OFF for ALM＿HIST command． |
| IWपם09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during ALM＿HIST command execution． Turns OFF when another command is executed． |
| $\begin{aligned} & \text { IWपロ09 } \\ & \text { Bit } 8 \end{aligned}$ | Command Execution Completed | Turns ON when ALM＿HIST command execution has been completed． |
| IW $\square \square 2 \mathrm{D}$ | Servo Driver Alarm Code | Stores the SERVOPACK alarm code that was read． |

## (4) Timing Charts

[ a ] Normal End

[ b] Error End


## 6．2．20 Clear Alarm History（ALMHIST＿CLR）

The ALMHIST＿CLR command clears the alarm history in the SERVOPACK．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :---: |
| 1 | Motion command execution has been completed． | IW $\square 08$ is 0 and IW $\square 09$, bit 0 is OFF． |

2．Set OWDロ08 to 21 to execute the ALMHIST＿CLR motion command．
The ALMHIST＿CLR command will clear the alarm history stored in the SERVOPACK．
IWDC 08 will be 21 during command execution．
IW C － 09 ，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWロप08 to 0 to execute the NOP motion command and then clear the alarm history．

## （2）Holding and Aborting

The Holds a Command bit（OWDप09，bit 0 ）and the Interrupt a Command bit（OWD $\square 09$ ，bit 1 ）cannot be used．

## （3）Related Parameters

［ a ］Setting Parameters

| Parameter | Name | Setting |
| :--- | :--- | :--- |
| OW口ロ08 | Motion Command | The alarm history is cleared when this parameter is set to 21． |
| OW口ロ09 <br> Bit 0 | Holds a Command | This parameter is ignored for ALMHIST＿CLR command． |
| OW口ロ09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for ALMHIST＿CLR command． |

## ［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILロロ02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWロロ08 | Motion Command Response Code | Indicates the motion command that is being executed． <br> The response code will be 21 during ALMHIST＿CLR command execution． |
| $\begin{aligned} & \text { IWपप09 } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Turns ON during ALMHIST＿CLR command execution and turns OFF when execution has been completed． |
| IWDロ09 <br> Bit 1 | Command Hold Completed | Always OFF for ALMHIST＿CLR command． |
| $\begin{aligned} & \hline \text { IWपロ09 } \\ & \text { Bit } 3 \end{aligned}$ | Command Error Completed Status | Turns ON if an error occurs during ALMHIST＿CLR command execution． Turns OFF when another command is executed． |
| IWロप09 <br> Bit 8 | Command Execution Completed | Turns ON when ALMHIST＿CLR command execution has been completed． |

## （4）Timing Charts

［ a ］Normal End

［ b ］Error End
OWDप08 $=21$（ALMHIST＿CLR） IWロロ08＝ 21 （ALMHIST＿CLR） IWロロ09，bit 0 （BUSY） IWロロ09，bit 3 （FAIL） IWロロ09，bit 8 （COMPLETE） IWロロ2D


## 6．2．21 Absolute Encoder Reset（ABS＿RST）

The ABS＿RST command initializes the absolute encoder via MECHATROLINK．
Initialization of the absolute encoder is required in the following cases．
－Before initial operation of a machine
－When the alarm A． 81 ＂Encoder Backup Alarm＂has occurred．
－When the alarm A． 82 ＂Encoder Checksum Error＂has occurred．
－The ABS＿RST command is valid for $\Sigma$－II，$\Sigma$－III，$\Sigma-\mathrm{V}$ ，and $\Sigma-7$ Series SERVOPACKs with absolute encoders．A com－ mand error will occur if the ABS＿RST command is executed for a $\Sigma$－I Series SERVOPACK．A command error will occur if the ABS＿RST command is executed for a $\Sigma$－I Series SERVOPACK．A command error will also occur if the ABS＿RST command is executed when an incremental encoder is being used with a $\Sigma$－II，$\Sigma$－III，$\Sigma$－V，or $\Sigma-7$ Series SERVOPACK（even if it is being used as an absolute encoder）．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :---: | :---: |
| 1 | Communication with the SERVOPACK must be synchro－ nized． | IW口D00，bit 0 is ON． |
| 2 | The Servo OFF condition． | IW $\square \square 00$ ，bit 1 is OFF． |
| 3 | Motion command execution has been completed． | IW $\square \square 08$ is 0 ，and IW $\square \square 09$ ，bit 0 is OFF． |

－If there is an Encoder Backup Alarm or Encoder Checksum Alarm in the SERVOPACK，communications can－ not be synchronized just by turning ON the power supply to the controller．Use the Alarm Clear bit（OWDロ00， bit F）to synchronize communications．

2．Set OWDロ08 to 22 to execute the ABS＿RST motion command．
The ABS＿RST command will clear any alarms that have occurred and resets the multiturn data in the absolute encoder to 0 ．
IWDD08 will be 22 and IWDD09 Bit0 will turn ON during command processing．
IW $\square \square 09$ bit 0 ，IW $\square \square 09$ bit 3，and IWपด00 bit 0 will turn OFF and IW口प09 bit 7 will turn ON when the command processing has been completed．

3．Set OWロロ08 to 0 to execute the NOP motion command to initialize the absolute encoder．
－When using an SGD7S，SGDV，or SGDH＋NS115 SERVOPACK：
Always turn OFF the power to the SERVOPACK and then turn it ON again after executing the ABS＿RST command．
－When using an SGDS SERVOPACK：
It is not necessary to turn OFF the power to the SERVOPACK and then turn it ON again after executing the ABS＿RST command．Just use the Alarm Clear bit（OWDOOO，bit F）to synchronize communications．If the ABS＿RST command is executed while there is an Encoder Backup Alarm（A．81），the alarm clear operation will have to be performed twice before communications can be synchronized again．

When the absolute encoder has been reset，communication will be disconnected between the Machine Controller and the SERVOPACK．The zero point setting completed and zero point return completed status will thus be cleared．Use the Alarm Clear bit（OWDO00，bit F）after executing the ABS＿RST command，re－ establish communications，and then execute the ZRET or ZSET command．

## （2）Holding and Aborting

The Holds a Command bit（OWDC09，bit 0）and the Interrupt a Command bit（OWDD09，bit 1）cannot be used． Processing will be canceled if a communication error occurs while the command is being executed and a command error will occur．
－SGDV and SGDH＋NS115 SERVOPACKs need to be restarted after this function is executed．
－SGDS SERVOPACKs，however，can be used after resetting the absolute encoder and clearing the alarm．

## （ 3 ）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting |
| :--- | :--- | :--- |
| OWロロ00 <br> Bit 0 | Servo ON | Turn the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor；0：Power OFF to Servomotor <br> Turn OFF the power before setting the Motion Command（OWDロ08）to 22． |
| OWロロ08 | Motion Command | Starts resetting the absolute encoder when this parameter is set to 22． <br> Even if this parameter is set to 0 during command processing，it will be ignored and <br> execution will be continued． |
| OWロロ09 <br> Bit 0 | Holds a Command | This parameter is ignored for the ABS＿RST command． |
| OWロロ09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for the ABS＿RST command． |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| $\begin{array}{\|l} \hline \text { IWロロ00 } \\ \text { Bit } 0 \end{array}$ | Motion Controller Operation Ready | Indicates the communication status between the Machine Controller and SERVOPACK． <br> 1：Communication synchronized， 0 ：Communication disconnected |
| IWロロ00 Bit 1 | Servo ON | Indicates the Servo ON status． <br> 1：Power supplied to Servomotor，0：Power not supplied to Servomotor |
| ILロロ02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWロロ08 | Motion Command Response Code | Indicates the motion command that is being executed． The response code will be 22 during ABS＿RST command execution． |
| $\begin{array}{\|l\|} \hline \text { IWロप09 } \\ \text { Bit } 0 \end{array}$ | Command Execution Flag | Turns ON during ABS＿RST command execution and turns OFF when execution has been completed． |
| IWロロ09 <br> Bit 1 | Command Hold Completed | Always OFF for the ABS＿RST command． |
| IWロロ09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error，such as a communication error，occurs during ABS＿RST com－ mand execution． <br> Command execution will be canceled． |
| IWロロ09 Bit 7 | Absolute Encoder Reset Completed | Turns ON when resetting the absolute encoder has been completed． |
| $\begin{array}{\|l\|} \hline \text { IWロロ09 } \\ \text { Bit } 8 \end{array}$ | Command Execution Completed | Turns ON when ABS＿RST command execution has been completed． |

## (4) Timing Charts

[ a ] Normal End

[ b ] Error End


## 6．2．22 Speed Reference（VELO）R

With the MECHATROLINK－II，the VELO command is used to operate the SERVOPACK in the speed control mode for the same type of operation as when using the analog speed reference input of the SERVOPACK．
－The VELO command is stipulated in MECHATROLINK－II command specifications and cannot be used for MECHATROLINK－I．
（1）Executing／Operating Procedure
1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | Motion command execution has been completed．$^{*}$ | IW $\square 08$ is 0 and IW $\square \square 09$, bit0 is OFF． |

[^3]2．Set the following motion setting parameters．
Speed Reference Setting：OLDD10
Positive Side Limiting Torque／Thrust Setting at the Speed Reference：OLDD14
Filter Type Selection：OWDD03，bits 8 to B
Speed Loop P／PI Switch：OWDロ01
－The speed reference setting bit OLDD10 can be changed during operation．
－An override of between $0 \%$ to $327.67 \%$ can be set for the reference speed．
3．Set OWDप08 to 23 to execute the VELO motion command．
The control mode in the SERVOPACK will be switched to speed control．
IWDD 08 will be 23 during command execution．
－This command can be executed even when the Servo is OFF．
－Position management using the position feedback is possible during operation with speed control mode．
4．Execute another motion command to cancel the speed control mode．
VELO Operating Pattern


## （ 2 ）Holding

To pause the axis movement temporarily，and then restart movement，set the Holds a Command bit of the Motion Com－ mand Control Flag（OWDロ09，bit 0）to 1 （ON）．
－The axis will decelerate to a stop when bit 0 of OWDप09 is turned ON．
－When the axis stops，bit 1 （Command Hold Completed）of IWロロ09（Motion Command Status）will turn ON．
－To cancel the holding status，set the bit 0 of OWDロ09 to 0 （OFF）．
The holding status will be canceled，and the axis will start moving again．

## （3）Aborting

The speed control mode can be canceled by aborting execution of a command．A command is aborted by setting the Interrupt a Command bit（OWDロ09，bit 1）to 1.
－Set the Interrupt a Command bit（OWロロ09，bit 1）to 1 ．The axis will decelerate to a stop．The abort process－ ing will be completed when the axis has decelerated to a stop．
－The speed control mode operation will restart if the Interrupt a Command bit（OWDप09，bit 1 ）is reset to 0 during abort processing．＊
－This type of operation will also be performed if the motion command is changed during operation with speed control mode．
＊Because a delay occurs when sending or receiving commands and responses to and from the CPU and the SVB module，the abort processing may have been completed although an attempt was made to restart the operation in speed control mode．In this case，IWDロ08（Motion Command Response Code）is set to 23，and bit 8 （Command Execution Completed）of IWロロ09（Motion Command Status）is set to 1 ．The operation in speed control mode can－ not be restarted under these conditions．
To reset the operation in speed control mode，set OWロロ08（Motion Command）to any value other than 23 （such as $\mathrm{NOP}=0$ ）and then reset it to 23 ．If an operation is to be frequently aborted and restarted within a short interval， remember to take this delay into consideration．

## （4）Related Parameters

## ［a］Setting Parameters

| Parameter | Name | Setting | SVR |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { OWロप00 } \\ & \text { Bit } 0 \end{aligned}$ | Servo ON | Turn the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor，0：Power OFF to Servomotor <br> Motor will start to rotate when this bit is set to 1 under the speed control data mode． | 8 |
| OW口ロ01 <br> Bit 3 | Speed Loop P／PI Switch | Switch the speed control loop between PI control and P control． 0：PI control，1：P control | － |
| OW口ロ03 | Function Setting 1 | Set the speed unit，acceleration／deceleration units，and filter type． | R |
| OW口ロ08 | Motion Command | The mode is changed to speed control mode when this parameter is set to 23. | R |
| $\begin{aligned} & \text { OWप्09 } \\ & \text { Bit } 0 \end{aligned}$ | Holds a Command | The axis will decelerate to a stop if this bit is set to 1 during speed command operation． <br> The positioning operation will restart if this bit is set to 0 while the command is being held． | R |
| $\begin{aligned} & \hline \text { OWपロ09 } \\ & \text { Bit } 1 \end{aligned}$ | Interrupt a Command | The axis will decelerate to a stop if this bit is set to 1 during operation． | R |
| OLD口10 | Speed Reference Setting | Specify the speed．This setting can be changed during operation． The unit depends on the setting of the Function Setting 1 （OW $\square \square 03$ ，bits 0 to $3)$ ． | R |
| OLD口14 | Positive Side Limiting Torque／Thrust Setting at the Speed Reference | Set the torque limit for the speed reference．The same value is used for both the positive and negative directions． | － |
| OWDロ18 | Override | This parameter allows the motor speed to be changed without changing the Speed Reference Setting（OLDロ10）． <br> Set the speed as a percentage of the Speed Reference Setting．This setting can be changed during operation． <br> Setting range： 0 to 32767 （ $0 \%$ to $327.67 \%$ ）Setting unit： $1=0.01 \%$ <br> Example：Setting for $50 \%$ ： 5000 | － |
| OLD $\square 36$ | Straight Line Acceleration／ Acceleration Time Constant | Set the linear acceleration rate or acceleration time． | R |
| OLD口38 | Straight Line Decelera－ tion／Decelerate Time Constant | Set the linear deceleration rate or deceleration time． | R |
| OW口ロ3A | Filter Time Constant | Set the acceleration／deceleration filter time constant．Exponential accelera－ tion／deceleration or a moving average filter can be selected in the Function Setting 1 （OW口ロ03，bits 8 to B）． <br> Change the setting only after pulse distribution has been completed for the command（IW $\square \square 0 \mathrm{C}$ bit 0 is ON ）． | R |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWDC00 Bit 1 | Running（At Servo ON） | Indicates the Servo ON status． <br> 1：Power supplied to Servomotor，0：Power not supplied to Servomotor | $\square$ |
| ILDO02 | Warning | Stores the most current warning． | R |
| ILロロ04 | Alarm | Stores the most current alarm． | R |
| IWロロ08 | Motion Command Response Code | Indicates the motion command that is being executed． The response code will be 23 during VELO command execution． | R |
| $\begin{array}{\|l\|} \hline \text { IWロप09 } \\ \text { Bit } 0 \end{array}$ | Command Execution Flag | Turns ON when abort processing is being performed for VELO command．Turns OFF when abort processing has been completed． | R |
| IWDC09 Bit 1 | Command Hold Completed | Always OFF for VELO command． | R |
| IWロロ09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during VELO command execution． The axis will decelerate to a stop if it is operating．Turns OFF when another com－ mand is executed． | R |
| IWロロ09 <br> Bit 8 | Command Execution Completed | Always OFF for VELO command． | R |
| $\begin{array}{\|l\|} \hline \text { IWロロ0C } \\ \text { Bit } 0 \end{array}$ | Discharging Completed | Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command． | R |
| $\begin{array}{\|l\|} \hline \text { IWロロOC } \\ \text { Bit } 1 \end{array}$ | Positioning Completed | Turns ON when pulse distribution has been completed and the current position is within the width of Positioning Completion．OFF in all other cases． | R |
| IWロロ0C <br> Bit 3 | NEAR Position | The operation of this bit depends on the setting of NEAR Signal Output Width（set－ ting parameter OLD口20）． <br> OLDC20 $=0$ ：Turns ON when pulse distribution has been completed $($ DEN $=$ ON）．Otherwise，it turns OFF． <br> OLDप $20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS（ILDロ12）and APOS（ILDप16）is less than the NEAR Signal Output Width，even if pulse distribution has not been com－ pleted． <br> OFF in all other cases． | R |

## （5）Timing Charts

## ［ a ］Normal Execution


［b］Execution when Aborted

［ c ］Execution when Aborting by Changing the Command


## ［ d ］Command Hold

OWㅁㅁ08＝23（VELO）
OWDD09，bit 0 （HOLD）
IWロロ08＝23（VELO）
IWロロ09，bit 0 （BUSY）
IWロロ09，bit 1 （HOLDL）
IWロロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）
IWロロ0C，bit 0 （DEN）

［e］Execution when an Alarm Occurs

OWDロ08
IWロロ08
IWロロ09，bit 0 （BUSY）
IWロロ09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）
IWロロ0C，bit 0 （DEN）

Alarm


## 6．2．23 Torque／Thrust Reference（TRQ） $\mathbb{R}$

With the MECHATROLINK－II，the TRQ command is used to operate the SERVOPACK in the torque control mode for the same type of operation as when using the analog torque reference input of the SERVOPACK．
For SVR，the torque reference can be monitored，but position data cannot be updated．
－The TRQ command is stipulated in MECHATROLINK－II command specifications and cannot be used for MECHATROLINK－I．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | Motion command execution has been completed．$^{*}$ | IW $\square 08$ is 0 and IW $\square 09$, bit 0 is OFF． |

＊This condition is a basic execution condition．Refer to Chapter 7 Switching Commands during Execution when
changing the command being executed to a TRQ command．
2．Set the following motion setting parameters．
Torque Reference：OLD $\square 0 \mathrm{C}$
Speed Limit Setting at the Torque／Thrust Reference：OWDD0E
Torque List Selection：OWDD03，bits C to F
Speed Loop P／PI Switch：OWDロ01
－The torque reference OLDD0C can be changed during operation．
3．Set OWロロ08 to 24 to execute the TRQ motion command．
The control mode in the SERVOPACK will be changed to torque control．
IWDD 08 will be 24 during command execution．
－This command can be executed even when the Servo is OFF．
－Position management using the position feedback is possible during operation with torque control mode．
4．Execute another motion command to cancel the torque control mode．

（2）Holding
To pause the axis movement temporarily and then restart moving，set the Holds a Command bit of Motion Command Control Flag（OWDD09，bit 0）to 1 （ON）．
－The axis will decelerate to a stop when bit 0 of OWDD09 is turned ON．
－When the axis stops，bit 1 （Command Hold Completed）of IWDロ09（Motion Command Status）will turn ON．
－To cancel the holding status，set bit 0 of OWDD09 to 0 （OFF）．
The holding status will be canceled，and the axis will start moving again．

## （3）Aborting

The torque control mode can be canceled by aborting execution of a command．A command is aborted by setting the Interrupt a Command Abort bit（OWDロ09 Bit1）to 1.
－Set the Interrupt a Command bit（OWロロ09，bit 1）to 1 ．The axis will decelerate to a stop．The abort process－ ing will be completed when the axis has decelerated to a stop．
－The torque control mode operation will restart if the Interrupt a Command bit（OWDロ09，bit 1 ）is reset to 0 during abort processing．
－This type of operation will also be performed if the motion command is changed during operation with torque control mode．

## （4）Related Parameters

## ［a］Setting Parameters

| Parameter | Name | Setting | SVR |
| :---: | :---: | :---: | :---: |
| OWロロ00 <br> Bit 0 | Servo ON | Turn the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor，0：Power OFF to Servomotor <br> Motor torque will start to rotate when the Servo is turned ON after switching to Torque Control Mode． | R |
| OWロロ03 | Function Setting 1 | Set the unit for torque reference． | R |
| OWロロ08 | Motion Command | The mode is changed to torque control when this parameter is set to 24. | R |
| OWDロ09 <br> Bit 0 | Holds a Command | The axis will stop when this bit is changed to ON while the axis is moving for the torque reference． <br> The axis will start moving again when this bit is changed to OFF while the com－ mand is being held． | R |
| $\begin{aligned} & \text { OWपロ09 } \\ & \text { Bit } 1 \end{aligned}$ | Interrupt a Command | A deceleration stop is performed when this bit set to 1 during operation． | R |
| OLロロ0C | Torque Reference | Set the torque reference．This setting can be changed during operation． The unit depends on the Function Setting 1 （OWDロ03，bits C to F）． | R |
| OWDI0E | Speed Limit Setting at the Torque／Thrust Reference | Set the speed limit for torque references．The speed limit is set as a percentage of the rated speed． | － |
| OLDロ38 | Straight Line Deceler－ ation／Deceleration Time Constant | Set the rate of deceleration or deceleration time for positioning． | R |
| OWDロ3A | Filter Time Constant | Set the acceleration／deceleration filter time constant．Exponential acceleration／ deceleration or a moving average filter can be selected in the Function Setting 1 （OWD－03，bits 8 to B）． <br> Change the setting only after pulse distribution has been completed for the com－ mand（IWDD0C，bit 0 is ON ）． | R |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWロロ00 Bit 1 | Running（At Servo ON） | Indicates the Servo ON status． <br> ON：Power supplied to Servomotor，OFF：Power not supplied to Servomotor | R |
| ILDO02 | Warning | Stores the most current warning． | 8 |
| ILロロ04 | Alarm | Stores the most current alarm． | R |
| IWDロ08 | Motion Command Re－ sponse Code | Indicates the motion command that is being executed． The response code will be 24 during TRQ command execution． | R |
| $\begin{array}{\|l} \hline \text { IWロロ09 } \\ \text { Bit } 0 \end{array}$ | Command Execution Flag | Turns ON when abort processing is being performed for TRQ command．Turns OFF when abort processing has been completed． | R |
| $\begin{array}{\|l\|l\|l\|} \hline \text { IWपロ } \end{array}$ $\text { Bit } 1$ | Command Hold Completed | Always OFF for TRQ command． | R |
| IWロロ09 Bit 3 | Command Error Completed Status | Turns ON if an error occurs during TRQ command execution． <br> The axis will decelerate to a stop if it is operating．Turns OFF when another com－ mand is executed． | R |

（cont＇d）

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWDᄆ09 <br> Bit 8 | Command Execution Completed | Always OFF for TRQ command． | R |
| $\begin{aligned} & \text { IWロप0C } \\ & \text { Bit } 0 \end{aligned}$ | Discharging Complet－ ed | Turns ON when pulse distribution has been completed for the move command． Turns OFF during execution of a move command． | R |
| $\begin{aligned} & \hline \text { IWロप0C } \\ & \text { Bit } 1 \end{aligned}$ | Positioning Completed | Turns ON when pulse distribution has been completed and the current position is within the width of Positioning Completion．OFF in all other cases． | R |
| IWロロ0C <br> Bit 3 | NEAR Position | The operation of this bit depends on the setting NEAR Signal Output Width（set－ ting parameter OL $\square \square 20$ ）． <br> OLD口20 $=0$ ：Turns ON when pulse distribution has been completed（DEN $=$ ON）．Otherwise，it turns OFF． <br> OLD $\square 20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS（ILロロ12）and APOS（IL口ロ16）is less than the NEAR Signal Output Width，even if pulse distribution has not been completed． <br> OFF in all other cases． | R |

## （5）Timing Charts

## ［ a ］Normal Execution



## ［ b ］Executed when Aborted


［ c ］Command Hold

OWDC08＝ 24 （TRQ） OWDC09，bit0（HOLD）
IWDC08＝ 24 （TRQ）
IWDa09，bit 0 （BUSY）
IWロa09，bit 1 （HOLDL）
wan09，bit 3 （FAIL）
IWロロ09，bit 8 （COMPLETE）
IWGOOC，bit 0 （DEN）

［d］Execution when an Alarm Occurs


## 6．2．24 Phase References（PHASE）R

The PHASE command is used for the synchronized operation of multiple axes under phase control mode，using the specified speed，phase bias，and speed compensation value．
For SVR，the position data and the feedback speed can be monitored．
－Speed feed forward compensation cannot be used for the SGD－N or SGDB－N SERVOPACK，so the PHASE com－ mand cannot be used．
When using an SGDV or SGD7S SERVOPACK，the torque limit can be set and changed during SERVOPACK opera－ tion．For details，refer to－Setting and Changing Torque Limit during SGDV or SGD7S SERVOPACK Operations of 4．4．2（12）．
－If you use the SVB Module to synchronously operate more than one axis as electronic shafts，make sure that the command resolution is the same for all of the axes．
$!$ Example：
If you use a SERVOPACK with a 17－bit encoder together with a SERVOPACK with a 20 －bit encoder to con－ trol more than one axis，change the electronic gear ratio of the SERVOPACK with the 20－bit encoder so that it operates as a 17－bit encoder．

## Precautions When Using $\Sigma$－V or $\Sigma-7$ Series SERVOPACKs

## $\triangle$ CAUTION

－When the tuning or vibration suppression functions are used to perform Servo adjustments and model fol－ lowing control is enabled（i．e．，when Pn140．0＝1），the SERVOPACK cannot be properly controlled by phase references．When using phase references，change the settings to the following values．
－Set the model－following control to disabled（ $\operatorname{Pn140.0=0\text {）．}}$
－When using the utility functions for adjustment，select the following modes．
－Advanced Autotuning and Advanced Autotuning by References：Mode＝1
－One－parameter Tuning：Tuning mode $=0$ or 1

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | The Servo ON condition． | IW $\square 00$, bit 1 is ON． |
| 3 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square 09$, bit 0 is OFF． |

2．Set the following motion setting parameters．
Speed Reference Setting：OLDロ10
Filter Type Selection：OWD $\square 03$ ，bits 8 to B
Speed Loop P／PI Switch：OWDロ01
Phase Correction Setting：OLDロ28
Speed Compensation：OWロロ31
3．Set OWDロ08 to 25 to execute the PHASE motion command．
Synchronized operation using phase control will start．
IWपロ 08 will be 25 during the execution．

4．Execute another motion command to cancel the phase control mode．
PHASE Operating Pattern


## （2）Holding and Aborting

The Holds a Command bit（OWD $\square 09$ ，bit 0 ）and the Interrupt a Command bit（OWD $\square 09$ ，bit 1 ）cannot be used．

## （3）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting | SVR |
| :---: | :---: | :---: | :---: |
| OWDロ00 <br> Bit 0 | Servo ON | Turns the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor，0：Power OFF to Servomotor <br> Turn ON the power before setting the Motion Command（OWロロ08）to 25. | R |
| OW口ロ03 | Function Setting 1 | Sets the speed unit，acceleration／deceleration units，and filter type． | R |
| OWロロ05 <br> Bit 1 | Phase Reference Creation Calcula－ tion Disable | Disables／enables phase reference generation processing when executing phase ref－ erence commands．This parameter enables setting processing appropriate to an elec－ tronic shaft or electronic cam． <br> －Enable this processing when an electronic shaft is being used，and dis－ able it when an electronic cam is being used． | － |
| OW口ロ08 | Motion Command | Phase control operation is started when this parameter is set to 25 ． | R |
| $\begin{aligned} & \text { OW口प09 } \\ & \text { Bit } 6 \end{aligned}$ | Phase Compensation Type | If using a system with an electronic cam，select a setting method for the phase com－ pensation for the reference value of the cam pattern． <br> 0 ：Incremental addition mode，1：Absolute mode | － |
| OLDロ10 | Speed Reference Setting | Set the speed reference．The setting can be changed during operation． The unit depends on the Function Setting 1 setting（OW $\square \square 03$ ，bits 0 to 3）． | R |
| OLDロ16 | Second Speed Com－ pensation | Set the speed feed forward amount for the Phase Reference command（PHASE）． The setting unit for Speed Compensation（setting parameter OWD $\square 31$ ）is $0.01 \%$ （fixed）．The unit for this parameter，however，can be selected by the user．When used at the same time as OW $\square \square 31$ ，speed compensation can be performed twice． | R |
| OLDロ28 | Phase Correction Setting | Set the phase correction amount in reference units． <br> －Set the number of pulses for phase compensation in pulses when an electronic shaft is being used． <br> －Use the incremental addition mode to calculate the cam pattern target position when an electronic cam is being used． | － |
| OW口ロ31 | Speed Compensa－ tion | Set the speed feed forward gain as a percentage of the rated speed． The setting units for this parameter is $0.01 \%$（fixed）． | R |
| OWDロ3A | Filter Time Constant | Set the acceleration／deceleration filter time constant．Exponential acceleration／ deceleration or a moving average filter can be selected in the Function Setting 1 （OW口ロ03，bits 8 to B）． <br> Change the setting only after pulse distribution has been completed for the com－ mand（IW $\square \square 0 \mathrm{C}$ ，bit 0 is ON ）． | R |

［ b ］Monitoring Parameters

| Parameter | Name | Monitor Contents | SVR |
| :---: | :---: | :---: | :---: |
| Bit 1 | Running（At Servo ON） | Indicates the Servo ON status． <br> 1：Power supplied to Servomotor，0：Power not supplied to Servomotor | R |
| ILDロ02 | Warning | Stores the most current warning． | R |
| ILロロ04 | Alarm | Stores the most current alarm． | R |
| IWロロ08 | Motion Command Re－ sponse Code | Indicates the motion command that is being executed． The response code will be 25 during PHASE command execution． | R |
| $\begin{array}{\|l} \hline \text { IWपロ09 } \\ \text { Bit } 0 \end{array}$ | Command Execution Flag | Always OFF for PHASE command． | R |
| IWロロ09 <br> Bit 1 | Command Hold Completed | Always OFF for PHASE command． | R |
| IWロロ09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during PHASE command execution． The axis will decelerate to a stop if it is moving．Turns OFF when another command is executed． | R |
| IWロロ09 Bit 8 | Command Execution Completed | Always OFF for PHASE command． | R |
| IWロロ0C <br> Bit 0 | Discharging Completed | Turns ON when pulse distribution has been completed for the move com－ mand． <br> Turns OFF during execution of a move command． | R |
| IWロロ0C <br> Bit 1 | Positioning Completed | Turns ON when pulse distribution has been completed and the current posi－ tion is within the width of Positioning Completion．OFF in all other cases． | R |
| IWロロ0C <br> Bit 3 | NEAR Position | The operation of this bit depends on the setting of NEAR Signal Output Width（setting parameter OLD $\square 20$ ）． <br> OLD口20 $=0$ ：Turns ON when pulse distribution has been completed $(\mathrm{DEN}=\mathrm{ON})$ ．Otherwise，it turns OFF． <br> OL $\square \square 20 \neq 0$ ：Turns ON when the absolute value of the difference between MPOS（ILロロ12）and APOS（ILロロ16）is less than the NEAR Signal Output Width，even if pulse distribu－ tion has not been completed． <br> OFF in all other cases． | R |

## (4) Timing Charts

[a] Normal Execution


## [b] Execution when Aborted


[ c ] Execution when an Alarm Occurs


## 6．2．25 Change Position Loop Integral Time Constant（KIS）

The KIS command transfers the setting of the Position Integration Time Constant（motion setting parameter OWपロ32）to the Position Integration Time Constant in the SERVOPACK and enables the setting．
－MECHATROLINK－II has a function that automatically updates setting parameters if a parameter changes．There is no need to execute the KIS command with this function．For details，refer to bit A（User Constants Self－writing Func－ tion）in 4．4．1（ 2 ）Function Selection 1.

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square \square 09$ bit0 is OFF． |

2．Set OWDロ08 to 26 to execute the KIS motion command．
The KIS command will transfer the setting of the Position Integration Time Constant（motion setting parameter OWロロ32）to the Position Integration Time Constant in the SERVOPACK and enables the setting． IWDロ 08 will be 26 during command execution．
IW $\square 09$ ，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWपロ08 to 0 to execute the NOP motion command and then complete the change of the position loop integration time．

## （2）Holding and Aborting

The Holds a Command bit（OWDप09，bit 0 ）and the Interrupt a Command bit（OWDロ09，bit 1）cannot be used． When the tuning－less function of the SGDV or SGD7S SERVOPACK is enabled or when the SERVOPACK parameter Pn170．0 is set to 1 （Tuning－less Function Selection is enabled），these settings are disabled and ignored．

## （3）Related Parameters

［ a ］Setting Parameters

| Parameter | Name | Setting |
| :--- | :--- | :--- |
| OW口ロ08 | Motion Command | The feed forward is changed when this parameter is set to 26． |
| OW口ロ09 <br> Bit 0 | Holds a Command | This parameter is ignored for KIS command． |
| OW口ロ09 <br> Bit 1 | Interrupt a Command | This parameter is ignored for KIS command． |
| OW口ロ32 | Position Integration <br> Time Constant | Set the integration time constant for the position loop in milliseconds． |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILDO02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWロロ08 | Motion Command Re－ sponse Cable | Indicates the motion command that is being executed． The response code will be 26 during KIS command execution． |
| $\begin{array}{\|l} \hline \text { IWロप09 } \\ \text { Bit } 0 \end{array}$ | Command Execution Flag | Turns ON during KIS command execution and turns OFF when execution has been completed． |
| $\begin{array}{\|l\|l\|} \hline \text { IWD } \end{array}$ <br> Bit 1 | Command Hold Completed | Always OFF for KIS command． |
| IWロロ09 <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during KIS command execution． Turns OFF when another command is executed． |
| $\begin{array}{\|l\|} \hline \text { IWロロ09 } \\ \text { Bit } 8 \end{array}$ | Command Execution Completed | Turns ON when KIS command execution has been completed． |

## (4) Timing Charts

[ a ] Normal End

[ b ] Error End


## 6．2．26 Stored Parameter Write（PPRM＿WR）

Specify the parameters of the SERVOPACK，size of parameters，and the setting values，then execute this command． The PPRM＿WR command writes the specified data in the specified SERVOPACK parameter number of the specified size in the SERVOPACK＇s nonvolatile memory．The specified data will be written not only in the parameters in the SERVOPACK＇s nonvolatile memory but also in the parameters in the SERVOPACK＇s RAM．
－The number of times you can save to SERVOPACK＇s nonvolatile memory is limited by the memory device specifications．Use the PPRM＿WR command only when it is really necessary．Otherwise，use the PRM＿WR （Write SERVOPACK Parameter）command for writing to a parameter．
－Special care must be taken to set OWप्र50（Servo Driver User Constant No．）to the correct number．Setting an incorrect number may result in adverse operation．
－For some parameters，the power must be turned OFF and then ON again to validate a change in the param－ eters．After having changed the settings of parameters，always turn the power OFF and then ON again． Refer to the user＇s manual of the corresponding SERVOPACK for details regarding parameters．
（1）Executing／Operating Procedure
1．Confirm all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | There are no alarms． | Both IL $\square \square 02$ and IL $\square \square 04$ are 0. |
| 2 | Motion command execution has been completed． | IW $\square \square 08$ is 0 and IW $\square \square 09$, bit 0 is OFF． |

2．Set OWDप08 to 27 to execute the PPRM＿WR motion command．
The SERVOPACK parameter will be overwritten．
IWロप 08 will be 27 during command execution．
IWपロ09，bit 0 will turn ON during command processing and will turn OFF when command processing is com－ pleted．

3．Set OWロप08 to 0 to execute the NOP command and complete non－volatile parameter writing．

## （2）Holding and Aborting

The Holds a Command bit（OWロロ09，bit 0 ）and the Interrupt a Command bit（OWDロ09，bit 1 ）cannot be used．

## （3）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting |
| :---: | :---: | :---: |
| OW口ロ08 | Motion Command | Set this parameter to 27 to write the parameter in the SERVOPACK＇s nonvolatile memory． |
| $\begin{aligned} & \text { OWDप09 } \\ & \text { Bit } 0 \end{aligned}$ | Holds a Command | This command is ignored by the PPRM＿WR command． |
| OW口ロ09 <br> Bit 1 | Interrupt a Command | This command is ignored by the PPRM＿WR command． |
| OWロロ50 | Servo Driver User Constant No． | Set the SERVOPACK parameter number to which the data will be written． |
| OWDロ51 | Servo Driver User Constant Size | Set the size of the SERVOPACK parameter to which the data will be written． Set the size in number of words． <br> Example：Set 2 for 4 bytes． |
| OLD ${ }^{\text {a }}$ | Servo Driver User Constant Set Point | Set the data to be written in the specified SERVOPACK parameter． |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| ILロロ02 | Warning | Stores the currently occurring warning． |
| ILロロ04 | Alarm | Stores the currently occurring alarm． |
| IWロロ08 | Motion Command Response Code | Indicates the motion command that is being executed． <br> The response code will be 27 during execution of the PPRM＿WR command． |
| $\begin{array}{\|l\|} \hline \text { IWवप09 } \\ \text { Bit } 0 \end{array}$ | Command Execution Execution Flag | ON during PPRM＿WR command execution．Turns OFF when the execution is com－ pleted． |
| $\begin{array}{\|l\|} \hline \text { IWロロ09 } \\ \text { Bit } 1 \end{array}$ | Command Hold Completed | Always OFF for PPRM＿WR command． |
| IWロロ09 <br> Bit 3 | Command Error Completed Status | Turns ON when an error occurs during PPRM＿WR command execution． Turns OFF when another command is executed． |
| IWDロ09 Bit 8 | Command Execution Completed | Turns ON when PPRM＿WR command execution has been completed． |

## （4）Timing Diagram

## ［ a ］Normal End


［b］Error End
OWपロ08＝27（PPRM＿WR）
IWロロ08＝27（PPRM＿WR）
IWDC09，bit 0 （BUSY）
IWロロ09，bit 3 （FAIL）
IWDロ09，bit 8 （COMPLETE）


### 6.2.27 Multiturn Limit Setting (MLTTRN_SET)

On executing the MLTTRN_SET command, the SERVOPACK auxiliary function Fn013 "multiturn limit setting"* is automatically executed via MECHATROLINK. Execute this command when the SERVOPACK alarm "A.CC0 Multiturn Limit Mismatch" has occurred.

- The MLTTRN_SET command is valid for $\Sigma$-II, $\Sigma$-III, $\Sigma$-V, and $\Sigma-7$ Series SERVOPACKs with absolute encoders. A command error will occur if the MLTTRN_SET command is executed when an incremental encoder is being used with a $\Sigma$-II, $\Sigma$-III, $\Sigma$-V, or $\Sigma-7$ Series SERVOPACK (even if it is being used as an absolute encoder).
* Fn013 "multiturn limit setting" is a function that matches the value of SERVOPACK parameter Pn205 "multiturn limit" with the multiturn limit of the absolute encoder.
For more information, refer to the manual for the SERVOPACK that you are using.


## (1) Compatible Versions

The firmware and engineering tool versions that allow multiturn limit setting to be used with MP2000 series SVB modules are shown in the table below.

| Controller | Model | Version |
| :--- | :--- | :---: |
| MP2100 | JAPMC-MC2100 (-E) | Version 2.73 or later |
| MP2100M | JAPMC-MC2140 (-E) |  |
| MP2300 | JEPMC-MP2300 (-E) |  |
| MP2300S | JEPMC-MP2300S-E |  |
| MP2310 | JEPMC-MP2310-E |  |
| MP2400 | JEPMC-MP2400-E |  |
| MP2000 series SVB-01 module | JAPMC-MC2310 (-E) | Version 1.27 or later |


| Engineering Tool | Model | Version |
| :--- | :--- | :--- |
| MPE720 Version 5 | CPMC-MPE720 | Version 5.53 or later |
| MPE720 Version 6 | CPMC-MPE770 (D) | Version 6.23 or later |
| MPE720 Version 7 | CPMC-MPE780 (D) | Version 7.10 or later |

The table below indicates whether or not the function can be executed depending on the combination of the versions of the MP2000 series SVB module and MPE720.

| Version |  | MPE720 |  |
| :---: | :---: | :---: | :---: |
|  |  | Version 5.52, Version 6.22 or earlier | Version 5.53, Version 6.23 or later |
|  | MP2000 series Version 2.72, SVB-01 module Version 1.26 or earlier | - Cannot be executed. <br> - ILD $\square 02$, bit 4 "Motion Command Set Error" $=\mathrm{ON}$ | - Cannot be executed. <br> - ILロロ02, bit 4 "Motion Command Set Error" $=$ ON |
|  | MP2000 Version 2.73, SVB-01 module Version 1.27 or later | - Can be executed. (However, motion commands are not displayed in the module configuration.) | - Can be executed. |

## （ 2 ）Compatible SERVOPACK Models

The SERVOPACK models that allow multiturn limit setting are shown in the table below．

| SERVOPACK Model | Details |
| :---: | :---: |
| SGDH－■口口E | SGDH SERVOPACKs |
| JUSP－NS100 | NS100 MECHATROLINK－I Interface Module |
| SGDH－■ᄆ口E | SGDH SERVOPACKs |
| JUSP－NS115 | NS115 MECHATROLINK－II Interface Module |
| SGDS－पロロ1ロロ | SGDS SERVOPACKs |
| SGDV－ロロロロ1ロロ | SGDV SERVOPACKs |
| SGD7S－ロロロロ10ロ | SGD7S SERVOPACKs |
| JUSP－IDロロロMRロ | MECHATROLINK－II－compatible SERVOPACKs IDM（rotational motor） |

If an attempt is made to execute multiturn limit setting with any SERVOPACK model other than those above，the com－ mand is completed in an error status（IWDロ09，bit 3 ＂FAIL＂＝ON）．

## （3）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | Communication with the SERVOPACK must be <br> synchronized． | IW口口00，bit 0 is ON． |
| 2 | The Servo OFF condition． | IW口口00，bit 1 is OFF． |
| 3 | Motion command execution has been completed． | IW口口08 is 0, and IW口ロ09，bit 0 is OFF． |

－If there is a Multiturn Limit Mismatch alarm（A．CC0）in the SERVOPACK，communications cannot be synchro－ nized just by turning ON the power supply to the controller．Use the Alarm Clear bit（OW口ロ00，bit F）to syn－ chronize communications．

2．Set OWपロ08 to 39 to execute the MLTTRN＿SET command．
The SERVOPACK alarm＂A．CC0 Multiturn Limit Mismatch＂will be cleared，and the multiturn limit of the abso－ lute encoder will be set to the value set for SERVOPACK parameter Pn205．
IW $\square \square 08$＂Motion Command Response Code＂will be 39 and IW $\square \square 09$ ，bit 0 ＂BUSY＂will turn ON during command processing．
IW $\square \square 09$ ，bit 0 ＂BUSY＂，IW $\square \square 09$ ，bit 3 ＂FAIL＂，and IW $\square \square 00$ ，bit 0 ＂Motion Controller Operation Ready＂ will turn OFF，and IW $\square \square 09$ ，bit 8 ＂COMPLETE＂will turn ON，when command processing has been com－ pleted．

4．When using an SGDH，SGDV，or SGD7S SERVOPACK，turn OFF the power to the SERVOPACK and then turn it back ON ．

5．Execute Alarm Clear（OWDロ00，bit F）and re－establish communications．
When multiturn limit setting has been completed，communication will be disconnected between the Machine Controller and the SERVOPACK．The zero point setting completed and zero point return completed status will thus be cleared．

6．Execute zero point setting or zero point return．
For details，refer to 6．2．8 Set Zero Point（ZSET）or 6．2．3 Zero Point Return（ZRET）．

## （4）Holding and Aborting

The Holds a Command bit（OW $\square \square 09$ ，bit 0 ）and the Interrupt a Command bit（OWD $\square 09$ ，bit 1 ）cannot be used． Processing will be canceled if a communication error occurs while the command is being executed and the command is completed in an error status（IW $\square \square 09$ ，bit $3=\mathrm{ON}$ ）will occur．

## （5）Related Parameters

## ［ a ］Setting Parameters

| Parameter | Name | Setting |
| :---: | :---: | :---: |
| OWDロ00，bit 0 | Servo ON | Turn the power to the Servomotor ON and OFF． <br> 1：Power ON to Servomotor；0：Power OFF to Servomotor Turn OFF the power before setting the Motion Command（OW口ロ08）to 39. |
| OW口ロ08 | Motion Command | Multiturn limit setting is started when this parameter is set to＂ 39 ＂． Even if this parameter is set to 0 during command processing，it will be ignored and execution will be continued． |
| OWप口09，bit 0 | Holds a Command | This parameter is ignored for the MLTTRN＿SET command． |
| OWDロ09，bit 1 | Interrupt a Command | This parameter is ignored for the MLTTRN＿SET command． |

［b］Monitoring Parameters

| Parameter | Name | Monitor Contents |
| :---: | :---: | :---: |
| IWロロ00，bit 0 | Motion Controller Opera－ tion Ready | Indicates the communication status between the Machine Controller and SERVOPACK． <br> 1：Communication synchronized， 0 ：Communication disconnected |
| IWD－00，bit 1 | Servo ON | Indicates the Servo ON status． <br> 1：Power supplied to Servomotor，0：Power not supplied to Servomotor |
| ILロロ02 | Warning | Stores the most current warning． |
| ILロロ04 | Alarm | Stores the most current alarm． |
| IWप口08 | Motion Command Re－ sponse Code | Indicates the motion command that is being executed． The response code will be 39 during MLTTRN＿SET command execu－ tion． |
| IWロロ09，bit 0 | Command Execution Flag | Turns ON during MLTTRN＿SET command execution and turns OFF when execution has been completed． |
| IWロロ09，bit 3 | Command Error Complet－ ed Status | Turns ON if any error occurs during MLTTRN＿SET command execu－ tion． <br> Turns OFF upon execution of another command． |
| IWロロ09，bit 8 | Command Execution Completed | Turns ON when MLTTRN＿SET command execution has been com－ pleted． |

## (6) Timing Charts

[ a ] Normal End

[ b ] Error End


### 6.3 Motion Subcommands

### 6.3.1 Motion Subcommand Table

This table shows the motion subcommands that are supported by the MP2000-series Machine Controller. Refer to the section numbers indicated in the Reference column for additional command information.

| Command <br> Code | Command | Name | Function | Reference |  |
| :---: | :---: | :--- | :--- | :--- | :---: |
| 0 | $\mathbb{R}$ | NOP | No Command | This is a null command. <br> When a subcommand is not being specified, set <br> this "no command" code. | 6.4 .1 |
| 1 | - | PRM_RD | Read User Constant | Reads the specified SERVOPACK parameter and <br> stores it in the monitoring parameters. | 6.4 .2 |
| 2 | - | PRM_WR | Write User Constant | Changes the specified SERVOPACK parameter's <br> set value. | 6.4 .3 |
| 3 | - | Reserved | Reserved by system. | - | - |
| 4 | - | SMON | Status Monitor | Stores the servo driver's status in the monitoring <br> parameters. | 6.4 .4 |
| 5 | $R$ | FIXPRM_RD | Read Fixed Parameters | Reads the specified fixed parameter's current <br> value and stores it in the monitoring parameters. | 6.4 .5 |

- Commands in the table displaying an $\mathbb{R}$ are supported by the Virtual Motion Module (SVR).


### 6.3.2 Motion Subcommand Settings

It may not be possible to execute some subcommands, depending on the motion command and motion subcommand combination being used. Refer to 7.1 Switchable Motion Commands and Subcommands for details on which command combinations are allowed.
In addition, some motion subcommands can not be executed with the MECHATROLINK-I and MECHATROLINK-II communication. See the following table.

| Communication method | MECHATROLINK-I | MECHATROLINK-II <br> (17-byte) | MECHATROLINK-II <br> (32-byte) |
| :--- | :---: | :---: | :---: |
| Subcommand | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Read User Constant (PRM_RD) | $\times$ | $\times$ | $\checkmark$ |
| Write User Constant (PRM_WR) | $\times$ | $\times$ | $\checkmark$ |
| Status Monitor (SMON) | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Read Fixed Parameters <br> (FIXPRM_RD)R |  |  | $\checkmark$ |

$\checkmark$ : Can be executed.
$x$ : Cannot be executed.

## 6．4 Motion Subcommand Details

The following provides a detailed description of the types of motion subcommands that are available．
－All the following command names and items in the Parameter List displaying an $\mathbb{R}$ are supported by the Virtual Motion Module（SVR）．

## 6．4．1 No Command（NOP）R

Set this command when a subcommand is not being specified．
When the MECHATROLINK－II 32－byte Mode communication method is being used，User Monitor 4 can be used，just as with the Status Monitor（SMON）subcommand．Refer to 6．4．4 Status Monitor（SMON）for details．

## （ 1 ）Related Parameters

［ a ］Setting Parameters

| Parameter | Name | Setting Contents | SVR |
| :---: | :--- | :--- | :---: |
| OWロロ0A | Motion Subcommand | Set to 0 to specify no command（NOP）． | $\mathbb{R}$ |
| OWロロ4E | Servo User Monitor Set－ <br> ting | Set the information to manage the servo driver that will be monitored． | - |

## ［b］Monitoring Parameters

| Parameter | Name | Monitoring Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWDL0A | Motion Subcommand Response Code | Indicates the motion subcommand that is being executed． The response code is 0 during NOP command execution． | $\square$ |
| IWロロ0B Bit 0 | Command Execution Flag | Turns ON during NOP command execution and turns OFF when execution has been completed． | R |
| IWDロ0B Bit 3 | Command Error Completed Status | Turns ON if an error occurs during NOP command execution．Turns OFF when another command is executed． | R |
| IWロロ0B Bit 8 | Command Execution Completed＊ | Turns ON when NOP command execution has been completed． | $\square$ |
| IWロロ2F | Servo Driver User Moni－ tor Information | Stores either the data actually being monitored in the user monitor or the monitor selection． | － |
| ILDロ34 | Servo Driver User Moni－ tor 4 | Stores the result of the selected monitor． | － |

＊The NOP command＇s subcommand status stored in Command Execution Completed（COMPLETE）is not defined．

## 6．4．2 Read User Constant（PRM＿RD）

The PRM＿RD command reads the setting of the parameter with the specified parameter number and parameter size from SERVOPACK RAM．It stores the parameter number in the Supplementary Servo Driver User Constant No．（mon－ itoring parameter IWロロ37）and the setting in the Supplementary Servo Driver User Constant Reading Data（monitor－ ing parameter ILDC3A）
－This command will end with a Command Error Completed Status if it is executed with a communication method other than MECHATROLINK－II 32－byte Mode．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | Motion subcommand execution has been completed． | IW $\square \square 0 \mathrm{~A}$ is 0 and IW $\square \square 0 \mathrm{~B}$, bit 0 is OFF． |
| 2 | No alarms have occurred． | IL $\square \square 02$ is 0 and IL $\square \square 04=0$ |

2．Set OWDロOA to 1 to execute the PRM＿RD motion subcommand．
The PRM＿RD command will read the SERVOPACK parameter and store it in the monitoring parameters． IW $\square 0 \mathrm{~A}$ will be 1 during command execution．
IWロロ0B bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWDロOA to 0 to execute the NOP motion command and then complete the reading operation．

## （ 2 ）Related Parameters

［ a ］Setting Parameters

| Parameter | Name | Setting Contents |
| :---: | :--- | :--- |
| OWロロ0A | Motion Subcommand | The SERVOPACK parameter is read when this parameter is set to 1. |
| OW口ם54 | Servo Driver for Assis－ <br> tance User Constant No． | Set the parameter number of the SERVOPACK parameter to be read． |
| OW口ם55 | Servo Driver for Assis－ <br> tance User Constant Size | Set the size of the SERVOPACK parameter to be read． <br> Set the size in words． <br> The SERVOPACK＇s user manual lists the size in bytes，so those values <br> must be converted to words． |

［b］Monitoring Parameters

| Parameter | Name | Monitoring Contents |
| :---: | :---: | :---: |
| IWロロ0A | Motion Subcommand Response Code | Indicates the motion subcommand that is being executed． The response code is 1 during PRM＿RD command execution． |
| $\begin{aligned} & \text { IWロप0B } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Turns ON during PRM＿RD command execution and turns OFF when execution has been completed． |
| $\begin{aligned} & \text { IWロप0B } \\ & \text { Bit } 3 \end{aligned}$ | Command Error Completed Status | Turns ON if an error occurs during PRM＿RD command execution．Turns OFF when another command is executed． |
| IWロロ0B Bit 8 | Command Execution Completed | Turns ON when PRM＿RD command execution has been completed． |
| IWロロ37 | Supplementary Servo Driver User Constant No． | Stores the parameter number of the SERVOPACK parameter being read． |
| ILロロ3A | Supplementary Servo <br> Driver User Constant Reading Data | Stores the SERVOPACK parameter data that was read． |

## （3）Timing Charts

［ a ］Normal End

> OWDロ0A = 1 (PRM_RD)
> IWロロ0A = 1 (PRM_RD)
> IWロロ0B, bit 0 (BUSY)
> IWロロ0B, bit 3 (FAIL)
> IWロロ0B, bit 8 (COMPLETE)
> IWロロ37
> ILロロ3A

［ b ］Error End


## 6．4．3 Write User Constant（PRM＿WR）

The PRM＿WR command writes the setting of the SERVOPACK parameter using the specified parameter number， parameter size，and setting data．The write destination is in the SERVOPACK＇s RAM．
－This command will end with a Command Error Completed Status if it is executed with a communication method other than MECHATROLINK－II 32－byte Mode．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :--- |
| 1 | Motion subcommand execution has been completed． | IW $\square 0 \mathrm{~A}$ is 0 and IWロロ0B，bit 0 is OFF． |
| 2 | The OW $\square \square 54$, OW $\square \square 55$, and OL $\square \square 56$ settings have <br> been completed． <br> Refer to 6．4．3（1）［ a ］Setting Parameters below for <br> details． | - |

2．Set OWDपOA to 2 to execute the PRM＿WR motion subcommand．
The PRM＿WR command will write the SERVOPACK parameter．
IW $\square \square 0 \mathrm{~A}$ will be 2 during command execution．
IW $\square 0 \mathrm{~B}$ ，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWDロOA to 0 to execute the NOP motion command and then complete the writing operation．

## （2）Related Parameters

［a］Setting Parameters

| Parameter | Name | Setting Contents |
| :---: | :--- | :--- |
| OWロロ0A | Motion Subcommand | The SERVOPACK parameter is written when this parameter is set to 2. |
| OWロロ54 | Servo Driver for Assis－ <br> tance User Constant <br> No． | Set the number of the SERVOPACK parameter to be written． |
| OWロロ55 | Servo Driver for Assis－ <br> tance User Constant <br> Size | Set the size of the SERVOPACK parameter to be written． <br> Set the size in words． <br> The SERVOPACK＇s user manual lists the size in bytes，so those values <br> must be converted to words． |
| OLロロ56 | Servo Driver for Assis－ <br> tance User Constant <br> Set Point | Set the set value for the SERVOPACK parameter to be written． |

［ b ］Monitoring Parameters

| Parameter | Name | Monitoring Contents |
| :---: | :---: | :---: |
| IWロロ0A | Motion Subcommand Response Code | Indicates the motion subcommand that is being executed． The response code is 2 during PRM＿WR command execution． |
| $\begin{aligned} & \text { IWवप0B } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Turns ON during PRM＿WR command execution and turns OFF when execution has been completed． |
| $\begin{aligned} & \text { IWपव0B } \\ & \text { Bit } 3 \end{aligned}$ | Command Error Completed Status | Turns ON if an error occurs during PRM＿WR command execution． Turns OFF when another command is executed． |
| IW口ロ0B <br> Bit 8 | Command Execution Completed | Turns ON when PRM＿WR command execution has been completed． |
| IWロロ37 | Supplementary Servo Driver User Constant No． | Stores the parameter number of the SERVOPACK parameter that was written． |

## （3）Timing Charts

［ a Normal End
OWロロ0A＝ 2 （PRM＿WR）
IWロロOA＝ 2 （PRM＿WR）
IWロロ0B，bit 0 （BUSY）
IWロロ0B，bit 3 （FAIL）
IWロロ0B，bit 8 （COMPLETE）

IWロロ37

［ b ］Error End
OWDロOA＝ 2 （PRM＿WR）
IWロロOA＝ 2 （PRM＿WR）
IWロロ0B，bit 0 （BUSY）
IWロロ0B，bit 3 （FAIL）
IWロロ0B，bit 8 （COMPLETE）
IWロロ37


### 6.4.4 Status Monitor (SMON)

The SMON command stores, the data specified in Monitor 4 of the Servo User Monitor is stored in Servo Driver User Monitor 4 (monitoring parameter ILDप34).

- This command will end with a Command Error Occurrence if it is executed with a communication method other than MECHATROLINK-II 32-byte Mode.

The following table shows the data that can be specified in the User Monitor.

| Set Value | Name | Description |
| :---: | :---: | :--- |
| 0 | POS | Reference coordinate system's reference position (after reference <br> filter) |
| 1 | MPOS | Machine coordinate system's reference position |
| 2 | PERR | Following error |
| 3 | APOS | Machine coordinate system's feedback position |
| 4 | LPOS | Machine coordinate system's feedback latch position |
| 5 | IPOS | Reference coordinate system's reference position (before reference <br> filter) |
| 6 | TPOS | Reference coordinate system's target position |
| 7 | - | - |
| 8 | FSPD | Feedback speed |
| 9 | CSPD | Reference speed |
| A | TSPD | Target speed |
| B | TRQ | Torque reference (Rated torque is 100\%.) |
| C | - | - |
| D | - | - |
| E | OMN1 | Optional monitor 1 (Actual content set in parameters.) |
| F | OMN2 | Optional monitor 2 (Actual content set in parameters.) |

- Refer to your SERVOPACK's users manual for details on the monitored data.
- With some SERVOPACK models, not all items cannot be monitored.


## (1) Executing/Operating Procedure

1. Check to see if all the following conditions are satisfied.

| No. | Execution Conditions | Confirmation Method |
| :---: | :---: | :---: |
| 1 | Motion subcommand execution has been completed. | IW $\square \square 0 \mathrm{~A}$ is 0 and IB $\square \square 0 \mathrm{~B}$, bit0 is OFF. |

2. Set OWDप0A to 4 to execute the SMON motion subcommand.

The SMON command will read the information managed by the Servo Driver and store the code in the monitoring parameter.
IW $\square 0 \mathrm{~A}$ will be 4 during command execution.
IW $\square 0 \mathrm{~B}$, bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed.
3. Set OWDपOA to 0 to execute the NOP motion command and then complete the monitoring operation.

## （2）Related Parameters

## ［a］Setting Parameters

| Parameter | Name | Setting Contents |
| :---: | :--- | :--- |
| OW口ロ0A | Motion Subcommand | The Monitor Status command is executed when this parameter is set to 4. |
| OW口ロ4E | Servo User Monitor Set－ <br> ting | Set the information managed by the Servo Driver to be monitored． |

［b］Monitoring Parameters

| Parameter | Name | Monitoring Contents |
| :---: | :---: | :---: |
| IWロロ0A | Motion Subcommand Response Code | Indicates the motion subcommand that is being executed． The response code is 4 during SMON command execution． |
| $\begin{aligned} & \text { IWपロ0B } \\ & \text { Bit } 0 \end{aligned}$ | Command Execution Flag | Always OFF during SMON command execution． |
| $\begin{aligned} & \text { IWपロ0B } \\ & \text { Bit } 3 \end{aligned}$ | Command Error Completed Status | Turns ON if an error occurs during SMON command execution．Turns OFF when another command is executed． |
| IWDロ0B <br> Bit 8 | Command Execution Completed | Turns ON when SMON command execution has been completed． |
| IWロロ2F | Servo Driver User Monitor Information | Stores either the data actually being monitored in the user monitor or the monitor selection． |
| ILロ口34 | Servo Driver User Moni－ tor 4 | Stores the result of the selected monitor operation． |

## （3）Timing Charts

## ［ a ］Normal End

OWロロOA $=4(S M O N)$
IWロロ0A＝ 4 （SMON）
IWDロ0B，bit 0 （BUSY）
IWDロ0B，bit 3 （FAIL）
IWロロ0B，bit 8 （COMPLETE）
IWロロ2F，bits $C$ to $F$
ILロロ34


## 6．4．5 Read Fixed Parameters（FIXPRM＿RD）R

The FIXPRM＿RD command reads the current value of the specified fixed parameter and stores the value in the Fixed Parameter Monitor monitoring parameter．

## （1）Executing／Operating Procedure

1．Check to see if all the following conditions are satisfied．

| No． | Execution Conditions | Confirmation Method |
| :---: | :--- | :---: |
| 1 | Motion subcommand execution has been completed． | IW口ロ0A is 0 and IW口ロ0B，bit 0 is OFF． |

2．Set OWDロOA to 5 to execute the FIXPRM＿RD motion subcommand．
The FIXPRM＿RD will read the specified fixed parameter＇s current value and store the code in the monitoring parameter．
IW $\square \square 0 \mathrm{~A}$ will be 5 during command execution．
IW $\square \square 0 \mathrm{~B}$ ，bit 0 will turn ON during the command processing and will turn OFF when the command processing has been completed．

3．Set OWDपOA to 0 to execute the NOP motion command and then complete the monitoring operation．

## （ 2 ）Related Parameters

［ a ］Setting Parameters

| Parameter | Name | Setting Contents | SVR |
| :---: | :--- | :--- | :---: |
| OW口ロ0A | Motion Subcommand | The Read Fixed Parameter subcommand is executed when this parameter <br> is set to 5． | $\mathbb{R}$ |
| OW口ロ5C | Fixed Parameter Number | Set the parameter number of the fixed parameter to be read． | $\mathbb{R}$ |

## ［ b ］Monitoring Parameters

| Parameter | Name | Monitoring Contents | SVR |
| :---: | :---: | :---: | :---: |
| IWロロ0A | Motion Subcommand Response Code | Indicates the motion subcommand that is being executed． The response code is 5 during FIXPRM＿RD command execution． | R |
| $\begin{array}{\|l} \hline \text { IWロप0B } \\ \text { Bit } 0 \end{array}$ | Command Execution Flag | Always OFF during FIXPRM＿RD command execution． | R |
| IWロロ0B <br> Bit 3 | Command Error Completed Status | Turns ON if an error occurs during FIXPRM＿RD command execution．Turns OFF when another command is executed． | R |
| IWロロ0B <br> Bit 8 | Command Execution Completed | Turns ON when FIXPRM＿RD command execution has been completed． | 8 |
| ILロロ56 | Fixed Parameter Monitor | Stores the data of the specified fixed parameter number． | R |

## （3）Timing Charts

［ a ］Normal End

［ b］Error End
OWपロ0A＝ 5 （FIXPRM＿RD） IWロロOA＝ 5 （FIXPRM＿RD） IWロロ0B，bit 0 （BUSY） IWロロ0B，bit 3 （FAIL） IWロロ0B，bit 8 （COMPLETE） ILロロ56


## 7

## Switching Commands during Execution

This chapter describes commands and subcommands that can be switched during execution and how the axis will move when they are switched.
7.1 Switchable Motion Commands and Subcommands ..... 7-2
7.1.1 Switching Between Motion Commands ..... 7-2
7.1.2 Setting a Subcommand During Command Execution ..... 7-4
7.2 Motions After Switching Motion Commands ..... 7-5
7.2.1 Switching from POSING ..... 7-6
7.2.2 Switching from EX_POSING ..... 7-10
7.2.3 Switching from ZRET ..... 7-14
7.2.4 Switching from INTERPOLATE ..... 7-17
7.2.5 Switching from ENDOF_INTERPOLATE or LATCH ..... 7-20
7.2.6 Switching from FEED ..... 7-21
7.2.7 Switching from STEP ..... 7-25
7.2.8 Switching from ZSET ..... 7-28
7.2.9 Switching from VELO ..... 7-29
7.2.10 Switching from TRQ ..... 7-34
7.2.11 Switching from PHASE ..... 7-39

### 7.1 Switchable Motion Commands and Subcommands

### 7.1.1 Switching Between Motion Commands

The following table shows motion commands that can be switched during execution when using the MP2000-series Machine Controller.

| $\frac{0}{8}$ | Switched From (Command in Execution) | Switched To (Newly Set Command) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|  |  | NOP | POS | EX_P | ZRET | INTE | ENDO | LATC | FEED | STEP | ZSET | ACC | DCC | Scc | CHG | KVS | KPS |
| 0 | NOP | - | $\bigcirc$ |
| 1 | POSING | $\times$ | - | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 2 | EX_POSING | $\times$ | $\Delta$ | - | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\bigcirc$ | $\times$ | $\Delta$ | $\times$ | $\times$ | $\times$ | $\times$ | $\Delta$ | $\Delta$ |
| 3 | ZRET | $\times$ | $\times$ | $\times$ | - | $\times$ |
| 4 | INTERPOLATE | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ |
| 5 | $\begin{aligned} & \text { ENDOF_IN- } \\ & \text { TERPO- } \\ & \text { LATE } \end{aligned}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | O |
| 6 | LATCH | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ |
| 7 | FEED | $\times$ | $\Delta$ | $\Delta$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | - | $\times$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ |
| 8 | STEP | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\bigcirc$ | - | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 9 | ZSET | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 10 | ACC | $\bullet$ | - | - | $\bullet$ | $\bullet$ | $\bullet$ | - |
| 11 | DCC | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| 12 | SCC | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ |
| 13 | CHG_FIL- <br> TER | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ |
| 14 | KVS | $\bullet$ | - | $\bullet$ |
| 15 | KPS | $\bullet$ | - |
| 16 | KFS | $\bullet$ |
| 17 | PRM_RD | $\bullet$ |
| 18 | PRM_WR | $\bullet$ |
| 19 | ALM_MON | $\bullet$ |
| 20 | ALM_HIST | $\bullet$ |
| 21 | $\begin{aligned} & \text { ALMHIST_ } \\ & \text { CLR } \end{aligned}$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| 22 | ABS_RST | $\bullet$ |
| 23 | VELO | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 24 | TRQ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 25 | PHASE | $\bigcirc$ |
| 26 | KIS | $\bullet$ |
| 27 | PPRM_WR | $\bullet$ |
| 29 | SV_ON | $\bullet$ | - | $\bullet$ |
| 30 | SV_OFF | $\bullet$ |
| 31 | ALM_CLR | $\bullet$ |
| 39 | $\begin{aligned} & \hline \text { MLTTRN_ }_{-} \\ & \text {SET } \end{aligned}$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |

[^4]| $\frac{0}{0}$ | SwitchedFrom(Command inExecution) | Switched To (Newly Set Command) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 29 | 30 | 31 |
|  |  | KFS | PRM_ | PRM_ | ALM- | ALM- | ALMH | ABS_ | VELO | TRQ | PHAS | KIS | sv_on | Sv_OF | ALM |
| 0 | NOP | $\bigcirc$ | 0 | 0 | 0 | 0 | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 1 | POSING | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ | - | $\bigcirc$ |
| 2 | EX_POSING | $\Delta$ | $\Delta$ | $\Delta$ | $\Delta$ | $\Delta$ | $\Delta$ | $\times$ | $\times$ | $\times$ | $\times$ | $\Delta$ | $\times$ | - | $\bigcirc$ |
| 3 | ZRET | $\times$ | - | $\bigcirc$ |
| 4 | $\begin{aligned} & \text { INTERPO- } \\ & \text { LATE } \end{aligned}$ | $\bigcirc$ | - | $\bigcirc$ |
| 5 | $\begin{aligned} & \text { ENDOF_IN- } \\ & \text { TERPO- } \\ & \text { LATE } \end{aligned}$ | $\bigcirc$ | - | $\bigcirc$ |
| 6 | LATCH | $\bigcirc$ | - | $\bigcirc$ |
| 7 | FEED | $\times$ | 0 | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ | - | 0 |
| 8 | STEP | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\times$ | - | $\bigcirc$ |
| 9 | ZSET | $\bigcirc$ | $\times$ | $\bigcirc$ |
| 10 | ACC | $\bullet$ | $\times$ | 0 |
| 11 | DCC | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | - | - | $\bullet$ | - | $\bullet$ | $\bullet$ | - | $\times$ | 0 |
| 12 | SCC | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | - | $\bullet$ | - | $\times$ | $\bigcirc$ |
| 13 | $\begin{aligned} & \text { CHG_ } \\ & \text { FILTER } \end{aligned}$ | $\bigcirc$ | $\times$ | $\bigcirc$ |
| 14 | KVS | $\bullet$ | $\times$ | $\bigcirc$ |
| 15 | KPS | $\bullet$ | - | $\bullet$ | $\bullet$ | - | $\times$ | $\bigcirc$ |
| 16 | KFS | - | - | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | - | $\times$ | $\bigcirc$ |
| 17 | $\begin{aligned} & \hline \text { PRM_ } \\ & \text { RD } \end{aligned}$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\times$ | $\bigcirc$ |
| 18 | PRM_ WR | $\bullet$ | $\bullet$ | - | $\bullet$ | $\times$ | $\bigcirc$ |
| 19 | $\begin{aligned} & \hline \text { ALM } \\ & \text { MON } \end{aligned}$ | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | $\times$ | $\bigcirc$ |
| 20 | $\begin{aligned} & \hline \text { ALM_- } \\ & \text { HIST } \end{aligned}$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | $\times$ | $\bigcirc$ |
| 21 | $\begin{aligned} & \text { ALMHIST_- } \\ & \text { CLR } \end{aligned}$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\times$ | $\bigcirc$ |
| 22 | $\begin{aligned} & \text { ABS_- } \\ & \text { RST } \end{aligned}$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\times$ | $\bullet$ |
| 23 | VELO | $\times$ | - | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | 0 |
| 24 | TRQ | $\times$ | $\bigcirc$ | - | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 25 | PHASE | $\bigcirc$ | 0 | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ |
| 26 | KIS | - | $\bullet$ | $\bullet$ | - | - | - | - | - | - | - | - | - | $\times$ | 0 |
| 27 | PPRM_WR | $\bullet$ | - | $\times$ | $\bigcirc$ |
| 29 | SV_ON | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bullet$ | $\bullet$ | $\bullet$ | - | $\bigcirc$ |
| 30 | SV_OFF | $\bullet$ | $\times$ | - |
| 31 | ALM_CLR | $\bullet$ | $\bullet$ | - | $\bullet$ | $\times$ | $\bigcirc$ |
| 39 | $\begin{aligned} & \hline \text { MLT- } \\ & \text { TRN_SET } \end{aligned}$ | - | - | - | - | - | - | - | - | - | - | - | - | $\times$ | $\bullet$ |
| - O : Possible <br> $\Delta$ : Possible in Absolute Mode. In Incremental Addition mode, the axis will stop when the command is switched. <br> $X$ : The command will be aborted. The axis will be decelerated to a stop. <br> - : A newly set command will be ignored and the processing for the command in execution will continue. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 7.1.2 Setting a Subcommand During Command Execution

The following table shows motion subcommands that can be executed while a motion command is being executed.

| Code | Motion Command in Execution | Subcommand |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1 | 2 | 4 | 5 |
|  |  | NOP | PRM_RD | PRM_WR | SMON | FIXPRM_RD |
| 0 | NOP | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 1 | POSING | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 2 | EX_POSING | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 3 | ZRET | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 4 | INTERPOLATE | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 5 | ENDOF_INTERPOLATE | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 6 | LATCH | 0 | 0 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 7 | FEED | 0 | 0 | 0 | $\bigcirc$ | $\bigcirc$ |
| 8 | STEP | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 9 | ZSET | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 10 | ACC | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 11 | DCC | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 12 | SCC | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 13 | CHG_FILTER | 0 | 0 | 0 | 0 | $\bigcirc$ |
| 14 | KVS | 0 | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 15 | KPS | 0 | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 16 | KFS | 0 | $\times$ | $\times$ | 0 | 0 |
| 17 | PRM_RD | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 18 | PRM_WR | 0 | $\times$ | $\times$ | 0 | $\bigcirc$ |
| 19 | ALM_MON | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 20 | ALM_HIST | 0 | $\times$ | $\times$ | 0 | 0 |
| 21 | ALMHIST_CLR | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 22 | ABS_RST | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 23 | VELO | 0 | $\bigcirc$ | $\bigcirc$ | 0 | 0 |
| 24 | TRQ | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ |
| 25 | PHASE | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ |
| 26 | KIS | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\bigcirc$ |
| 27 | PPRM_WR | 0 | $\times$ | $\times$ | 0 | $\bigcirc$ |
| 39 | MLTTRN_SET | 0 | $\times$ | $\times$ | 0 | $\bigcirc$ |

- O: Possible
$X$ : Not possible


### 7.2 Motions After Switching Motion Commands

The details of motion changes enacted when the command in execution is switched to another command (listed in the following table) are described in 7.2.1 Switching from POSING.
<Switching Between Commands>

|  |  |  | Switched To (Newly Set Command) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 23 | 24 | 25 |
|  |  |  | NOP | POS | EX_P | ZRET | INTE | ENDO | LAT | FEED | STEP | ZSET | VELO | TRQ | PHAS |
|  | 0 | NOP | - | $\bigcirc$ | 0 | 0 | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | 0 | O | 0 | $\bigcirc$ |
|  | 1 | POSING | $\times$ | - | $\bigcirc$ | 0 | $\times$ | $\times$ | $\times$ | 0 | $\times$ | 0 | 0 | $\bigcirc$ | $\bigcirc$ |
|  | 2 | EX_POSING | $\times$ | $\bigcirc$ | - | 0 | $\times$ | $\times$ | $\times$ | 0 | $\times$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | 3 | ZRET | $\times$ | $\times$ | $\times$ | - | $\times$ |
|  | 4 | INTERPOLATE | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | - | 0 | $\bigcirc$ |
|  | 5 | $\begin{aligned} & \text { ENDOF_- } \\ & \text { INTERPOLATE } \end{aligned}$ | $\bigcirc$ | 0 | $\bigcirc$ | 0 | $\bigcirc$ | - | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ | 0 | $\bigcirc$ | $\bigcirc$ |
|  | 6 | LATCH | $\bigcirc$ | 0 | 0 | 0 | $\bigcirc$ | 0 | - | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | 0 |
|  | 7 | FEED | $\times$ | 0 | 0 | 0 | $\times$ | $\times$ | $\times$ | - | $\times$ | 0 | 0 | 0 | $\bigcirc$ |
|  | 8 | STEP | $\times$ | 0 | 0 | $\bigcirc$ | $\times$ | $\times$ | $\times$ | 0 | - | 0 | 0 | 0 | $\bigcirc$ |
|  | 9 | ZSET | $\bigcirc$ | 0 | 0 | 0 | $\bigcirc$ | 0 | $\bigcirc$ | 0 | $\times$ | - | 0 | $\bigcirc$ | $\bigcirc$ |
|  | 23 | VELO | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\times$ | 0 | $\bigcirc$ | $\times$ | - | $\bigcirc$ | $\bigcirc$ |
|  | 24 | TRQ | $\times$ | $\bigcirc$ | 0 | $\times$ | $\times$ | $\times$ | $\times$ | 0 | 0 | $\times$ | 0 | - | $\bigcirc$ |
|  | 25 | PHASE | 0 | 0 | $\bigcirc$ | 0 | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | - |

- O: Available
$X$ : The command in execution is aborted (the axis will be decelerated to a stop), and the newly set command will be executed.


### 7.2.1 Switching from POSING

| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| POSING | NOP | POSING will switch to NOP when the axis stops after deceleration. |
|  | POSING | POSING operation continue. |
|  | EX_POSING | POSING will immediately switch to EX_POSING. When this happens, the amount of motion stored in the acceleration/deceleration filter will be output. When execution of EX_POSING is started, values are written to the related servo parameters and then the positioning operation starts. <br> <Change in Position Reference Setting (OLIC1C) during Deceleration> <br> - In Incremental Addition Mode (OWDD09, bit $5=0$ ) <br> Any change in the Position Reference Setting (OLDC1C) will be ignored. <br> - In Absolute Mode (OWDCD Bit5 = 1) the value of the Position Reference Setting (OLDD1C) when EX_POSING execution starts will be the target position. <br> - Do not change the Position Reference Setting during deceleration unless it is absolutely necessary. Values are written to the related parameters when execution of EX_POSING starts, so the speed may drop. |
|  | ZRET | POSING will immediately switch to ZRET. When this happens, the amount of motion stored in the acceleration/deceleration filter will be output. When execution of ZRET is started, values are written to the related servo parameters and then the zero point return operation starts. |

(cont'd)


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| POSING | ZSET | POSING will immediately switch to ZSET, and positioning will continue. <br> - In actual operation, set the zero point by executing ZSET in the positioning completed status. |
|  | VELO | POSING will immediately switch to VELO and the control mode will change from position control mode to speed control mode. The moving amount stored in the acceleration/ deceleration filter will be reset to 0 . <br> - After POSING has switched to VELO, the VELO command will be executed without the acceleration/deceleration filter. To enable the acceleration/deceleration filter, hold the POSING operation by executing an NOP command, or other commands. Then, when the Discharging Completed bit (IWDOOC, bit 0 ) turns ON, execute the VELO command. |
|  | TRQ | POSING will immediately switch to TRQ and the control mode will switch from position control mode to torque control mode. The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After POSING has switched to TRQ, the TRQ command will be executed without the acceleration/deceleration filter. This is because TRQ is a motion command for which the acceleration/deceleration filter is disabled. |



## 7．2．2 Switching from EX＿POSING

| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| EX＿POSING | NOP | EX＿POSING will switch to NOP when the axis stops after deceleration． |
|  | POSING | ＜In Incremental Addition Mode（OWロप09，bit 5 ＝0）＞ EX＿POSING will switch to POSING when the axis stops after deceleration． <br> Incremental value $=$ Target position - ILDD14（DPOS） <br> OLDप1C＝OLDप1C＋Incremental value <br> －Any change in the Position Reference Setting（OLDロ1C）during deceleration will be ignored． <br> ＜ln Absolute Mode（OWDロ09，bit 5 ＝1）＞ <br> EX＿POSING will immediately switch to POSING，and the moving amount stored in the acceleration／deceleration filter will be maintained． <br> The set value of the Position Reference Setting（OLDप1C）will be： OLD口1C＝Target position |
|  | EX＿POSING | The EX＿POSING operation will continue． |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| EX_POSING | ZRET | EX_POSING will immediately switch to ZRET, and the moving amount stored in the acceleration/deceleration filter will be maintained. |
|  | INTERPOLATE | EX_POSING will switch to INTERPOLATE when the axis stops after deceleration. <br> <Change in Position Reference Setting (OLDD1C) during Deceleration> <br> - In Incremental Addition Mode (OWDC09, bit $5=0$ )> <br> Any change in the Position Reference Setting (OLDC1C) will be ignored. <br> - In Absolute Mode (OWDप09, bit $5=1$ ) <br> The change in the Position Reference Setting (OLDC1C) will be output as soon as the first high-speed scan after the INTERPOLATE execution starts. <br> - Do not change the setting of the Position Reference Setting during deceleration unless it is absolutely necessary. |
|  | ENDOF_INTERPOLATE | Same as INTERPOLATE |
|  | LATCH | Same as INTERPOLATE |
|  | FEED | EX_POSING will be immediately switch to FEED, and the moving amount stored in the acceleration/deceleration filter will be maintained. |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| EX_POSING | STEP | EX_POSING will switch to STEP when the axis stops after deceleration. <br> Motion command <br> Motion command response |
|  | ZSET | <In Incremental Addition Mode (OWDO09, bit 5 = 0)> EX_POSING will switch to ZSET when the axis stops after deceleration. <br> <In Absolute Mode (OWDप09, bit 5 = 1)> <br> EX_POSING will immediately switch to ZSET, and positioning will continue. <br> - In actual operation, set the zero point by executing ZSET in the positioning completed status. |
|  | VELO | EX_POSING will switch to VELO when the axis stops after deceleration, and the control mode will change from position control mode to speed control mode. |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| EX_POSING | TRQ | EX_POSING will switch to TRQ when the axis stops after deceleration, and the control mode will change from position control mode to torque control mode. <br> - After EX_POSING has switched to TRQ, the TRQ command will be executed without the acceleration/deceleration filter. This is because TRQ is a motion command for which the acceleration/deceleration filter is disabled. |
|  | PHASE | EX_POSING will switch to PHASE when the axis stops after deceleration, and the control mode will change from the position control mode to phase control mode. |

## 7．2．3 Switching from ZRET

| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
|  | NOP | ZRET will be switched to NOP when the axis stops after deceleration． |
| ZRET | POSING | ZRET will switch to POSING when the axis stops after deceleration． <br> ＜Change in Position Reference Setting（OLDO1C）during Deceleration＞ <br> －In Incremental Addition Mode（OWDロ09，bit 5 ＝0） <br> Any change in the Position Reference Setting（OLDD1C）will be ignored． <br> －In Absolute Mode（OWDD09，bit 5 ＝1） <br> The value of the Position Reference Setting（OLDD1C）when POSING execution starts will be the target position． <br> －Do not change the Position Reference Setting during deceleration unless it is absolutely necessary． |
|  | EX＿POSING | ZRET will switch to EX＿POSING when the axis stops after deceleration． <br> When execution of EX＿POSING is started，values are written to the related servo parame－ ters and then the positioning operation starts． <br> ＜Change in Position Reference Setting（OLロロ1C）during Deceleration＞ <br> －In Incremental Addition Mode（OW口ロ09，bit $5=0$ ） <br> Any change in the Position Reference Setting（OLD $\square 1 \mathrm{C}$ ）will be ignored． <br> －In Absolute Mode（OW $\square \square 09$ ，bit $5=1$ ） <br> The value of the Position Reference Setting（OLDD1C）when EX＿POSING execution starts will be the target position <br> －Do not change the Position Reference Setting during deceleration unless it is absolutely necessary． |
|  | ZRET | ZRET operation will continue． |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| ZRET | INTERPOLATE | ZRET will switch to INTERPOLATE when the axis stops after deceleration. <br> <Change in Position Reference Setting (OLDO1C) during Deceleration> <br> - In Incremental Addition Mode (OWDロ09, bit $5=0$ ) <br> Any change in the Position Reference Setting (OLDD1C) will be ignored. <br> - In Absolute Mode (OWDप09, bit $5=1$ ) <br> The change in the Position Reference Setting (OLDC1C) will be output as soon as the first high-speed scan after INTERPOLATE execution starts. <br> - Do not change the Position Reference Setting during deceleration unless it is absolutely necessary. |
|  | ENDOF INTERPOLATE | Same as INTERPOLATE |
|  | LATCH | Same as INTERPOLATE |
|  | FEED | ZRET will switch to FEED when the axis stops after deceleration. |
|  | STEP | ZRET will switch to STEP when the axis stops after deceleration. |
|  | ZSET | ZSET command will be executed when the axis stops after deceleration. |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| ZRET | VELO | ZRET will switch to VELO when the axis stops after deceleration. <br> Motion command <br> Motion command response |
|  | TRQ | ZRET will switch to TRQ when the axis stops after deceleration. |
|  | PHASE | ZRET will switch to PHASE when the axis stops after deceleration. |

## 7．2．4 Switching from INTERPOLATE

| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| INTERPOLATE | NOP | INTERPOLATE will immediately switch to NOP，and the moving amount stored in the acceleration／deceleration filter will be output． |
|  | POSING | INTERPOLATE will immediately switch to POSING，and the moving amount stored in the acceleration／deceleration filter will be maintained． <br> The value of Position Reference Setting（OLDप1C）when the motion command is switched will be as follows． <br> ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞ <br> Incremental value $=$ Target position - ILDロ14（DPOS） <br> OLDロ1C＝OLDロ1C＋Incremental value <br> $<$ In Absolute Mode（OWDロ09，bit $5=1$ ）＞ <br> OLD口1C＝Target position |
|  | EX＿POSING | INTERPOLATE will immediately switch to EX＿POSING，and the amount of motion stored in the acceleration／deceleration filter will be output． <br> When execution of EX＿POSING is started，values are written to the related servo parame－ ters and then the positioning operation starts． <br> The value of Position Reference Setting（OLDप1C）when the motion command is switched will be as follows． <br> ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞ <br> Incremental value $=$ Target position - ILDप14（DPOS） <br> OLDप1C＝OLロロ1C＋Incremental value <br> ＜In Absolute Mode（OWDロ09，bit 5 ＝1）＞ <br> OLDロ1C $=$ Target position |



| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| INTERPOLATE | ZSET | INTERPOLATE will immediately switch to ZSET, and the moving amount stored in the acceleration/deceleration filter will be output. <br> - In actual operation, set the zero point by executing ZSET in the positioning completed status. |
|  | VELO | INTERPOLATE will immediately switch to VELO, and the control mode will change from position control mode to speed control mode. <br> The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After INTERPOLATE has switched to VELO, the VELO command will be executed without the acceleration/deceleration filter. To enable the acceleration/ deceleration filter, hold the INTERPOLATE operation by executing an NOP command or other commands. Then, when the Discharging Completed bit (IWロロOC, bit 0) turns ON, execute the VELO command. |
|  | TRQ | INTERPOLATE will immediately switch to TRQ, and the control mode will change from position control mode to torque control mode. <br> The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After INTERPOLATE has switched to TRQ, the TRQ command will be executed without the acceleration/deceleration filter. This is because TRQ is a motion command for which the acceleration/deceleration filter is disabled. |



### 7.2.5 Switching from ENDOF_INTERPOLATE or LATCH

The operations are the same as are described in 7.2.4 Switching from INTERPOLATE.

## 7．2．6 Switching from FEED

| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
|  | NOP | FEED will switch to NOP when the axis stops after deceleration． |
| FEED | POSING | ＜In Incremental Addition Mode（OWDロ09，bit 5 ＝0）＞ <br> FEED will switch to POSING when the axis stops after deceleration． <br> Incremental value $=$ Target position - ILDप14（DPOS） <br> OLDロ1C＝OLD口1C＋Incremental value <br> －Any change in the Position Reference Setting（OLロロ1C）during deceleration will be ignored． <br> ＜In Absolute Mode（OWDप09，bit $5=1$ ）＞ <br> FEED will immediately switch to POSING，and the moving amount stored in the accelera－ tion／deceleration filter will be maintained． <br> The set value of Position Reference Setting（OLDロ1C）will be： <br> OLD口1C＝Target position |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| FEED | EX＿POSING | ＜In Incremental Addition Mode（OWDप09，bit 5 ＝0）＞ <br> FEED will switch to EX＿POSING when the axis stops after deceleration． <br> When execution of EX＿POSING is started，values are written to the related servo parame－ ters and then the positioning operation starts． <br> Incremental value $=$ Target position - ILDロ14（DPOS） <br> OLDロ1C＝OLロᄆ $1 \mathrm{C}+$ Incremental value <br> －Any change in Position Reference Setting（OLロロ1C）during deceleration will be ignored． <br> ＜In Absolute Mode（OWロロ09，bit $5=1$ ）＞ <br> FEED will immediately switch to EX＿POSING，and the moving amount stored in the acceleration／deceleration filter will be maintained． <br> The set value of Position Reference Setting（OLDC1C）will be： OLDD $1 \mathrm{C}=$ Target position |
|  | ZRET | FEED will immediately switch to ZRET，and the moving amount stored in the accelera－ tion／deceleration filter will be maintained． |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| FEED | INTERPOLATE | FEED will switch to INTERPOLATE when the axis stops after deceleration. <br> <Change in Position Reference Setting (OLDO1C) during Deceleration> <br> - In Incremental Addition Mode (OWDC09, bit $5=0$ ) <br> Any change in the Position Reference Setting (OLDC1C) will be ignored. <br> - In Absolute Mode (OWDC09, bit $5=1$ ) <br> The change in the Position Reference Setting (OLDO1C) will be output at as soon as at the timing of the first high-speed scan after INTERPOLATE execution starts. <br> - Do not change the Position Reference Setting during deceleration unless it is absolutely necessary. |
|  | ENDOF_IN- | Same as INTERPOLATE |
|  | LATCH | Same as INTERPOLATE |
|  | FEED | FEED operation will continue. |
|  | STEP | FEED will switch to STEP when the axis stops after deceleration. |
|  | ZSET | FEED will immediately switch to ZSET, and the FEED operation will continue. <br> - In actual operation, set the zero point by executing ZSET in the positioning completed status. |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| FEED | VELO | FEED will immediately switch to VELO, and the control mode will change from position control mode to speed control mode. The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After FEED has switched to VELO, the VELO command will be executed without the acceleration/deceleration filter. To enable the acceleration/deceleration filter, hold the FEED operation by executing an NOP command or other commands. Then, when the Discharging Completed bit (IWロロOC, bit 0) turns ON, execute the VELO command. |
|  | TRQ | FEED will immediately switch to TRQ, and the control mode will change from position control mode to torque control mode. <br> The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After FEED has switched to TRQ, the TRQ command will be executed without the acceleration/deceleration filter. This is because TRQ is a motion command for which the acceleration/deceleration filter is disabled. |
|  | PHASE | FEED will immediately switch to PHASE, and the control mode will change from position control mode to phase control mode. |

## 7．2．7 Switching from STEP

| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| STEP | NOP | STEP will switch to NOP when the axis stops after deceleration． |
|  | POSING | STEP will immediately switch to POSING，and the moving amount stored in the accelera－ tion／deceleration filter will be maintained． <br> The value of the Position Reference Setting（OLDD1C）when the motion command is switched will be as follows． <br> ＜In Incremental Addition Mode（OWロロ09，bit $5=0$ ）＞ <br> Incremental value $=$ Target position - ILDD14（DPOS） <br> OLD口1C＝OLD口1C＋Incremental value <br> ＜In Absolute Mode（OWDप09，bit 5 ＝1）＞ <br> OLDप1C＝Target position |
|  | EX＿POSING | STEP will immediately switch to EX＿POSING，and the moving amount stored in the acceleration／deceleration filter will be maintained． <br> The value of the Position Reference Setting（OLDD1C）when the motion command is switched will be as follows． <br> ＜In Incremental Addition Mode（OWロロ09，bit $5=0$ ）＞ <br> Incremental value $=$ Target position - ILDD14（DPOS） <br> OLDD1C＝OLD口1C＋Incremental value <br> ＜In Absolute Mode（OWDप09，bit 5 ＝1）＞ <br> OLDप1C＝Target position |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
|  | ZRET | STEP will immediately switch to ZRET，and the moving amount stored in the accelera－ tion／deceleration filter will be maintained． |
| STEP | INTERPOLATE | STEP will switch to INTERPOLATE when the axis stops after deceleration． <br> ＜Change in Position Reference Setting（OLロロ1C）during Deceleration＞ <br> －In Incremental Addition Mode（OWDロ09，bit $5=0$ ） <br> Any change in the Position Reference Setting（OLDD1C）will be ignored． <br> －In Absolute Mode（OWDD09，bit $5=1$ ） <br> The change in the Position Reference Setting（OLDC1C）will be output as soon as the first high－speed scan after INTERPOLATE execution starts． <br> －Do not change the Position Reference Setting during deceleration unless it is absolutely necessary． |
|  | ENDOF＿IN－ TERPOLATE | Same as INTERPOLATE |
|  | LATCH | Same as for INTERPOLATE |
|  | FEED | STEP will immediately switch to FEED，and the moving amount stored in the accelera－ tion／deceleration filter will be maintained． |
|  | STEP | STEP operation will continue． |

- After STEP has switched to TRQ, the TRQ command will be executed without the acceleration/deceleration filter. This is because TRQ is a motion command for which the acceleration/deceleration filter is disabled.

| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| STEP | ZSET | STEP will immediately switch to ZSET, and positioning will continue. <br> - In actual operation, set the zero point by executing ZSET in the positioning completed status. |
|  | VELO | STEP will immediately switch to VELO, and the control mode will change from position control mode to speed control mode. The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After STEP has switched to VELO, the VELO command will be executed without the acceleration/deceleration filter. To enable the acceleration/deceleration filter, hold the STEP operation by executing an NOP command or other commands. Then, when the Discharging Completed bit (IWロロ0C, bit 0) turns ON, execute the VELO command. |
|  | TRQ | STEP will immediately switch to TRQ, and the control mode will change from position control mode to torque control mode. The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After STEP has switched to TRQ, the TRQ command will be executed without the acceleration/deceleration filter. This is because TRQ is a motion command for which the acceleration/deceleration filter is disabled. |



### 7.2.8 Switching from ZSET

The execution of the ZSET command is completed in one scan if neither Absolute Mode nor infinite length axis are selected. So, a motion command that is set to run while the ZSET command is being carried out as soon as it is issued.

## 7．2．9 Switching from VELO

| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
|  | NOP | VELO will switch to NOP when the axis stops after deceleration，and the control mode will change from speed control mode to position control mode． <br> Motion command <br> Motion command response |
| VELO | POSING | VELO will immediately switch to POSING，and the control mode will change from speed control mode to position control mode．The moving amount stored in the acceleration／ deceleration filter will be reset to 0 ． <br> －After VELO has switched to POSING，the POSING command will be executed without the acceleration／deceleration filter．To enable the acceleration／decel－ eration filter，hold the VELO operation by executing an NOP command or other commands．Then，when the Discharging Completed bit（IWDOOC，bit 0 ）turns ON，execute a POSING command． <br> The value of the Position Reference Setting（OLDC1C）when the motion command is switched will be as follows． <br> ＜In Incremental Addition Mode（OWロप09，bit $5=0$ ）＞ <br> Incremental value $=$ Target position - ILDप14（DPOS） <br> OLDロ1C＝OLDD1C＋Incremental value <br> ＜In Absolute Mode（OWDロ09，bit 5 ＝1）＞ <br> OLDD1C $=$ Target position |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| VELO | EX＿POSING | VELO will immediately switch to EX＿POSING，and the control mode will change from speed control mode to position control mode．The moving amount stored in the accelera－ tion／deceleration filter will be reset to 0 ． <br> －After VELO has switched to EX＿POSING，the EX＿POSING command will be executed without the acceleration／deceleration filter．To enable the accelera－ tion／deceleration filter，hold the VELO operation by executing an NOP com－ mand or other commands．Then，when the Discharging Completed bit （IWDOOC，bit 0）turns ON，execute an EX＿POSING command． <br> The value of the Position Reference Setting（OLDप1C）when the motion command is switched will be as follows． <br> ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞ <br> Incremental value $=$ Target position - ILD口14（DPOS） <br> OLロロ1C＝OLロロ1C＋Incremental value <br> ＜ln Absolute Mode（OWロロ09，bit $5=1$ ）＞ <br> OLDD1C＝Target position |
|  | ZRET | VELO will switch to ZRET when the axis stops after deceleration，and the control mode will change from speed control mode to position control mode． <br> Motion command <br> Motion command response |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| VELO | INTERPOLATE | VELO will switch to INTERPOLATE when the axis stops after deceleration, and the control mode will change from speed control mode to position control mode after the axis deceleration is completed. <br> <Change in Position Reference Setting (OLDロ1C) during Deceleration> <br> - In Incremental Addition Mode (OWDD09, bit 5 = 0) <br> Any change in the Position Reference Setting (OLDD1C) will be ignored. <br> - In Absolute Mode (OWपロ09, bit $5=1$ ) <br> The change in Position Reference Setting (OLDC1C) will be output as soon as the first high-speed scan after INTERPOLATE execution starts. <br> - Do not change the Position Reference Setting during deceleration unless it is absolutely necessary. |
|  | ENDOF_INTERPOLATE | Same as INTERPOLATE |
|  | LATCH | Same as INTERPOLATE |
|  | FEED | VELO will immediately switch to FEED, and the control mode will change from speed control mode to position control mode. The moving amount stored in the acceleration/ deceleration filter will be reset to 0 . |
|  |  | The speed will smoothly change. <br> (The speed at the time the motion command is switched will increase/decrease until it reaches the target speed of FEED.) <br> The acceleration/deceleration filter will be canceled. |
|  |  |  |
|  |  | Motion command VELO FEED |
|  |  | Motion command response |
|  |  | Speed control mode ${ }^{\text {- }}$ Position control mode |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| VELO | STEP | VELO will immediately switch to STEP, and the control mode will change from speed control mode to position control mode. The moving amount stored in the acceleration/ deceleration filter will be reset to 0 . <br> Motion command <br> Motion command response |
|  | ZSET | ZSET command will be executed when the axis stops after deceleration. <br> Motion command <br> Motion command response |
|  | VELO | VELO operation will continue. |

## (cont'd)

| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| VELO | TRQ | VELO will immediately switch to TRQ, and the control mode will change from speed control mode to torque control mode. The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After VELO has switched to TRQ, the TRQ command will be executed without the acceleration/deceleration filter. This is because TRQ is a motion command for which the acceleration/deceleration filter is disabled. |
|  | PHASE | VELO will immediately switch to PHASE, and the control mode will change from speed control mode to phase control mode. The moving amount stored in the acceleration/deceleration filter will be reset to 0 . |

## 7．2．10 Switching from TRQ

| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
|  | NOP | The axis will decelerate to a stop from the speed when the motion command is switched in position control mode． <br> TRQ will be switched to NOP when the axis stops after deceleration． <br> Motion command <br> Motion command response |
| TRQ | POSING | TRQ will immediately switch to POSING，and the control mode will change from torque control mode to position control mode． <br> The value of the Position Reference Setting（OLDC1C）when the motion command is switched will be as follows． <br> ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞ <br> Incremental value $=$ Target position - ILDC14（DPOS） <br> OLDロ1C＝OLDC1C＋Incremental value <br> ＜In Absolute Mode（OWDロ09，bit 5 ＝1）＞ <br> OLDD1C $=$ Target position |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| TRQ | EX＿POSING | TRQ will immediately switch to EX＿POSING，and the control mode will change from torque control mode to position control mode． <br> －After TRQ has switched to EX＿POSING，the EX＿POSING command will be executed without the acceleration／deceleration filter．To enable the accelera－ tion／deceleration filter，hold the TRQ operation by executing an NOP com－ mand or other commands．Then，when the Discharging Completed bit （IWロロ0C，bit 0）turns ON，execute an EX＿POSING command． <br> The value of the Position Reference Setting（OLDप1C）when the motion command is switched will be as follows． <br> ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞ <br> Incremental value $=$ Target position - ILD口14（DPOS） <br> OLD口1C＝OLD口1C＋Incremental value <br> ＜In Absolute Mode（OWDロ09，bit 5 ＝1）＞ <br> OLD口1C＝Target position |
|  | ZRET | The axis will decelerate to a stop in position control mode．When the axis stops，TRQ will switch to ZRET． <br> Motion command <br> Motion command response |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| TRQ | INTERPOLATE | The axis will decelerate to a stop in position control mode．When the axis stops，TRQ will switch to INTERPOLATE． <br> ＜Change in Position Reference Setting（OLDロ1C）during Deceleration＞ <br> －In Incremental Addition Mode（OWDロ09，bit 5 ＝0） <br> Any change in the Position Reference Setting（OLDO1C）will be ignored． <br> －In Absolute Mode（OWDप09，bit 5 ＝1） <br> The change in the Position Reference Setting（OLDD1C）will be output as soon as the first high－speed scan after INTERPOLATE execution starts． <br> －Do not change the Position Reference Setting during deceleration unless it is absolutely necessary． |
|  | ENDOF IN－ TERPOLATE | Same as INTERPOLATE |
|  | LATCH | Same as INTERPOLATE |
|  | FEED | TRQ will immediately switch to FEED，and the control mode will change from torque control mode to position control mode．The moving amount stored in the acceleration／ deceleration filter will be reset to 0 ． <br> －After TRQ has switched to FEED，the FEED command will be executed with－ out the acceleration／deceleration filter．To enable the acceleration／decelera－ tion filter，hold the TRQ operation by executing an NOP command or other commands．Then，when the Discharging Completed bit（IWロロ0C，bit 0） turns ON，execute a FEED command． |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| TRQ | STEP | TRQ will immediately switch to STEP, and the control mode will change from torque control mode to position control mode. The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After TRQ is switched to STEP, the STEP command will be executed without the acceleration/deceleration filter. To enable the acceleration/deceleration filter, hold the TRQ operation by executing an NOP command or other commands. Then, when the Discharging Completed bit (IWDOOC, bit 0) turns ON, execute a STEP command. |
|  | ZSET | The axis will decelerate to a stop in position control mode. When the axis stops, ZSET command execution will start. |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| TRQ | VELO | TRQ will immediately switch to VELO, and the control mode will change from torque control mode to speed control mode. The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After TRQ has switched to VELO, the VELO command will be executed without the acceleration/deceleration filter. To enable the acceleration/deceleration filter, hold the TRQ operation by executing an NOP command or other commands. Then, when the Discharging Completed bit (IWDロOC, bit 0) turns ON, execute a VELO command. |
|  | TRQ | TRQ operation will continue. |
|  | PHASE | TRQ will immediately switch to PHASE, and the control mode will change from torque control mode to phase control mode. The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After TRQ has switched to PHASE, the PHASE command will be executed without the acceleration/deceleration filter. This is because PHASE is a motion command for which the acceleration/deceleration filter is disabled. |

## 7．2．11 Switching from PHASE

| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
|  | NOP | PHASE will immediately switch to NOP，and the moving amount stored in the accelera－ tion／deceleration filter will be output． |
| PHASE | POSING | PHASE will immediately switch to POSING，and the control mode will change from phase control mode to position control mode． <br> The value of the Position Reference Setting（OLDप1C）when the motion command is switched will be as follows． <br> ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞ <br> Incremental value $=$ Target position - ILDप14（DPOS） <br> OLDᄆ1C＝OLDᄆ1C＋Incremental value <br> ＜In Absolute Mode（OWD口09，bit 5 ＝1）＞ <br> OLD口1C＝Target position |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| PHASE | EX＿POSING | PHASE will immediately switch to EX＿POSING，and the control mode will change from phase control mode to position control mode．When this happens，the amount of motion stored in the acceleration／deceleration filter will be output． <br> When execution of EX＿POSING is started，values are written to the related servo parame－ ters and then the positioning operation starts． <br> The value of the Position Reference Setting（OLDप1C）when the motion command is switched will be as follows． <br> ＜In Incremental Addition Mode（OWDロ09，bit $5=0$ ）＞ <br> Incremental value $=$ Target position - ILDप14（DPOS） <br> OLDD1C＝OLDप1C＋Incremental value <br> ＜In Absolute Mode（OWD口09，bit 5 ＝1）＞ <br> OLD口1C＝Target position |
|  | ZRET | PHASE will immediately switch to ZRET，and the control mode will change from phase control mode to position control mode．When this happens，the amount of motion stored in the acceleration／deceleration filter will be output． <br> When execution of ZRET is started，values are written to the related servo parameters and then the zero return operation starts． |
|  | INTERPOLATE | PHASE will immediately switch to INTERPOLATE，and the control mode will change from phase control mode to position control mode． |
|  | ENDOF＿IN－ TERPOLATE | Same as INTERPOLATE |
|  | LATCH | Same as INTERPOLATE |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| PHASE | FEED | PHASE will immediately switch to FEED, and the control mode will change from phase control mode to position control mode. |
|  | STEP | PHASE will immediately switch to STEP, and the control mode will change from phase control mode to position control mode. |
|  | ZSET | PHASE will immediately switch to ZSET, and the control mode will change from phase control mode to position control mode. <br> - In actual operation, set the zero point by executing ZSET in the positioning completed status. |


| Switched From | Switched To | Operation |
| :---: | :---: | :---: |
| PHASE | VELO | PHASE will immediately switch to VELO, and the control mode will change from phase control mode to speed control mode. The moving amount stored in the acceleration/deceleration filter will be reset to 0 . <br> - After PHASE has switched to VELO, the VELO command will be executed without the acceleration/deceleration filter. To enable the acceleration/deceleration filter, hold the PHASE operation by executing an NOP command or other commands. Then, when the Discharging Completed bit (IWロロ0C, bit $0)$ turns ON, execute a VELO command. |
|  | TRQ | PHASE will immediately switched to TRQ, and the control mode will be changed from phase control mode to torque control mode. |
|  | PHASE | PHASE operation will continue. |

## Control Block Diagrams

This chapter explains the control block diagrams.
8.1 Position Control ..... 8-2
8.1.1 Motion Parameters for Position Control ..... 8-2
8.1.2 Control Block Diagram for Position Control ..... 8-6
8.2 Phase Control ..... 8-8
8.2.1 Motion Parameters for Phase Control ..... 8-8
8.2.2 Control Block Diagram for Phase Control ..... 8-12
8.3 Torque Control ..... 8-14
8.3.1 Motion Parameters for Torque Control ..... 8-14
8.3.2 Control Block Diagram for Torque Control ..... 8-18
8.4 Speed Control ..... 8-20
8.4.1 Motion Parameters for Speed Control ..... 8-20
8.4.2 Control Block Diagram for Speed Control ..... 8-24

### 8.1 Position Control

### 8.1.1 Motion Parameters for Position Control

- : These parameters are ignored.
(1) Fixed Parameters

| No. | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| 0 | Selection of Operation Modes | - | 1 | 0 to 5 |
| 1 | Function Selection Flag 1 | - | 0000h | Bit setting |
| 2 | Function Selection Flag 2 | - | 0000h | Bit setting |
| 4 | Reference Unit Selection | - | 0 | 0 to 3 |
| 5 | Number of Digits below Decimal Point | - | 3 | 0 to 5 |
| 6 | Travel Distance per Machine Rotation | Reference unit | 10000 | 1 to $2^{31}-1$ |
|  | Linear Scale Pitch (Linear Motor) | Reference unit | 10000 | 1 to $2^{31}-1$ |
| 8 | Servo Motor Gear Ratio | - | 1 | 1 to 65535 |
| 9 | Machine Gear Ratio | - | 1 | 1 to 65535 |
| 10 | Infinite Length Axis Reset Position (POSMAX) | Reference unit | 360000 | 1 to $2^{31}-1$ |
| 12 | Positive Software Limit Value | Reference unit | $2^{31}-1$ | $-2^{31}$ to $2^{31}-1$ |
| 14 | Negative Software Limit Value | Reference unit | $-2^{31}$ | $-2^{31}$ to $2^{31}-1$ |
| 16 | Backlash Compensation Amount | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| 30 | Encoder Selection | - | 0 | 0 to 3 |
| 34 | Rated Motor Speed (Rotary Motor) | $\mathrm{min}^{-1}$ | 3000 | 1 to 32000 |
|  | Rated Speed (Linear Motor) | $0.1 \mathrm{~m} / \mathrm{s}, 0.1 \mathrm{~mm} / \mathrm{s}$ | 3000 | 1 to 32000 |
| 36 | Number of Pulses per Motor Rotation (Rotary Motor) | pulse | 65536 | 1 to $2^{31}-1$ |
|  | Number of Pulses per Linear Scale Pitch (Linear Motor) | pulses/linear scale pitch | 65536 | 1 to $2^{31}-1$ |
| 38 | Maximum Number of Absolute Encoder Turns Rotation | Rev | 65534 | 0 to $2^{31}-1$ |
| 42 | Feedback Speed Moving Average Time Constant | ms | 10 | 0 to 32 |

## （2）Setting Parameters

| No． | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| OWロロ00 | RUN Command Setting | － | 0000h | Bit setting |
| OWロロ01 | Mode Setting 1 | － | 0000h | Bit setting |
| OWロロ02 | Mode Setting 2 | － | 0000h | Bit setting |
| OWロロ03 | Function Setting 1 | － | 0011h | Bit setting |
| OWロロ04 | Function Setting 2 | － | 0033h | Bit setting |
| OWロロ05 | Function Setting 3 | － | 0000h | Bit setting |
| OWロロ08 | Motion Command | － | 0 | 0 to 39 |
| OWロロ09 | Motion Command Control Flag | － | 0000h | Bit setting |
| OWロロ0A | Motion Subcommand | － | 0 | 0 to 65535 |
| OLロロ0C | Torque Feed Forward Gain for Interpolation Feeding Commands | Depends on torque unit． | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWロロ0E | Speed Limit Setting at the Torque／Thrust Refer－ ence | 0．01\％ | 15000 | －32768 to 32767 |
| OLDロ10 | Speed Reference Setting | Depends on speed unit． | 3000 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ14 | Positive Side Limiting Torque／Thrust Setting at the Speed Reference | Depends on torque unit． | 30000 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ16 | Secondly Speed Compensation | Depends on speed unit． | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWロロ18 | Override | 0．01\％ | 10000 | 0 to 32767 |
| OLロロ1C | Position Reference Setting | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLロロ1E | Width of Positioning Completion | Reference unit | 100 | 0 to 65535 |
| OLDप20 | NEAR Signal Output Width | Reference unit | 0 | 0 to 65535 |
| OLロロ22 | Error Count Alarm Detection | Reference unit | $2^{31}-1$ | 0 to $2^{31}-1$ |
| OWロロ26 | Positioning Completion Check Time | ms | 0 | 0 to 65535 |
| OLロロ28 | Phase Correction Setting | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ2A | Latch Zone Lower Limit Setting（for External Po－ sitioning） | Reference unit | $-2^{31}$ | $-2^{31}$ to $2^{31}-1$ |
| OLDロ2C | Latch Zone Upper Limit Setting（for External Po－ sitioning） | Reference unit | $2^{31}-1$ | $-2^{31}$ to $2^{31}-1$ |
| OWロロ2E | Position Loop Gain | 0．1／s | 300 | 0 to 32767 |
| OWロロ2F | Speed Loop Gain | Hz | 40 | 1 to 2000 |
| OWロロ30 | Speed Feed Forward Amends | 0．01\％ | 0 | 0 to 32767 |
| OW口ロ31 | Speed Amends | 0．01\％ | 0 | －32768 to 32767 |
| OWロロ32 | Position Integration Time Constant | ms | 0 | 0 to 32767 |
| OWप口34 | Speed Integration Time Constant | 0.01 ms | 2000 | 15 to 65535 |
| OLDロ36 | Straight Line Acceleration／Acceleration Time Constant | Depends on acceler－ ation／deceleration speed unit． | 0 | 0 to $2^{31}-1$ |
| OLDप38 | Straight Line Deceleration／Deceleration Time Constant | Depends on acceler－ ation／deceleration speed unit． | 0 | 0 to $2^{31}-1$ |
| OWロロ3A | Filter Time Constant | 0.1 ms | 0 | 0 to 65535 |
| OWロロ3C | Zero Point Return Method | － | 0 | 0 to 19 |
| OWロロ3D | Width of Starting Point Position Output | Reference unit | 100 | 0 to 65535 |
| OLDロ3E | Approach Speed | Depends on speed unit． | 1000 | $-2^{31}$ to $2^{31}-1$ |
| OLDप40 | Creep Rate | Depends on speed unit． | 500 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ42 | Zero Point Return Travel Distance | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ44 | STEP Travel Distance | Reference unit | 1000 | 0 to $2^{31}-1$ |
| OLDロ46 | External Positioning Final Travel Distance | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDप48 | Zero Point Position in Machine Coordinate Sys－ tem Offset | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLD口4A | Work Coordinate System Offset | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |

（cont＇d）

| No． | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| OLDロ4C | Number of POSMAX Turns Presetting Data | Rev | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWロロ4E | Servo User Monitor Setting | － | 0E00H | Bit setting |
| OWロロ4F | Servo Driver Alarm Monitor No． | － | 0 | 0 to 9 |
| OW口ロ50 | Servo Driver User Constant No． | － | 0 | 0 to 65535 |
| OWロロ51 | Servo Driver User Constant Size | － | 1 | 1，2 |
| OLロロ52 | Servo Driver User Constant Set Point | － | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWロロ54 | Servo Driver for Assistance User Constant No． | － | 0 | 0 to 65535 |
| OW口ロ55 | Servo Driver for Assistance User Constant Size | － | 1 | 1，2 |
| OLDロ56 | Servo Driver for Assistance User Constant Set Point | － | 0 | $-2^{31}$ to $2^{31}-1$ |
| OW口ロ5C | Fixed Parameter Number | － | 0 | 0 to 65535 |
| OLDロ5E | Encoder Position When Power is OFF （Lower 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ60 | Encoder Position When Power is OFF （Upper 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ62 | Pulse Position When Power is OFF （Lower 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ64 | Pulse Position When Power is OFF （Upper 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |

## （ 3 ）Monitoring Parameters

| No． | Name | Unit | Default Value | Range |
| :---: | :---: | :---: | :---: | :---: |
| IWロロ00 | RUN Status | － | － | Bit setting |
| IWロロ01 | Parameter Number When Range Over is Generated | － | － | 0 to 65535 |
| ILロロ02 | Warning | － | － | Bit setting |
| ILロロ04 | Alarm | － | － | Bit setting |
| IWロロ08 | Motion Command Response Code | － | － | 0 to 65535 |
| IWロロ09 | Motion Command Status | － | － | Bit setting |
| IWロロ0A | Motion Subcommand Response Code | － | － | 0 to 65535 |
| IWロロ0B | Subcommand Status | － | － | Bit setting |
| IWロロ0C | Position Management Status | － | － | Bit setting |
| ILロロ0E | Target Position in Machine Coordinate System（TPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ10 | Calculated Position in Machine Coordinate System（CPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ12 | Machine Coordinate System Reference Position（MPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ14 | CPOS for 32bit（DPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ16 | Machine Coordinate System Feedback Position（APOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ18 | Machine Coordinate System Latch Position（LPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1A | Position Error（PERR） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1C | Target Position Difference Monitor | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1E | Number of POSMAX Turns | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ20 | Speed Reference Output Monitor | pulse／s | － | $-2^{31}$ to $2^{31}-1$ |
| IWロロ2C | Servo Driver Status | － | － | Bit setting |
| IWロロ2D | Servo Driver Alarm Code | － | － | －32768 to 32767 |
| IWロロ2E | Servo Driver I／O Monitor | － | － | Bit setting |
| IWロロ2F | Servo Driver User Monitor Information | － | － | Bit setting |
| ILロロ30 | Servo Driver User Monitor 2 | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロ口34 | Servo Driver User Monitor 4 | － | － | $-2^{31}$ to $2^{31}-1$ |
| IWロロ36 | Servo Driver User Constant No． | － | － | 0 to 65535 |
| IWロロ37 | Supplementary Servo Driver User Con－ stant No． | － | － | 0 to 65535 |
| ILロロ38 | Servo Driver User Constant Reading Data | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ3A | Supplementary Servo Driver User Con－ stant Reading Data | － | － | $-2^{31}$ to $2^{31}-1$ |
| IWロロ3F | Motor Type | － | － | 0，1 |
| ILロロ40 | Feedback Speed | Depends on speed unit． | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ42 | Feedback Torque／Thrust | Depends on torque unit． | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ56 | Fixed Parameter Monitor | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ5E | Encoder Position When the Power is OFF （Lower 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ60 | Encoder Position When the Power is OFF （Upper 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ62 | Pulse Position When the Power is OFF （Lower 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ64 | Pulse Position When the Power is OFF （Upper 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |

### 8.1.2 Control Block Diagram for Position Control

MP2000-series Machine Controller

(continued on next page)


### 8.2 Phase Control

Precautions When Using $\Sigma$-V or $\Sigma$ - 7 Series SERVOPACKs

## . CAUTION

- When the tuning or vibration suppression functions are used to perform Servo adjustments and model following control is enabled (i.e., when Pn140.0 = 1), the SERVOPACK cannot be properly controlled by phase references. When using phase references, change the settings to the following values.
- Set the model-following control to disabled (Pn140.0=0).
- When using the utility functions for adjustment, select the following modes.
- Advanced Autotuning and Advanced Autotuning by References: Mode=1
- One-parameter Tuning: Tuning mode $=0$ or 1


### 8.2.1 Motion Parameters for Phase Control

- : These parameters are ignored.


## (1) Fixed Parameters

| No. | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| 0 | Selection of Operation Modes | - | 1 | 0 to 5 |
| 1 | Function Selection Flag 1 | - | 0000h | Bit setting |
| 2 | Function Selection Flag 2 | - | 0000h | Bit setting |
| 4 | Reference Unit Selection | - | 0 | 0 to 3 |
| 5 | Number of Digits below Decimal Point | - | 3 | 0 to 5 |
| 6 | Travel Distance per Machine Rotation | Reference unit | 10000 | 1 to $2^{31}-1$ |
|  | Linear Scale Pitch (Linear Motor) | Reference unit | 10000 | 1 to $2^{31}-1$ |
| 8 | Servo Motor Gear Ratio | - | 1 | 1 to 65535 |
| 9 | Machine Gear Ratio | - | 1 | 1 to 65535 |
| 10 | Infinite Length Axis Reset Position (POSMAX) | Reference unit | 360000 | 1 to $2^{31}-1$ |
| 12 | Positive Software Limit Value | Reference unit | $2^{31}-1$ | $-2^{31}$ to $2^{31}-1$ |
| 14 | Negative Software Limit Value | Reference unit | $-2^{31}$ | $-2^{31}$ to $2^{31}-1$ |
| 16 | Backlash Compensation Amount | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| 30 | Encoder Selection | - | 0 | 0 to 3 |
| 34 | Rated Motor Speed (Rotary Motor) | $\min ^{-1}$ | 3000 | 1 to 32000 |
|  | Rated Speed (Linear Motor) | $0.1 \mathrm{~m} / \mathrm{s}, 0.1 \mathrm{~mm} / \mathrm{s}$ | 3000 | 1 to 32000 |
| 36 | Number of Pulses per Motor Rotation (Rotary Motor) | pulse | 65536 | 1 to $2^{31}-1$ |
|  | Number of Pulses per Linear Scale Pitch (Linear Motor) | pulses/linear scale pitch | 65536 | 1 to $2^{31}-1$ |
| 38 | Maximum Number of Absolute Encoder Turns Rotation | Rev | 65534 | 0 to $2^{31}-1$ |
| 42 | Feedback Speed Moving Average Time Constant | ms | 10 | 0 to 32 |

## （2）Setting Parameters

| No． | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| OW口ロ00 | RUN Command Setting | － | 0000h | Bit setting |
| OWDロ01 | Mode Setting 1 | － | 0000h | Bit setting |
| OW口ロ02 | Mode Setting 2 | － | 0000h | Bit setting |
| OWロロ03 | Function Setting 1 | － | 0011h | Bit setting |
| OW口ロ04 | Function Setting 2 | － | 0033h | Bit setting |
| OWロロ05 | Function Setting 3 | － | 0000h | Bit setting |
| OWロロ08 | Motion Command | － | 0 | 0 to 39 |
| OWDロ09 | Motion Command Control Flag | － | 0000h | Bit setting |
| OWDロ0A | Motion Subcommand | － | 0 | 0 to 65535 |
| OLDロ0C | Torque／Thrust Reference Setting | Depends on torque unit． | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWDロ0E | Speed Limit Setting at the Torque／Thrust Refer－ ence | 0．01\％ | 15000 | －32768 to 32767 |
| OLDロ10 | Speed Reference Setting | Depends on speed unit． | 3000 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ14 | Positive Side Limiting Torque／Thrust Setting at the Speed Reference | Depends on torque unit． | 30000 | $-2^{31}$ to $2^{31}-1$ |
| OLDप16 | Secondly Speed Compensation | Depends on speed unit． | 0 | $-2^{31}$ to $2^{31}-1$ |
| OW口ロ18 | Override | 0．01\％ | 10000 | 0 to 32767 |
| OLロロ1C | Position Reference Setting | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLD口1E | Width of Positioning Completion | Reference unit | 100 | 0 to 65535 |
| OLDロ20 | NEAR Signal Output Width | Reference unit | 0 | 0 to 65535 |
| OLDロ22 | Error Count Alarm Detection | Reference unit | $2^{31}-1$ | 0 to $2^{31}-1$ |
| OWDロ26 | Positioning Completion Check Time | ms | 0 | 0 to 65535 |
| OLDロ28 | Phase Correction Setting | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ2A | Latch Zone Lower Limit Setting（for External Po－ sitioning） | Reference unit | $-2^{31}$ | $-2^{31}$ to $2^{31}-1$ |
| OLDロ2C | Latch Zone Upper Limit Setting（for External Po－ sitioning） | Reference unit | $2^{31}-1$ | $-2^{31}$ to $2^{31}-1$ |
| OWDロ2E | Position Loop Gain | 0．1／s | 300 | 0 to 32767 |
| OW口ロ2F | Speed Loop Gain | Hz | 40 | 1 to 2000 |
| OWロロ30 | Speed Feed Forward Amends | 0．01\％ | 0 | 0 to 32767 |
| OWロロ31 | Speed Amends | 0．01\％ | 0 | －32768 to 32767 |
| OWロロ32 | Position Integration Time Constant | ms | 0 | 0 to 32767 |
| OWDロ34 | Speed Integration Time Constant | 0.01 ms | 2000 | 15 to 65535 |
| OLDロ36 | Straight Line Acceleration／Acceleration Time Constant | Depends on acceler－ ation／deceleration speed unit． | 0 | 0 to $2^{31}-1$ |
| OLDロ38 | Straight Line Deceleration／Deceleration Time Constant | Depends on acceler－ ation／deceleration speed unit． | 0 | 0 to $2^{31}-1$ |
| OWDロ3A | Filter Time Constant | 0.1 ms | 0 | 0 to 65535 |
| OWロロ3C | Zero Point Return Method | － | 0 | 0 to 19 |
| OW口ロ3D | Width of Starting Point Position Output | Reference unit | 100 | 0 to 65535 |
| OLDロ3E | Approach Speed | Depends on speed unit． | 1000 | $-2^{31}$ to $2^{31}-1$ |
| OLDप40 | Creep Rate | Depends on speed unit． | 500 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ42 | Zero Point Return Travel Distance | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ44 | STEP Travel Distance | Reference unit | 1000 | 0 to $2^{31}-1$ |
| OLDロ46 | External Positioning Final Travel Distance | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLD口48 | Zero Point Position in Machine Coordinate Sys－ tem Offset | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ4A | Work Coordinate System Offset | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |

（cont＇d）

| No． | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| OLDロ4C | Number of POSMAX Turns Presetting Data | Rev | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWロロ4E | Servo User Monitor Setting | － | 0E00H | Bit setting |
| OWロロ4F | Servo Driver Alarm Monitor No． | － | 0 | 0 to 9 |
| OW口ロ50 | Servo Driver User Constant No． | － | 0 | 0 to 65535 |
| OWロロ51 | Servo Driver User Constant Size | － | 1 | 1，2 |
| OLロロ52 | Servo Driver User Constant Set Point | － | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWロロ54 | Servo Driver for Assistance User Constant No． | － | 0 | 0 to 65535 |
| OW口ロ55 | Servo Driver for Assistance User Constant Size | － | 1 | 1，2 |
| OLDロ56 | Servo Driver for Assistance User Constant Set Point | － | 0 | $-2^{31}$ to $2^{31}-1$ |
| OW口ロ5C | Fixed Parameter Number | － | 0 | 0 to 65535 |
| OLDロ5E | Encoder Position When Power is OFF （Lower 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ60 | Encoder Position When Power is OFF （Upper 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ62 | Pulse Position When Power is OFF （Lower 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ64 | Pulse Position When Power is OFF （Upper 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |

## （ 3 ）Monitoring Parameters

| No． | Name | Unit | Default Value | Range |
| :---: | :---: | :---: | :---: | :---: |
| IWロロ00 | RUN Status | － | － | Bit setting |
| IWロロ01 | Parameter Number When Range Over is Generated | － | － | 0 to 65535 |
| ILロロ02 | Warning | － | － | Bit setting |
| ILロロ04 | Alarm | － | － | Bit setting |
| IWロロ08 | Motion Command Response Code | － | － | 0 to 65535 |
| IWロロ09 | Motion Command Status | － | － | Bit setting |
| IWロロ0A | Motion Subcommand Response Code | － | － | 0 to 65535 |
| IWロロ0B | Subcommand Status | － | － | Bit setting |
| IWロロ0C | Position Management Status | － | － | Bit setting |
| ILロロ0E | Target Position in Machine Coordinate System（TPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ10 | Calculated Position in Machine Coordinate System（CPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ12 | Machine Coordinate System Reference Position（MPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ14 | CPOS for 32bit（DPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ16 | Machine Coordinate System Feedback Position（APOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ18 | Machine Coordinate System Latch Position（LPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1A | Position Error（PERR） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1C | Target Position Difference Monitor | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1E | Number of POSMAX Turns | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ20 | Speed Reference Output Monitor | pulse／s | － | $-2^{31}$ to $2^{31}-1$ |
| IWロロ2C | Servo Driver Status | － | － | Bit setting |
| IWロロ2D | Servo Driver Alarm Code | － | － | －32768 to 32767 |
| IWロロ2E | Servo Driver I／O Monitor | － | － | Bit setting |
| IWロロ2F | Servo Driver User Monitor Information | － | － | Bit setting |
| ILロロ30 | Servo Driver User Monitor 2 | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ34 | Servo Driver User Monitor 4 | － | － | $-2^{31}$ to $2^{31}-1$ |
| IWロロ36 | Servo Driver User Constant No． | － | － | 0 to 65535 |
| IWロロ37 | Supplementary Servo Driver User Con－ stant No． | － | － | 0 to 65535 |
| ILロロ38 | Servo Driver User Constant Reading Data | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ3A | Supplementary Servo Driver User Con－ stant Reading Data | － | － | $-2^{31}$ to $2^{31}-1$ |
| IWロロ3F | Motor Type | － | － | 0，1 |
| ILロロ40 | Feedback Speed | Depends on speed unit． | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ42 | Feedback Torque／Thrust | Depends on torque unit． | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ56 | Fixed Parameter Monitor | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ5E | Encoder Position When the Power is OFF （Lower 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ60 | Encoder Position When the Power is OFF （Upper 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ62 | Pulse Position When the Power is OFF （Lower 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ64 | Pulse Position When the Power is OFF （Upper 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |

### 8.2.2 Control Block Diagram for Phase Control




* The speed feedback gain is 0 for phase references.


### 8.3 Torque Control

### 8.3.1 Motion Parameters for Torque Control

- : These parameters are ignored.


## (1) Fixed Parameters

| No. | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| 0 | Selection of Operation Modes | - | 1 | 0 to 5 |
| 1 | Function Selection Flag 1 | - | 0000h | Bit setting |
| 2 | Function Selection Flag 2 | - | 0000h | Bit setting |
| 4 | Reference Unit Selection | - | 0 | 0 to 3 |
| 5 | Number of Digits below Decimal Point | - | 3 | 0 to 5 |
|  | Travel Distance per Machine Rotation | Reference unit | 10000 | 1 to $2^{31}-1$ |
| 6 | Linear Scale Pitch (Linear Motor) | Reference unit | 10000 | 1 to $2^{31}-1$ |
| 8 | Servo Motor Gear Ratio | - | 1 | 1 to 65535 |
| 9 | Machine Gear Ratio | - | 1 | 1 to 65535 |
| 10 | Infinite Length Axis Reset Position (POSMAX) | Reference unit | 360000 | 1 to $2^{31}-1$ |
| 12 | Positive Software Limit Value | Reference unit | $2^{31}-1$ | $-2^{31}$ to $2^{31}-1$ |
| 14 | Negative Software Limit Value | Reference unit | $-2^{31}$ | $-2^{31}$ to $2^{31}-1$ |
| 16 | Backlash Compensation Amount | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| 30 | Encoder Selection | - | 0 | 0 to 3 |
| 34 | Rated Motor Speed (Rotary Motor) | $\min ^{-1}$ | 3000 | 1 to 32000 |
| 34 | Rated Speed (Linear Motor) | $0.1 \mathrm{~m} / \mathrm{s}, 0.1 \mathrm{~mm} / \mathrm{s}$ | 3000 | 1 to 32000 |
|  | Number of Pulses per Motor Rotation (Rotary Motor) | pulse | 65536 | 1 to $2^{31}-1$ |
| 36 | Number of Pulses per Linear Scale Pitch <br> (Linear Motor) | pulses/linear scale pitch | 65536 | 1 to $2^{31}-1$ |
| 38 | Maximum Number of Absolute Encoder Turns Rotation | Rev | 65534 | 0 to $2^{31}-1$ |
| 42 | Feedback Speed Moving Average Time Constant | ms | 10 | 0 to 32 |

## （2）Setting Parameters

| No． | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| OW口ロ00 | RUN Command Setting | － | 0000h | Bit setting |
| OWロロ01 | Mode Setting 1 | － | 0000h | Bit setting |
| OW口ロ02 | Mode Setting 2 | － | 0000h | Bit setting |
| OWロロ03 | Function Setting 1 | － | 0011h | Bit setting |
| OW口ロ04 | Function Setting 2 | － | 0033h | Bit setting |
| OW口ロ05 | Function Setting 3 | － | 0000h | Bit setting |
| OWロロ08 | Motion Command | － | 0 | 0 to 39 |
| OWDロ09 | Motion Command Control Flag | － | 0000h | Bit setting |
| OWDロ0A | Motion Subcommand | － | 0 | 0 to 65535 |
| OLDロ0C | Torque／Thrust Reference Setting | Depends on torque unit． | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWDロ0E | Speed Limit Setting at the Torque／Thrust Refer－ ence | 0．01\％ | 15000 | －32768 to 32767 |
| OLDロ10 | Speed Reference Setting | Depends on speed unit． | 3000 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ14 | Positive Side Limiting Torque／Thrust Setting at the Speed Reference | Depends on torque unit． | 30000 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ16 | Secondly Speed Compensation | Depends on speed unit． | 0 | $-2^{31}$ to $2^{31}-1$ |
| OW口ロ18 | Override | 0．01\％ | 10000 | 0 to 32767 |
| OLロロ1C | Position Reference Setting | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLD口1E | Width of Positioning Completion | Reference unit | 100 | 0 to 65535 |
| OLDロ20 | NEAR Signal Output Width | Reference unit | 0 | 0 to 65535 |
| OLDロ22 | Error Count Alarm Detection | Reference unit | $2^{31}-1$ | 0 to $2^{31}-1$ |
| OWロロ26 | Positioning Completion Check Time | ms | 0 | 0 to 65535 |
| OLDロ28 | Phase Correction Setting | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ2A | Latch Zone Lower Limit Setting（for External Po－ sitioning） | Reference unit | $-2^{31}$ | $-2^{31}$ to $2^{31}-1$ |
| OLロロ2C | Latch Zone Upper Limit Setting（for External Po－ sitioning） | Reference unit | $2^{31}-1$ | $-2^{31}$ to $2^{31}-1$ |
| OWロロ2E | Position Loop Gain | 0．1／s | 300 | 0 to 32767 |
| OW口ロ2F | Speed Loop Gain | Hz | 40 | 1 to 2000 |
| OWロロ30 | Speed Feed Forward Amends | 0．01\％ | 0 | 0 to 32767 |
| OWロロ31 | Speed Amends | 0．01\％ | 0 | －32768 to 32767 |
| OWロロ32 | Position Integration Time Constant | ms | 0 | 0 to 32767 |
| OWロロ34 | Speed Integration Time Constant | 0.01 ms | 2000 | 15 to 65535 |
| OLDロ36 | Straight Line Acceleration／Acceleration Time Constant | Depends on acceler－ ation／deceleration speed unit． | 0 | 0 to $2^{31}-1$ |
| OLDロ38 | Straight Line Deceleration／Deceleration Time Constant | Depends on acceler－ ation／deceleration speed unit． | 0 | 0 to $2^{31}-1$ |
| OWロロ3A | Filter Time Constant | 0.1 ms | 0 | 0 to 65535 |
| OWロロ3C | Zero Point Return Method | － | 0 | 0 to 19 |
| OWロロ3D | Width of Starting Point Position Output | Reference unit | 100 | 0 to 65535 |
| OLロロ3E | Approach Speed | Depends on speed unit． | 1000 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ40 | Creep Rate | Depends on speed unit． | 500 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ42 | Zero Point Return Travel Distance | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ44 | STEP Travel Distance | Reference unit | 1000 | 0 to $2^{31}-1$ |
| OLDロ46 | External Positioning Final Travel Distance | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLD口48 | Zero Point Position in Machine Coordinate Sys－ tem Offset | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLD口4A | Work Coordinate System Offset | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |

（cont＇d）

| No． | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| OLDロ4C | Number of POSMAX Turns Presetting Data | Rev | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWロロ4E | Servo User Monitor Setting | － | 0E00H | Bit setting |
| OWロロ4F | Servo Driver Alarm Monitor No． | － | 0 | 0 to 9 |
| OW口ロ50 | Servo Driver User Constant No． | － | 0 | 0 to 65535 |
| OWロロ51 | Servo Driver User Constant Size | － | 1 | 1，2 |
| OLロロ52 | Servo Driver User Constant Set Point | － | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWロロ54 | Servo Driver for Assistance User Constant No． | － | 0 | 0 to 65535 |
| OW口ロ55 | Servo Driver for Assistance User Constant Size | － | 1 | 1，2 |
| OLDロ56 | Servo Driver for Assistance User Constant Set Point | － | 0 | $-2^{31}$ to $2^{31}-1$ |
| OW口ロ5C | Fixed Parameter Number | － | 0 | 0 to 65535 |
| OLD口5E | Encoder Position When Power is OFF （Lower 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ60 | Encoder Position When Power is OFF （Upper 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ62 | Pulse Position When Power is OFF （Lower 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ64 | Pulse Position When Power is OFF （Upper 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |

## （ 3 ）Monitoring Parameters

| No． | Name | Unit | Default Value | Range |
| :---: | :---: | :---: | :---: | :---: |
| IWロロ00 | RUN Status | － | － | Bit setting |
| IWप口01 | Parameter Number When Range Over is Generated | － | － | 0 to 65535 |
| ILロロ02 | Warning | － | － | Bit setting |
| ILロロ04 | Alarm | － | － | Bit setting |
| IWप口08 | Motion Command Response Code | － | － | 0 to 65535 |
| IWロロ09 | Motion Command Status | － | － | Bit setting |
| IWロロ0A | Motion Subcommand Response Code | － | － | 0 to 65535 |
| IWロロ0B | Subcommand Status | － | － | Bit setting |
| IWロロ0C | Position Management Status | － | － | Bit setting |
| ILロロ0E | Target Position in Machine Coordinate System（TPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ10 | Calculated Position in Machine Coordinate System（CPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ12 | Machine Coordinate System Reference Position（MPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ14 | CPOS for 32bit（DPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ16 | Machine Coordinate System Feedback Position（APOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ18 | Machine Coordinate System Latch Position（LPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1A | Position Error（PERR） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1C | Target Position Difference Monitor | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1E | Number of POSMAX Turns | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ20 | Speed Reference Output Monitor | pulse／s | － | $-2^{31}$ to $2^{31}-1$ |
| IWロロ2C | Servo Driver Status | － | － | Bit setting |
| IWロロ2D | Servo Driver Alarm Code | － | － | －32768 to 32767 |
| IWロロ2E | Servo Driver I／O Monitor | － | － | Bit setting |
| IWロロ2F | Servo Driver User Monitor Information | － | － | Bit setting |
| ILDロ30 | Servo Driver User Monitor 2 | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ34 | Servo Driver User Monitor 4 | － | － | $-2^{31}$ to $2^{31}-1$ |
| IWロロ36 | Servo Driver User Constant No． | － | － | 0 to 65535 |
| IWपロ37 | Supplementary Servo Driver User Con－ stant No． | － | － | 0 to 65535 |
| ILD口38 | Servo Driver User Constant Reading Data | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ3A | Supplementary Servo Driver User Con－ stant Reading Data | － | － | $-2^{31}$ to $2^{31}-1$ |
| IWロロ3F | Motor Type | － | － | 0，1 |
| ILロロ40 | Feedback Speed | Depends on speed unit． | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ42 | Feedback Torque／Thrust | Depends on torque unit． | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ56 | Fixed Parameter Monitor | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ5E | Encoder Position When the Power is OFF （Lower 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ60 | Encoder Position When the Power is OFF （Upper 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ62 | Pulse Position When the Power is OFF （Lower 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ64 | Pulse Position When the Power is OFF （Upper 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |

### 8.3.2 Control Block Diagram for Torque Control

MP2000-series Machine Controller

(continued on next page)


### 8.4 Speed Control

### 8.4.1 Motion Parameters for Speed Control

- : These parameters are ignored.
(1) Fixed Parameters

| No. | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| 0 | Selection of Operation Modes | - | 1 | 0 to 5 |
| 1 | Function Selection Flag 1 | - | 0000h | Bit setting |
| 2 | Function Selection Flag 2 | - | 0000h | Bit setting |
| 4 | Reference Unit Selection | - | 0 | 0 to 3 |
| 5 | Number of Digits below Decimal Point | - | 3 | 0 to 5 |
|  | Travel Distance per Machine Rotation | Reference unit | 10000 | 1 to $2^{31}-1$ |
| 6 | Linear Scale Pitch (Linear Motor) | Reference unit | 10000 | 1 to $2^{31}-1$ |
| 8 | Servo Motor Gear Ratio | - | 1 | 1 to 65535 |
| 9 | Machine Gear Ratio | - | 1 | 1 to 65535 |
| 10 | Infinite Length Axis Reset Position (POSMAX) | Reference unit | 360000 | 1 to $2^{31}-1$ |
| 12 | Positive Software Limit Value | Reference unit | $2^{31}-1$ | $-2^{31}$ to $2^{31}-1$ |
| 14 | Negative Software Limit Value | Reference unit | $-2^{31}$ | $-2^{31}$ to $2^{31}-1$ |
| 16 | Backlash Compensation Amount | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| 30 | Encoder Selection | - | 0 | 0 to 3 |
| 34 | Rated Motor Speed (Rotary Motor) | $\min ^{-1}$ | 3000 | 1 to 32000 |
| 34 | Rated Speed (Linear Motor) | $0.1 \mathrm{~m} / \mathrm{s}, 0.1 \mathrm{~mm} / \mathrm{s}$ | 3000 | 1 to 32000 |
|  | Number of Pulses per Motor Rotation (Rotary Motor) | pulse | 65536 | 1 to $2^{31}-1$ |
| 36 | Number of Pulses per Linear Scale Pitch <br> (Linear Motor) | pulses/linear scale pitch | 65536 | 1 to $2^{31}-1$ |
| 38 | Maximum Number of Absolute Encoder Turns Rotation | Rev | 65534 | 0 to $2^{31}-1$ |
| 42 | Feedback Speed Moving Average Time Constant | ms | 10 | 0 to 32 |

## （2）Setting Parameters

| No． | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| OWロロ00 | RUN Command Setting | － | 0000h | Bit setting |
| OWロロ01 | Mode Setting 1 | － | 0000h | Bit setting |
| OW口ロ02 | Mode Setting 2 | － | 0000h | Bit setting |
| OWロロ03 | Function Setting 1 | － | 0011h | Bit setting |
| OW口ロ04 | Function Setting 2 | － | 0033h | Bit setting |
| OW口ロ05 | Function Setting 3 | － | 0000h | Bit setting |
| OWロロ08 | Motion Command | － | 0 | 0 to 39 |
| OWDロ09 | Motion Command Control Flag | － | 0000h | Bit setting |
| OWDロ0A | Motion Subcommand | － | 0 | 0 to 65535 |
| OLロロ0C | Torque／Thrust Reference Setting | Depends on torque unit． | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWDロ0E | Speed Limit Setting at the Torque／Thrust Refer－ ence | 0．01\％ | 15000 | －32768 to 32767 |
| OLD口10 | Speed Reference Setting | Depends on speed unit． | 3000 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ14 | Positive Side Limiting Torque／Thrust Setting at the Speed Reference | Depends on torque unit． | 30000 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ16 | Secondly Speed Compensation | Depends on speed unit． | 0 | $-2^{31}$ to $2^{31}-1$ |
| OW口ロ18 | Override | 0．01\％ | 10000 | 0 to 32767 |
| OLロロ1C | Position Reference Setting | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLD口1E | Width of Positioning Completion | Reference unit | 100 | 0 to 65535 |
| OLDロ20 | NEAR Signal Output Width | Reference unit | 0 | 0 to 65535 |
| OLDロ22 | Error Count Alarm Detection | Reference unit | $2^{31}-1$ | 0 to $2^{31}-1$ |
| OWロロ26 | Positioning Completion Check Time | ms | 0 | 0 to 65535 |
| OLDロ28 | Phase Correction Setting | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ2A | Latch Zone Lower Limit Setting（for External Po－ sitioning） | Reference unit | $-2^{31}$ | $-2^{31}$ to $2^{31}-1$ |
| OLロロ2C | Latch Zone Upper Limit Setting（for External Po－ sitioning） | Reference unit | $2^{31}-1$ | $-2^{31}$ to $2^{31}-1$ |
| OWロロ2E | Position Loop Gain | 0．1／s | 300 | 0 to 32767 |
| OWロロ2F | Speed Loop Gain | Hz | 40 | 1 to 2000 |
| OWロロ30 | Speed Feed Forward Amends | 0．01\％ | 0 | 0 to 32767 |
| OWロロ31 | Speed Amends | 0．01\％ | 0 | －32768 to 32767 |
| OWロロ32 | Position Integration Time Constant | ms | 0 | 0 to 32767 |
| OWDロ34 | Speed Integration Time Constant | 0.01 ms | 2000 | 15 to 65535 |
| OLD口36 | Straight Line Acceleration／Acceleration Time Constant | Depends on acceler－ ation／deceleration speed unit． | 0 | 0 to $2^{31}-1$ |
| OLD口38 | Straight Line Deceleration／Deceleration Time Constant | Depends on acceler－ ation／deceleration speed unit． | 0 | 0 to $2^{31}-1$ |
| OWDロ3A | Filter Time Constant | 0.1 ms | 0 | 0 to 65535 |
| OW口ロ3C | Zero Point Return Method | － | 0 | 0 to 19 |
| OW口ロ3D | Width of Starting Point Position Output | Reference unit | 100 | 0 to 65535 |
| OLロロ3E | Approach Speed | Depends on speed unit． | 1000 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ40 | Creep Rate | Depends on speed unit． | 500 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ42 | Zero Point Return Travel Distance | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ44 | STEP Travel Distance | Reference unit | 1000 | 0 to $2^{31}-1$ |
| OLDロ46 | External Positioning Final Travel Distance | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLD口48 | Zero Point Position in Machine Coordinate Sys－ tem Offset | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ4A | Work Coordinate System Offset | Reference unit | 0 | $-2^{31}$ to $2^{31}-1$ |

（cont＇d）

| No． | Name | Setting Unit | Default Value | Setting Range |
| :---: | :---: | :---: | :---: | :---: |
| OLDロ4C | Number of POSMAX Turns Presetting Data | Rev | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWロロ4E | Servo User Monitor Setting | － | 0E00H | Bit setting |
| OWロロ4F | Servo Driver Alarm Monitor No． | － | 0 | 0 to 9 |
| OW口ロ50 | Servo Driver User Constant No． | － | 0 | 0 to 65535 |
| OWロロ51 | Servo Driver User Constant Size | － | 1 | 1，2 |
| OLロロ52 | Servo Driver User Constant Set Point | － | 0 | $-2^{31}$ to $2^{31}-1$ |
| OWロロ54 | Servo Driver for Assistance User Constant No． | － | 0 | 0 to 65535 |
| OW口ロ55 | Servo Driver for Assistance User Constant Size | － | 1 | 1，2 |
| OLDロ56 | Servo Driver for Assistance User Constant Set Point | － | 0 | $-2^{31}$ to $2^{31}-1$ |
| OW口ロ5C | Fixed Parameter Number | － | 0 | 0 to 65535 |
| OLD口5E | Encoder Position When Power is OFF （Lower 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ60 | Encoder Position When Power is OFF （Upper 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ62 | Pulse Position When Power is OFF （Lower 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |
| OLDロ64 | Pulse Position When Power is OFF （Upper 2 words） | pulse | 0 | $-2^{31}$ to $2^{31}-1$ |

## （ 3 ）Monitoring Parameters

| No． | Name | Unit | Default Value | Range |
| :---: | :---: | :---: | :---: | :---: |
| IWロロ00 | RUN Status | － | － | Bit setting |
| IWप口01 | Parameter Number When Range Over is Generated | － | － | 0 to 65535 |
| ILロロ02 | Warning | － | － | Bit setting |
| ILロロ04 | Alarm | － | － | Bit setting |
| IWロロ08 | Motion Command Response Code | － | － | 0 to 65535 |
| IWロロ09 | Motion Command Status | － | － | Bit setting |
| IWロロ0A | Motion Subcommand Response Code | － | － | 0 to 65535 |
| IWロロ0B | Subcommand Status | － | － | Bit setting |
| IWロロ0C | Position Management Status | － | － | Bit setting |
| ILロロ0E | Target Position in Machine Coordinate System（TPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ10 | Calculated Position in Machine Coordinate System（CPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ12 | Machine Coordinate System Reference Position（MPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ14 | CPOS for 32bit（DPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ16 | Machine Coordinate System Feedback Position（APOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ18 | Machine Coordinate System Latch Position（LPOS） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1A | Position Error（PERR） | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1C | Target Position Difference Monitor | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ1E | Number of POSMAX Turns | Reference unit | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ20 | Speed Reference Output Monitor | pulse／s | － | $-2^{31}$ to $2^{31}-1$ |
| IWロロ2C | Servo Driver Status | － | － | Bit setting |
| IWロロ2D | Servo Driver Alarm Code | － | － | －32768 to 32767 |
| IWロロ2E | Servo Driver I／O Monitor | － | － | Bit setting |
| IWロロ2F | Servo Driver User Monitor Information | － | － | Bit setting |
| ILロロ30 | Servo Driver User Monitor 2 | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ34 | Servo Driver User Monitor 4 | － | － | $-2^{31}$ to $2^{31}-1$ |
| IW口ロ36 | Servo Driver User Constant No． | － | － | 0 to 65535 |
| IWロロ37 | Supplementary Servo Driver User Con－ stant No． | － | － | 0 to 65535 |
| ILロロ38 | Servo Driver User Constant Reading Data | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ3A | Supplementary Servo Driver User Con－ stant Reading Data | － | － | $-2^{31}$ to $2^{31}-1$ |
| IWロロ3F | Motor Type | － | － | 0，1 |
| ILロロ40 | Feedback Speed | Depends on speed unit． | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ42 | Feedback Torque／Thrust | Depends on torque unit． | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ56 | Fixed Parameter Monitor | － | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ5E | Encoder Position When the Power is OFF （Lower 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILDロ60 | Encoder Position When the Power is OFF （Upper 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ62 | Pulse Position When the Power is OFF （Lower 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |
| ILロロ64 | Pulse Position When the Power is OFF （Upper 2 words） | pulse | － | $-2^{31}$ to $2^{31}-1$ |

### 8.4.2 Control Block Diagram for Speed Control

MP2000-series Machine Controller

(continued on next page)


## Absolute Position Detection

> This chapter explains an absolute position detection system that uses an absolute encoder. Be sure to read this chapter carefully when using a Servomotor equipped with an absolute encoder.
9.1 Absolute Position Detection Function ..... 9-2
9.1.1 Outline of the Function ..... 9-2
9.1.2 Reading Absolute Data ..... 9-2
9.1.3 Finite Length/Infinite Length Axes and Absolute Position Detection ..... 9-3
9.2 Setting Procedure of Absolute Position Detection Function ..... -9-4
9.2.1 System Startup Flowchart ..... 9-4
9.2.2 Initializing the Absolute Encoder ..... 9-5
9.3 Absolute Position Detection for Finite Length Axes ..... -9-6
9.3.1 Parameter Settings for Finite Length Axes ..... 9-6
9.3.2 Setting the Zero Point for a Finite Length Axis ..... 9-9
9.3.3 Turning ON the Power after Setting the Zero Point of Machine Coordinate System ..... 9-14
9.4 Absolute Position Detection for Infinite Length Axes ..... 9-15
9.4.1 Simple Absolute Infinite Length Position Control ..... 9-15
9.4.2 Parameter Settings for Simple Absolute Infinite Length Position Control ..... 9-17
9.4.3 Setting the Zero Point and Turning ON Power as Simple Absolute Positions ..... 9-20
9.4.4 Turning ON the Power after Setting the Zero Point ..... 9-21
9.4.5 Infinite Length Position Control without Simple Absolute Positions ..... 9-21

### 9.1 Absolute Position Detection Function

This section explains the Absolute Position Detection Function in the MP2000-series Machine Controller.

- Refer to Appendix E Fixed Parameter Setting According to Encoder Type and Axis Type together with this section.


### 9.1.1 Outline of the Function

The Absolute Position Detection Function detects the position of the machine (axis) even if the power is turned OFF. This allows it to establish the machine coordinate system automatically and to begin operating automatically without having to execute the zero point return (ZRET) command after power is turned ON.
Absolute position detection is performed using an absolute encoder built into a Servomotor.
The following are features of the system for detection of the absolute position.

- If eliminates the need for a zero point return after the power is turned ON.
- If eliminates the need for a zero point dog and overtravel limit switch.


## - Terminology: Absolute Encoder

There are two types of encoders available. An incremental encoder detects position by calculating the zero point difference. An absolute encoder detects the absolute position relative to a reference position.
The absolute encoder uses a battery connected to the battery terminals of the SERVOPACK to maintain absolute data at all times even though power is turned OFF. It also updates absolute data if the position changes while the power is OFF.
The absolute encoder is comprised of a detector that is used to detect absolute position within one rotation and a counter that is used to count the number of rotations.

- After the automatic operation starts, the absolute encoder operates in the same way as an incremental encoder.


### 9.1.2 Reading Absolute Data

Turn ON the Machine Controller and the SERVOPACK at the same time or turn ON the SERVOPACK first to read the absolute data loaded from the absolute encoder to the Machine Controller.
The following diagram shows an overview of the absolute data read operation.

(1) Machine Controller requests SERVOPACK to initialize the sensor when MECHATROLINK communication is established.
(2) SERVOPACK obtains the multiturn data ( N ) and initial incremental pulses (PO) at reception of the sensor initialization request from Machine Controller.
(3) SERVOPACK creates the position data according to the obtained multiturn data and initial incremental pulses.
(4) Machine Controller reads out the position data or absolute data from SERVOPACK.
(5) Machine Controller automatically sets a machine coordinate system * according to the electronic gear ratio converted from the absolute value calculated on the base of the read information and the data of Zero Point Position in Machine Coordinate System Offset (OL $\square \square 48$ ).

* Refer to 9.3.2 (1) Calculating the Zero Point of the Machine Coordinate System for information on how to calculate the zero point of machine coordinate system.
This way the absolute machine position can be detected and automatic operation can begin immediately after power is turned ON with an automatic position detection system.


## - Terminology: Absolute Data

Absolute data that is stored in an absolute encoder has two types of data: the absolute reference position (initial incremental pulses; PO) and the number of rotations (multi-turn data; N ) from the absolute reference position.
The absolute reference position is the phase-C position when the absolute encoder is initialized and is the reference position for absolute-position detection.
Only the number of rotations $(\mathrm{N})$ can be cleared when the absolute encoder is initialized, and the initial incremental pulses will not change.

- Information: Calculation of Absolute Position

We can determine the absolute position (P) using the following data.
Data stored in an absolute encoder

- Absolute reference position (initial incremental pulses): PO
- Number of rotations from the absolute reference position (multi-turn data): N

Parameter determined according to the number of bits of servomotor

- Feedback pulses per motor rotation: RP

Equation to calculate the absolute position

- Absolute position $(\mathrm{P})=\mathrm{N} \times \mathrm{RP}+\mathrm{PO}$


### 9.1.3 Finite Length/Infinite Length Axes and Absolute Position Detection

There are two types of axes. An infinite length axis resets the current position to a specified value every rotation, and the finite length axis does not.
Set a finite length axis if return and other operations are performed only within a specified range or for an axis that moves in one direction only without resetting the position every rotation.
Set an infinite length axis for conveyor belts and other operations that require the position to be reset every rotation. There are two types of position control available with an infinite length axis. Simple Absolute Infinite Length position control and Infinite Length position control are available if Simple Absolute Infinite Length position control is not used.
An absolute encoder performs absolute position detection with a finite or infinite length axis depending on the Axis Selection setting (fixed parameter 1, bit 0) of the Machine Controller
Set the Machine Controller fixed parameters and SERVOPACK parameters to select the absolute position detection function with an absolute encoder. The setting procedures are different for finite and infinite length axes. Refer to 9.2.1 System Startup Flowchart for details.

### 9.2 Setting Procedure of Absolute Position Detection Function

This section explains the procedure for setting the Absolute Position Detection Function.

### 9.2.1 System Startup Flowchart

Start up the system using the following procedure.

| 1 | Check Devices |  |  |
| :---: | :---: | :---: | :---: |
| $\downarrow$ |  |  |  |
| 2 | Initialize the Absolute Encoder Follow the setup procedure to set the absolute encoder to default values. ( $\rightarrow$ 9.2.2 Initializing the Absolute Encoder, and Appendix C Initializing the Absolute Encoder) |  |  |
| $\downarrow$ |  |  |  |
| 3 | Setting Parameters Related to the Machine Controller and the SERVOPACKs <br> Set all parameters related to the Absolute Position Detection Function of the Machine Controller and SERVOPACKs. The setting procedure for a finite length axis is different from that for an infinite length axis. |  |  |
|  | When using the axis as a Finite Length Axis <br> $\rightarrow$ 9.3.1 Parameter Settings for Finite Length Axes | When using the axis as an Infinite L $\rightarrow$ 9.4.1 (2) Conditions to Enable the Control ${ }^{*}$ | ength Axis <br> Simple Absolute Infinite Axis Position |
|  |  | With simple absolute infinite length position control $\rightarrow$ 9.4.2 Parameter Settings for Simple Absolute Infinite Length Position Control | Without simple absolute infinite length position control ${ }^{*}$ $\rightarrow$ 9.4.5 Infinite Length Position Control without Simple Absolute Positions |
| $\downarrow$ |  |  |  |
|  | Zero Point Setting <br> Set the zero point as well as the absolute zero point, that is, the machine coordinate zero point. The setting procedure for a finite length axis is different from that of an infinite length axis. |  |  |
| 4 | When using the axis as a Finite Length Axis <br> $\rightarrow$ 9.3.2 Setting the Zero Point for a Finite Length Axis | With simple absolute infinite length position control <br> $\rightarrow$ 9.4.3 Setting the Zero Point and Turning ON Power as Simple Absolute Positions | Without simple absolute infinite length position control ${ }^{*}$ $\rightarrow 9.4 .5$ (3) Setting the Zero Point for an Infinite Length Axis without Simple Absolute Positions |

* If the system does not satisfy the conditions described in 9.4.1 (2) Conditions to Enable the Simple Absolute Infinite Axis Position Control when using the axis as an infinite length axis, the Machine Controller carries out the operation without using simple absolute length position control.
After the steps 2 to 4 described above are successfully completed, the absolute position detection system will be ready for operation.
- Always perform the startup procedure of the absolute position detection system in the following situations.
- When starting up the absolute position detection system for the first time
- When the Servomotor is changed
- When an absolute encoder-related alarm occurs


### 9.2.2 Initializing the Absolute Encoder

Absolute encoders can be initialized as follows:

- SERVOPACK Procedure
- Refer to the manual for the SERVOPACK for details.
- Panel Operator or Digital Operator Procedure
- Refer to the manual for the SERVOPACK for details.
- ABS_RST Command Procedure
- Refer to 6.2.21 Absolute Encoder Reset (ABS_RST) for details.

For details on the procedure for initializing SERVOPACKS, refer to Appendix C Initializing the Absolute Encoder.

- Initialize the absolute encoder in the following situations.
- When the absolute position detection system is started up for the first time
- When number of rotations from the absolute reference position needs to be initialized to 0
- When a Servomotor has been left with no battery connected to the absolute encoder
- When an alarm which is related the absolute position detection system occurs


### 9.3 Absolute Position Detection for Finite Length Axes

This section describes the procedure for setting parameters and precautions on setting zero-point and turning ON the power supply when using the axis as a finite length axis.

### 9.3.1 Parameter Settings for Finite Length Axes

The following parameters must be set to enable the absolute position detection function when using an axis as a finite length axis.

## $\triangle$ CAUTION

- The parameters for which $\sqrt{2}$ precautions are provided must be set referring to 9.3.1 (3) Detailed Descriptions. Set these parameters carefully. If they are not set correctly, the current position may not be correct after the power is turned ON. Machine damage may occur.
(1) Machine Controller Fixed Parameters for Absolute Position Detection

| Fixed Parameter No. | Name | Setting/Range | Units | Reference | Caution |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1, bit 0 | Axis Selection | 0 : Finite length axis, 1 : Infinite length axis | - | 9.3.1 ( 3 [ [ ] | 7 |
| 30 | Encoder Selection | - Incremental encoder <br> - Absolute encoder <br> - Absolute encoder (used as incremental encoder) | - | 9.3.1 (3) [ b ] | (7) |
| 36 | Number of Pulses per Motor Rotation | $1 \text { to } 2^{31}-1$ <br> Set the value after multiplication. (For a 16 -bit encoder, set $2^{16}=65536$.) | pulse | 9.3.1 (3) [ c ] | (1) |
| 38 | Maximum Number of Absolute Encoder Turns Rotation | 0 to $2^{31}-1$ | $\begin{aligned} & 1=1 \text { rota- } \\ & \text { tion } \end{aligned}$ | 9.3.1 (3) [ d ] | 7 |

## ( 2 ) SERVOPACK Parameters for Absolute Position Detection

| SERVOPACK Model | Parameter | Name | Setting Range | Units | Reference | Caution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Sigma$-III, $\Sigma$-V, and $\Sigma$-7 Series | Pn000.0 | Direction Selection | 0: Sets counterclockwise (CCW) rotation as forward direction. <br> 1: Sets clockwise (CW) rotation as forward direction (reverse rotation mode). | - | - | - |
|  | Pn205 | Multiturn Limit Setting | 0 to 65535 | Rev | 9.3.1 (3) [ d ] | $!$ |
|  | Pn002.2 | Absolute Encoder Usage | 0 : Uses absolute encoder as an absolute encoder. <br> 1: Uses absolute encoder as an incremental encoder. | - | 9.3.1 ( 3 ) [ b ] | $!$ |
| $\Sigma$-II Series | Pn000.0 | Direction Selection | 0: Sets counterclockwise (CCW) rotation as forward direction. <br> 1: Sets clockwise (CW) rotation as forward direction (reverse rotation mode). | - | - | - |
|  | Pn205 | Multiturn Limit Setting | 0 to 65535 | Rev | 9.3.1 ( 3 ) [ d ] | $!$ |
|  | Pn002.2 | Absolute Encoder Usage | 0 : Uses absolute encoder as an absolute encoder. <br> 1: Uses absolute encoder as an incremental encoder. | - | 9.3.1 ( 3 ) [ b ] | $!$ |
| $\Sigma$-I Series | Cn-0001, <br> Bit E | Encoder Type | 0: Incremental encoder <br> 1: Absolute encoder | - | 9.3.1 ( 3 ) [ b ] | $!$ |
|  | $\begin{aligned} & \text { Cn-0002, } \\ & \text { bit } 0 \end{aligned}$ | Rotation Direction Selection | 0: Sets counterclockwise (CCW) rotation as forward rotation. <br> 1: Sets clockwise (CW) rotation as forward rotation (reverse rotation mode). | - | - | - |

## ( 3 ) Detailed Descriptions

[ a ] Axis Selection (Machine Controller Fixed Parameter No.1, Bit 0)
This setting is used to select either an finite or infinite length axis.
Set to 0 when using the axis as a finite length axis.
[ b ] Encoder Type and Absolute Encoder Usage
For an axis performing absolute position detection, set the parameters as shown in the following table.

| Model | Parameter | Setting |
| :--- | :--- | :--- |
| Machine Controller | Fixed parameter 30 <br> (Encoder Selection) | $1:$ Absolute encoder |
| $\Sigma$-II, $\Sigma$-III, $\Sigma$-V, or $\Sigma-7$ <br> Series | Parameter: Pn002.2 <br> (Absolute Encoder Usage) | $0:$ Uses absolute encoder as an absolute encoder. |
| $\Sigma$-I Series | Parameter: Cn-0001 Bit E <br> (Encoder Type) | $1:$ Absolute encoder |

- If the above settings are not used, correct motion control will not be performed. Set the parameters carefully. - Be sure to set both the Machine Controller and SERVOPACK parameters.


## [ c ] Number of Pulses per Motor Rotation

Refer to the following table and set the fixed parameter 36 (Number of Pulses per Motor Rotation) according to the number of servomotor (encoder) bits. The settings can be used for all SERVOPACK models.

| Number of Bits | Machine Controller <br> Fixed Parameter 36 <br> (Number of Pulses per Motor Rotation) |
| :---: | :---: |
| 12 | 4096 |
| 13 | 8192 |
| 15 | 32768 |
| 16 | 65536 |
| 17 | 131072 |
| 20 | 1048576 |

! 1
If the above settings are not used, correct motion control will not be performed. Set the parameters carefully.

## [ d ] Max. Revolutions of Absolute Encoder/Multiturn Limit Setting

These parameters determine the maximum value of the number of encoder turns managed by the SERVOPACK and Machine Controller.
The setting is determined by the SERVOPACK that is used and the type of axis (Machine Controller fixed parameter 1, bit 0 ). Set the parameters as shown in the following table when using an axis as a finite length axis.

| Mpplicable <br> SERVOPACK | Machine Controller <br> Fixed Parameter 38 <br> (Maximum Number of Absolute Encoder <br> Turns Rotation) | SERVOPACK <br> Parameter Pn205 <br> (Multiturn Limit Setting) |
| :--- | :---: | :---: |
| $\Sigma-$ II, $\Sigma$-III, $\Sigma$-V, or <br> $\Sigma-7$ Series | 65535 | 65535 |
| $\Sigma$-I Series | 99999 | - |

- If the above settings are not used, the position may be offset. Set the parameters carefully.


## 9．3．2 Setting the Zero Point for a Finite Length Axis

This section describes the procedure for setting the zero point（i．e．，the absolute zero point or the zero point of the machine coordinate system）for a finite length axis．It also describes the procedures for storing the zero point offset．

## （1）Calculating the Zero Point of the Machine Coordinate System

The Machine Controller calculates the axis position（i．e．，current position for the machine coordinate system）as fol－ lows when power is turned ON if an absolute encoder is used for positioning．
Current position for the machine coordinate system（monitoring parameter ILDロ10＊1 or ILDD16 ${ }^{* 1}$ ）＝ Encoder position when servo power is turned $\mathrm{ON}^{*} 2+$ Zero Point Position in Machine Coordinate System Off－ set（setting parameter OLロप48）
To set the current position of the machine coordinate system as the zero position，set OLDप48 to the difference between OLDप48 and ILD口10（or ILDप16）．
＊1．Use ILDप10 to select a positive value for the reference position for the machine coordinates，and use ILDD16 to make the current position of the machine coordinates into a positive position．
＊2．The encoder position when servo power is turned ON is as follows：Multiturn data $\times$ Number of encoder pulses＋ initial increment pulses．Refer to your SERVOPACK manual for information on the initial increment pulses．

Example： $\mathrm{IL} \square \square 10=10,000$ and OLDप48 $=100$
Set the encoder position when servo power is turned ON to a negative value as shown below．

$$
\begin{aligned}
\text { OLロप48- ILロロ10 } & =100-10000 \\
& =-9900
\end{aligned}
$$

Set OLDप48 to－9900 to make the current position in the machine coordinate system the zero point．

## （2）Setting the Zero Point of the Machine Coordinate System

## ．CAUTION

－OLDप48 is always valid for a finite length axis．Do not change the Zero Point Position in Machine Coordi－ nate System Offset（OLDD48）during the operation of a machine with a finite length axis．Otherwise the machine may be damaged or an accident may occur．

Set the zero point after initializing the absolute encoder to set the zero point of the machine coordinate system and to create the machine coordinate system．The following illustration shows the procedure for setting the zero point for a finite length axis．


## ( 3 ) Saving OLDप48 Values before Power OFF

After having set the zero point, save the value of OLDप48 before turning OFF the power of Machine Controller so that the value will be written in OLDप48 the next time the power is turned ON.
There are two ways to save the Zero Point Position in Machine Coordinate System Offset (OLDप48) value. It can be saved through a ladder program in an M Register backed up by battery or from the MPE720 Parameter Window. These ways are described below.

- Method 1: Saving the Zero Point Position in Machine Coordinate System Offset (OLDप48) from the MPE720 Parameter Window

Open the Monitor Parameter Window (refer to 3.4.3 Motion Parameter Window) for the specified axis on the MPE720 and use the following procedure to save the Zero Point Offset.

1. Check the value in ILロロ10 in the Monitor Parameter Tab Page.


2．Check the current value in OLDप48 in the Setting Parameter Tab Page．Subtract the Calculated Posi－ tion（ILロロ10）from the Zero Point Position in Machine Coordinate System Offset（OLロロ48）and save the result in OLDप48．

3. Check to see if the initial value and current value in OLDप48 are the same. If they are the same, click Write and save the setting to the Machine Controller.

4. Return to Module Configuration Definition Window and select Online - Save to Flash to save the setting in the flash memory.
5. Execute the setting with the ZSET command.

When the power is turned ON, the value that was saved will be stored automatically for Zero Point Position in Machine Coordinate System Offset (OLDロ48).

Method 2：Saving in an M Register with a Ladder Program
Saves the value of the zero point offset for the machine coordinate system when the zero point is set in an M register backed up by a battery．When the power to the Machine controller is turned ON，saves the value of the M register in the Zero Point Position in the Machine Coordinate System Offset（OLDロ48）．
Create a ladder program that automatically executes the following sequence．
Program Example
The following diagram shows an example of a ladder program used to store the offset value of axis 1 of line number 1 ． In a ladder program for an actual application，select a register with a different address for each axis． The ladder program shown here is used to carry out the following processing．
－Subtracts the Calculated Position in Machine Coordinate System（CPOS）（ILD口10）from the Zero Point Posi－ tion in Machine Coordinate System Offset（OLDप48）and saves the result in OLDप48 after setting the zero point．This value is also saved in an M register at the same time．
－Saves the offset value saved in the M register and in OLDप48 after setting the zero point position．


[^5]
## 9．3．3 Turning ON the Power after Setting the Zero Point of Machine Coordinate System

Bit 5 （Zero Point Return／Setting Completed）in the IWDD0C monitor parameter changes to 0 （Zero point return／set－ ting not completed）when the power supply to the Machine Controller is turned OFF and ON again or communications are restarted by turning the power supply to the SERVOPACK OFF and ON again after the zero point has been set．The Zero Point Return（Setting）Completed bit must therefore be turned ON when the power supply is restored．
Use the following procedure．
1．Turn $O N$ the power supply to the Machine Controller．Or，clear alarms to restart communication．
The offset saved in the M register is stored to OLDप48．
2．Check to see if communication has been synchronized．
Check to make sure that bit 0 （Motion Operation Ready）in the IW $\square 00$ monitor parameter is 0 （Motion opera－ tion not ready）at this time．

3．Set the OWपロ08 setting parameter（Motion Commands）to 9 to execute the ZSET motion command．
－Use this procedure only to set bit 5 in IWロロ0C to 1 （Zero point return／setting completed）．It cannot be used to set the zero point of the machine coordinate system（OLDप48）．

### 9.4 Absolute Position Detection for Infinite Length Axes

Infinite length axis positioning is a function that automatically resets the machine position, program position (absolute values in the program coordinate system), and current position at regular intervals according to the Infinite Length Axis Reset Position (POSMAX) (fixed parameter 10). This function can be used for repeated positioning in one direction.


### 9.4.1 Simple Absolute Infinite Length Position Control

## (1) Overview

The Simple Absolute Infinite Length Position Control is a position control method that can be used for infinite length axes and has the following features.

- The coordinate system can be created simply by setting the machine coordinate system zero point position offset when the power is turned ON (when the communication is restarted).
- No ladder program for position control is required.

For the system that satisfies the conditions to enable the Simple Absolute Infinite Length Position Control (described in the following section), select the Simple Absolute Infinite Length Position Control.

## ( 2 ) Conditions to Enable the Simple Absolute Infinite Axis Position Control

Set the Maximum Number of Absolute Encoder Turns Rotation (fixed parameter 38) to a value that satisfies the following equation to enable the Simple Absolute Infinite Axis Position Control.

$$
\frac{\text { (No.38: Maximum Number of Absolute Encoder Turns Rotation }+1 \text { ) }}{\text { Reset number of turns }}
$$

The reset number of turns will differ depending on whether the command unit is set to pulse or millimeters/degrees/ inches as shown below.

| When the Reference Unit is Pulses | When the Reference Unit is mm, deg, or inch |
| :---: | :---: |
| No. 10: Infinite Length Axis Reset Posi- | No. 10: Infinite Length Axis Reset Position (POSMAX) $\times$ |
| tion (POSMAX) | No. 8: Servo Motor Gear Ratio |
| No.36: Number of Pulses per Motor | No. 6: Travel Distance per Machine Rotation $\times$ |
| Rotation | No. 9 Machine Gear Ratio |

The settings above can be used to enable Simple Absolute Infinite Axis Position Control with a $\Sigma$-II or $\Sigma$-III SERVOPACK.

- For SVB-01 Modules version 1.16 or earlier and built-in SVB Modules version 2.44 or earlier, the reset number of turns must be an integer (remainder $=0$ )
- Simple Absolute Infinite Length Position Control cannot be used by the $\Sigma$-I SERVOPACK.

System That Does Not Satisfy the Above Condition
The system that does not satisfy the above condition cannot use the Simple Absolute Infinite Length Position Control. Prepare the ladder program for position control. Refer to 9.4.5 Infinite Length Position Control without Simple Absolute Positions for details.

## System That Satisfies the Above Condition

The following example shows the system that can use the Simple Absolute Infinite Length Position Control function.

| Fixed Parameter <br> No. | Name | Setting Value |
| :---: | :--- | :---: |
| 4 | Reference Unit Selection | $2(\mathrm{deg})$ |
| 6 | Travel Distance per Machine Rotation | 360000 |
| 8 | Servo Motor Gear Ratio | 6 |
| 9 | Machine Gear Ratio | 5 |
| 10 | Infinite Length Axis Reset Position <br> (POSMAX) | 360000 |
| 36 | Number of Pulses per Motor Rotation | 16384 |
| 38 | Maximum Number of Absolute <br> Encoder Turns Rotation | 59705 |

Reset number of turns $=(360000 \times 6) /(360000 \times 5)=6 / 5$
Criterion to use Simple Absolute Infinite Length Position Control : $(59705+1) /(6 / 5)=49755$
The Simple Absolute Infinite Length Position Control can be used since the result of the above equation is an integer (remainder 0).

### 9.4.2 Parameter Settings for Simple Absolute Infinite Length Position Control

Set the following parameters to use the Simple Absolute Infinite Length Position Control for an infinite length axis.

## $\triangle$ CAUTION

- The parameters for which
precautions are provided must be set referring to 9.3.1 (3) Detailed Descriptions. Set these parameters carefully. If they are not set correctly, the current position may not be correct after the power is turned ON. Machine damage may occur.
(1) Parameters Settings for Simple Absolute Infinite Length Position Control

Set the fixed parameters No. 1 bit 0 and bit 9, and No. 30 as follows to set the Simple Absolute Infinite Length Position Control for an infinite length axis.

| Parameter | Fixed Parameter No. 1, Bit 0 <br> (Axis Selection) | Fixed Parameter No. 1, Bit 9 <br> (Simple Rotary Pos. Mode) | Fixed Parameter No. 30 <br> (Encoder Selection) |
| :---: | :---: | :--- | :--- |
| Setting | 1: Infinite length axis | 1: Enabled | 1: Absolute encoder |

( 2 ) Machine Controller Fixed Parameters for Absolute Position Detection

| Fixed Parameter No. | Name | Setting/Range | Units | Reference | Caution |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. 4 | Reference Unit Selection | 0: pulse 1: mm 2: deg 3: inch (Electric gear is disabled when pulse is selected.) | - | - | - |
| No. 6 | Travel Distance per Motor Rotation | 1 to $2^{31}-1$ | $1=1$ reference unit | - | - |
| No. 8 | Servo Motor Gear Ratio | 1 to 65535 | $1=1$ rotation | - | - |
| No. 9 | Machine Gear Ratio | 1 to 65535 | 1 = 1 rotation | - | - |
| No. 10 | Infinite Length Axis Reset Position (POSMAX) | 1 to $2^{31}-1$ | Reference unit | - | - |
| No. 36 | Number of Pulses per Motor Rotation | 1 to $2^{31}-1$ (Set the value after multiplication. For example, set $2^{16}=$ 65536 when using a 16-bit encoder) | pulse | 9.4.2 ( 4 ) [ b ] | $!$ |
| No. 38 | Maximum Number of Absolute Encoder Turns Rotation | 0 to $2^{31}-1$ | $1=1$ rotation | 9.4.2 ( 4 ) [ c ] | $!$ |

## ( 3 ) SERVOPACK Parameters for Absolute Position Detection

| $\begin{aligned} & \hline \text { SERVOPACK } \\ & \text { Model } \end{aligned}$ | Parameter | Name | Setting Range | Units | Reference | Caution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Sigma-\mathrm{III}, \Sigma$-V, and ᄃ-7 Series | Pn000.0 | Direction Selection | 0: Sets counterclockwise (CCW) rotation as forward direction. <br> 1: Sets clockwise (CW) rotation as forward direction (reverse rotation mode). | - | - | - |
|  | Pn205 | Multiturn Limit Setting | 0 to 65535 | Rev | 9.4.2 ( 4) [ c ] | V |
|  | Pn002.2 | Absolute Encoder Usage | 0 : Uses absolute encoder as an absolute encoder. <br> 1: Uses absolute encoder as an incremental encoder. | - | 9.4.2 ( 4 ) [a] | 7 |
| E-II Series | Pn000.0 | Direction Selection | 0: Sets counterclockwise (CCW) rotation as forward direction. <br> 1: Sets clockwise (CW) rotation as forward direction (reverse rotation mode). | - | - | - |
|  | Pn205 | Multiturn Limit Setting | 0 to 65535 | Rev | 9.4.2 ( 4) [ c ] | 7 |
|  | Pn002.2 | Absolute Encoder Usage | 0 : Uses absolute encoder as an absolute encoder. <br> 1: Uses absolute encoder as an incremental encoder. | - | 9.4.2 ( 4 ) [a] | V |
| E-I Series | Cn-0001, Bit E | Encoder Type | 0 : Incremental encoder <br> 1: Absolute encoder | - | 9.4.2 ( 4 ) [a] | 7 |
|  | $\begin{aligned} & \text { Cn-0002, } \\ & \text { Bit } 0 \end{aligned}$ | Rotation Direction Selection | 0: Sets counterclockwise (CCW) rotation as forward rotation. <br> 1: Sets clockwise (CW) rotation as forward rotation (reverse rotation mode). | - | - | - |

## (4) Detailed Descriptions

## [ a ] Encoder Type/Absolute Encoder Usage

For an axis performing absolute position detection, set the parameters as shown in the table below.

| Model | Parameter | Setting |
| :--- | :--- | :--- |
| Machine Controller | Fixed parameter 30: Encoder Selection | 1: Absolute encoder |
| $\Sigma$-II, $\Sigma$-III, $\Sigma-V$, or <br> $\Sigma-7 ~ S e r i e s ~$ | Parameter Pn002.2: Absolute Encoder Usage | 0 : Uses absolute encoder as an absolute encoder |
| $\Sigma$-I Series SERVO- <br> PACK | Parameter Cn-0001, Bit E: Encoder Type | $1:$ Absolute encoder |

- If the above settings are not used, correct motion control will not be performed. Set the parameters carefully. - Be sure to set both the Machine Controller and SERVOPACK parameters.


## [b] Encoder Resolution

Refer to the following table and set the fixed parameter 36 (Number of Pulses per Motor Rotation) according to the number of servomotor bits. The settings can be used for all SERVOPACK models.

| Number of Bits | Fixed Parameter 36 <br> (Number of Pulses per Motor Rotation) |
| :---: | :---: |
| 12 | 4096 |
| 13 | 8192 |
| 15 | 32768 |
| 16 | 65536 |
| 17 | 131072 |
| 20 | 1048576 |

- If the above settings are not used, correct motion control will not be performed. Set the parameters carefully.


## [c] Maximum Number of Absolute Encoder Turns Rotation/Multiturn Limit Setting

These parameters determine the maximum value of the number of encoder turns managed by the SERVOPACK and Machine Controller.
For an infinite length axis, set the parameters as shown in the table below.

| Applicable <br> SERVOPACK | Fixed Parameter 38 <br> (Max. No. of Absolute Encoder Turns Rotation) | SERVOPACK <br> Parameter Pn205 <br> (Multiturn Limit Setting) |
| :--- | :---: | :---: |
| $\Sigma$-II, $\Sigma$-III, $\Sigma$-V, or $\Sigma$-7 <br> Series | Set the same value as Pn205 * | 65534 max. * |

* For details on the setting procedure, refer to Appendix D Setting the Multiturn Limit. If the Machine Controller fixed parameter 38 is set to 65535 when using a $\Sigma$-II, $\Sigma$-III, $\Sigma-\mathrm{V}$, and $\Sigma-7$ series SERVOPACK for an infinite axis, a fixed parameter setting error will occur. When using a direct drive motor, set both the Machine Controller's fixed parameter 38 and the SERVOPACK's parameter Pn205 to 0.
- Set the parameters correctly as shown in the above table. Otherwise, correct motion control will not be performed resulting in position error.


## 9．4．3 Setting the Zero Point and Turning ON Power as Simple Absolute Positions

## （1）Calculating the Zero Point of the Machine Coordinate System

If using the simple absolute infinite length position control，the Machine Controller calculates the axis position（i．e．， current position for the machine coordinate system）as follows when the power is turned ON．
Current position for the machine coordinate system（monitoring parameter ILDロ10＊1 or ILDロ16＊1）＝ Encoder position when servo power is turned $\mathrm{ON}^{* 2}+$ Zero Point Position in Machine Coordinate System Off－ set（setting parameter OLDप48）
To set the current position of the machine coordinate system as the zero position，set OLDप48 to the difference between OLDप48 and ILD口10（or ILロप16）．
＊1．Use the ILDD10 to make the machine coordinate reference position as a standard，and ILDD16 to make the machine coordinate current position as a standard．
＊2．The encoder position when the servo power is turned ON is the value that is calculated with the following equation and converted to reference unit：Multiturn data $\times$ Number of encoder pulses + initial increment pulses．Refer to your SERVOPACK manual for information on the initial increment pulses．

Example： $\operatorname{ILD\square 10} 10=10,000$ and OLDप48 $=100$
Set the encoder position when servo power is turned ON to a negative value as shown below．

$$
\begin{aligned}
\text { OLロप48- ILロロ10 } & =100-10000 \\
& =-9900
\end{aligned}
$$

Set OLDロ48 to－9900 to assign the current position in the machine coordinate system as the zero point．
（ 2 ）Setting the Zero Point for Simple Absolute Infinite Axis Position Control
The procedure to set the zero point for a simple absolute infinite axis position control is shown below．


## （ 3 ）Saving OLपㅁ48 Values at Power OFF

After having set the zero point，save the value of OLDप48 before turning OFF the power of Machine Controller so that the value will be written in OLDप48 the next time the power is turned ON．
There are two ways to save the Zero Point Position in Machine Coordinate System Offset（OLDप48）value．It can be saved through a ladder program in an M register backed up by battery or from the MPE720 Parameter Window．
Refer to 9．3．2（3）Method 1：Saving the Zero Point Position in Machine Coordinate System Offset（OL $\square \square 48$ ）from the MPE720 Parameter Window and 9．3．2（3）Method 2：Saving in an Megister with a Ladder Program for more details．

## 9．4．4 Turning ON the Power after Setting the Zero Point

Bit 5 （Zero Point Return／Setting Completed）in the IWपロ0C monitor parameter changes to 0 （Zero point return／set－ ting not completed）when the power supply to the Machine Controller is turned OFF and ON again or communications are restarted by turning the power supply to the SERVOPACK OFF and ON again after the zero point has been set．The Zero Point Return（Setting）Completed bit must therefore be turned back ON when the power supply is restored． Use the following procedure．

1．Turn ON the power supply to the Machine Controller，or clear alarms to restart communication．
The offset saved in the M register is stored in OLDC48．
2．Check to see if communication has been synchronized．
Check to make sure that bit 0 （Motion Operation Ready）in the IW $\square \square 00$ monitor parameter is 0 （Motion opera－ tion not ready）at this time．

3．Set the OWपロ08 setting parameter（Motion Commands）to 9 to execute the ZSET motion command．
－Use this procedure only to set bit 5 in IWपロ0C to 1 （Zero point return／setting completed）．It cannot be used to set the zero point of the machine coordinate system（OLDC48）．

## 9．4．5 Infinite Length Position Control without Simple Absolute Positions

（1）Parameter Settings for Infinite Length Position Control without Simple Absolute Positions
Set the infinite length position control without simple absolute positions by setting the fixed parameters No． 1 bit 0 and bit 9 ，and No． 30 as shown in the table below when the simple absolute infinite length position control function cannot be used．

| Parameter | Fixed Parameter No．1，Bit 0 <br> （Axis Selection） | Fixed Parameter No．1，Bit 9 <br> （Simple Rotary Pos．Mode） | Fixed Parameter No．30 <br> （Encoder Selection） |
| :---: | :--- | :--- | :--- |
| Setting | 1：Infinite length axis | 0：Disabled | 1：Absolute encoder |

## （ 2 ）Infinite Length Axis Position Control without Simple Absolute Positions

The Machine Controller performs the following infinite length position control when the Simple Absolute Infinite Length Position Control Function is not used．
The pulse position and encoder position are always stored as paired information in backup memory．This information is used the next time power is turned ON as the pulse position and the encoder position at shutdown to find the relative encoder position in pulses．
－Pulse position＝Pulse position at power OFF $+(\text { Encoder position }- \text { Encoder position at power OFF })^{*}$
＊The portion in parentheses（ ）represents the moving amount while the power is OFF．
－Terminology：Encoder position
Absolute encoder position information（Multiturn data $\times$ Number of encoder pulses + Initial increment pulses）
－Terminology：Pulse Position
The position information from the Machine Controller converted to pulses

## ( 3 ) Setting the Zero Point for an Infinite Length Axis without Simple Absolute Positions



Perform the procedure shown in the figure on the left to set the zero point for infinite length position control without simple absolute positions.
The OLDप48 value (zero point data) does not have to be stored in an M register with this method. Set a desired position in OLDप48 and execute the ZSET command to set the zero point. With this setting, the current position of the machine coordinate system will be set.
OLDC48 is valid only when executing a ZSET command.

## Example:

To set the current position of the machine coordinate system to 0 when executing the ZSET command, set OLDप48 to 0.

## （ 4 ）Ladder Program for Infinite Length Axis Position Control

If the Simple Absolute Infinite Length Position Control Function is not used，a special ladder program is needed for normal operation and for operation when system power is turned ON．

## ［ a］Normal Operation

1．Check the status of the Zero Point Return（Setting）Completed bit．
Check to see if the Zero Point Return（Setting）Completed bit（monitoring parameter IWロロ0C，bit 5）is ON．If it is，go to step 2.
If it is not，it means that the pulse position at power OFF，encoder position at power OFF and all position data was not settled．In that case，restart the system and set up the position data again or execute the ZSET（Set Zero Point） motion command to settle the position data all over from the start．

2．Save the modularized position at power OFF and absolute position at power OFF．
Use the ladder program to save the following monitoring parameters with high－speed scan timing at an M register backed up by battery．
－Monitoring Parameter：Encoder Position when the Power is OFF（All four words at ILDप5E to ILDप60）
－Monitoring Parameter：Pulse Position when the Power is OFF（All four words at ILDप62 to ILDप64）
The M register that is used to save the above monitoring parameters is structured as shown below．

| MW | Bit 0 | Toggle Buffer Enabled Flag（0：Disabled，1：Enabled） |  |
| :---: | :---: | :---: | :---: |
|  | Bit 1 | Toggle Buffer Selection Flag（0：Buffer 0，1：Buffer 1） |  |
|  | Bit 2 | Position Data Re－setup Request Flag（0：Complete，1：Request） |  |
|  | Bit 3 | Position Data Save Request Flag（0：Prohibited，1：Request） |  |
| MWVロロロロ＋1 | Not used |  |  |
| MLDロロロロ＋2 | Buffer 0 | Monitoring Parameter： <br> Encoder Position when the Power is OFF | Lower－place two words（ILD口5E） |
| MLロロロロロ＋4 |  |  | Upper－place two words（ILロロ60） |
| MLロロロロロ＋6 |  | Monitoring Parameter： <br> Pulse Position when the power is OFF | Lower－place two words（ILD口62） |
| MLロロロロロ＋8 |  |  | Upper－place two words（ILロロ64） |
| MLロロロロロ＋10 | Buffer 1 | Monitoring Parameter： <br> Encoder Position when the Power is OFF | Lower－place two words（ILD口5E） |
| MLD $\square \square \square \square+12$ |  |  | Upper－place two words（ILD $\square$ 60） |
| MLD $\square \square \square \square+14$ |  | Monitoring Parameter： <br> Pulse Position when the power is OFF | Lower－place two words（ILロロ62） |
| MLロロロロロ＋16 |  |  | Upper－place two words（ILロロ64） |

－Two buffers are needed to save the encoder position and the pulse position at power OFF because the program may be exited without settling position data at all four words if power is turned OFF during the high－speed scan．

Use the following flowchart to store values in buffers.


The following programming example (ladder program) is for the flowchart shown on the previous page. The axis used here is axis 1 of circuit number 1 . Change the motion parameter register number if the circuit and axis numbers are different.


## ［ b ］Turning the System Back ON（Turning the Servo Back ON）

Set up position data again from the ladder program using high－speed scan timing as shown below．This is done when MP2300 power or power of the SERVOPACK is turned OFF and ON．

1．Store Pulse Position at Power OFF and Encoder Position at Power OFF to setting parameters．
Store the Pulse Position at Power OFF and Encoder Position at Power OFF values saved in M register to the fol－ lowing setting parameters．
－Setting parameter：Encoder Position when the Power is OFF（All four words，form OLD口5E to OLD口60．）
－Setting parameter：Pulse Position When the Power is OFF（All four words，from OLロप62 to OLDロ64．）
Store the contents of the buffer selected by the Toggle Buffer Selection Flag．
2．Infinite Length Axis Position Information LOAD
Set bit 7 （Absolute Infinite－length Position Information Load Request）in the OWDD00 setting parameter to 0 （OFF）， 1 （ON），and then 0 （OFF）again．This will allow all position data to be settled．Bit 5 （Zero Point Return／ Setting Completed）in the IW $\square \square 0 \mathrm{C}$ monitor parameter changes to 1 （Zero point return／setting completed）and the following monitor parameters are enabled．
－Monitoring Parameter：Encoder Position when the Power is OFF（All four words，from ILDप5E to ILロロ60．）
－Monitoring Parameter：Pulse Position When the Power is OFF（All four words，from ILDロ62 to ILDロ64．） The system will create position data using the following equation when the Request ABS Rotary Pos．Load bit turns ON．
－Pulse position＝Pulse position at power OFF + （Encoder position - Encoder position at power OFF）＊
＊The portion in parentheses（ ）represents the moving amount while power is OFF．
Use the following flowchart for storing the position data in the setting parameters and for requesting to load the infinite length axis position information．


The following programming example (ladder program) is for the flowchart shown above. The axis used here is axis 1 of circuit number 1 . Change the motion parameter register number if the circuit and axis numbers are different.



- There are no restrictions in the executing order for ladder programs H 10 and H 11 when an absolute encoder is used for a finite length axis.


## Inverter Operation

Motion control with an Inverter is possible using the SVB Module. This chapter describes the parameters and commands required for motion control with an Inverter.
10.1 Connection Specifications ..... 10-2
10.2 Parameters for Inverter Operation ..... 10-3
10.2.1 Types of Motion Parameters ..... 10-3
10.2.2 Motion Parameter Registers ..... 10-3
10.2.3 Motion Parameter List ..... 10-4
10.2.4 Motion Parameter Details ..... 10-19
10.3 Main Commands and Subcommands ..... 10-27
10.3.1 List of Commands ..... 10-27
10.3.2 Main Command Details ..... 10-29
10.3.3 Subcommand Details ..... 10-37
10.3.4 Applicable Combinations of Main Commands and Subcommands ..... 10-44
10.3.5 Precautions for Inverter Operation ..... 10-45
10.4 Setup Procedure ..... 10-47
10.4.1 Check Items before Setup ..... 10-47
10.4.2 Inverter Settings ..... 10-47
10.4.3 I/O Options ..... 10-54
10.5 Alarm and Warning Codes for Inverter ..... 10-56
10.5.1 A1000 ..... 10-56
10.5.2 V1000 ..... 10-60
10.5.3 Varispeed G7, Varispeed F7, and VS mini V7 ..... 10-63
10.6 MECHATROLINK Option Card/Option Unit Settings ..... 10-66

### 10.1 Connection Specifications

The connection specifications when controlling an Inverter using MECHATROLINK-II communications from the Machine Controller are given in the following table.

| Item |  | Description |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | MECHATROLINK-II (32-byte mode) | MECHATROLINK-II (17-byte mode) | MECHATROLINK-I |
| Supported Models | SVB Module | Built-in SVB: CPU version 2.20 or later SVB-01 Module: Version 1.10 or later |  |  |
|  | Engineering Tool | MPE720 version 5.12 or later |  |  |
|  | Inverter | A1000, using the SI-T3 Communications Option Card V1000, using the SI-T3/V Communications Option Unit Varispeed G7, using the SI-T Communications Option Card Varispeed F7, using the SI-T Communications Option Card VS mini V7, using the SI-T/V7 Communications Option Unit |  |  |
| Number of Connectable Inverters |  | 16 max. <br> (at transmission cycle 2 <br> ms ) <br> - Differs depending on whether messages are used and the number of retries to slaves. ${ }^{* 1}$ | 15 max. <br> - Differs depending on whether messages are used and the number of retries to slaves. *2 | 14 max. |
| Transmission Cycle |  | $1 \mathrm{~ms}, 2 \mathrm{~ms}$ | 1 ms | 2 ms |
| Interface |  | Fixed parameters (To set application conditions) <br> Setting parameters (To update references and output data) <br> Monitor parameters (To update monitored or input data) |  |  |
| Self-configuration Function |  | Available |  |  |
| Others |  | Conforms to MECHATROLINK-I and II specifications |  |  |

* 1. The maximum number of connectable Inverters in MECHATROLINK-II 32-byte mode can be obtained by the following equation.
Transmission cycle 2 ms : 21 - C2 Message (with: 1 , none: 0 ) - Number of retries to slaves
Transmission cycle $1 \mathrm{~ms}: 9$ - C2 Message (with: 1 , none: 0 ) - Number of retries to slaves
- Setting range of number of retry to slaves is 0 to 7 .
- If the result of the above equation is 16 or greater, the maximum number of connectable Inverters is 16.
*2. The maximum number of connectable Inverters in MECHATROLINK-II 17-byte mode can be obtained by the following equation.
Transmission cycle 1 ms : 15 - C2 Message (with: 1 , none: 0 ) - Number of retries to slaves
- Setting range of number of retry to slaves is 0 to 7 .


### 10.2 Parameters for Inverter Operation

This section describes the motion parameters required for Inverter operation.

### 10.2.1 Types of Motion Parameters

The motion parameters for operating an Inverter are fixed parameters, setting parameters, and monitor parameters.

| Parameter | Description |
| :--- | :--- |
| Fixed Parameters | These parameters are used to configure basic system settings for Inverter operation. |
| Setting Parameters | These parameters are used to configure Inverter operation references and details of func- <br> tions. |
| Monitor Parameters | These parameters are used to monitor detailed information, such as the operating status <br> of the Inverter. |

### 10.2.2 Motion Parameter Registers

Motion parameter registers are used to store setting parameters and monitor parameters.
Specific motion parameter register addresses are determined by the circuit number that is used for each motion control function and the axis number that is assigned. Motion parameter registers are the same as for SERVOPACKs. Refer to 4.1 Motion Parameters Register Numbers for details on motion parameter registers.

However, the station address of the Inverter is used for motion parameter registers instead of the axis number on the SERVOPACK.

### 10.2.3 Motion Parameter List

This section provides tables of the motion parameters.
It also provides details of Inverter output data and input data when using MECHATROLINK-II-compatible Inverters.

## (1) Fixed Parameter List

Fixed parameters are used to configure basic system settings for Inverter operation. The following table lists the fixed parameters.


## （ 2 ）Setting Parameter List

| Register No． | Name |  | Contents |
| :---: | :---: | :---: | :---: |
| OWDロ00 | RUN Command Setting | Bit 0 to C | Reserved for system． |
|  |  | Bit D：Drive Permission | 0：OFF／1：ON <br> Enables（ON）or disables（OFF）the Inverter drive con－ trol． <br> －This bit is captured at both rising and falling edges． <br> －When set to 0 （OFF），the command Inverter Drive Con－ trol cannot be used． <br> －When this bit turns ON from OFF，the request to prepare for Inverter control operation is sent．However，this request will not be accepted while the command Inverter Drive Control is being executed．To allow the Inverter to get ready to run，turn OFF this bit and then turn it ON again after setting a command other than Inverter Drive Control． <br> －When this bit turns OFF from ON while the command Inverter Drive Control is being executed，bit 3 （Com－ mand Error Completed Status）of the monitoring param－ eter Command Status will turn ON．Also，when this bit turns OFF from ON while the Inverter is operating，the system will execute Forced OFF（OFF both for forward RUN and reverse RUN）． |
|  |  | Bit E：Communication Reset | 0：OFF／1：ON <br> Re－establishes the connection for MECHATROLINK communications with the Inverter，whether communica－ tions are stopped or in process．Also clears the Alarm monitor parameter． <br> －This bit is captured at the rising edge． <br> ＜Application Example＞ <br> With the setting to continue communications after a com－ munications error occurrence ${ }^{* 1}$ ，the SVB Module will continue communications whether or not the Inverter stops communications because of the error．In this case， the connection for communications can be reestablished by execution of Communication Reset． <br> ＊1．When Communication Abnormality Detection Mask is enabled in the SVB Module fixed parameter Function Selection Flag 2，or when Communication Abnormality Detection Mask is disabled and Warning is selected for Communi－ cation Selection Is Abnormal of Function Selec－ tion Flag 3. |
| OW口ロ00 | RUN Command Setting（Continued） | Bit F：Alarm Clear | 0：OFF／1：ON <br> Clears the Alarm monitor parameter． <br> －This bit is captured at the rising edge． <br> －If communications are stopped after the MECHATROLINK communication errors，clear the alarm bit and re－establish communications at the same time． <br> －Alarm Clear is used to clear alarms in the SVB Module，but will not clear alarms and warnings in the Inverter．To clear alarms in the Inverter，use the Inverter Drive Control command and set the bit 9 （Fault Reset）of Input Command （OWDロ10）to 1 （ON）． |
| $\begin{gathered} \text { OWDप01 } \\ \text { to } \\ \text { ow口ロ07 } \end{gathered}$ | － |  | Reserved for system． |


| Register No． | Name |  | Contents |
| :---: | :---: | :---: | :---: |
| OW口ロ08 | Main Command <br> （Refer to 10．3．2 Main Command Details for de－ tails．） |  | 00：No Command <br> 01：Inverter Drive Control <br> 02：Read User Constant <br> 03：Write User Constant <br> 04：Alarm Monitor <br> 05：Alarm History Monitor <br> 06：User Constant RAM Writing <br> 07：User Constant EEPROM Writing <br> 08：Transmission Reference |
| OWロロ09 | － |  | Reserved for system． |
| OWDロ0A | Sub Command <br> （Refer to 10．3．3 Subcommand Details for de－ tails．） |  | 00：No Command <br> 01：Inverter I／O Control <br> 02：Read User Constant <br> 03：Write User Constant <br> 04：Alarm Monitor <br> 05：Alarm History Monitor <br> 08：Transmission Reference <br> 09：Read Fixed Parameters |
| OWロロ0B | － |  | Reserved for system． |
| OWロロ0C | Output Data Option Selection | Bit 0：Torque Compensation | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the output data option Torque Compensation（OW $\square \square 13$ ）will be enabled when the Inverter Drive Control command is executed． |
|  |  | Bit 1：Multi－function Analog Output FM | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the output data option Multi－function Analog Output FM（OWDD14）will be enabled when the Inverter Drive Control command is executed． |
|  |  | Bit 2：Multi－function Analog Output AM | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the output data option Multi－function Analog Output AM（OWDD15）will be enabled when the Inverter Drive Control command is executed． |
|  |  | Bit 3：Multi－function Terminal Output | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the output data option Multi－function Terminal Output（OWDD16）will be enabled when the Inverter Drive Control command is executed． |
|  |  | Bit 4 to F | Reserved for system． |
| OWDロ0D | Input Data Option Selection | Bit 0：Motor Speed | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Motor Speed（IWDC13）will be monitored when the Inverter Drive Control command is executed． |
|  |  | Bit 1：Torque Reference （U1－09） | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Torque Reference（IWDC14）will be monitored when the Inverter Drive Control command is executed． |
|  |  | Bit 2：Encoder Count PG | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Encoder Count PG（IW $\square \square 15$ ）will be monitored when the Inverter Drive Control command is executed． |
|  |  | Bit 3：Frequency Reference（U1－01） | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Frequency Reference（IWDD16）will be monitored when the Inverter Drive Control command is executed． |
|  |  | Bit 4：Multi－function Analog Input A2 | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Multi－function Analog Input A2（IWDD17）will be monitored when the Inverter Drive Control command is executed． |

（cont＇d）

| Register No． | Name |  | Contents |
| :---: | :---: | :---: | :---: |
| OWDロ0D | Input Data Option Selection （Continued） | Bit 5：Main Bus Voltage | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Main Bus Voltage（IW $\square \square 18$ ）will be monitored when the Inverter Drive Control command is executed． |
|  |  | Bit 6：Alarm Code | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Alarm Code（IW $\square \square 19$ ）will be monitored when the Inverter Drive Control command is executed． |
|  |  | Bit 7：Warning Code | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Warning Code（IW $\square \square 1$ A）will be monitored when the Inverter Drive Control command is executed． |
|  |  | Bit 8 | Reserved for system． |
|  |  | Bit 9：Multi－function Analog Input A3 | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Multi－function Analog Input A3（IWD $\square 1$ 1C）will be monitored when the Inverter Drive Control command is executed． |
|  |  | Bit A：Multi－function Terminal Input | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Multi－function Terminal Input（IWロप1D）will be mon－ itored when the Inverter Drive Control command is exe－ cuted． |
|  |  | Bit B：Multi－function Analog Input A1 | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Multi－function Analog Input A1（IWDD1E）will be monitored when the Inverter Drive Control command is executed． |
|  |  | Bit C：Encoder Counter （ch2） | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the input data option Encoder Counter（ch2）（IWDD1F）will be monitored when the Inverter Drive Control command is executed． |
|  |  | Bit D to F | Reserved for system． |
| OWDロ0E | Auxiliary Output Data Option Selection | Bit 0：Torque Compensation | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the output data option Torque Compensation（OW $\square \square 13$ ）will be enabled when the Inverter I／O Control subcommand is executed． |
|  |  | Bit 1：Multi－function Analog Output FM | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the output data option Multi－function Analog Output FM（OWDロ14）will be enabled when the Inverter I／O Control subcommand is executed． |
|  |  | Bit 2：Multi－function Analog Output AM | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the output data option Multi－function Analog Output AM（OWDD15）will be enabled when the Inverter I／O Control subcommand is executed． |
|  |  | Bit 3：Multi－function Terminal Output | 0：Disabled，1：Enabled <br> When this bit is set to 1 （enabled），the output data option Multi－function Terminal Output（OWDロ16）will be enabled when the Inverter I／O Control subcommand is executed． |
|  |  | Bit 4 to $F$ | Reserved for system． |

(cont'd)


| Register No． | Name | Contents |
| :---: | :---: | :---: |
| OWDロ10 | Input Command | These registers set references for the Inverter when the Inverter Drive Control command is executed． <br> These registers depend the Inverter being used．Refer to 10．2．4（1）Inverter Output Data Details for details． |
| OWDロ11 | Speed Reference |  |
| OWपロ12 | Torque Reference |  |
| OWロロ13 | Torque Compensation（Option） |  |
| OWロロ14 | Multi－function Analog Output FM（Option） |  |
| OWロロ15 | Multi－function Analog Output AM（Option） |  |
| OWロロ16 | Multi－function Terminal Output（Option） |  |
| $\begin{gathered} \text { OWDप17 } \\ \text { to } \\ \text { ow口ロ31 } \end{gathered}$ | － | Reserved for system． |
| OWपロ32 | Inverter Alarm Monitor Number | Setting range：Depends on the Inverter being used．Refer to 10．3．2（ 6 ）Alarm History Monitor for details． <br> Set the alarm history number for the Alarm History Mon－ itor command． |
| OWDロ33 | Auxiliary Inverter Alarm Monitor Number | Setting range：Depends on the Inverter being used．Refer to 10．3．3（ 6 ）Alarm History Monitor for details． <br> Set the alarm history number for the Alarm History Mon－ itor subcommand． |
| $\begin{gathered} \text { OWDप34 } \\ \text { to } \\ \text { owa } \square 3 \mathrm{~B} \end{gathered}$ | － | Reserved for system． |
| OWDロ3C | Inverter User Constant Number | Setting range： 0 to FFFFH <br> Set the leading number of the user constants to read by executing the Read User Constant command，or set the leading number of the user constants to write by execut－ ing the Write User Constant command． <br> －Set the register number used for MEMOBUS communications． |
| OWD－3D | Inverter User Constant Number Size | Setting range： 1 to 4 （words） <br> Set the size of the user constant to read by executing the Read User Constant command，or set the size of the user constant to write by executing the Write User Constant command，in words． <br> Each inverter constant is composed of one word．There－ fore，setting the Inverter User Constant Number Size enables the reading or writing of data of 1 to 4 consecu－ tive words at once． |
| OWDロ3E | Inverter User Constant Set Point 1 | Setting range： 0 to 65535 （FFFFH） <br> Set the data to write for the Write User Constant com－ mand． <br> Enabled when Inverter User Constant Number Size $=1$ to 4. |
| OWDロ3F | Inverter User Constant Set Point 2 | Setting range： 0 to 65535 （FFFFH） <br> Set the data to write for the Write User Constant com－ mand． <br> Enabled when Inverter User Constant Number Size $=2$ to 4. |
| OWDロ40 | Inverter User Constant Set Point 3 | Setting range： 0 to 65535 （FFFFH） <br> Set the data to write for the Write User Constant com－ mand． <br> Enabled when Inverter User Constant Number Size $=3$ to 4. |
| OWDロ41 | Inverter User Constant Set Point 4 | Setting range： 0 to 65535 （FFFFH） <br> Set the data to write for the Write User Constant com－ mand． <br> Enabled when Inverter User Constant Number Size $=4$ ． |


| Register No． | Name | Contents |
| :---: | :---: | :---: |
| OWD－42 | Auxiliary Inverter User Constant Number | Setting range： 0 to FFFFH <br> Set the leading number of user constants to read by exe－ cuting the Read User Constant subcommand，or the lead－ ing number of user constants to write by executing the Write User Constant subcommand． <br> －Set the register number used for MEMOBUS communications． |
| OWD－43 | Auxiliary Inverter User Constant Number Size | Setting range： 1 to 4 （words） <br> Set the size of the user constant to read by executing the Read User Constant subcommand，or set the size of the user constant to write by executing the Write User Con－ stant subcommand，in words． <br> Each inverter constant is composed of one word．There－ fore，setting the Inverter User Constant Number Size enables the reading or writing of data of 1 to 4 consecu－ tive words at once． |
| OWDロ44 | Auxiliary Inverter User Constant Set Point 1 | Setting range： 0 to 65535 （FFFFH） <br> Set the data to write for the Write User Constant subcom－ mand． <br> Enabled when Auxiliary Inverter User Constant Number Size $=1$ to 4 ． |
| OWDロ45 | Auxiliary Inverter User Constant Set Point 2 | Setting range： 0 to 65535 （FFFFH） <br> Set the data to write for the Write User Constant subcom－ mand． <br> Enabled when Auxiliary Inverter User Constant Number Size $=2$ to 4 ． |
| OWDロ46 | Auxiliary Inverter User Constant Set Point 3 | Setting range： 0 to 65535 （FFFFH） <br> Set the data to write for the Write User Constant subcom－ mand． <br> Enabled when Auxiliary Inverter User Constant Number Size $=3$ to 4 ． |
| OWDロ47 | Auxiliary Inverter User Constant Set Point 4 | Setting range： 0 to 65535 （FFFFH） <br> Set the data to write for the Write User Constant subcom－ mand． <br> Enabled when Auxiliary Inverter User Constant Number Size $=4$ ． |
| OWDロ48 | Fixed Parameter Number | Setting range： 0 to 65535 <br> Set the fixed parameter number to read for the Read Fixed Parameters subcommand． |
| $\begin{gathered} \text { OW口प49 } \\ \text { to } \\ \text { OW口प6F } \end{gathered}$ | － | Reserved for system． |
| OW口ロ70 | Transmission Reference Output Data 0 | Setting range： 0 to FFFFH <br> This data is sent as the 1st word in the command（main command bytes 0 and 1 ）when the Transmission Refer－ ence command is executed． |
| OWपロ71 | Transmission Reference Output Data 1 | Setting range： 0 to FFFFH <br> This data is sent as the 2 nd word in the command（main command bytes 2 and 3）when the Transmission Refer－ ence command is executed． |
| OW口ロ72 | Transmission Reference Output Data 2 | Setting range： 0 to FFFFH <br> This data is sent as the 3 rd word in the command（main command bytes 4 and 5）when the Transmission Refer－ ence command is executed． |
| OWロロ73 | Transmission Reference Output Data 3 | Setting range： 0 to FFFFH <br> This data is sent as the 4th word in the command（main command bytes 6 and 7）when the Transmission Refer－ ence command is executed． |


| Register No． | Name | Contents |
| :---: | :---: | :---: |
| OWDロ74 | Transmission Reference Output Data 4 | Setting range： 0 to FFFFH <br> This data is sent as the 5 th word in the command（main command bytes 8 and 9）when the Transmission Refer－ ence command is executed． |
| OWロロ75 | Transmission Reference Output Data 5 | Setting range： 0 to FFFFH <br> This data is sent as the 6th word in the command（main command bytes 10 and 11）when the Transmission Ref－ erence command is executed． |
| OWロロ76 | Transmission Reference Output Data 6 | Setting range： 0 to FFFFH <br> This data is sent as the 7th word in the command（main command bytes 12 and 13）when the Transmission Ref－ erence command is executed． |
| OWロロ77 | Transmission Reference Output Data 7 | Setting range： 0 to FFFFH <br> This data is sent as the 8th word in the command（main command bytes 14 and 15）when the Transmission Ref－ erence command is executed． |
| OWDL78 | Transmission Reference Output Data 8 | Setting range： 0 to FFFFH <br> This data is sent as the 1st word in the subcommand （subcommand bytes 0 and 1 ）when the Transmission Reference subcommand is executed． |
| OWपロ79 | Transmission Reference Output Data 9 | Setting range： 0 to FFFFH <br> This data is sent as the 2nd word in the subcommand （subcommand bytes 2 and 3 ）when the Transmission Reference subcommand is executed． |
| OWロロ7A | Transmission Reference Output Data 10 | Setting range： 0 to FFFFH <br> This data is sent as the 3rd word in the subcommand （subcommand bytes 4 and 5）when the Transmission Reference subcommand is executed． |
| OWDロ7B | Transmission Reference Output Data 11 | Setting range： 0 to FFFFH <br> This data is sent as the 4th word in the subcommand （subcommand bytes 6 and 7）when the Transmission Reference subcommand is executed． |
| OWロロ7C | Transmission Reference Output Data 12 | Setting range： 0 to FFFFH <br> This data is sent as the 5 th word in the subcommand （subcommand bytes 8 and 9 ）when the Transmission Reference subcommand is executed． |
| OWDロ7D | Transmission Reference Output Data 13 | Setting range： 0 to FFFFH <br> This data is sent as the 6 th word in the subcommand （subcommand bytes 10 and 11）when the Transmission Reference subcommand is executed． |
| OWDロ7E | Transmission Reference Output Data 14 | Setting range： 0 to FFFFH <br> This data is sent as the 7th word in the subcommand （subcommand bytes 12 and 13）when the Transmission Reference subcommand is executed． |
| OWDL7F | Transmission Reference Output Data 15 | Setting range： 0 to FFFFH <br> This data is sent as the 8 th word in the subcommand （subcommand bytes 14 and 15）when the Transmission Reference subcommand is executed． |

## ( 3 ) Monitor Parameter List

Monitor parameters are used to monitor detailed information, such as the operating status of the Inverter. The following table lists the monitor parameters.

| Register No. | Name |  | Contents |
| :---: | :---: | :---: | :---: |
| IW $\square \square 00$ | Run Status | Bit 0: Operation Ready | 0 : Inverter drive control disabled <br> 1: Inverter drive control enabled <br> Turns ON when communications (synchronous communication) with the Inverter are established, the Drive Permission bit of Run Command Setting (OW $\square \square 00$ ) is set to ON, and Inverter drive control is enabled. Turns OFF when a MECHATROLINK communications error occurs. <br> - This bit provides different information from Inverter Operation Ready (READY) in the Inverter. |
|  |  | Bit 1 | Reserved for system. |
|  |  | Bit 2: System BUSY | Not used. |
|  |  | Bit 3: Inverter Ready | Inverter not ready <br> : Inverter ready <br> Turns ON when communications (synchronous communications) with the Inverter are established. Turns OFF when a MECHATROLINK communications error occurs. <br> - This bit provides different information from Inverter Operation Ready (READY) in the Inverter. |
|  |  | Bit 4 to F | Reserved for system. |
| IW $\square \square 01$ | Parameter Number when Range Over Is Generated |  | Setting parameters: 0 and higher <br> Fixed parameters: 1000 and higher <br> Displays the parameter number whose setting is incorrect (out of the setting range). The parameter number offset by 1000 is displayed. |
| ILロロ02 | Warning | Bit 0 | Reserved for system. |
|  |  | Bit 1: Setting Parameter Error | Turns ON when setting parameter error occurs. Correct the setting parameter to clear the warning. This warning can be cleared by executing Alarm Clear. |
|  |  | Bit 2: Fixed Parameter Error | Turns ON when fixed parameter error occurs. Correct the fixed parameter to clear the warning. This warning cannot be cleared by executing Alarm Clear. |
|  |  | Bit 3 | Reserved for system. |
|  |  | Bit 4: Command Set Warning | Turns ON when a command outside the allowable setting range is set. <br> Correct the command to clear the warning. |
|  |  | Bit 5 to 8 | Reserved for system. |
|  |  | Bit 9: Communication Warning | Turns ON when MECHATROLINK communications errors are detected individually. <br> Enabled when: Communication Abnormality Detection Mask bit of the Function Selection Flag 2 fixed parameter is disabled, and Communication Selection is Abnormal bit of the Function Selection Flag 3 fixed parameter is set to Warning. <br> This warning will be cleared when communications are restored. |
|  |  | Bit A: Subcommand Set Warning | Turns ON when a subcommand outside the allowable setting range is set. <br> Correct the subcommand to clear the warning. |
|  |  | Bit B to 1F | Reserved for system. |

（cont＇d）

| Register No． |  | Name | Contents |
| :---: | :---: | :---: | :---: |
| ILロロ04 | Alarm | Bit 0 to E | Reserved for system． |
|  |  | Bit F：User Constant Error | Not used． |
|  |  | Bit 10：Synchronization Communication Error | Turns ON when a MECHATROLINK communications watchdog timer timeout error is detected． <br> Enabled when the WDT Abnormality Detection Mask bit of the Function Selection Flag 2 fixed parameter is set to Disabled．This alarm can be cleared by executing Alarm Clear． |
|  |  | Bit 11：Communication Error | Turns ON when MECHATROLINK communications errors are detected continuously． <br> Enabled when Communication Abnormality Detection Mask bit of the Function Selection Flag 2 fixed parame－ ter is set to Disabled，and Alarm is selected for Commu－ nication Selection Abnormal of the Function Selection Flag 3 fixed parameter． <br> This alarm can be cleared by executing Alarm Clear． |
|  |  | Bit 12：Communication Timeout Error | Turns ON when a response from the Inverter for a com－ mand or subcommand is not detected within five seconds． This alarm can be cleared by executing Alarm Clear． |
|  |  | Bit 13 to 1F | Reserved for system． |
| IWロロ06 | － |  | Reserved for system． |
| IWロロ07 | － |  | Reserved for system． |
| IWपロ08 | Command Response Code | 00：No Command | No command is selected． |
|  |  | 01：Inverter Drive Control | Inverter Drive Control is executed． |
|  |  | 02：Read User Constant | Read User Constant is executed． |
|  |  | 03：Write User Constant | Write User Constant is executed． |
|  |  | 04：Alarm Monitor | Alarm Monitor is executed． |
|  |  | 05：Alarm History Monitor | Alarm History Monitor is executed． |
|  |  | 06：User Constant RAM Writing | User Constant RAM Writing is executed． |
|  |  | 07：User Constant EEPROM Writing | User Constant EEPROM Writing is executed． |
|  |  | 08：Transmission Reference | Transmission Reference is executed． |
| IWपロ09 | Command Status | Bit 0：Command Execution Flag | ON during command execution． <br> Always ON when Transmission Reference command is selected． |
|  |  | Bit 1 to 2 | Reserved for system． |
|  |  | Bit 3：Command Error Completed Status | Turns ON when command execution ends in an error． |
|  |  | Bit 4 to 7 | Reserved for system． |
|  |  | Bit 8：Command Execution Completed | Turns ON when command execution is completed． With a Inverter Drive Control command，data input and output will continue after command execution is com－ pleted． <br> Always ON when No Command is selected． |
|  |  | Bit 9 to F | Reserved for system． |
| IWपロ0A | Subcommand Response Code | 00：No Command | No subcommand is selected． |
|  |  | 01：Inverter I／O Control | Inverter I／O Control is executed． |
|  |  | 02：Read User Constant | Read User Constant is executed． |
|  |  | 03：Write User Constant | Write User Constant is executed． |
|  |  | 04：Alarm Monitor | Alarm Monitor is executed． |
|  |  | 05：Alarm History Monitor | Alarm History Monitor is executed． |
|  |  | 08：Transmission Reference | Transmission Reference is executed． |
|  |  | 09：Read Fixed Parameters | Read Fixed Parameters is executed． |

（cont＇d）

| Register No． |  | Name | Contents |
| :---: | :---: | :---: | :---: |
| IWDロ0B | Subcommand Status | Bit 0：Command Execution Flag | ON during subcommand execution． <br> Always ON when Inverter I／O Control or Transmission Reference command is executed． |
|  |  | Bit 1 to 2 | Reserved for system． |
|  |  | Bit 3：Command Error Completed Status | Turns ON when command execution ends in an error． |
|  |  | Bit 4 to 7 | Reserved for system． |
|  |  | Bit 8：Command Execution Completed | Turns ON when command execution is completed． Always ON when No Command is selected． |
|  |  | Bit 9 to F | Reserved for system． |
| IWロロ0C | － |  | Reserved for system． |
| IWロロ0D | Input Data Option Selection Monitor | Bit 0：Motor Speed | ON when Motor Speed is selected for Input Data Option Selection（OWDDOD）and the data is being normally reported． |
|  |  | Bit 1：Torque Reference （U1－09） | ON when Torque Reference is selected for Input Data Option Selection（OWDDOD）and the data is being nor－ mally reported． |
|  |  | Bit 2：Encoder Count PG | ON when Encoder Count PG is selected for Input Data Option Selection（OWDDOD）and the data is being nor－ mally reported． |
|  |  | Bit 3：Frequency Reference （U0－01） | ON when Frequency Reference is selected for Input Data Option Selection（OWDDOD）and the data is being nor－ mally reported． |
|  |  | Bit 4：Multi－function Analog Input A2 | ON when Multi－function Analog Input A2 is selected for Input Data Option Selection（OWDDOD）and the data is being normally reported． |
|  |  | Bit 5：Main Bus Voltage | ON when Main Bus Voltage is selected for Input Data Option Selection（OWDDOD）and the data is being nor－ mally reported． |
|  |  | Bit 6：Alarm Code | ON when Alarm Code is selected for Input Data Option Selection（OWDDOD）and the data is being normally reported． |
|  |  | Bit 7：Warning Code | ON when Warning Code is selected for Input Data Option Selection（OWDCOD）and the data is being normally reported． |
|  |  | Bit 8 | Reserved for system． |
|  |  | Bit 9：Multi－function Analog Input A3 | ON when Multi－function Analog Input A3 is selected for Input Data Option Selection（OWDDOD）and the data is being normally reported． |
|  |  | Bit A：Multi－function Terminal Input | ON when Multi－function Terminal Input is selected for Input Data Option Selection（OWDDOD）and the data is being normally reported． |
|  |  | Bit B：Multi－function Analog Input A1 | ON when Multi－function Analog Input A1 is selected for Input Data Option Selection（OWDDOD）and the data is being normally reported． |
|  |  | Bit C：Encoder Counter （ch2） | ON when Encoder Counter（ch2）is selected for Input Data Option Selection（OWDDOD）and the data is being nor－ mally reported． |
|  |  | Bit D：Monitor Data Set in F6－23 | ON when Monitor Data Set in F6－23 is selected for Input Data Option Selection（OWDD0D）and the data is being normally reported． <br> －This bit is valid when using the A1000 or V1000 only． |
|  |  | Bit E：Monitor Data Set in F6－24 | ON when Monitor Data Set in F6－24 is selected for Input Data Option Selection（OWDD0D）and the data is being normally reported． <br> －This bit is valid when using the A1000 or V1000 only． |
|  |  | Bit F | Reserved for system． |

(cont'd)

（cont＇d）

| Register No． |  | Name | Contents |
| :---: | :---: | :---: | :---: |
| IWDロ10 | Status |  | These registers display the status for the Inverter when the Inverter Drive Control command is executed． <br> These registers depend the Inverter being used．Refer to 10．2．4（2）Inverter Input Data Details for details． |
| IWロロ11 | Output Frequency |  |  |
| IW口ロ12 | Output Current |  |  |
| IWロロ13 | Motor Speed（Option） |  |  |
| IWロロ14 | Torque Reference（U1－09）（Option） |  |  |
| IWロロ15 | Encoder Count PG（Option） |  |  |
| IWロロ16 | Frequency Reference（U1－01）（Option） |  |  |
| IWロロ17 | Multi－function Analog Input A2（Option） |  |  |
| IWロロ18 | Main Bus Voltage（Option） |  |  |
| IWपロ19 | Alarm Code（Option） |  |  |
| IWDロ1A | Warning Code（Option） |  |  |
| IWロロ1B | － |  |  |
| IWロロ1C | Multi－function Analog Input A3（Option） |  |  |
| IWロロ1D | Multi－function Terminal Input（Option） |  |  |
| IWロロ1E | Multi－function Analog Input A1（Option） |  |  |
| IWロロ1F | Encoder Counter（ch2）（Option） |  |  |
| IWロロ20 | Monitor Data Set in F6－23（Option） |  |  |
| IWロロ21 | Monitor Data Set in F6－24（Option） |  |  |
| $\begin{gathered} \text { IWDप22 } \\ \text { to } \\ \text { IWप्व2F } \end{gathered}$ | － |  | Reserved for system． |
| IWD－30 | Response Alarm Code |  | Range： 0 to FFFFH <br> Displays the alarm code returned in the response to the MECHATROLINK command． <br> Refer to 10.5 Alarm and Warning Codes for Inverter for details． |
| IWDロ31 | Subcommand <br> Response Status | Bit 0：Subcommand Alarm | 0：No alarm <br> 1：Alarm occurred <br> Displays the response status to the subcommand．Turns ON when a subcommand alarm occurs． |
|  |  | Bit 1：Subcommand Warning | 0 ：No warning <br> 1：Warning occurred <br> Turns ON when a subcommand warning occurs． |
|  |  | Bit 2：Subcommand Ready | $\begin{aligned} & \text { 0: Busy } \\ & \text { 1: Ready } \\ & \text { Turns ON when subcommand execution is completed. } \end{aligned}$ |
|  |  | Bit 3 to F | Reserved for system． |
| IWロロ32 | Inverter Alarm Co |  | Range： 0 to FFFFH <br> Displays the alarm codes returned in the response to the Alarm Monitor or Alarm History Monitor command． |
| IWロロ33 | Auxiliary Inverter | larm Code | Range： 0 to FFFFH <br> Displays the alarm codes returned in the response to the Alarm Monitor or Alarm History Monitor subcommand． |
| $\begin{gathered} \text { IWDप34 } \\ \text { to } \\ \text { IW口प3B } \end{gathered}$ | － |  | Reserved for system． |
| IWロロ3C | Inverter User Con | tant Number | Range： 0 to FFFFH <br> Displays the inverter user constant number set for the Read User Constant or Write User Constant command． |
| IWロロ3D | － |  | Reserved for system． |
| IWロロ3E | User Constant Re | ading Data 1 | Range： 0 to 65535 <br> Displays the value read out by executing the Read User Constant command．Enabled when Inverter User Con－ stant Number Size $($ OW $\square \square 3 D)=1$ to 4 ． |


| Register No． | Name | Contents |
| :---: | :---: | :---: |
| IWDロ3F | User Constant Reading Data 2 | Range： 0 to 65535 <br> Displays the value read out by executing the Read User Constant command．Enabled when Inverter User Con－ stant Number Size $($ OW $\square \square 3 D)=2$ to 4 ． |
| IWDप40 | User Constant Reading Data 3 | Range： 0 to 65535 <br> Displays the value read out by executing the Read User Constant command．Enabled when Inverter User Con－ stant Number Size $($ OWDD3D $)=3$ to 4 ． |
| IWロロ41 | User Constant Reading Data 4 | Range： 0 to 65535 <br> Displays the value read out by executing the Read User Constant command．Enabled when Inverter User Con－ stant Number Size $(O W \square \square 3 D)=4$ ． |
| IWDप42 | Auxiliary Inverter User Constant Number | Range： 0 to 65535 <br> Displays the auxiliary inverter user constant number set for the Read User Constant or Write User Constant sub－ command． |
| IWロロ43 | － | Reserved for system． |
| IWDप44 | Auxiliary User Constant Reading Data 1 | Range： 0 to 65535 <br> Displays the value read out by executing the Read User Constant subcommand．Enabled when Auxiliary Inverter User Constant Number Size（OWDロ43）＝ 1 to 4. |
| IWDप45 | Auxiliary User Constant Reading Data 2 | Range： 0 to 65535 <br> Displays the value read out by executing the Read User Constant subcommand．Enabled when Auxiliary Inverter User Constant Number Size（OWロロ43）$=2$ to 4. |
| IWDप46 | Auxiliary User Constant Reading Data 3 | Range： 0 to 65535 <br> Displays the value read out by executing the Read User Constant subcommand．Enabled when Auxiliary Inverter User Constant Number Size（OWD口43）$=3$ to 4. |
| IWDप47 | Auxiliary User Constant Reading Data 4 | Range： 0 to 65535 <br> Displays the value read out by executing the Read User Constant subcommand．Enabled when Auxiliary Inverter User Constant Number Size $($ OW $\square \square 43)=4$. |
| ILロロ48 | Fixed Parameter Monitor | Displays the fixed parameter value read out by executing the Read Fixed Parameters subcommand． |
| $\begin{aligned} & \text { IWDप4A } \\ & \text { to } \\ & \text { IWपप4F } \end{aligned}$ | － | Reserved for system． |
|  | Inverter／Type | Displays the model number of the connected Inverter． |
| $\begin{aligned} & \text { IWDप60 } \\ & \text { to } \\ & \text { IW口प67 } \end{aligned}$ | Inverter／Software Version（Option） | Displays the software version of the communications option board in the connected Inverter． |
| $\begin{gathered} \text { IWロप68 } \\ \text { to } \\ \text { IWロप6F } \end{gathered}$ | Inverter／Software Version（Main） | Displays the software version of the connected Inverter． |
| IWロロ70 | Transmission Reference Input Data 0 | Displays the 1 st word in the response data（main command bytes 0 and 1）when the Transmission Reference command is executed． |
| IWロロ71 | Transmission Reference Input Data 1 | Displays the 2nd word in the response data（main com－ mand bytes 2 and 3）when the Transmission Reference command is executed． |
| IWロロ72 | Transmission Reference Input Data 2 | Displays the 3rd word in the response data（main com－ mand bytes 4 and 5）when the Transmission Reference command is executed． |

（cont＇d）

| Register No． | Name | Contents |
| :---: | :---: | :---: |
| IWपロ73 | Transmission Reference Input Data 3 | Displays the 4th word in the response data（main com－ mand bytes 6 and 7）when the Transmission Reference command is executed． |
| IWロロ74 | Transmission Reference Input Data 4 | Displays the 5 th word in the response data（main com－ mand bytes 8 and 9）when the Transmission Reference command is executed． |
| IWपロ75 | Transmission Reference Input Data 5 | Displays the 6th word in the response data（main com－ mand bytes 10 and 11）when the Transmission Reference command is executed． |
| IWपロ76 | Transmission Reference Input Data 6 | Displays the 7th word in the response data（main com－ mand bytes 12 and 13）when the Transmission Reference command is executed． |
| IWロロ77 | Transmission Reference Input Data 7 | Displays the 8th word in the response data（main com－ mand bytes 14 and 15）when the Transmission Reference command is executed． |
| IWपロ78 | Transmission Reference Input Data 8 | Displays the 1st word in the subresponse data（subcom－ mand bytes 0 and 1）when the Transmission Reference subcommand is executed． |
| IWपロ79 | Transmission Reference Input Data 9 | Displays the 2nd word in the subresponse data（subcom－ mand bytes 2 and 3）when the Transmission Reference subcommand is executed． |
| IW口ロ7A | Transmission Reference Input Data 10 | Displays the 3rd word in the subresponse data（subcom－ mand bytes 4 and 5）when the Transmission Reference subcommand is executed． |
| IWロロ7B | Transmission Reference Input Data 11 | Displays the 4th word in the subresponse data（subcom－ mand bytes 6 and 7）when the Transmission Reference subcommand is executed． |
| IWロロ7C | Transmission Reference Input Data 12 | Displays the 5th word in the subresponse data（subcom－ mand bytes 8 and 9）when the Transmission Reference subcommand is executed． |
| IWロロ7D | Transmission Reference Input Data 13 | Displays the 6th word in the subresponse data（subcom－ mand bytes 10 and 11）when the Transmission Reference subcommand is executed． |
| IWロロ7E | Transmission Reference Input Data 14 | Displays the 7th word in the subresponse data（subcom－ mand bytes 12 and 13）when the Transmission Reference subcommand is executed． |
| IWロロ7F | Transmission Reference Input Data 15 | Displays the 8th word in the subresponse data（subcom－ mand bytes 14 and 15）when the Transmission Reference subcommand is executed． |

## 10．2．4 Motion Parameter Details

## （1）Inverter Output Data Details

［ a ］A1000 and V1000

| Register No． | Name |  | Description |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | A1000 | V1000 |
| OWपロ10 | Input Command | Bit 0 | Forward RUN <br> 0：Stop，1：Forward RUN |  |
|  |  | Bit 1 | Reverse RUN0：Stop，1：Reverse RUN |  |
|  |  | Bit 2 | Multi－function Input Terminal 3 （Initial value：External Fault） <br> 0：Terminal S3 function OFF，1：Terminal S3 function ON |  |
|  |  | Bit 3 | Multi－function Input Terminal 4 （Initial value：Fault reset） 0 ：Terminal S4 function OFF，1：Terminal S4 function ON |  |
|  |  | Bit 4 | Multi－function Input Terminal 5 （Initial value：Multi－step Speed Reference 1） <br> 0：Terminal S5 function OFF，1：Terminal S5 function ON |  |
|  |  | Bit 5 | Multi－function Input Terminal 6 （Initial value：Multi－step Speed Reference 2） <br> 0：Terminal S6 function OFF，1：Terminal S6 function ON |  |
|  |  | Bit 6 | Multi－function Input Terminal 7 （Initial value：JOG Command） 0 ：Terminal S7 function OFF，1：Terminal S7 function ON |  |
|  |  | Bit 7 | Multi－function Input Terminal 8 （In value：External Base Block Com－ mand） <br> 0：Terminal S8 function OFF， <br> 1：Terminal S 8 function ON | Reserved for system． |
|  |  | Bit 8 | External Fault Input（EFO） <br> 0：Disabled，1：External error input（EF0） |  |
|  |  | Bit 9 | Fault Reset <br> 0：Disabled，1：Fault reset |  |
|  |  | Bit A | Multi－function Input Terminal 9 <br> 0：Terminal S9 function OFF， <br> 1：Terminal S9 function ON | Reserved for system． |
|  |  | Bit B | $\begin{aligned} & \hline \text { Multi-function Input Terminal } 10 \\ & \text { 0: Terminal S10 function OFF, } \\ & \text { 1: Terminal S10 function ON } \end{aligned}$ |  |
|  |  | Bit C | Reserved for system． |  |
|  |  | Bit D |  |  |
|  |  | Bit E | Fault Trace Clear 0：Disabled，1：Error history cleared |  |
|  |  | Bit F | External Base Block Command <br> 0：Disabled，1：External base block command ON |  |
| OWDロ11 | Speed Reference |  | Unit：Selectable with 01－03 |  |
| OWロロ12 | Torque Reference |  | Unit：0．1\％ | Reserved for system． |
| OWDロ13 | Torque Compensation |  | $10[\mathrm{~V}] / 4000 \mathrm{H}$ |  |
| OWD－14 | Multi－function Analog Output FM |  |  |  |  |
| OWD－15 | Multi－function Analog Output AM |  | $10[\mathrm{~V}] / 4000 \mathrm{H}$ | Reserved for system． |

(cont'd)

| Register No. | Name |  | Description |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | A1000 | V1000 |
| OWDロ16 | Multi-function <br> Terminal Output | Bit 0 | ```Terminals M1-M2 0: OFF, 1: ON (Enabled when H2-01 = F)``` | ```Terminals MA-MC 0: OFF, 1: ON (Enabled when H2-01 =F)``` |
|  |  | Bit 1 | ```Terminals P1-PC 0 : OFF, 1: ON (Enabled when H2-02 = F)``` | ```Terminal P1 0: OFF, 1: ON (Enabled when H2-02 = F)``` |
|  |  | Bit 2 | ```Terminals P2-PC 0: OFF, 1: ON (Enabled when H2-03 =F)``` | ```Terminal P2 0: OFF, 1: ON (Enabled when H2-03 =F)``` |
|  |  | Bit 3 to F | Reserved for system. |  |

[ b ] Varispeed G7, Varispeed F7, and VS mini V7

| Register No. | Name |  | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Varispeed G7 | Varispeed F7 | VS mini V7 |
| OWपㅁ10 | Input <br> Command | Bit 0 | Forward RUN <br> 0: Stop, 1: Forward RUN |  |  |
|  |  | Bit 1 | Reverse RUN 0: Stop, 1: Reverse RUN |  |  |
|  |  | Bit 2 | INV Multi-function Input Terminal 3 (Initial value: External Fault (EF3)) <br> 0: Disabled, 1: External error input (EF3) |  |  |
|  |  | Bit 3 | INV Multi-function Input Terminal 4 (Initial value: Fault reset) <br> 0: Disabled, 1: Fault reset |  |  |
|  |  | Bit 4 | INV Multi-function Input Terminal 5 (Initial value: Multi-step Speed Reference 1) <br> 0 : Disabled, 1: Multi-step speed reference 1 |  |  |
|  |  | Bit 5 | INV Multi-function Input Terminal 6 (Initial value: Multi-step Speed Reference 2) <br> 0 : Disabled, 1: Multi-step speed reference 2 |  |  |
|  |  | Bit 6 | INV Multi-function Input Terminal 7 (Initial value: JOG Command) <br> 0: Disabled, 1: JOG command |  |  |
|  |  | Bit 7 | INV Multi-function Input Terminal 8 (Initial value: External Base Block) <br> 0 : Disabled, 1: External base block | Reserved for syste |  |
|  |  | Bit 8 | External Fault (EFO) <br> 0: Disabled, 1: External | fault (EFO) |  |
|  |  | Bit 9 | Fault Reset <br> 0: Disabled, 1: Fault rese |  |  |
|  |  | Bit A | INV Multi-function Input Terminal 9 (Initial value: Multi-step Speed Reference 3) <br> 0 : Disabled, 1: Multistep speed reference 3 | Reserved for syste |  |
|  |  | Bit B | INV Multi-function Input Terminal 10 (Initial value: Multi-step Speed Reference 4) 0 : Disabled, 1: Multistep speed reference 4 | Reserved for syste |  |
|  |  | Bit C | INV Multi-function Input Terminal 11 (Initial value: Acceleration/Deceleration Time Selection 1) <br> 0: Disabled, 1: Acceleration/deceleration time selection 1 | Reserved for syste |  |
|  |  | Bit D | INV Multi-function Input Terminal 12 (Initial value: Emergency stop) <br> 0 : Disabled, <br> 1: Emergency stop | Reserved for syste |  |
|  |  | Bit E | Fault Trace Clear |  |  |
|  |  | Bit F | External Base Block Com | mmand |  |
| OWपロ11 | Speed Reference |  | Unit: Selectable with 01-03 |  | Unit: Selectable with n035 |
| OWपロ12 | Torque Reference |  | Polarity is common Unit: 0.1\% |  |  |

(cont'd)

| Register No. | Name |  | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Varispeed G7 | Varispeed F7 | VS mini V7 |
| OWDO13 | Torque Compensation |  | Unit: 0.1\% |  |  |
| OWDO14 | Multi-function Analog Output FM |  | -11 V/-1540 to $11 \mathrm{~V} / 1540$ |  | Reserved for system. |
| OWDロ15 | Multi-function Analog Output AM |  | -11 V/-1540 to $11 \mathrm{~V} / 1540$ |  |  |
| OWDロ16 | Multi-function Terminal Output | Bit 0 | Terminals M1-M2 <br> 0: OFF, 1: ON (Enabled when $\mathrm{H} 2-01=\mathrm{F}$ ) |  | Terminals MA-MB 0: OFF, 1: ON (Enabled when n057 = 18) |
|  |  | Bit 1 | Terminal P1 <br> 0: OFF, 1: ON (Enabled when H2-02 = F) |  | ```Terminal P1 0 : OFF, 1: ON (Enabled when n058 = 18)``` |
|  |  | Bit 2 | Terminal P2 <br> 0: OFF, 1: ON (Enabled when $\mathrm{H} 2-03=\mathrm{F}$ ) |  | ```Terminal P2 0 : OFF, 1: ON (Enabled when n059 = 18)``` |
|  |  | Bit 3 to F | Reserved for system. |  |  |

## （ 2 ）Inverter Input Data Details

［ a ］A1000 and V1000

| Register No． | Name |  | Description |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | A1000 | V1000 |
| IWDロ10 | Status | Bit 0 | $\begin{array}{\|l\|} \hline \text { ALM (Alarm) } \\ \text { 0: None, 1: Alarm (error) occurred } \end{array}$ |  |
|  |  | Bit 1 | WARNING（Warning） <br> 0 ：None， 1 ：Warning occurred |  |
|  |  | Bit 2 | CMDRDY（Command Ready（Command can be received））0：Busy，1：Ready |  |
|  |  | Bit 3 | BB OFF（Base Block Released（Inversion of output voltage from Inverter active and base block active）） <br> 0：Base block active，1：Base block released |  |
|  |  | Bit 4 | $\begin{aligned} & \text { PON (Power ON (Inversion of Uv active)) } \\ & 0: \text { Power OFF, 1: Power ON } \end{aligned}$ |  |
|  |  | Bit 5 | RUNX（Driving） 1：Operating（driving） |  |
|  |  | Bit 6 | $\begin{gathered} \text { 0SP (Zero Speed) } \\ \text { 1: Zero speed } \end{gathered}$ |  |
|  |  | Bit 7 | REV（Reverse Operation） <br> 0 ：Forward operation，1：Reverse operation |  |
|  |  | Bit 8 | RESET（During Reset） <br> 1：During reset |  |
|  |  | Bit 9 | AGREE（During Speed Coincident） <br> 1：During speed coincident |  |
|  |  | Bit A | $\begin{aligned} & \text { INV_READY (Inverter Ready) } \\ & \text { 1: Inverter ready } \end{aligned}$ |  |
|  |  | Bit B | $\begin{aligned} & \text { OPE (OPE Error) } \\ & \text { 1: OPE Error } \end{aligned}$ |  |
|  |  | Bit C | UV＿R（Momentary／Power Cut） <br> 0 ：Recovery from power cut，1：Recovery from momentary power interruption |  |
|  |  | Bit D | REMOTE（Remote Operation）0：Local，1：Remote（transmission） |  |
|  |  | Bit E | SEL＿M（Motor Selection） 0：Motor 1 and Motor 3，1：Motor 2 | SEL＿M（Motor Selection） <br> 0 ：Motor 1，1：Motor 2 |
|  |  | Bit F | 0＿SERVO（Set Zero Completed） <br> 1：Set zero completed | Reserved for system． |
| IWロロ11 | Output Frequency |  | Unit：Determined by 01－03 |  |
| IWDロ12 | Output Current |  | Unit：0．1 A or 0．01 A |  |
| IWDロ13 | Motor Speed（U1－05） |  | Unit：Determined by 01－03 （Invalid in V／f with PG control mode） |  |
| IWDロ14 | Torque Reference(U1-09) |  | Unit：0．1\％ （Invalid in V／f with PG and V／f control mode） |  |
| IWDロ15 | Encoder Count PG |  | Unit： 1 pulse （Invalid when an optional PG is not connected．） | Reserved for system． |
| IWDロ16 | Frequency Reference （U1－01） |  | Unit：Determined by o1－03 |  |
| IWDロ17 | Multi－function Analog Input A2（U1－14） |  | $10 \text { V: 100\% }$ <br> Unit：0．1\％ |  |
| IWDロ18 | Main Bus Voltage（U1－07） |  | $10 \mathrm{~V}: 400 \mathrm{~V}$ <br> Unit： 1 V |  |
| IWDロ19 | Alarm Code |  | Inverter alarm |  |
| IWDD1A | Warning Code |  | Inverter warning |  |


| Register No． | Name |  | Description |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | A1000 | V1000 |
| IWDC1B | Multi－Function Output Terminal Status（Option） |  | Unit：0．1\％ |  |
| IWDロ1C | Multi－function Analog Input A3 |  | Unit：0．1\％ | Reserved for system． |
| IW ${ }^{\text {a }}$ 1D | Multi－function Input Terminals | Bit 0 | $\begin{gathered} \text { Terminal S1 } \\ 0: \mathrm{OFF} / 1: \mathrm{ON} \end{gathered}$ |  |
|  |  | Bit 1 | $\begin{aligned} & \hline \text { Terminal S2 } \\ & 0: \mathrm{OFF} / 1: \mathrm{ON} \end{aligned}$ |  |
|  |  | Bit 2 | $\begin{gathered} \hline \text { Terminal S3 } \\ 0: \mathrm{OFF} / 1: \mathrm{ON} \end{gathered}$ |  |
|  |  | Bit 3 | $\begin{gathered} \text { Terminal S4 } \\ \text { 0: OFF/1: ON } \end{gathered}$ |  |
|  |  | Bit 4 | $\begin{aligned} & \text { Terminal S5 } \\ & \text { 0: OFF/1: ON } \end{aligned}$ |  |
|  |  | Bit 5 | $\begin{aligned} & \text { Terminal S6 } \\ & \text { 0: OFF/1: ON } \end{aligned}$ |  |
|  |  | Bit 6 | $\begin{aligned} & \text { Terminal S7 } \\ & 0: \mathrm{OFF} / 1: \mathrm{ON} \end{aligned}$ |  |
|  |  | Bit 7 | $\begin{gathered} \text { Terminal S8 } \\ 0: \mathrm{OFF} / 1: \mathrm{ON} \end{gathered}$ |  |
|  |  | Bit 8 to F | Reserved for system． |  |
| IWD－1E | Multi－function Analog Input A1 |  | Unit：0．1\％ |  |
| IWपロ1F | Encoder Counter（ch2） |  | Unit：pulse <br> （Valid when a PG－Y2 is connected．） | Reserved for system． |
| IWロロ20 | Monitor Data Set in F6－23 （Option） |  | Reports the result of the monitoring set in F6－23． |  |
| IWロロ21 | Monitor Data Set in F6－24 （Option） |  | Reports the result of the monitoring set in F6－24． |  |

［ b ］Varispeed G7，Varispeed F7，and VS mini V7

| Register No． | Name |  | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Varispeed G7 | Varispeed F7 | VS mini V7 |
| IWDロ10 | Status | Bit 0 | ALM（Alarm） <br> 0 ：None，1：Alarm（error）occurred |  |  |
|  |  | Bit 1 | WARNING（Warning）0：None，1：Warning occurred |  |  |
|  |  | Bit 2 | CMDRDY（Command Ready（Command Can Be Received）） <br> 0：Busy，1：Ready |  |  |
|  |  | Bit 3 | BB OFF（Base Block Released（Inversion of output voltage from Inverter active and base block active）） <br> 0 ：Base block active，1：Base block released |  |  |
|  |  | Bit 4 | PON（Power ON（Inversion of UV active））0：Power OFF，1：Power ON |  |  |
|  |  | Bit 5 | $\begin{aligned} & \hline \text { RUNX (Driving) } \\ & \text { 1: Operating (driving) } \end{aligned}$ |  |  |
|  |  | Bit 6 | 0SP（Zero Speed） <br> 1：Zero speed |  |  |
|  |  | Bit 7 | REV（Reverse Operation） <br> 0 ：Forward operation，1：Reverse operation |  |  |
|  |  | Bit 8 | RESET（During Reset） <br> 1：During reset |  |  |
|  |  | Bit 9 | AGREE（During Speed Coincident） <br> 1：During speed coincident |  |  |
|  |  | Bit A | INV＿READY（Inverter Ready） <br> 1：Inverter ready |  |  |
|  |  | Bit B | OPE（OPE Error） 1：OPE Error |  |  |
|  |  | Bit C | UV＿R（Momentary／Power Cut） <br> 0 ：Recovery from power cut， 1 ：Recovery from momentary power interruption |  |  |
|  |  | Bit D | REMOTE（Remote Operation） <br> 0 ：Local，1：Remote（transmission） |  |  |
|  |  | Bit E and F | Reserved for system． |  |  |
| IWDロ11 | Output Frequency |  | Unit：Determined by 01－03 |  | Unit：Determined by n035 |
| IWD－12 | Output Current |  | Unit： 0.1 A or 0.01 A |  |  |
| IWDロ13 | Motor Speed |  | Unit：Determined by 01－03 （Invalid in V／f with PG control mode） |  | Unit：Determined by n035 <br> （Output frequency in V／f with PG control mode） |
| IWDロ14 | Torque Reference（U1－09） |  | Unit：0．1\％ <br> （Invalid in V／f with PG and V／f control mode） |  | Unit：0．1\％ （Invalid in V／f with PG control mode） |
| IWDロ15 | Encoder Count PG |  | Unit：pulse （Invalid when an optional PG is not connected．） |  | Reserved for system． |
| IWDロ16 | Frequency Reference （U1－01） |  | Unit：Determined by o1－03 |  | Unit：Determined by n035 |
| IWDロ17 | Multi－function Analog Input A2 |  | Unit：0．1\％ |  | Unit：0．1\％（RP input） |
| IWDロ18 | Main Bus Voltage |  | Unit： 1 V |  |  |
| IWロロ19 | Alarm Code |  | Inverter alarm |  |  |
| IWDD1A | Warning Code |  | Inverter warning |  |  |
| IWD－1B | Multi－Function Output Terminal Status（Option） |  | Reserved for system． |  |  |
| IWDロ1C | Multi－function Analog Input A3 |  | Unit：0．1\％ |  | Reserved for system． |

(cont'd)

| Register No. | Name |  | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Varispeed G7 | Varispeed F7 | VS mini V7 |
| IWD-1D | Multi-function Input Terminals | Bit 0 | $\begin{gathered} \hline \text { Terminal S1 } \\ 0: \mathrm{OFF} / 1: \mathrm{ON} \end{gathered}$ |  |  |
|  |  | Bit 1 | Terminal S20: OFF/1: ON |  |  |
|  |  | Bit 2 | $\begin{aligned} & \text { Terminal S3 } \\ & 0: \mathrm{OFF} / 1: \mathrm{ON} \end{aligned}$ |  |  |
|  |  | Bit 3 | Terminal S4 <br> 0: OFF/1: ON |  |  |
|  |  | Bit 4 | $\begin{gathered} \text { Terminal S5 } \\ 0: \mathrm{OFF} / 1: \mathrm{ON} \end{gathered}$ |  |  |
|  |  | Bit 5 | $\begin{gathered} \hline \text { Terminal S6 } \\ 0: \mathrm{OFF} / 1: \mathrm{ON} \end{gathered}$ |  |  |
|  |  | Bit 6 | $\begin{gathered} \hline \text { Terminal S7 } \\ 0: \mathrm{OFF} / 1: \mathrm{ON} \end{gathered}$ |  |  |
|  |  | Bit 7 | $\begin{gathered} \hline \text { Terminal S8 } \\ 0: \mathrm{OFF} / 1: \mathrm{ON} \end{gathered}$ |  |  |
|  |  | Bit 8 to F | Reserved for system. |  |  |
| IWD-1E | Multi-function Analog Input A1 |  | Unit: 0.1\% |  | Unit: 0.1\% (FR input) |
| IW | Encoder Counter (ch2) |  | Unit: pulse (Valid when a PG-Y2 is connected.) | Reserved for system. |  |
| IWDL20 | Monitor Data Set in F6-23 (Option) |  | Reserved for system. <br> - This system register is not used in this Inverter. |  |  |
| IWDL21 | Monitor Data Set in F6-24 (Option) |  |  |  |  |

### 10.3 Main Commands and Subcommands

This section describes the main commands and subcommands that can be used when connecting Inverters.

### 10.3.1 List of Commands

## ( 1 ) List of Main Commands

Main commands are used for Inverter operation. They are used to write control programs for Inverter operation as ladder programs.
A distinct command code is assigned to each main command. Inverter operation is started by setting the OWDロ08 setting parameter to the command code of the main command to be used.
The following table lists the main commands.
Main command compatibility is indicated with a check mark ( $\checkmark$ ).
Refer to the reference pages for details on individual commands.

| Command Code | Name | Description | MECHATROLINK-II <br> (32-byte) | MECHATROLINK-II (17-byte mode) / MECHATROLINK-I | $\begin{aligned} & \text { Refer- } \\ & \text { ence } \\ & \text { Page } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | No Command | Nothing is executed. If you change to this command during execution of another command, the current command process is canceled. | $\checkmark$ | $\checkmark$ | P.10-29 |
| 1 | Inverter Drive Control | Sends commands to the Inverter and monitors the Inverter. | $\checkmark$ | $\checkmark$ | P.10-29 |
| 2 | Read User Constant | Reads the specified user constant from the Inverter. | * | $\checkmark$ | P.10-31 |
| 3 | Write User Constant | Writes the specified inverter user constant to a constant in the Inverter. | * | $\checkmark$ | P.10-32 |
| 4 | Alarm Monitor | Reads the alarm that is occurring in the Inverter. | $\checkmark$ | $\checkmark$ | P.10-33 |
| 5 | Alarm History Monitor | Reads the Inverter alarm history. | $\checkmark$ | $\checkmark$ | P.10-34 |
| 6 | User Constant RAM Writing | Saves the parameter data written by executing Write User Constant in the Inverter volatile memory to enable the data. | $\checkmark$ | $\checkmark$ | P.10-35 |
| 7 | User Constant EEPROM Writing | Saves the parameter data written by executing Write User Constant in the Inverter nonvolatile memory. | $\checkmark$ | $\checkmark$ | P.10-35 |
| 8 | Transmission Reference | Enables the user to freely set a MECHATROLINK-II command and send it through the transmission line. | $\checkmark$ | $\checkmark$ | P.10-36 |

* The SVB Module sends commands, but they result in an error response in the Inverter.


## (2) List of Subcommands

Subcommands assist the main commands. They can be executed at the same time as main commands.
A distinct command code exists for each subcommand. Subcommands are executed by setting the OW $\square \square 0 \mathrm{~A}$ setting parameter to the command code of the subcommand to be used.
The following table lists the subcommands.
Subcommand compatibility is indicated with a check mark $(\checkmark)$.
Refer to the reference pages for details on individual subcommands.

| Command <br> Code | Name | Description | MECHATROLINK-II <br> (32-byte) | MECHATROLINK-II <br> (17-byte mode)/ <br> MECHATROLINK-I | Refer- <br> ence <br> Page |
| :---: | :--- | :--- | :---: | :---: | :---: |
| 0 | No <br> Command | No command. <br> When you do not want to execute a <br> subcommand, set this command <br> code. | $\checkmark$ | $\checkmark$ | P.10-37 |
| 1 | Inverter I/O <br> Control | Sends a command to the Inverter and <br> monitors the Inverter. | $\checkmark$ | ${ }^{*} 1$ | P.10-37 |
| 2 | Read User <br> Constant | Reads the specified user constant <br> from the Inverter. | $\checkmark$ | $*_{1}$ | P.10-39 |
| 3 | Write User <br> Constant | Writes the specified inverter user <br> constant to a constant in the Inverter. | $\checkmark$ | $*_{1}$ | P.10-40 |
| 4 | Alarm Monitor | Reads the alarm that is occurring in <br> the Inverter. | $\checkmark$ | $*_{1}$ | P.10-41 |
| 5 | Alarm History <br> Monitor | Reads the Inverter alarm history. | $\checkmark$ | $*_{1}$ | P.10-41 |
| 8 | Transmission <br> Reference | Enables the user to freely set a <br> MECHATROLINK-II command and <br> send it through the transmission line. | $\checkmark$ | $*_{1}$ | P.10-42 |
| 9 | Read Fixed <br> Parameters ${ }^{* 2}$ | Reads the set data of the specified <br> fixed parameter. | $\checkmark$ | $\checkmark$ | P.10-43 |

* 1. The SVB Module returns an error when this command is selected.
*2. This is the subcommand to read out a fixed parameter in the SVB Module. This subcommand is not sent through the MECHATROLINK transmission line.


## 10．3．2 Main Command Details

Each command and its parameters are described below．

## （1）No Command

－Description
No command to be executed．
＊If you change the command to No Command during operation，the motor will stop for a SERVOPACK but it will not stop for an Inverter．
Be aware that the operation for an Inverter is different from the operation for a SERVOPACK．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range |  |
| :--- | :--- | :--- | :--- |
| OW口ᄆ08 | Main Command | 0 to 8 | Remarks |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IW口口08 | Command Response Code | 0 to 8 | 00：No Command |  |
| IW $\square \square 09$ | Command Status | Bit | Bit 0 （Command execution flag） | Always OFF |
|  |  |  | Bit 3 （Command error com－ pleted status） | Always OFF |
|  |  |  | Bit 8 （Command execution completed） | Always ON |
| IW口ロ10 | Status | Bit | Status of the Inverter |  |
| IW $\square \square 30$ | Response Alarm Code | 0 to FFFFH | Alarm in the response to the MECHATROLINK command |  |

（2）Inverter Drive Control
－Description
Sends a command to the Inverter and monitors the Inverter．
－If the Inverter Drive Control command is switched to another command during its execution，the Inverter retains the last data and continues operation．The MPE720 retains the last data for the monitor parameters because I／O between the SVB Module and Inverter are stopped．The Status monitor parameter，however，will be updated for any command being executed except Transmission Reference．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :---: | :---: | :---: | :---: |
| OWDロ08 | Main Command | 0 to 8 | 01：Inverter Drive Control |
| OWDロ0C | Output Data Option Selection | Bit | － |
| OWDロ0D | Input Data Option Selection | Bit | － |
| OWロロ10 | Input Command | Bit | － |
| OWロロ11 | Speed Reference | － | － |
| OW口ロ12 | Torque Reference | － | － |
| OWDロ13 | Torque Compensation | － | Enabled when the Output Data Option Selection （OWDD0C），bit 0 is ON． |
| OWDロ14 | Multi－function Analog Output FM | － | Enabled when the Output Data Option Selection （OWDD0C），bit 1 is ON． |
| OWDロ15 | Multi－function Analog Output AM | － | Enabled when the Output Data Option Selection （OWDDOC），bit 2 is ON． |
| OWDロ16 | Multi－function Terminal Output | － | Enabled when the Output Data Option Selection （OWDD0C），bit 3 is ON． |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IWDप02 | Warning | Bit | － | － |
| IWDロ04 | Alarm | Bit | － | － |
| IWロロ08 | Command Response Code | 0 to 8 | 01：Inverter Drive Control |  |
| IWD－09 | Command Status | Bit | Bit 0 （Command execution flag） | ON while the command is being executed |
|  |  |  | Bit 3 （Command error completed status） | ON when an error occurs during command process－ ing |
|  |  |  | Bit 8 （Command execution completed） | OFF while the command is being executed ON when command execu－ tion completed |
| IWロロ0D | Input Data Option Selection Monitor | Bit | － |  |
| IWDロ10 | Status | Bit | Status of the Inverter |  |
| IWロロ11 | Output Frequency | － | － |  |
| IWDロ12 | Output Current | － | － |  |
| IWDロ13 | Motor Speed | － | Enabled when Input Data Option Selection（OWDC0D）， bit 0 is ON ． |  |
| IWDロ14 | Torque Reference | － | Enabled when Input Data Option Selection（OWDD0D）， bit 1 is ON ． |  |
| IWDロ15 | Encoder Count PG | － | Enabled when Input Data Option Selection（OWDप0D）， bit 2 is ON． |  |
| IWDロ16 | Frequency Reference | － | Enabled when Input Data Option Selection（OWDD0D）， bit 3 is ON． |  |
| IWDロ17 | Multi－function Analog Input A2 | － | Enabled when Input Data Option Selection（OWDD0D）， bit 4 is ON． |  |
| IW | Main Bus Voltage | － | Enabled when Input Data Option Selection（OWDD0D）， bit 5 is ON ． |  |
| IW | Alarm Code | － | Enabled when Input Data Option Selection（OWDD0D）， bit 6 is ON ． |  |
| IWDC1A | Warning Code | － | Enabled when Input Data Option Selection（OWD $\square 0 D$ ）， bit 7 is ON． |  |
| IWロロ1C | Multi－function Analog Input A3 | － | Enabled when Input Data Option Selection（OWDD0D）， bit 9 is ON ． |  |
| IWロロ1D | Multi－function Input Terminals | － | Enabled when Input Data Option Selection（OWDD0D）， bit A is ON ． |  |
| IWD－1E | Multi－function Analog Input A1 | － | Enabled when Input Data Option Selection（OWDD0D）， bit B is ON ． |  |
| IW | Encoder Counter | － | Enabled when Input Data Option Selection（OWDप0D）， bit C is ON ． |  |
| IWDロ20 | Monitor Data Set in F6－23 | － | Enabled when Input Data Option Selection（OWDCOD）， bit D is ON ． |  |
| IWDC21 | Monitor Data Set in F6－24 | － | Enabled when Input Data Option Selection（OWDप0D）， bit E is ON ． |  |
| IWDロ30 | Response Alarm Code | 0 to FFFFH | Alarm in the response to the MECHATROLINK com－ mand |  |

## （ 3 ）Read User Constant

Description
Reads the specified user constant from the Inverter．
－This command is valid when using MECHATROLINK－II（17－byte mode）and MECHATROLINK－I only． Use the subcommand when using MECHATROLINK－II（32－byte mode）．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :---: | :---: | :---: | :---: |
| OWDप08 | Main Command | 0 to 8 | 02：Read User Constant |
| OW口ロ3C | Inverter User Constant Number | 0 to FFFFH | － |
| OWロロ3D | Inverter User Constant Number Size | 1 to 4 | － |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IWDप02 | Warning | Bit | － |  |
| IWロロ04 | Alarm | Bit | － |  |
| IWロロ08 | Command Response Code | 0 to 8 | 02：Read User Constant |  |
| IWDロ09 | Command Status | Bit | Bit 0 （Command execution flag） | ON while the command is being executed |
|  |  |  | Bit 3 （Command error completed status） | ON when an error occurs during command process－ ing |
|  |  |  | Bit 8 （Command execution completed） | OFF while the command is being executed ON when command execu－ tion completed |
| IWD－10 | Status | Bit | Status of the Inverter |  |
| IWD－30 | Response Alarm Code | 0 to FFFFH | Alarm in the response to the MECHATROLINK com－ mand |  |
| IWDa3C | Inverter User Constant Number | 0 to FFFFH | － |  |
| IWロロ3E | User Constant Reading Data 1 | 0 to 65535 | － |  |
| IWロロ3F | User Constant Reading Data 2 | 0 to 65535 | － |  |
| IWロロ40 | User Constant Reading Data 3 | 0 to 65535 | － |  |
| IWDロ41 | User Constant Reading Data 4 | 0 to 65535 | － |  |

## （4）Write User Constant

Description
Writes the specified inverter user constant to a constant in the Inverter．
－This command is valid when using MECHATROLINK－II（17－byte mode）and MECHATROLINK－I only． Use the subcommand when using MECHATROLINK－II（32－byte mode）．
－For the A1000，V1000，Varispeed G7，and Varispeed F7，you must execute the User Constant RAM Writing com－ mand to enable the data written by executing the Write User Constant command（refer to 10．3．2（ 7 ）User Constant RAM Writing）．
For the VS mini V7，the values written with the Write User Constant command become valid immediately．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :---: | :---: | :---: | :---: |
| OWロロ08 | Main Command | 0 to 8 | 03：Write User Constant |
| OWロロ3C | Inverter User Constant Number | 0 to FFFFH | － |
| OWDロ3D | Inverter User Constant Number Size | 1 to 4 | － |
| OWDロ3E | Inverter User Constant Set Point 1 | 0 to 65535 | － |
| OWDL3F | Inverter User Constant Set Point 2 | 0 to 65535 | － |
| OWD－40 | Inverter User Constant Set Point 3 | 0 to 65535 | － |
| OWD－441 | Inverter User Constant Set Point 4 | 0 to 65535 | － |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IWDロ02 | Warning | Bit | － |  |
| IWロロ04 | Alarm | Bit | － |  |
| IWDロ08 | Command Response Code | 0 to 8 | 03：Write User Constant |  |
| IWD－09 | Command Status | Bit | Bit 0 （Command execution flag） | ON while the command is being executed |
|  |  |  | Bit 3 （Command error com－ pleted status） | ON when an error occurs during command processing |
|  |  |  | Bit 8 （Command execution completed） | OFF while the command is being executed ON when command execu－ tion completed |
| IWDロ10 | Status | Bit | Status of the Inverter |  |
| IWDロ30 | Response Alarm Code | 0 to FFFFH | Alarm in the response to the MECHATROLINK command |  |
| IWロロ3C | Inverter User Constant Number | 0 to FFFFH | － |  |

## （5）Alarm Monitor

Description
Reads the alarm that is occurring in the Inverter．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :--- | :--- | :--- | :--- |
| OW口ᄆ08 | Main Command | 0 to 8 | 04：Alarm Monitor |
| OW口口32 | Inverter Alarm Monitor Number | •A1000 and V1000：0 to 9 <br> •Varispeed G7 and Vari－ <br> speed F7：0 to 3 <br> •VS mini V7： 0 to 1 | Alarm monitor number <br> Set the alarm monitor number to 0 normally．If <br> multiple alarms are occurring，however，set the <br> alarm monitor number in the setting range <br> according to the number of alarms that are <br> occurring． |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IWDप02 | Warning | Bit | － |  |
| IWDロ04 | Alarm | Bit | － |  |
| IWロロ08 | Command Response Code | 0 to 8 | 04：Alarm Monitor |  |
| IWपロ09 | Command Status | Bit | Bit 0 （Command execution flag） | ON while the command is being executed |
|  |  |  | Bit 3 （Command error com－ pleted status） | ON when an error occurs during command processing |
|  |  |  | Bit 8 （Command execution completed） | OFF while the command is being executed <br> ON when command execu－ tion completed |
| IWロロ10 | Status | Bit | Status of the Inverter |  |
| IWロロ30 | Response Alarm Code | 0 to FFFFH | Alarm in the response to the MECHATROLINK command |  |
| IWDロ32 | Inverter Alarm Code | 0 to FFFFH | Currently occurring alarm that was read |  |

## （6）Alarm History Monitor

## Description

Reads the Inverter alarm history．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :--- | :--- | :--- | :--- |
| OW口口08 | Main Command | 0 to 8 | 05：Alarm History Monitor |
| OW口口32 | Inverter Alarm Monitor Number | • A1000 and V1000： 0 to 9 <br> $\bullet$ Varispeed G7 and Vari－ <br> speed F7：0 to 3 <br> •VS mini V7： 0 to 1 | Alarm monitor number |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IWDロ02 | Warning | Bit | － |  |
| IWDロ04 | Alarm | Bit | － |  |
| IWDロ08 | Command Response Code | 0 to 8 | 05：Alarm History Monitor |  |
| IWDロ09 | Command Status | Bit | Bit 0 （Command execution flag） | ON while the com－ mand is being exe－ cuted |
|  |  |  | Bit 3 （Command error completed status） | ON when an error occurs during com－ mand processing |
|  |  |  | Bit 8 （Command execution com－ pleted） | OFF while the com－ mand is being exe－ cuted <br> ON when command execution completed |
| IWDロ10 | Status | Bit | Status of the Inverter |  |
| IWDロ30 | Response Alarm Code | 0 to FFFFH | Alarm in the response to the MECHATROLINK command |  |
| IWロロ32 | Inverter Alarm Code | 0 to FFFFH | Alarm history that was read |  |

## （ 7 ）User Constant RAM Writing

## Description

Saves the parameter data written by executing Write User Constant in the Inverter volatile memory to enable the data．
－For the VS mini V7，written data becomes valid without executing this command．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :--- | :--- | :--- | :--- |
| OW口ᄆ08 | Main Command | 0 to 8 | $06:$ User Constant RAM Writing |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IW口口02 | Warning | Bit | － |  |
| IW口口04 | Alarm | Bit | － |  |
| IWDロ08 | Command Response Code | 0 to 8 | 06：User Constant RAM Writing |  |
| IW $\square \square 09$ | Command Status | Bit | Bit 0 （Command execution flag） | ON while the command is being executed |
|  |  |  | Bit 3 （Command error com－ pleted status） | ON when an error occurs during command processing |
|  |  |  | Bit 8 （Command execution completed） | OFF while the command is being executed ON when command execu－ tion completed |
| IW ${ }^{\text {a }}$ | Status | Bit | Status of the Inverter |  |
| IW $\square \square 30$ | Response Alarm Code | 0 to FFFFH | Alarm in the response to the MECHATROLINK command |  |

## （ 8 ）User Constant EEPROM Writing

Description
Saves the parameter data written by executing Write User Constant in the Inverter nonvolatile memory．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :--- | :--- | :--- | :--- |
| OW口ᄆ08 | Main Command | 0 to 8 | 07：User Constant EEPROM Writing |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IW口口02 | Warning | Bit | － |  |
| IW口口04 | Alarm | Bit | － |  |
| IW口口08 | Command Response Code | 0 to 8 | 07：User Constant EEPROM Writing |  |
| IW $\square \square 09$ | Command Status | Bit | Bit 0 （Command execution flag） | ON while the command is being executed |
|  |  |  | Bit 3 （Command error com－ pleted status） | ON when an error occurs during command processing |
|  |  |  | Bit 8 （Command execution completed） | OFF while the command is being executed ON when command execu－ tion completed |
| IW $\square \square 10$ | Status | Bit | Status of the Inverter |  |
| IW $\square \square 30$ | Response Alarm Code | 0 to FFFFH | Alarm in the response to the MECHATROLINK command |  |

## （9）Transmission Reference

Description
Enables the user to freely set a command and send it through the transmission line．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :---: | :--- | :--- | :--- |
| OW $\square \square 08$ | Main Command | 0 to 8 | $08:$ Transmission Reference |
| OW口ロ70 | Transmission Reference <br> Output Data 0 | 0 to FFFFH | The lower bytes contain the command code． |
| to | to | - | - |
| OW $\square \square 77$ | Transmission Reference <br> Output Data 7 | 0 to FFFFH | Watchdog timer counting is performed by the system． |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IWपロ08 | Command Response Code | 0 to 8 | 08：Transmission Reference |  |
| IWDC09 | Command Status | Bit | Bit 0 （Command execution flag） | ON while the command is being executed |
|  |  |  | Bit 3 （Command error com－ pleted status） | Always OFF |
|  |  |  | Bit 8 （Command execution completed） | Always OFF |
| IWD－70 | Transmission Reference Input Data 0 | 0 to FFFFH | The lower bytes contain the command code and the upper bytes contain the alarm． |  |
| to | to | － | － |  |
| IWロロ77 | Transmission Reference Input Data 7 | 0 to FFFFH | Watchdog timer checking is performed by the system． |  |

## 10．3．3 Subcommand Details

Each subcommand and the related parameters are described below．

## （1）No Command

－Description
No command to be executed．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range |  |
| :--- | :--- | :--- | :--- |
| OW口ᄆ0A | Sub Command | 0 to 9 | 00 ：No Command |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :--- | :--- | :--- | :--- | :--- |
| IW $\square \square 0$ A | Subcommand Response Code | 0 to 9 | 00：No Command |  |
|  |  |  | Bit 0 （Command execution <br> flag） | Always OFF |
|  | Subcommand Status | Bit 3（Command error com－ <br> pleted status） | Always OFF |  |
|  |  |  | Bit 8（Command execution <br> completed） | Always OFF |
| IW $\square \square 31$ | Subcommand Response Status | Bit | Inverter subcommand processing status |  |
| IW $\square \square 33$ | Auxiliary Inverter Alarm Code | 0 to FFFFH | Inverter alarm code |  |

## （ 2 ）Inverter I／O Control

## －Description

Sends a command to the Inverter and monitors the Inverter．This subcommand serves as an auxiliary function for the main command（OW $\square \square 08$ ）．Only the data selected in Auxiliary Output Data Option Selection（OW $\square \square 0 \mathrm{E}$ ）can be output．Furthermore，only the data selected in the Auxiliary Input Data Option Selection（OWD $\square 0 \mathrm{~F}$ ）can be moni－ tored．
－This command is valid when using MECHATROLINK－II（32－byte mode）．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :---: | :---: | :---: | :---: |
| OWDL0A | Sub Command | 0 to 9 | 01：Inverter I／O Control |
| OWD－0E | Auxiliary Output Data Option Selection | Bit | － |
| OWロロ0F | Auxiliary Input Data Option Selection | Bit | － |
| OW－D13 | Torque Compensation | － | Enabled when bit 0 of Auxiliary Output Data Option Selec－ tion（OWDDOE）is ON． |
| OWD－14 | Multi－function Analog Output FM | － | Enabled when bit 1 of Auxiliary Output Data Option Selec－ tion（OWDD0E）is ON． |
| OWपロ15 | Multi－function Analog Output AM | － | Enabled when bit 2 of Auxiliary Output Data Option Selec－ tion（OWDDOE）is ON． |
| OWD－16 | Multi－function Terminal Output | － | Enabled when bit 3 of Auxiliary Output Data Option Selec－ tion（OWDDOE）is ON． |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IWDC0A | Subcommand Response Code | 0 to 9 | 01：Inverter I／O Control |  |
|  |  |  | Bit 0 （Command execution flag） | ON while the command is being executed |
| IWロロ0B | Subcommand Status | Bit | Bit 3 （Command error com－ pleted status） | ON when an error occurs during command processing |
|  |  | Bit | Bit 8 （Command execution completed） | OFF while the command is being executed Always ON after execution is completed |
| IWD－0F | Auxiliary Input Data Option Se－ lection Monitor | Bit | － |  |
| IWD－13 | Motor Speed | － | Enabled when bit 0 of Auxiliary Output Data Option Selec－ tion（OWDDOF）is ON． |  |
| IWD－14 | Torque Reference | － | Enabled when bit 1 of Auxiliary Output Data Option Selec－ tion（OWDD0F）is ON． |  |
| IWD－15 | Encoder Count PG | － | Enabled when bit 2 of Auxiliary Output Data Option Selec－ tion（OWDDOF）is ON． |  |
| IWD－16 | Frequency Reference | － | Enabled when bit 3 of Auxiliary Output Data Option Selec－ tion（OWDDOF）is ON． |  |
| IWपロ17 | Multi－function Analog Input A2 | － | Enabled when bit 4 of Auxiliary Output Data Option Selec－ tion（OWDD0F）is ON． |  |
| IWपロ18 | Main Bus Voltage | － | Enabled when bit 5 of Auxiliary Output Data Option Selec－ tion（OWDDOF）is ON． |  |
| IWपロ19 | Alarm Code | － | Enabled when bit 6 of Auxiliary Output Data Option Selec－ tion（OWDDOF）is ON． |  |
| IWD－1A | Warning Code | － | Enabled when bit 7 of Auxiliary Output Data Option Selec－ tion（OWDDOF）is ON． |  |
| IWDロ1C | Multi－function Analog Input A3 | － | Enabled when bit 9 of Auxiliary Output Data Option Selec－ tion（OWDロ0F）is ON． |  |
| IWロロ1D | Multi－function Input Terminals | － | Enabled when bit A of Auxiliary Output Data Option Selec－ tion（OWDD0F）is ON． |  |
| IWDロ1E | Multi－function Analog Input A1 | － | Enabled when bit B of Auxiliary Output Data Option Selec－ tion（OWDD0F）is ON． |  |
| IWD－1F | Encoder Counter（CH2） | － | Enabled when bit C of Auxiliary Output Data Option Selec－ tion（OWDDOF）is ON． |  |
| IWD－20 | Monitor Data Set in F6－23 | － | Enabled when bit D of Auxiliary Output Data Option Selec－ tion（ $\mathrm{OW} \square \square 0 \mathrm{~F}$ ）is ON． |  |
| IWपС21 | Monitor Data Set in F6－24 | － | Enabled when bit E of Auxiliary Output Data Option Selec－ tion（ $\mathrm{OW} \square \square 0 \mathrm{~F}$ ）is ON． |  |
| IWD－31 | Subcommand Response Status | Bit | Inverter subcommand processing status |  |
| IWD－33 | Auxiliary Inverter Alarm Code | 0 to FFFFH | Inverter alarm code |  |

## （ 3 ）Read User Constant

Description
Reads the specified user constant from the Inverter．
－This command is valid when using MECHATROLINK－II（32－byte mode）．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :--- | :--- | :--- | :--- |
| OW口ᄆ0A | Sub Command | 0 to 9 | 02 ：Read User Constant |
| OW口ロ42 | Auxiliary Inverter User Constant <br> Number | 0 to FFFFH | - |
| OW口ロ43 | Auxiliary Inverter User Constant <br> Number Size | 1 to 4 | - |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IWDD0A | Subcommand Response Code | 0 to 9 | 02：Read User Constant |  |
| IWD－00 | Subcommand Status | Bit | Bit 0 （Command execution flag） | ON while the command is being executed |
|  |  |  | Bit 3 （Command error com－ pleted status） | ON when an error occurs during command process－ ing |
|  |  |  | Bit 8 （Command execution completed） | OFF while the command is being executed ON when command execu－ tion completed |
| IWDロ31 | Subcommand Response Status | Bit | Inverter subcommand processing status |  |
| IWDロ42 | Auxiliary Inverter User Constant Number | 0 to FFFFH | － |  |
| IWDロ44 | Auxiliary User Constant Reading Data 1 | 0 to 65535 | － |  |
| IWDロ45 | Auxiliary User Constant Reading Data 2 | 0 to 65535 | － |  |
| IWDロ46 | Auxiliary User Constant Reading Data 3 | 0 to 65535 | － |  |
| IWDロ47 | Auxiliary User Constant Reading Data 4 | 0 to 65535 | － |  |

## （4）Write User Constant

Description
Writes the specified inverter user constant to a constant in the Inverter．
－This command is valid when using MECHATROLINK－II（32－byte mode）．
－For the A1000，V1000，Varispeed G7，and Varispeed F7，you must execute the User Constant RAM Writing com－ mand to enable the data written by executing the Write User Constant command（refer to 10．3．2（ 7 ）User Constant RAM Writing）．
For the VS mini V7，the values written with the Write User Constant command become valid immediately．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :---: | :---: | :---: | :---: |
| OW口口0A | Sub Command | 0 to 9 | 03：Write User Constant |
| OW口ロ42 | Auxiliary Inverter User Constant Number | 0 to FFFFH | － |
| OW口ロ43 | Auxiliary Inverter User Constant Number Size | 1 to 4 | － |
| OW口口44 | Auxiliary Inverter User Constant Set Point 1 | 0 to 65535 | － |
| OW口ロ45 | Auxiliary Inverter User Constant Set Point 2 | 0 to 65535 | － |
| OW口ロ46 | Auxiliary Inverter User Constant Set Point 3 | 0 to 65535 | － |
| OW口ロ47 | Auxiliary Inverter User Constant Set Point 4 | 0 to 65535 | － |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IW口口0A | Subcommand Response Code | 0 to 9 | 03：Write User Constant |  |
| IW $\square \square 0 \mathrm{~B}$ | Subcommand Status | Bit | Bit 0 （Command execution flag） | ON while the command is being executed |
|  |  |  | Bit 3 （Command error com－ pleted status） | ON when an error occurs during command process－ ing |
|  |  |  | Bit 8 （Command execution completed） | OFF while the command is being executed ON when command execu－ tion completed |
| IW $\square \square 30$ | Response Alarm Code | 0 to FFFFH | Alarm in the response to the MECHATROLINK com－ mand |  |
| IW $\square \square 31$ | Subcommand Response Status | Bit | Inverter subcommand processing status |  |
| IWロロ33 | Auxiliary Inverter Alarm Code | 0 to FFFFH | Inverter alarm code |  |
| IW $\square \square 42$ | Auxiliary Inverter User Constant Number | 0 to 65535 | － |  |

## （ 5 ）Alarm Monitor

## Description

Reads the alarm that is occurring in the Inverter．
－This command is valid when using MECHATROLINK－II（32－byte mode）．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :---: | :---: | :---: | :---: |
| OW口口0A | Sub Command | 0 to 9 | 04：Alarm Monitor |
| OWDロ33 | Auxiliary Inverter Alarm Monitor Number | －A1000 and V1000： 0 to 9 <br> －Varispeed G7 and Vari－ speed F7： 0 to 3 <br> －VS mini V7： 0 to 1 | Record number specification Set the alarm monitor number to 0 normally．If multiple alarms are occurring，however，set the alarm monitor number in the setting range according to the number of alarms that are occurring． |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IW口口0A | Subcommand Response Code | 0 to 9 | 04：Alarm Monitor |  |
|  |  |  | Bit 0 （Command execution flag） | ON while the command is being executed |
| IW $\square \square 0 \mathrm{~B}$ | Subcommand Status | Bit | Bit 3 （Command error com－ pleted status） | ON when an error occurs during command process－ ing |
|  |  |  | Bit 8 （Command execution completed） | OFF while the command is being executed ON when command execu－ tion completed |
| IW $\square \square 31$ | Subcommand Response Status | Bit | Inverter subcommand processing status |  |
| IWロロ33 | Auxiliary Inverter Alarm Code | 0 to FFFFH | Currently occurring alarm that was read |  |

## （6）Alarm History Monitor

Description
Reads the Inverter alarm history．
－This command is valid when using MECHATROLINK－II（32－byte mode）．
Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :--- | :--- | :--- | :--- |
| OWロロ0A | Sub Command | 0 to 9 | 05：Alarm History Monitor |
| OWロロ33 | Auxiliary Inverter Alarm Monitor <br> Number | • A1000 and V1000： 0 to 9 <br> • Varispeed G7 and Vari－ <br> speed F7： 0 to 3 | Record number specification |
|  | •VS mini V7： 0 to 1 |  |  |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IWDप0A | Subcommand Response Code | 0 to 9 | 05：Alarm History Monitor |  |
|  |  |  | Bit 0 （Command execution flag） | ON while the command is being executed |
| IWD－00 | Subcommand Status | Bit | Bit 3 （Command error com－ pleted status） | ON when an error occurs during command process－ ing |
|  |  |  | Bit 8 （Command execution completed） | OFF while the command is being executed ON when command execu－ tion completed |
| IWロロ31 | Subcommand Response Status | Bit | Inverter subcommand processing status |  |
| IWロロ33 | Auxiliary Inverter Alarm Code | 0 to FFFFH | Alarm history that was read |  |

## （7）Transmission Reference

## Description

Enables the user to freely set a command and send it through the transmission line．
－This command is valid when using MECHATROLINK－II（32－byte mode）．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :---: | :--- | :--- | :--- |
| OWロロ0A | Sub Command | 0 to 9 | 08：Transmission Reference |
| OW口ロ78 | Transmission Reference Output <br> Data 8 | 0 to FFFFH | The lower bytes contain the subcommand． |
| to | to | - | - |
| OW口ロ7F | Transmission Reference Output <br> Data 15 | 0 to FFFFH | - |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IWDD0A | Subcommand Response Code | 0 to 9 | 08：Transmission Reference |  |
| IWDロ09 | Subcommand Status | Bit | Bit 0 （Command execution flag） | ON while the command is being executed |
|  |  |  | Bit 3 （Command error com－ pleted status） | Always OFF |
|  |  |  | Bit 8 （Command execution completed） | Always OFF |
| IWDロ78 | Transmission Reference Input Data 8 | 0 to FFFFH | The lower bytes contain the subcommand code and the upper bytes contain the sub status． |  |
| to | to | － | － |  |
| IWDロ7F | Transmission Reference Input Data 15 | 0 to FFFFH | － |  |

## （ 8 ）Read Fixed Parameters

Description
Reads the set data of the specified fixed parameter．
－Related Parameters
－Setting Parameters

| Register No． | Name | Setting Range | Remarks |
| :--- | :--- | :--- | :--- |
| OWロロ0A | Sub Command | 0 to 9 | 09：Read Fixed Parameters |
| OWロप48 | Fixed Parameter Number | 0 to 65535 | Set the fixed parameter number． |

－Monitor Parameters

| Register No． | Name | Setting Range | Remarks |  |
| :---: | :---: | :---: | :---: | :---: |
| IWDप0A | Subcommand Response Code | 0 to 9 | 09：Read Fixed Parameters |  |
|  |  |  | Bit 0 （Command execution flag） | ON while the command is being executed |
| IWD－0B | Subcommand Status | Bit | Bit 3 （Command error com－ pleted status） | ON when an error occurs during command process－ ing |
|  |  |  | Bit 8 （Command execution completed） | OFF while the command is being executed ON when command execu－ tion completed |
| ILロロ48 | Fixed Parameter Monitor | $-2^{31}$ to $2^{31}-1$ | － |  |

### 10.3.4 Applicable Combinations of Main Commands and Subcommands

The following table shows applicable combinations of commands and subcommands.

| Subcommand <br> Main Command | No Command | Inverter I/O Control | Read <br> User <br> Con- <br> stant | Write User Constant | Alarm Monitor | Alarm History Monitor | Transmission Reference | Read <br> Fixed Parameter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 No Command | $\bigcirc$ |
| 01 Inverter Drive Control | $\bigcirc$ |
| 02 Write User Constant | $\times{ }^{* 1}$ | $\times^{* 1}$ | $\times^{* 1}$ | $\times^{* 1}$ | $\times{ }^{* 1}$ | $\times^{* 1}$ | $\times^{* 1}$ | $\bigcirc$ |
| 03 Read User Constant | $\times^{* 1}$ | $\bigcirc$ |
| 04 Alarm Monitor | $\bigcirc$ |
| 05 Alarm History Monitor | $\bigcirc$ |
| 06 User Constant RAM Writing | $\bigcirc$ |
| 07 User Constant EEPROM Writing | $\bigcirc$ |
| 08 Transmission Reference | O*2 | $\bigcirc$ |

* 1. In MECHATROLINK-II 32-byte mode, the main commands Write User Constant and Read User Constant will activate alarms in the Inverter.
*2. The Inverter determines whether the combination of command and subcommand is applicable based on the user settings for the command.
- There are no restrictions on the combination of commands and subcommands for the SVB Module.
- If the received main command and subcommand are incompatible, the Inverter will process the main command first.
- If a command that is incompatible with the command being processed is received, the command being processed will have priority.
- If the Inverter Drive Control main command is incompatible with the Inverter I/O Control subcommand, the main command processing will be overwritten by the subcommand processing.


## 10．3．5 Precautions for Inverter Operation

This section provides precautions for Inverter operation．
－Inverter operation in progress：Bit 5 （Driving）in the Status（ILDD10）monitor parameter is 1 （ON）． Even if the motor is stopped，Inverter operation is considered to be in progress if this bit is 1 （ON）．
－Inverter operation stopped：Bit 5 （Driving）in the Status（ILDD10）monitor parameter is 0 （OFF）．

## （1）Operation When the CPU Stops

If CPU STOP is executed from the Machine Controller while Inverter operation is in progress，the SVB Module will force the Inverter to stop operation．
Even if the Forward RUN or Reverse RUN bit was set to 1 （ON）by the application，the bit will be forced to 0 （OFF）． Bit 0 （Operation Ready）in IWD $\square 00$（Run Status）will also change to 0 （OFF）．To start the CPU when it has stopped， click the Setting Parameter Tab to change the tab page，set Main Command（OWDD08）to No Command and then change bit D（Drive Permission）of Run Command Setting（OWDロ00）to 1 （ON）．

## （ 2 ）Timing of Changes to MECHATROLINK Allocations

Changes to settings made in the Module Configuration Tab Page cannot be saved while Inverter operation is in prog－ ress．Save the settings in the Module Configuration Tab Page while the Inverter is stopped．

## （ 3 ）Timing of Changes to Fixed Parameters

The fixed parameters cannot be saved while Inverter operation is in progress．Save the fixed parameters while the Inverter is stopped．
（ 4 ）Switching between Motion Commands While the Command Control Inverter Drive Is Being Executed

If the Inverter Drive Control command in Main Command（OWD $\square 08$ ）is changed to another command while Inverter operation is in progress，the Inverter will maintain the last command status of the Inverter Drive Control command and motor operation will continue．Note that switching to the No Command command also will not stop the motor． Refer to 10.3 .5 （ 5 ）Motor Stopping and Restarting Methods for the motor stopping methods． Also，if you change the command，I／O between the SVB Module and Inverter will stop．When that occurs，the monitor parameter data on the MPE720 will no longer be the most recent data．If you change to any command other than the Transmission Reference command，the Run status monitor information will be valid．

## （5）Motor Stopping and Restarting Methods

There are two ways to stop and restart the motor．

## －Method 1

To stop the motor，set bit 0 （Forward RUN）and bit 1 （Reserve RUN）of Input Command（OWDप10）to 0 （OFF）while the Inverter Drive Control command is being executed in Main Command（OWDロ08）．
To restart the motor，set bit 0 or bit 1 of OW口प10 to 1 （ON）．

## －Method 2

To stop the motor，set bit D （Drive Permission）of Run Command Setting（OWDロ00）to 0 （OFF）． To restart the motor，set parameters using the following procedure．

1．Change Main Command（OWपロ08）to the No Command command．
2．Set bit $D$（Drive Permission）of Run command setting（OWDロ00）to 1 （ON）．
3．Change Main Command（OWロप08）to the Inverter Drive Control command．
This concludes the procedure to restart the motor．

## ( 6 ) Saving Fixed Parameters

If you manually allocate the Inverter, always save the fixed parameters. If you do not save the fixed parameters, the current values of the setting parameters will be restored to the default values when you restart the Inverter.

### 10.4 Setup Procedure

This section describes how to set up Inverters using the MPE720.

### 10.4.1 Check Items before Setup

Confirm the following items before you set up an Inverter.

- For information on how to set Inverter user constants, Inverter constants, and Inverter parameters, refer to the relevant Inverter manual.
( 1 ) A1000, V1000, Varispeed G7, and Varispeed F7
- The b1-01 Inverter parameter (Frequency Reference Selection 1) must be set to 3 (Option Card or Option Unit).
- The b1-02 Inverter parameter (Run Command Selection 1) must be set to 3 (Option Card or Option Unit).
- The other Inverter parameters must be correctly set.
(2) VS mini V7
- The n004 Inverter user constant (Frequency Reference Selection) must be set to 9 (Option Card).
- The n003 Inverter user constant (Run Command Selection) must be set to 3 (Option Card).
- The other Inverter parameters must be correctly set.


### 10.4.2 Inverter Settings

Use the following flowchart to make the Inverter settings.


The procedures for STEP 1 to STEP 5 are given below.

## ( 1 ) STEP 1: Define the Module Configuration of the Inverter

You can define the module configuration of the Inverter either automatically or manually.
[ a ] Automatic Definition Method

1. Execute self configuration on the Machine Controller.

When you execute self configuration, information on the Modules that are connected to the Machine Controller is detected and the Inverter I/O registers are assigned on the Module Configuration Tab Page. Refer to 3.2 Executing Self-configuration for the procedure to execute self configuration.
2. Open the Module Configuration Tab Page.

- Refer to 3.4.1 (1) Opening the Module Configuration Definition Window for how to open the Module Configuration Tab Page.

3. Confirm that communications have been established. Refer to steps 7. to 10. in 10.4.2 (1) [b] Manual Definition Method on page 10-48 for the procedure.

This concludes the procedure.

## [b] Manual Definition Method

1. Start the MPE720 on a computer that is connected to the Machine Controller and open the Module Configuration Tab Page.

- Refer to 3.4.1 (1) Opening the Module Configuration Definition Window for how to open the Module Configuration Tab Page.

2. Click the Expand [+] Button for the Function Module/Slave Cell labeled SVB or SVB01.


The list of slaves connected to that Module will be displayed.
3. Double-click the cell at the location to allocate the Inverter.


The Slaves Dialog Box will be displayed.

- The Function List Dialog Box may be displayed if the Inverter is already allocated. In this case, select the Device Select Icon.

4. Select Inverter - VS-7/1000Series and click OK.


- Always select VS-7/1000Series regardless of the model of the Inverter.

5. Confirm that the Inverter was allocated, and then click Write.


A message dialog box will be displayed.
6. Click $\mathbf{O K}$.


[^6]7. Double-click the VS-7/1000Series Cell.


The Function List Dialog Box will be displayed.
8. Click the Monitor Parameter Icon.


The Setting/Monitor Parameter Tab Page will be displayed.
9. Click the Expand [+] Button for Run Status (IWロロ00).

10. Confirm that bit 3 (Inverter Ready) is 1 (ON).


If it is $1(\mathrm{ON})$, the Inverter is ready and communications were established successfully.
If it is 0 (OFF), communications have not been established between the Machine Controller and Inverter. Check the connection of the MECHATROLINK cable, the setting status of the Inverter user constants, and the settings on the MECHATROLINK Communications Definition Tab Page.

- Refer to 3.4.2 MECHATROLINK Transmission Definition Window for details on the MECHATROLINK Communications Definition Tab Page.

This concludes the procedure.

## ( 2 ) STEP 2: Set the Required Fixed Parameters

1. Open the Function List Dialog Box.

- Refer to step 7. in 10.4.2 (1) [b] Manual Definition Method on page $10-48$ for how to open the Function List Dialog Box.

2. Click the Fixed Parameter Icon.


The Fixed Parameter Tab Page will be displayed.
3. Set the fixed parameters as required.

| Module Configuration : [MP2200-04] |  | Fixed Parameter: [MP2200-04] - [Inverter Setting] |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| File 國 Save to project Simport ©xport |  |  | Controller Read Write |  | Filt |
| 12 | 2 * |  | xis\#02 Series |  |  |
|  | 0 : Selection of operation modes | 0:S | operatio. |  |  |
|  | 2 : Function selection flag 2 |  | 0000[H] |  |  |
|  | [Bit0]Communication abnormality d... |  | 0 : Disabled |  |  |
|  | [Bit.1]WDT abnormality detection m .. |  | 0 : Disabled |  |  |
|  | 3 : Function selection flag 3 |  | 8000[H] |  |  |
|  | [Bit:0]Communication Selection is A. |  | 0 : Alarm |  |  |

- If you manually set the module configuration definitions for an Inverter, always save the fixed parameters. If you do not save the fixed parameters, the current values of the setting parameters will be restored to the default values when you restart the Inverter.

This concludes the procedure.

## ( 3 ) STEP 3: Confirm That the Inverter Is Ready for Operation

1. Open the Function List Dialog Box.

- Refer to step 7. in 10.4.2 (1) [b] Manual Definition Method on page 10-48 for how to open the Function List Dialog Box.

2. Click the Setting Parameter Icon.


The Setting Parameter Tab Page will be displayed.
3. Double-click the [...] Cell for Run Command Setting (OWपロ00).


The Edit Dialog Box will be displayed.

4．Set bit D （Drive Permission）to $1(\mathrm{ON})$ ，and then click OK．


5．Click the Monitor Parameter Tab，and confirm that bit 0 （Operation Ready）of Run Status（IWपロ00）is 1 （ON）．

| Module Configuration ：［MP2200－04］ |  | Setting／Monitor parameter：［MP2200－04］－［Inverter Setting］ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  | $12^{*}$ |  | Address |  | Axis0302 <br> 回 Circuit\＃03 Axis\＃02 VS－7／1000Series |
|  |  |  |  |  |  |
|  | －0：Run status |  | Iw9080 |  | 0009［H1 |
|  | ［Bit：0］Operation | ready | IB90800 |  | O 1：0N |
|  | ［Bit：2］System BU |  | IB90802 |  | 0：OFF |
|  | ［Bit 3］${ }^{\text {l }}$ liverter R | eady | IB90803 |  | O 1：Inverter ready |
|  | 1 ：Parameter num | ber when range ove．．． | IW9081 |  | 0 |
|  | $\pm 2$ ：Warning |  | IL9082 |  | 0000 0200［H］ |
|  | $\pm 4$ ：Alarm |  | IL9084 |  | $00000000[\mathrm{H}]$ |
|  | 8：Command Res | ponse Code | IW9088 |  | 0 ：No Command |
|  | $\pm 9$ ：Command Stat |  | IW9089 |  | 0000［H］ |
|  | 10 ：Subcommand | response code | IW908A |  | 0 ：No Command |
|  | $\pm 11$ ：Subcommand | status | IW908B |  | 0000［H］ |
|  | $\pm 13$ ：Input Data Op | ion Selection Monitor | IW908D |  | 0000［H］ |
|  | $\pm 15$ ：Auxiliary Inpu | Data Option Selecti．． | IW908F |  | 0000［H］ |
|  | $\pm 16$ ：Status |  | IW9090 |  | 0000［H］ |
|  | 17 ：Output Freque | ncy | IW9091 |  | 0 |
|  | 18 ：Output Curren |  | IW9092 |  | 0 |
|  | 19 ：Motor Speed | option） | IW9093 |  | 0 |
|  | 20 ：Torque Refer | nce（U1－09）（option） | Iw9094 |  | 0［0．1\％］ |
|  | 21 ：Encoder coun | er（option） | IW9095 |  | O［pulse］ |
|  | 22 ：Frequency Re | ference（U1－01）（opt． | IW9096 |  | 0 |
|  | 23 ：Multi－function | Analog Input A2（opt． | Iw9097 |  | 0［0．1\％］ |
|  | 24 ：Main Bus Volt | age（option） | IW9098 |  | OM |
|  | 25 ：Alarm Code（o | ation） | IW9099 |  | 0 |
|  | 26 ：Alarm Code（ | ption） | IW909A |  | 0 |
| Setting Parameter | Monitor Parameter |  | －．．．．．．－ |  | m |

－If the status is 0 （OFF），click the Setting Parameter Tab，and confirm that a command is not being executed in the Main Command setting parameter（OWDC08）．
If the current command is Inverter Drive Control，first select another command and then set bit $D$（Drive Per－ mission）in Run Command Setting（OWDロ00）to 0 （OFF）and then change it back to 1 （ON）．

This concludes the procedure．
（ 4 ）STEP 4：Execute the Inverter Drive Control Command
1．Click the Setting Parameter Tab，and then double－click the［．．．］Cell for Main Command（OWロロ08）．


The Edit Dialog Box will be displayed．

2．Select 1：Inverter Drive Control，and click OK．

－Wait for at least one high－speed scan after you set bit D（Drive Permission）in Run Command Setting （OWDD00）to 1 （ON）in step 5．of 10．4．2（3）STEP 3：Confirm That the Inverter Is Ready for Operation before you make this setting．
The following parameters will be enabled when you execute the Inverter Drive Control command．
$<$ Inverter Output＞Setting Parameters Tab Page
Input Command（OWロロ10）
Speed Reference（OWロロ11）
Torque Reference（OW $\square \square 12$ ）
＜Inverter Input＞Monitor Parameter Tab Page Status（IWロロ10）
Output Frequency（IW $\square \square 11$ ） Output Current（IW $\square \square 12$ ）

Set the Output Data Option Selection（OW $\square \square 0 \mathrm{C}$ ）and Input Data Option Selection（OW $\square \square 0 \mathrm{D}$ ）to enable the output data from OW $\square \square 13$ to OW $\square 16$ and the input data from IW $\square \square 13$ to IW $\square \square 1 D$ as required．
－Refer to 10．4．3 I／O Options for details on the Output Data Option Selection and Input Data Option Selection parameters．

This concludes the procedure．

## （ 5 ）STEP 5：Set the Required Setting Parameters

1．Set the required parameters in the setting column on the Setting Parameter Tab Page．

| Module Configuration ：［MP2200－04］Setting／Monitor parameter ：［MP2200－04］－［liverter Setting］ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | $12^{*}$ | Address | Axis0302自CircuitH03 Axis\＃02 <br> VS－7／1000Series <br> 【Initial value】 | Axis0302 <br> 回 Circuit\＃03 Axis\＃02 VS－7／1000Series |
|  |  |  |  | Update |
|  | $\pm 0$ ：Run command setting | OW9080 | $\checkmark$ 0000［H］ | 2000［H］ |
|  | 8 ：Main Command | Оพ9088 | $\checkmark$ 0：No Command | 1：Inverter Drive Control |
|  | 10 ：Sub Command | Ow908A | $\square \quad 0:$ No Command | 0 ：No Command |
|  | $\pm 12$ ：Output Data Option Selection | Ow908C | $\square \quad 0000[\mathrm{H}]$ | 0000［H］ |
|  | $\pm 13$ ：Input Data Option Selection | Ow908D | $\square \quad 0000[\mathrm{H}]$ | 0000［H］ |
|  | $\pm 14$ ：Auxiliary Output Data Option Sele．．． | OW908E | $\square \quad 0000[\mathrm{H}]$ | 0000［H］ |
|  | $\pm 15$ ：Auxiliary Input Data Option Selecti．．． | Ow908E | $\square \quad 0000[\mathrm{H}]$ | 0000［H］ |
|  | $\pm 16$ ：Input Command | OW9090 | $\square \quad 0000[\mathrm{H}]$ | 0000［H］ |
|  | 17：Speed Reference | Ow9091 | $\square$ | 0 |
|  | 18 ：Torque Reference | Ow9092 | $\square \quad 0[0.1 \%]$ | 0［0．1\％］ |
|  | 19 ：Torque Compensation（option） | Ow9093 | $\square \quad 0[0.1 \%]$ | 0［0．1\％］ |
|  | 20 ：Multi－function Analog Output FM（．． | Оพ9094 | $\square \mathrm{O}-1540$ to $+1540 /-11 \mathrm{~V}$ ． | 0［－1540 to $+1540 /-11 \mathrm{~V}$ to． |
|  | 21 ：Multi－function Analog Output AM（．． | Ow9095 | － 0 ［－1540 to $+1540 /-11 \mathrm{~V}$ ． | Of－-1540 to $+1540 /-11 \mathrm{~V}$ to． |
|  | $\pm 22$ ：Multi－function Terminal Output（op．．． | Ow9096 | $\square 00000[\mathrm{H}]$ | 0000［H］ |
|  | 50 ：Inverter Alarm Monitor Number | Ow90B2 | $\square 0^{\square}$ | 0 |
|  | 51 ：Auxiliary Inverter Alarm Monitor N．．． | Ow90в3 | $\square$ | 0 |
|  | 60 ：Inverter User Constant Number | Ow90BC | $\square \quad 0000[H]$ | 0000［H］ |
|  | 61 ：Inverter User Constant Number Si．． | OW90BD | $\square$ | 1 |
|  | 62 ：Inverter User Constant Set Point 1 | OW90BE | $\square$ | 0 |
|  | 63 ：Inverter User Constant Set Point 2 | Ow90bs | $\square$ | 0 |
|  | 64 ：Inverter User Constant Set Point 3 | Оw90C0 | $\square$ | 0 |
|  | 65 ：Inverter User Constant Set Point 4 | Ow90C1 | $\square$ | 0 |
|  | 66 ：Auxiliary Inverter User Constant N ． | Ow90C2 | $\square \quad 0000[\mathrm{H}]$ | 0000［H］ |
|  | 67 ：Auxiliary Inverter User Constant Si．． | Ow90C3 | $\square$ | 1 |
|  | ＾．．．．．．i．．．．．． | －．．．．．．． | 园 |  |
| Setting Parameter | Monitor Parameter |  |  |  |

＊1．This is the data that is output continually during execution of the Inverter Drive Control command．
＊2．This data is enabled when the Inverter Drive Control command is being executed and the Output Data Option Selection parameter（OWDDOC）is set to 1 （enabled），or when the Inverter I／O Control subcommand is being exe－ cuted and the Auxiliary Output Data Option Selection parameter（OWDDOE）is set to 1 （enabled）．
－The Inverter I／O Control subcommand is valid for MECHATROLINK－II 32－byte mode only．
－If the Inverter Drive Control command is switched to another command during its execution，the Inverter retains the last data and continues operation．The MPE720 retains the last data for the monitor parameters because I／O between the SVB Module and Inverter are stopped．The Status monitor parameter，however，will be updated for any command being executed except Transmission Reference．

- The output data that can be used depends on the Inverter model. Refer to 10.2.4 (1) Inverter Output Data Details for details.
- You can monitor a parameter by double-clicking the monitor data column cell to monitor on the Monitor Parameter Tab Page.

* 1. This is the data that is input continually during execution of the Inverter Drive Control command.
* 2. This data is enabled when the Inverter Drive Control command is being executed and the Input Data Option Selection parameter (OWDDOD) is set to 1 (enabled), or when the Inverter I/O Control subcommand is being executed and the Auxiliary Input Data Option Selection parameter (OWDロOF) is set to 1 (enabled).
- The Inverter I/O Control subcommand is valid for MECHATROLINK-II 32-byte mode only.
- The input data that can be used depends on the Inverter model. Refer to 10.2.4 ( 2 ) Inverter Input Data Details for details.

This concludes the procedure.

### 10.4.3 I/O Options

## (1) Output Data Options

The OWDD13 to OWDप16 parameters contain the output data options.
The output data options are valid when the following conditions are met.

- The Output Data Option Selection (OW $\square \square 0 \mathrm{C}$ ) is set to 1 (enabled) during Inverter drive control.
- The Auxiliary Output Data Option Selection (OWDロ0E) is set to 1 (enabled) during Inverter I/O control for a subcommand.


## (2) Input Data Options

The IW $\square \square 13$ to IW $\square \square 21$ parameters contain the input data options.
The input data options are valid when the following conditions are met.

- The Input Data Option Selection (OWD $\square 0 \mathrm{D}$ ) is set to 1 (enabled) during Inverter drive control.
- The Auxiliary Input Data Option Selection (OWDD0F) is set to 1 (enabled) during Inverter I/O control for a subcommand.
Data of selected input options can be monitored by using the Input Data Option Selection Monitor (IW $\square \square 0 \mathrm{D}$ ) and Auxiliary Input Data Option Selection Monitor (IWDD0F) of the monitor parameters.


## ( 3 ) Response Speed of Selected Output and Input Data Options

The response speed for the data selected from Output Data Option Selection, Auxiliary Output Data Option Selection, Input Data Option Selection, and Auxiliary Input Data Option Selection depends on the amount of selected data. Normally, it will be six times slower than that for standard I/O data (always available I/O data).
The response speed differs depending on the number of selected options, shown in the following tables.
$\square$ Number of Selected Output Data Options (OWDロ0C) and Time Required for Response

| Number of Selected <br> Output Data Options | Time Required for <br> Response <br> (Standard output data $=1)$ |
| :---: | :---: |
| 1 | 1 |
| 2 | 1 |
| 3 | 2 |
| 4 | 2 |

Number of Selected Input Data Options (OWDロ0D) and Time Required for Response

| Number of Selected <br> Input Data Options | Time Required for <br> Response <br> (Standard input data = 1) |
| :---: | :---: |
| 1 | 1 |
| 2 | 1 |
| 3 | 2 |
| 4 | 2 |
| 5 | 3 |
| 6 | 3 |
| 7 | 4 |
| 8 | 4 |
| 9 | 5 |
| 10 | 5 |
| 11 | 6 |
| 12 | 6 |
|  |  |

Number of Selected Auxiliary Output Data Options (OWDC0E) and Time Required for Response

| Number of Selected <br> Auxiliary Output Data <br> Options | Time Required for <br> Response <br> (Standard output data = 1) |
| :---: | :---: |
| 1 | 1 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |

Number of Selected Auxiliary Input Data Options (OWDด0F) and Time Required for Response

| Number of Selected <br> Auxiliary Input Data <br> Options | Time Required for <br> Response <br> (Standard input data = 1) |
| :---: | :---: |
| 1 | 1 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 2 |
| 6 | 2 |
| 7 | 2 |
| 8 | 2 |
| 9 | 3 |
| 10 | 3 |
| 11 | 3 |
| 12 | 3 |

## 10．5 Alarm and Warning Codes for Inverter

There are the following four types of inverter alarms for different detection locations and error contents．

| Error Type |  | Description | Place the Error Occurred |
| :--- | :--- | :--- | :--- |
| Alarm | Inverter alarm | Serious failure that can damage the inverter and machine | Inverter |
|  | MECHATROLINK－II <br> Warning <br> command error， <br> MECHATROLINK－II <br> communications error | MECHATROLINK communications failure | MECHATROLINK Option <br> Card／Option Unit for Inverter |
|  | Inverter warning <br> MECHATROLINK－II <br> （ommand error， <br> MECHATROLINK－II <br> communications error | Incorrect operation or minor failure that will not likely <br> result in a serious situation． | Inverter |
|  | MECHATROLINK communications error warning | MECHATROLINK Option <br> Card／Option Unit for Inverter |  |

－If more than one error is detected at the same time，the MECHATROLINK Option Card／Option Unit for Inverter gives priority to the error with the lowest alarm code．
－When an error is detected while another is being detected，the alarm code will not be refreshed．
－If more than one warning is detected at the same time，the MECHATROLINK Option Card／Option Unit for Inverter gives priority to the warning with the lowest alarm code．

Inverter alarms and warnings are described below．

## 10．5．1 A1000

## （ 1 ）Inverter Alarms

| Alarm Code （IW口ロ30） | Status（IWDロ10） |  | Content Displayed on Digital Operator | Description |
| :---: | :---: | :---: | :---: | :---: |
|  | WARNG | ALM |  |  |
| － | － | ON | CPF00 or CPF01 | Control Circuit Error |
| － | － | ON | oFA03 | Option Card Error Occurred at Option Port CN5－A |
| － | － | ON | oFA04 | Option Card Error Occurred at Option Port CN5－A |
| － | － | ON | oFb03 | Option Card Error Occurred at Option Port CN5－B |
| － | － | ON | oFb04 | Option Card Error Occurred at Option Port CN5－B |
| － | － | ON | oFb07 to oFb09 | Option Card Error Occurred at Option Port CN5－B |
| － | － | ON | oFC03 | Option Card Error Occurred at Option Port CN5－C |
| － | － | ON | oFC04 | Option Card Error Occurred at Option Port CN5－C |
| － | － | ON | oFC07 to oFC09 | Option Card Error Occurred at Option Port CN5－C |
| 0002H | － | ON | Uv1 | DC Bus Undervoltage |
| 0003H | － | ON | Uv2 | Control Power Supply Voltage Fault |
| 0004H | － | ON | Uv3 | Soft Charge Circuit Fault |
| 0005H | － | ON | SC | Output Short－Circuit or IGBT Fault |
| 0006H | － | ON | GF | Ground Fault |
| 0007H | － | ON | oC | Overcurrent |
| 0008H | － | ON | ov | DC Bus Overvoltage |
| 0009H | － | ON | oH | Heatsink Overheat |
| 000AH | － | ON | oH1 | Heatsink Overheat |
| 000BH | － | ON | oL1 | Motor Overload |
| 000 CH | － | ON | oL2 | Drive Overload |
| 000DH | － | ON | oL3 | Overtorque Detection 1 |
| 000EH | － | ON | oL4 | Overtorque Detection 2 |
| 000FH | － | ON | rr | Dynamic Braking Transistor |
| 0010H | － | ON | rH | Braking Resistor Overheat |
| 0011 H to 0016 H | － | ON | EF3 to EF8 | External Fault（input terminal 3 to 8） |
| 0017H | － | ON | FAn | Internal Fan Fault |

(cont'd)

| Alarm Code (IWDロ30) | Status (IWD-10) |  | Content Displayed on Digital Operator | Description |
| :---: | :---: | :---: | :---: | :---: |
|  | WARNG | ALM |  |  |
| 0018H | - | ON | oS | Overspeed |
| 0019H | - | ON | dEv | Speed Deviation (for Control Mode with PG and PM Open Loop Vector Control Mode without PG) |
| 001AH | - | ON | PGo | PG Disconnect (for Control Mode with PG) |
| 001BH | - | ON | PF | DC Bus Voltage Fault |
| 001CH | - | ON | LF | Output Phase Loss |
| 001DH | - | ON | oH3 | Motor Overheat Alarm (PTC Input) |
| 001EH | - | ON | oPr | Operator Connection Fault |
| 001FH | - | ON | Err | EEPROM Write Error |
| 0020H | - | ON | oH4 | Motor Overheat Fault (PTC Input) |
| 0021H | - | ON | CE | MEMOBUS/Modbus Communication Error |
| 0022H | - | ON | bUS | Option Communication Error |
| 0025H | - | ON | CF | Control Fault |
| 0026H | - | ON | SvE | Zero Servo Fault |
| 0027H | - | ON | EF0 | Option Card External Fault |
| 0028H | - | ON | FbL | PID Feedback Loss |
| 0029H | - | ON | UL3 | Undertorque Detection 1 |
| 002BH | - | ON | oL7 | High Slip Braking oL |
| 0030H | - | ON | UL4 | Undertorque Detection 2 |
| 0032H | - | ON | dv1 | Z Pulse Fault |
| 0033H | - | ON | dv2 | Z Pulse Noise Fault Detection |
| 0034H | - | ON | dv3 | Inversion Detection |
| 0035H | - | ON | dv4 | Inversion Prevention Detection |
| 0036H | - | ON | LF2 | Output Current Imbalance |
| 0037H | - | ON | STo | Pull-Out Detection |
| 0038H | - | ON | PGoH | PG Hardware Fault (when using PG-X3) |
| 0039H | - | ON | E5 | MECHATROLINK Watchdog Timer Error |
| 003BH | - | ON | SEr | Too Many Speed Search Restarts |
| 0041H | - | ON | FbH | Excessive PID Feedback |
| 0042H | - | ON | EF1 | External Fault (input terminal S1) |
| 0043H | - | ON | EF2 | External Fault (input terminal S2) |
| 0044H | - | ON | oL5 | Mechanical Weakening Detection 1 |
| 0045H | - | ON | UL5 | Mechanical Weakening Detection 2 |
| 0046H | - | ON | CoF | Current Offset Fault |
| 0049H | - | ON | dWFL | DriveWorksEZ Fault |
| 004AH | - | ON | dWF1 | EEPROM Memory DriveWorksEZ Data Error |
| 004DH | - | ON | voF | Output Voltage Detection Fault |
| 004EH | - | ON | rF | Braking Resistor Fault |
| 004FH | - | ON | boL | Braking Transistor Overload Fault |
| 0050H | - | ON | oH5 | Motor Overheat (NTC Input) |
| 0051H | - | ON | LSo | LSo Fault |
| 0052H | - | ON | nSE | Node Setup Error |
| 0053H | - | ON | THo | Thermistor Disconnect |
| 005BH | - | ON | dv7 | Polarity Judge Timeout |
| 005FH | - | ON | LF3 | Power Unit Output Phase Loss 3 |
| 0060H | - | ON | UnbC | Current Unbalance |
| 0061H | - | ON | Uv4 | Gate Drive Board Undervoltage |
| 0083H | - | ON | CPF02 | A/D Conversion Error |
| 0084H | - | ON | CPF03 | Control Board Connection Error |
| 0087H | - | ON | CPF06 | EEPROM Memory Data Error |

（cont＇d）

| Alarm Code （IWロロ30） | Status（IWロロ10） |  | Content Displayed on Digital Operator | Description |
| :---: | :---: | :---: | :---: | :---: |
|  | WARNG | ALM |  |  |
| 0088H，0089H | － | ON | CPF07 or CPF08 | Terminal Board Connection Error |
| 008CH | － | ON | CPF11 | RAM Fault |
| 008DH | － | ON | CPF12 | FLASH Memory Fault |
| 008EH | － | ON | CPF13 | Watchdog Circuit Exception |
| 008FH | － | ON | CPF14 | Control Circuit Fault |
| 0091H | － | ON | CPF16 | Clock Fault |
| 0092H | － | ON | CPF17 | Timing Fault |
| 0093H | － | ON | CPF18 | Control Circuit Fault |
| 0094H | － | ON | CPF19 |  |
| 0095H，0096H | － | ON | CPF20 or CPF21 | Control Circuit Error |
| 0097H | － | ON | CPF22 | Hybrid IC Error |
| 0098H | － | ON | CPF23 | Control Board Connection Error |
| 0099H | － | ON | CPF24 | Drive Unit Signal Fault |
| 009AH | － | ON | CPF25 | Terminal Board Not Connected |
| 009BH to 00A4H | － | ON | CPF26 to CPF35 | Control Circuit Error |
| 00A9H to 00AEH | － | ON | CPF40 to CPF45 |  |
| 00E5H＊ | － | ON | E5 | MECHATROLINK－II WDT Error |
| 00E6H＊ | － | ON | BUS | MECHATROLINK－II Communications Error |
| 00ECH＊ | － | ON | － | Inverter WDC Error |
| 00EDH＊ | － | ON | － | Inverter Access Permission Error |
| 00EEH＊ | － | ON | － | Inverter Monitor Timer Exceeded |
| 0101H | － | ON | oFA00 | Unsupported Option Connection or Option Card Connection Error |
| 0102H | － | ON | oFA01 | Option Card Connection Error |
| 0103H | － | ON | oFA02 | Same Type of Option Error |
| 0106H | － | ON | oFA05 | Option Card Error Occurred at Option Port CN5－A |
| 0107H | － | ON | oFA06 |  |
| 0111H，0112H | － | ON | oFA10 or oFA11 |  |
| 0113 H to 0118 H | － | ON | oFA12 to oFA17 | Option Card Connection Error（CN5－A） |
| 0131H to 013EH | － | ON | oFA30 to oFA43 | Comm．Option Card Connection Error（CN5－A） |
| 0201H | － | ON | oFb00 | Unsupported Option Connection |
| 0202H | － | ON | oFb01 | Option Card Connection Error |
| 0203H | － | ON | oFb02 | Same Type of Option Already Connected |
| 0206H | － | ON | oFb05 | Option Card Error Occurred at Option Port CN5－B |
| 0207H | － | ON | oFb06 |  |
| 0211H | － | ON | oFb10 |  |
| 0212H | － | ON | oFb11 |  |
| 0213 H to 0218 H | － | ON | oFb12 to oFb17 | Option Card Connection Error（CN5－B） |
| 0301H | － | ON | oFC00 | Unsupported Option Connection |
| 0302H | － | ON | oFC01 | Option Card Connection Error |
| 0303H | － | ON | oFC02 | Same Type of Option Already Connected |
| 0306H | － | ON | oFC05 | Option Card Error Occurred at Option Port CN5－C |
| 0307H | － | ON | oFC06 |  |
| 0311H | － | ON | oFC10 |  |
| 0312H | － | ON | oFC11 |  |
| 0313 H to 0318 H | － | ON | oFC12 to oFC17 | Option Card Connection Error（CN5－C） |
| 0351 H to 0356 H | － | ON | oFC50 to oFC55 | Option Card Error Occurred at Option Port CN5－C |

－：Unchanged，ON：The corresponding bit turns ON．
＊Error detected by the MECHATROLINK Option Card／Option Unit．

## ( 2 ) Inverter Warnings

| Alarm Code (IWDロ30) | Status (IWDロ10) |  | Content Displayed on Digital Operator | Description |
| :---: | :---: | :---: | :---: | :---: |
|  | WARNG | ALM |  |  |
| - | ON | - | PASS | MEMOBUS/Modbus Communication Test Mode Complete |
| - | ON | - | CrST | Cannot Reset |
| 0001H | ON | - | Uv | DC Bus Undervoltage |
| 0002H | ON | - | OV | DC Bus Overvoltage |
| 0003H | ON | - | oH | Heatsink Overheat |
| 0004H | ON | - | oH2 | Drive Overheat Warning |
| 0005H | ON | - | oL3 | Overtorque 1 |
| 0006H | ON | - | oL4 | Overtorque 2 |
| 0007H | ON | - | EF | Forward/Reverse Run Command Input Error |
| 0008H | ON | - | bb | Drive Base Block |
| 0009H to 000EH | ON | - | EF3 to EF8 | External Fault (input terminal S3 to S8) |
| 000FH | ON | - | FAn | Internal Fan Fault |
| 0010H | ON | - | oS | Overspeed |
| 0011H | ON | - | dEv | Speed Deviation (for Control Mode with PG and PM Open Loop Vector Control Mode without PG) |
| 0012H | ON | - | PGo | PG Disconnect (for Control Mode with PG) |
| 0014H | ON | - | CE | MEMOBUS/Modbus Communication Error |
| 0015H | ON | - | bUS | Option Communication Error |
| 001AH | ON | - | EF0 | Option Card External Fault |
| 001BH | ON | - | rUn | Motor Switch during Run |
| 001DH | ON | - | CALL | Serial Communication Transmission Error |
| 001EH | ON | - | UL3 | Undertorque 1 |
| 001FH | ON | - | UL4 | Undertorque 2 |
| 0020H | ON | - | SE | MEMOBUS/Modbus Communication Test Mode Error |
| 0022H | ON | - | oH3 | Motor Overheat |
| 0027H | ON | - | FbL | PID Feedback Loss |
| 0028H | ON | - | FbH | Excessive PID Feedback |
| 002AH | ON | - | dnE | Drive Disabled |
| 002BH | ON | - | PGoH | PG Hardware Fault (when using PG-X3) |
| 0031H | ON | - | E5 | MECHATROLINK Watchdog Timer Error |
| 0032H | ON | - | AEr | Station Address Setting Error (MECHATROLINK) |
| 0033H | ON | - | CyC | MECHATROLINK Trans. Cycle Setting Error |
| 0034H | ON | - | HCA | Current Alarm |
| 0035H | ON | - | LT-1 | Cooling Fan Maintenance Time |
| 0036H | ON | - | LT-2 | Capacitor Maintenance Time |
| 0039H | ON | - | EF1 | External Fault (input terminal S1) |
| 003AH | ON | - | EF2 | External Fault (input terminal S2) |
| 003BH | ON | - | HbbF | Safe Disable Signal Input |
| 003CH | ON | - | Hbb |  |
| 003DH | ON | - | oL5 | Mechanical Weakening Detection 1 |
| 003EH | ON | - | UL5 | Mechanical Weakening Detection 2 |
| 0041H | ON | - | voF | Output Voltage Detection Fault |
| 0042H | ON | - | TrPC | IGBT Maintenance Time (90\%) |
| 0043H | ON | - | LT-3 | Soft Charge Bypass Relay Maintenance Time |
| 0044H | ON | - | LT-4 | IGBT Maintenance Time (50\%) |
| 0045H | ON | - | boL | Braking Transistor Overload |
| 0048H | ON | - | oH5 | Motor Overheat (NTC Input) |
| 0049H | ON | - | dWAL | DriveWorksEZ Alarm |

（cont＇d）

| Alarm Code <br> （IWロロ30） | Status（IWDロ10） |  | Content Displayed on <br> Digital Operator | Description |  |
| :---: | :---: | :---: | :--- | :--- | :---: |
|  | WARNG | ALM |  | Thermistor Disconnect |  |
| 004 DH | ON | - | THo | Data Setting Warning |  |
| $0094 \mathrm{H}^{*}$ | ON | - | - | Command Warning |  |
| $0095 \mathrm{H}^{\star}$ | ON | - | - | MECHATROLINK－II Communications Error Warn－ <br> ing |  |
| $0096 \mathrm{H}^{*}$ | ON | - | - |  |  |

－：Unchanged，ON：The corresponding bit turns ON．
＊Error detected by the MECHATROLINK Option Card／Option Unit．

## 10．5．2 V1000

## （1）Inverter Alarms

| Alarm Code （IWロロ30） | Status（IWDロ10） |  | Content Displayed on Digital Operator | Description |
| :---: | :---: | :---: | :---: | :---: |
|  | WARNG | ALM |  |  |
| 0002H | － | ON | Uv1 | DC Bus Undervoltage |
| 0003H | － | ON | Uv2 | Control Power Supply Voltage Fault |
| 0004H | － | ON | Uv3 | Soft Charge Circuit Fault |
| 0005H | － | ON | SC | Output Short－Circuit or IGBT Fault |
| 0006H | － | ON | GF | Ground Fault |
| 0007H | － | ON | oC | Overcurrent |
| 0008H | － | ON | ov | DC Bus Overvoltage |
| 0009H | － | ON | oH | Heatsink Overheat |
| 000AH | － | ON | oH1 |  |
| 000BH | － | ON | oL1 | Motor Overload |
| 000CH | － | ON | oL2 | Drive Overload |
| 000DH | － | ON | oL3 | Overtorque Detection 1 |
| 000EH | － | ON | oL4 | Overtorque Detection 2 |
| 000FH | － | ON | rr | Dynamic Braking Transistor |
| 0010H | － | ON | rH | Braking Resistor Overheat |
| 0011H to 0015H | － | ON | EF3 to EF7 | External Fault（input terminal S3 to S7） |
| 0018H | － | ON | oS | Overspeed（for Simple V／f with PG） |
| 0019H | － | ON | dEv | Excessive Speed Deviation（for Simple V／f with PG） |
| 001AH | － | ON | PGo | PG Disconnect（for Simple V／f with PG） |
| 001BH | － | ON | PF | DC Bus Voltage Fault |
| 001CH | － | ON | LF | Output Phase Loss |
| 001DH | － | ON | oH3 | Motor Overheat Alarm（PTC Input） |
| 001EH | － | ON | oPr | Operator Connection Fault |
| 001FH | － | ON | Err | EEPROM Write Error |
| 0020H | － | ON | oH4 | Motor Overheat Fault（PTC Input） |
| 0021H | － | ON | CE | MEMOBUS／Modbus Communication Error |
| 0022H | － | ON | bUS | Option Communication Error |
| 0025H | － | ON | CF | Control Fault |
| 0027H | － | ON | EF0 | Option Card External Fault |
| 0028H | － | ON | FbL | PID Feedback Loss |
| 0029H | － | ON | UL3 | Undertorque Detection 1 |
| 002AH | － | ON | UL4 | Undertorque Detection 2 |
| 002BH | － | ON | oL7 | High Slip Braking oL |
| 0036H | － | ON | LF2 | Output Current Imbalance |
| 0037H | － | ON | STo | Pull－Out Detection |
| 0039H | － | ON | E5 | MECHATROLINK Watchdog Timer Error |

(cont'd)

| Alarm Code (IWロロ30) | Status (IWDD10) |  | Content Displayed on Digital Operator | Description |
| :---: | :---: | :---: | :---: | :---: |
|  | WARNG | ALM |  |  |
| 003BH | - | ON | Ser | Too Many Speed Search Restarts |
| 0041H | - | ON | FbH | Excessive PID Feedback |
| 0042H | - | ON | EF1 | External Fault (input terminal S1) |
| 0043H | - | ON | EF2 | External Fault (input terminal S2) |
| 0044H | - | ON | oL5 | Mechanical Weakening Detection 1 |
| 0045H | - | ON | UL5 | Mechanical Weakening Detection 2 |
| 0046H | - | ON | CoF | Current Offset Fault |
| 0049H | - | ON | dWFL | DriveWorksEZ Fault |
| 0052H | - | ON | nSE | Node Setup Error |
| 0083H | - | ON | CPF02 | A/D Conversion Fault |
| 0084H | - | ON | CPF03 | PWM Data Error |
| 0087H | - | ON | CPF06 | EEPROM Data Error |
| 0088H | - | ON | CPF07 | Terminal Board Communication Fault |
| 0089H | - | ON | CPF08 | EEPROM Serial Communication Fault |
| 008CH | - | ON | CPF11 | RAM Fault |
| 008DH | - | ON | CPF12 | FLASH Memory Fault |
| 008EH | - | ON | CPF13 | Watchdog Circuit Exception |
| 008FH | - | ON | CPF14 | Control Circuit Fault |
| 0091H | - | ON | CPF16 | Clock Fault |
| 0092H | - | ON | CPF17 | Timing Fault |
| 0093H | - | ON | CPF18 | Control Circuit Fault |
| 0094H | - | ON | CPF19 |  |
| 0095H, 0096H | - | ON | CPF20 or CPF21 | RAM Fault |
|  |  |  |  | FLASH Memory Fault |
|  |  |  |  | Watchdog Circuit Exception |
|  |  |  |  | Clock Fault |
| 0097H | - | ON | CPF22 | A/D Conversion Fault |
| 0098H | - | ON | CPF23 | PWM Feedback Data Fault |
| 0099H | - | ON | CPF24 | Drive Capacity Signal Fault |
| 009AH | - | ON | CPF25 | Terminal Board Not Connected |
| 00E5H* | - | ON | E5 | MECHATROLINK-II WDT Error |
| 00E6H* | - | ON | BUS | MECHATROLINK-II Communications Error |
| $00 \mathrm{ECH}^{*}$ | - | ON | - | Inverter WDC Error |
| 00EDH* | - | ON | - | Inverter Access Permission Error |
| 00EEH* | - | ON | - | Inverter Monitor Timer Exceeded |
| 0101H | - | ON | oFA00 | Unsupported Option Connection or Option Card Connection Error |
| 0102H | - | ON | oFA01 |  |
| 0104H | - | ON | oFA03 | Option Card Fault (Port A) |
| 0105H | - | ON | oFA04 |  |
| 0131H to 013EH | - | ON | oFA30 to oFA43 | Communication Option Card Fault (Port A) |

- : Unchanged, ON: The corresponding bit turns ON.
* Error detected by the MECHATROLINK Option Card/Option Unit.
( 2 ) Inverter Warnings

| Alarm Code (IWDロ30) | Status (IWDロ10) |  | Content Displayed on Digital Operator | Description |
| :---: | :---: | :---: | :---: | :---: |
|  | WARNG | ALM |  |  |
| - | ON | - | CrST | Cannot Reset |
| - | ON | - | PASS | MEMOBUS/Modbus Communication Test Mode Complete |
| 0001H | ON | - | Uv | DC Bus Undervoltage |
| 0002H | ON | - | ov | DC Bus Overvoltage |
| 0003H | ON | - | oH | Heatsink Overheat |
| 0004H | ON | - | oH2 | Drive Overheat Warning |
| 0005H | ON | - | oL3 | Overtorque 1 |
| 0006H | ON | - | oL4 | Overtorque 2 |
| 0007H | ON | - | EF | Forward/Reverse Run Command Input Error |
| 0008H | ON | - | bb | Drive Base Block |
| 0009H to 000DH | ON | - | EF3 to EF7 | External Fault (input terminal S3 to S7) |
| 0010H | ON | - | oS | Overspeed (for Simple V/f with PG) |
| 0011H | ON | - | dEv | Excessive Speed Deviation (for Simple V/f with PG) |
| 0012H | ON | - | PGo | PG Disconnect (for Simple V/f with PG) |
| 0014H | ON | - | CE | MEMOBUS/Modbus Communication Error |
| 0015H | ON | - | bUS | Option Communication Error |
| 001AH | ON | - | EF0 | Option Card External Fault |
| 001BH | ON | - | rUn | Motor Switch Command Input during Run |
| 001DH | ON | - | CALL | Serial Communication Transmission Error |
| 001EH | ON | - | UL3 | Undertorque 1 |
| 001FH | ON | - | UL4 | Undertorque 2 |
| 0020H | ON | - | SE | MEMOBUS/Modbus Communication Test Mode Error |
| 0022H | ON | - | oH3 | Motor Overheat |
| 0027H | ON | - | FbL | PID Feedback Loss |
| 0028H | ON | - | FbH | Excessive PID Feedback |
| 002AH | ON | - | dnE | Drive Disabled |
| 0031H | ON | - | E5 | MECHATROLINK Watchdog Timer Error |
| 0032H | ON | - | AEr | Station Address Setting Error (MECHATROLINK) |
| 0033H | ON | - | CyC | MECHATROLINK Trans. Cycle Setting Error |
| 0034H | ON | - | HCA | Current Alarm |
| 0035H | ON | - | LT-1 | Cooling Fan Maintenance Time |
| 0036H | ON | - | LT-2 | Capacitor Maintenance Time |
| 0039H | ON | - | EF1 | External Fault (input terminal S1) |
| 003AH | ON | - | EF2 | External Fault (input terminal S2) |
| 003BH | ON | - | HbbF |  |
| 003CH | ON | - | Hbb | Disable Signal Input |
| 003DH | ON | - | oL5 | Mechanical Weakening Detection 1 |
| 003EH | ON | - | UL5 | Mechanical Weakening Detection 2 |
| 0042H | ON | - | TrPC | IGBT Maintenance Time (90\%) |
| 0043H | ON | - | LT-3 | Soft Charge Bypass Relay Maintenance Time |
| 0044H | ON | - | LT-4 | IGBT Maintenance Time (50\%) |
| 0049H | ON | - | dWAL | DriveWorksEZ Alarm |
| 0094H* | ON | - | - | Data Setting Warning |
| 0095H* | ON | - | - | Command Warning |
| 0096H* | ON | - | - | MECHATROLINK-II Communications Error Warning |

- : Unchanged, ON: The corresponding bit turns ON.
* Error detected by the MECHATROLINK Option Card/Option Unit.


### 10.5.3 Varispeed G7, Varispeed F7, and VS mini V7

(1) Inverter Alarms

| Alarm Code (IWロロ30) | Status (IWDO10) |  | Content Displayed on Digital Operator | Description | Varispeed G7 | Varispeed F7 | $\begin{aligned} & \text { VS mini } \\ & \text { V7 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WARNG | ALM |  |  |  |  |  |
| 01H | - | ON | PUF | Blown Fuse | $\bigcirc$ | O | $\times$ |
| 02H | - | ON | UV1 | DC Bus Undervoltage | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 03H | - | ON | UV2 | Low Control Power Supply Voltage | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 04H | - | ON | UV3 | MC Failure | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 06H | - | ON | GF | Ground Fault | $\bigcirc$ | $\bigcirc$ | $0^{* 1}$ |
| 07H | - | ON | OC | Overcurrent | $\bigcirc$ | $\bigcirc$ | 0 |
| 08H | - | ON | OV | Overvoltage | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 09H | - | ON | OH | Drive Overheat | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| OAH | - | ON | OH1 | Drive Overheat | 0 | $\bigcirc$ | $\times$ |
| OBH | - | ON | OL1 | Motor Overload | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| OCH | - | ON | OL2 | Drive Overload | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| ODH | - | ON | OL3 | Overtorque 1 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| OEH | - | ON | OL4 | Overtorque 2 | 0 | $\bigcirc$ | $\times$ |
| 0FH | - | ON | RR | Control Transistor Error | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 10H | - | ON | RH | Braking Resistor Overheat | $\bigcirc$ | $\bigcirc$ | $0^{* 1}$ |
| 11H | - | ON | EF3 | External Fault 3 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 12H | - | ON | EF4 | External Fault 4 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 13H | - | ON | EF5 | External Fault 5 | 0 | 0 | 0 |
| 14H | - | ON | EF6 | External Fault 6 | 0 | 0 | $\bigcirc$ |
| 15H | - | ON | EF7 | External Fault 7 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 16H | - | ON | EF8 | External Fault 8 | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 18H | - | ON | OS | Acceleration | 0 | $\bigcirc$ | $\times$ |
| 19H | - | ON | DEV | Speed Deviation | 0 | 0 | $\times$ |
| 1AH | - | ON | PGO | PG Disconnection | 0 | $\bigcirc$ | $\times$ |
| 1BH | - | ON | PF | Input Phase Loss | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 1CH | - | ON | LF | Output Phase Loss | 0 | $\bigcirc$ | $\bigcirc$ |
| 1DH | - | ON | OH3 | Motor Overheat 1 | 0 | $\bigcirc$ | $\times$ |
| 1EH | - | ON | OPR | Operator Disconnection | 0 | $\bigcirc$ | $\bigcirc$ |
| 1FH | - | ON | ERR | EEPROM Write Error | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 20H | - | ON | OH4 | Motor Overheat 2 | 0 | $\bigcirc$ | $\times$ |
| 21H | - | ON | CE | Memobus Transmission Error | 0 | $\bigcirc$ | $\bigcirc$ |
| 25H | - | ON | CF | Control Fault | 0 | $\bigcirc$ | $\times$ |
| 26H | - | ON | SVE | Zero Servo Fault | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 27H | - | ON | EFO | External Fault | 0 | $\bigcirc$ | $\bigcirc$ |
| 28H | - | ON | FBL | PID Feedback Reference Loss | 0 | $\bigcirc$ | $\times$ |
| 29H | - | ON | UL3 | Undertorque Detection 1 | 0 | $\bigcirc$ | $\bigcirc$ |
| 2AH | - | ON | UL4 | Undertorque Detection 2 | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 2BH | - | ON | OL7 | Overload during HSB | 0 | $\bigcirc$ | $\times$ |
| 2CH | - | ON | EF9 | External Fault 9 | $\bigcirc$ | $\times$ | $\times$ |
| 2DH | - | ON | EF10 | External Fault 10 | $\bigcirc$ | $\times$ | $\times$ |
| 2EH | - | ON | EF11 | External Fault 11 | 0 | $\times$ | $\times$ |
| 2 FH | - | ON | EF12 | External Fault 12 | 0 | $\times$ | $\times$ |
| 31H | - | ON | VCF | Neutral Point Error | $\bigcirc$ | $\times$ | $\times$ |
| 50H | - | ON | STP | Emergency Stop | $\times$ | $\times$ | $\bigcirc$ |
| 51H | - | ON | EF1 | External Fault 1 | $\times$ | $\times$ | $\bigcirc$ |
| 52H | - | ON | EF2 | External Fault 2 | $\times$ | $\times$ | $\bigcirc$ |

(cont'd)

| Alarm Code (IWロロ30) | Status (IWDD10) |  | Content Displayed on Digital Operator | Description | Varispeed G7 | Vari- <br> speed F7 | $\begin{aligned} & \text { VS mini } \\ & \text { V7 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WARNG | ALM |  |  |  |  |  |
| 83H | - | ON | CPF02 | Base Block Circuit Error | $\bigcirc$ | 0 | $\times$ |
| 84H | - | ON | CPF03 | EEPROM Error | $\bigcirc$ | $\bigcirc$ | $0^{* 2}$ |
| 85H | - | ON | CPF04 | CPU Internal A/D Error | $\bigcirc$ | $\bigcirc$ | $0^{* 3}$ |
| 86H | - | ON | CPF05 | CPU External A/D Error | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 87H | - | ON | CPF06 | Option Card Fault | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 88H | - | ON | CPF07 | ASIC Internal RAM Error | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 89H | - | ON | CPF08 | Watchdog Timer Failure | 0 | 0 | $\times$ |
| 8АH | - | ON | CPF09 | CPU-ASIC Compatibility Diagnosis Error | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 8BH | - | ON | CPF10 | ASIC Version Failure | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 8CH |  |  | CPF07 | Digital Operator Control Circuit Fault | $\times$ | $\times$ | 0 |
| 91H | - | ON | CPF20 | Comm. Option Card Error | 0 | 0 | $\times$ |
| 92H | - | ON | CPF21 | Communications Option Self-Diagnosis Failure | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 93H | - | ON | CPF22 | Communications Option Model Code Error | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 94H | - | ON | CPF23 | Communications Option Compatibility Diagnosis Error | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| E5H ${ }^{*}$ | - | ON | E5 | MECHATROLINK-IIWDT Error | 0 | 0 | $\bigcirc$ |
| E6H ${ }^{*}$ | - | ON | BUS | MECHATROLINK-II Communications Error | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| $\mathrm{ECH}^{*} 4$ | - | ON |  | Inverter WDC Error | 0 | $\bigcirc$ | $\bigcirc$ |
| EDH* ${ }^{4}$ | - | ON |  | Inverter Access Permission Error | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| EEH** | - | ON |  | Inverter Monitor Timer Exceeded | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

O: Supported, $\times$ : Not supported

* 1. VS mini V7 5.5-/7.5-kW only
*2. Digital operator display for the VS mini V7: CPF04
* 3. Digital operator display for the VS mini V7: CPF05
* 4. Error detected by the MECHATROLINK Option Card/Option Unit.


## ( 2 ) Inverter Warnings

| Alarm Code (IWDロ30) | Status (IWDD10) |  | Content Displayed on Digital Operator | Description | Varispeed G7 | Varispeed F7 | $\begin{gathered} \text { VS mini } \\ \text { V7 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WARNG | ALM |  |  |  |  |  |
| 01H | ON | - | UV | DC Bus Undervoltage | $\bigcirc$ | O | 0 |
| 02H | ON | - | OV | Overvoltage | $\bigcirc$ | $\bigcirc$ | 0 |
| 03H | ON | - | OH | Drive Overheat | 0 | 0 | 0 |
| 04H | ON | - | OH2 | Drive Overheat | 0 | 0 | $\times$ |
| 05H | ON | - | OL3 | Overtorque 1 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 06H | ON | - | OL4 | Overtorque 2 | 0 | 0 | $\times$ |
| 07H | ON | - | EF | External Fault | 0 | $\bigcirc$ | $\bigcirc$ |
| 08H | ON | - | BB | Base Block Active | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 09H | ON | - | EF3 | External Fault 3 | 0 | 0 | $\times$ |
| OAH | ON | - | EF4 | External Fault 4 | 0 | 0 | $\times$ |
| OBH | ON | - | EF5 | External Fault 5 | $\bigcirc$ | 0 | $\times$ |
| 0CH | ON | - | EF6 | External Fault 6 | $\bigcirc$ | $\bigcirc$ | $\times$ |
| ODH | ON | - | EF7 | External Fault 7 | $\bigcirc$ | $\bigcirc$ | $\times$ |
| OEH | ON | - | EF8 | External Fault 8 | $\bigcirc$ | $\bigcirc$ | $\times$ |
| OFH | ON | - | FAN | Cooling Fan Error | $\times$ | $\times$ | $\bigcirc$ |
| 10H | ON | - | OS | Overspeed | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 11H | ON | - | DEV | Speed Deviation | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 12H | ON | - | PGO | PG Disconnection | 0 | 0 | $\times$ |
| 13H | ON | - | OPR | Operator Disconnection | 0 | $\bigcirc$ | $\bigcirc$ |
| 14H | ON | - | CE | Memobus Transmission Error | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 17H | ON | - | OL1 | Motor Overload | 0 | 0 | $\times$ |
| 18H | ON | - | OL2 | Drive Overload | $\bigcirc$ | 0 | $\times$ |
| 1 AH | ON | - | EFO | External Fault | 0 | 0 | $\times$ |
| 1BH | ON | - | RUN | Motor Operation in Progress | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 1CH | ON | - | FBL | PID Feedback Reference Loss | 0 | 0 | $\bigcirc$ |
| 1DH | ON | - | CALL | Standby to Transfer Data | 0 | 0 | 0 |
| 1 EH | ON | - | UL3 | Undertorque Detection 1 | 0 | 0 | 0 |
| 1FH | ON | - | UL4 | Undertorque Detection 2 | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 20H | ON | - | SER | PLC Input Error | $\times$ | $\times$ | $\bigcirc$ |
| 22H | ON | - | OH3 | Motor Overheat 1 | 0 | $\bigcirc$ | $\times$ |
| 23H | ON | - | EF9 | External Fault 9 | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 24H | ON | - | EF10 | External Fault 10 | $\bigcirc$ | $\bigcirc$ | $\times$ |
| 25H | ON | - | EF11 | External Fault 11 | 0 | 0 | $\times$ |
| 26H | ON | - | EF12 | External Fault 12 | 0 | $\bigcirc$ | $\times$ |
| 40 H | ON | - | STP | Emergency Stop | $\times$ | $\times$ | $\bigcirc$ |
| 41H | ON | - | STP | Emergency Stop | $\times$ | $\times$ | 0 |
| 94H* | ON | - |  | Data Setting Warning | 0 | 0 | 0 |
| 95H* | ON | - |  | Command Warning | 0 | $\bigcirc$ | 0 |
| 96H* | ON | - |  | MECHATROLINK-II Communications Error Warning | $\bigcirc$ | $\bigcirc$ | 0 |

O: Supported, $\times$ : Not supported

* Error detected by the MECHATROLINK Option Card/Option Unit.


### 10.6 MECHATROLINK Option Card/Option Unit Settings

The following tables list the hardware settings for the MECHATROLINK Option Card/Option Unit for the Varispeed F7, Varispeed G7, and VS mini V7.
( 1 ) S1: DIP Switches

| Code | Switch Name | Status | Operation When Set |
| :---: | :---: | :---: | :---: |
| S1-1 | BRS10/4 | OFF | 4 Mbps |
|  |  | ON | 10 Mbps |
| S1-2 | BYTE16/31 | OFF | 17-byte transfer mode <br> (MECHATROLINK-I and MECHATROLINK-II 17-byte mode only) |
|  |  | ON | 32-byte transfer mode <br> (MECHATROLINK-II 32-byte mode only) |
| S1-3 | SA16/32 | OFF | Sets the second digit of the station address to 0 in hexadecimal. <br> (For MECHATROLINK communications, sets it to 2.) <br> Note: The station address 00 and 20 set with the S1-3 DIP switch and S2 rotary switch are invalid. |
|  |  | ON | Sets the second digit of the station address to 1 in hexadecimal. <br> (For MECHATROLINK communications, sets it to 3.) <br> Note: The station address 1F and 3F set with the S1-3 DIP switch and S2 rotary switch are invalid. |
| S1-4 | TEST | OFF | Normal mode |
|  |  | ON | Diagnosis mode |

(2) S2: Hexadecimal Rotary Switch

| Code | Switch Name | Status | Operation When Set |
| :--- | :--- | :--- | :--- |
| S2 | SA | 0 to F | Sets the first digit of the station address in hexadecimal ( $\square 0$ to $\square \mathrm{FH})$. |

( 3 ) Station Address List by DIP Switch (S1-3) and Hexadecimal Rotary Switch (S2) Settings

| S1-3 | S2 | ST\#(Station Address) |  | Station Address in Network Analyzer for MECHATROLINK Communications |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Decimal Number | Hexadecimal Number |  |
| OFF | 0 | -*1 | -*1 | -*1 |
|  | 1 | 1 | 01H | 21H |
|  | 2 | 2 | 02H | 22H |
|  | 3 | 3 | 03H | 23 H |
|  | 4 | 4 | 04H | 24H |
|  | 5 | 5 | 05H | 25H |
|  | 6 | 6 | 06H | 26H |
|  | 7 | 7 | 07H | 27H |
|  | 8 | 8 | 08H | 28 H |
|  | 9 | 9 | 09H | 29H |
|  | A | 10 | 0AH | 2AH |
|  | B | 11 | 0BH | 2BH |
|  | C | 12 | 0 CH | 2 CH |
|  | D | 13 | 0DH | 2DH |
|  | E | 14 | 0EH | 2EH |
|  | F | 15 | 0FH | 2FH |
| ON | 0 | 16 | 10H | 30 H |
|  | 1 to E | -*2 | - ${ }^{2}$ | - ${ }^{2}$ |
|  | F | -*1 | -*1 | -*1 |

* 1. Station address cannot be used because of the design of the Inverters.
* 2. Station address cannot be used because of the design of the SVB Module.


## Utility Functions

This chapter describes MP2000-series Machine Controller and SERVOPACK utility functions such as vertical axis control, overtravel, and software limits, modal latch, and bank switching. Also, the parameters automatically updated under the specified conditions are explained.
11.1 Controlling Vertical Axes ..... 11-3
11.1.1 Holding Brake Function of the SERVOPACK ..... 11-3
11.1.2 Connections to $\Sigma$-II Series SGDH SERVOPACKs, $\Sigma$-III Series SGDS SERVOPACKs, $\Sigma$-V Series SGDV SERVOPACKs, and $\Sigma-7$ Series SGD7S SERVOPACKs ..... 11-3
11.1.3 Connections to $\Sigma$-I Series SGDB SERVOPACK ..... 11-5
11.1.4 Connections to $\Sigma$-I Series SGD SERVOPACK ..... 11-7
11.2 Overtravel Function ..... 11-9
11.2.1 Connections to $\Sigma$-II Series SGDH SERVOPACKs, $\Sigma$-III Series SGDS SERVOPACKs, $\Sigma$-V Series SGDV SERVOPACKs, and $\Sigma-7$ Series SGD7S SERVOPACKs ..... 11-9
11.2.2 Connections to $\Sigma$-I Series SGDB or SGD SERVOPACK ..... 11-12
11.3 Software Limit Function ..... 11-14
11.3.1 Fixed Parameter Settings ..... 11-14
11.3.2 Effects of the Software Limit Function ..... 11-14
11.3.3 Processing after an Alarm Occurs ..... 11-15
11.4 Modal Latch Function ..... 11-16
11.5 Bank Switching Function ..... 11-17
11.5.1 Bank Switching Specifications ..... 11-17
11.5.2 Bank Switching Function Unsupported Motion Commands ..... 11-17
11.5.3 SERVOPACK Parameter Settings for Bank Switching ..... 11-17
11.5.4 Bank Member Setting ..... 11-19
11.6 Parameters That Are Automatically Updated ..... 11-22
11.6.1 Parameters Updated when a MECHATROLINK Connection Is Established (1) (User Constants Self-writing Function Enabled) ..... 11-22
11.6.2 Parameters Updated when a MECHATROLINK Connection Is Established (2) (Regardless of the User Constants Self-writing Function) ..... 11-23
11.6.3 Parameters Updated when a Setting Parameter Is Changed (MECHATROLINK-II Operating at 10 Mbps in 32-byte Mode with User Constants Self-writing Function Enabled) ..... 11-23
11.6.4 Parameters Updated when a Motion Command Is Executed ..... 11-24
11.6.5 Parameters Updated during Self-configuration ..... 11-25
11.7 Precautions When Using $\Sigma$-V-series SGDV SERVOPACKs ..... 11-28
11.7.1 Software Limit Settings ..... 11-28
11.7.2 When the Tuning-less Function is Enabled ..... 11-28
11.7.3 Saving the Parameter Bank Data ..... 11-28
11.7.4 Motion Command Operation for External Latches with DC Power Input $\Sigma$-V-series SERVOPACKs ..... 11-29
11.8 Precautions When Using $\Sigma$-7-series SGD7S SERVOPACKs with Rotary Servomotors ..... 11-30
11.8.1 SGD7S Electronic Gear Ratio Settings ..... 11-30
11.8.2 Assignment ..... 11-30
11.8.3 Number of Pulses per Motor Rotation ..... 11-30
11.8.4 Motion Image ..... 11-30
11.8.5 Software Limit Settings ..... 11-31
11.8.6 When the Tuning-less Function is Enabled ..... 11-31
11.8.7 Saving the Parameter Bank Data ..... 11-31

### 11.1 Controlling Vertical Axes

This section explains connection methods and parameter settings required to use the SERVOPACK to control a vertical axis.

### 11.1.1 Holding Brake Function of the SERVOPACK

When using a SERVOPACK to control a vertical axis or an axis to which an external force is being applied, a Servomotor with a brake must be used to prevent the axis from dropping or moving due to gravity or the external force when the system power is turned OFF.

- Vertical Axis

- Axis Subject to External Force


The holding brake of the Servomotor is controlled through the brake interlock output (/BK) signal from the SERVOPACK. The brake is not controlled from the Machine Controller.

- The brake built into a Servomotor with a brake uses non-excitation operation and is for use as a holding brake only. It cannot be used to control or stop axis movement. Use the holding brake only to hold the axis in a stopped state after the motor has stopped. The torque of the brake is $100 \%$ or higher of the rated torque of the motor.
- When using the servomotor on a vertical axis, hunting might occur. If so, set the SERVOPACK parameter Pn001.1 (Overtravel Stop Mode) to 1.


### 11.1.2 Connections to $\Sigma$-II Series SGDH SERVOPACKs, $\Sigma$-III Series SGDS SERVO-

 PACKs, $\Sigma$-V Series SGDV SERVOPACKs, and $\Sigma$ - 7 Series SGD7S SERVOPACKs
## (1) Example of a Brake ON and OFF Circuit

A circuit is configured to turn the brake ON and OFF using the /BK contact output signal from the SERVOPACK and a brake power supply. The following diagram shows a standard connection example. Refer to the manual for your SERVOPACK for details.

11.1.2 Connections to $\Sigma$-II Series SGDH SERVOPACKs, $\Sigma$-III Series SGDS SERVOPACKs, $\Sigma$-V Series SGDV SERVOPACKs, and $\Sigma$ - 7 Series SGD7S SERVOPACKs

* 1. The output terminal is allocated using parameter Pn50F.2. Output terminal 1 (terminal numbers 1 and 2 ) is selected in the example above.
* 2. Brake control relay contact
* 3 . There are $200-\mathrm{V}$ and $100-\mathrm{V}$ brake power supplies.


## (2) Parameter Settings

The SERVOPACK parameters related to control the holding brake are described below.

| Parameter | Name | Unit | Setting/Range | Default | Control Mode |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pn50F. 2 | Output Signal Selection 2 | - | 0: Brake not used <br> 1: Terminal numbers 1 and 2 <br> 2: Terminal numbers 23 and 24 <br> 3: Terminal numbers 25 and 26 | 1 | Speed, torque, position control |
|  | Details <br> The following parameter determines wh | ch CN <br> utput Ter $\frac{\sqrt{1-1,2}}{\frac{1-23,2}{\sqrt{1-25,2}}}$ | pin ( 0 to 3 above) will be used to <br> inals <br> O1) <br> (SO3) | put the /B | signal. |
| Parameter | Name | Unit | Setting/Range | Default | Control Mode |
| Pn506 | Brake ON Timing after Motor Stops | 10 ms | 0 to 50 | 0 | Speed, torque, position control |
| This parameter adjusts the delay time from /BK Signal Output until Servo OFF (stopping Servomotor output), and it is used to be set when the machine moves slightly due to gravity or other factors after turning the brake ON. |  |  |  |  |  |



- This parameter is used to set the timing when the motor is stopped. Brake operation while the motor is running is set in Pn507 and Pn508.
- For the standard settings, the Servo will turn OFF simultaneously with the /BK output (Brake Operation). If gravity causes the machine to move slightly at this time due to machine configuration or brake characteristics, turning OFF the Servo can be delayed to reduce the movement.

| Parameter | Name | Unit | Setting/Range | Default | Control Mode |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pn507 | Brake ON Timing when Motor Run- <br> ning | $\min ^{-1}$ | 0 to 10000 | 100 | Speed, torque, <br> position control |
|  |  | 10 ms | 0 to 100 | 50 | Speed, torque, <br> position control |

## Details

Pn507: Speed Level for BK Signal Output when Motor Running
Pn508: Timing of BK Signal Output when Motor Running
These settings are used to set the timing for applying the brake when the Servo turns OFF due to an /S-ON input signal or alarm.


- The brake on the Servomotor is designed as a holding brake and it must be applied only after the motor has stopped. Adjust this parameter while observing machine operation.


### 11.1.3 Connections to $\Sigma$-I Series SGDB SERVOPACK

## (1) Example of a Brake ON and OFF Circuit

A circuit is configured to turn the brake ON and OFF using the /BK contact output signal from the SERVOPACK and a brake power supply. The following diagram shows the standard connections.


* 1. The terminal is allocated using parameter Cn-2D. In the example above, /BK signal 4 is set in the 2nd digit.
* 2. Brake control relay contact
* 3 . There are $200-\mathrm{V}$ and $100-\mathrm{V}$ brake power supplies.


## (2) Parameter Settings

The SERVOPACK parameters related to control the holding brake are described below.

| Parameter | Name | Unit | Setting/Range | Default | Control Mode |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cn-2D | OUTSEL Output Signal Selection | - | 110 to 666 | 210 | Speed, torque, position contr |
| Allocation Set Value <br> 1st digit: CN1-25, 26 (Factory setting: 0) $0: /$ COIN <br> 2nd digit: CN1-27, 28 (Factory setting: 1) 1: /TGON <br> 3rd digit: CN1-29, 30 (Factory setting: 2) 2: /S-RD |  |  |  |  |  |
| Parameter | Name | Unit | Setting/Range | Default | Control Mode |
| Cn-12 | Brake ON Timing after Motor Stops | 10 ms | 0 to 50 | 0 | Speed, torque, position control |
|  | Details <br> This parameter adjusts the Delay Time from it is used to be set when the machine move <br> /S-ON inpu <br> /BK output <br> Servo ON/O operation ( <br> ON status) <br> - This parameter is used to set the tim is running is set in $\mathrm{Cn}-15$ and $\mathrm{Cn}-1$ <br> - For the standard settings, the Serv tion). If gravity causes the machine brake characteristics, turning OFF | /BK Si slightly $\square$ $\square$ <br> FF notor <br> ming wh . <br> will tur to move he Servo | nal Output until Se due to gravity or o <br> en the motor is st <br> n OFF simultaneo slightly at this tim o can be delayed | rvo OFF <br> ther factor <br> OFF <br> holding <br> Motor <br> OFF <br> F <br> opped. B <br> usly with me due to to reduc | stopping Servomotor output), and after turning the brake ON . <br> rake operation while the motor <br> the /BK output (Brake Operamachine configuration or the movement. |
| Parameter | Name | Unit | Setting/Range | Default | Control Mode |
| Cn-15 | Brake ON Timing when Motor Running | min | 0 to max. speed | 100 | Speed, torque, position control |
| Cn-16 |  | 10 ms | 0 to 100 | 50 | Speed, torque, position control |
|  | Details <br> Cn-15: Speed Level for BK Signal Outpu <br> Cn-16: Timing of BK Signal Output whe These settings are used to set the timing for signal or alarm. | t when Motor applyin <br> Servo OFF <br> top with rake or by Cn0001 bi <br> Brake <br> Cn-16 | Motor Running Running $g$ the brake when th <br> dynamic coasting <br> 6) $\qquad$ <br> holding | e Servo tu <br> The brak designed must be has stop while ob | rns OFF due to an /S-ON input <br> en the Servomotor is as a holding brake and it applied only after the motor ped. Adjust this parameter serving machine operation. |

### 11.1.4 Connections to $\Sigma$-I Series SGD SERVOPACK

## (1) Brake ON and OFF Circuit Example

A circuit is configured to turn the brake ON and OFF using the /BK contact output signal from the SERVOPACK and a brake power supply. The standard connections are shown in the following diagram.


* 1. Brake control relay contact
* 2. There are $200-\mathrm{V}$ and $100-\mathrm{V}$ brake power supplies.


## (2) Parameter Settings

The SERVOPACK parameters related to controlling the brake are described below.

| Parameter | Name | Unit | Setting/Range | Default | Control Mode |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cn-12 | Brake ON Timing after Motor Stops | 10 ms | 0 to 50 | 0 | Speed, torque, position control |
|  | Details <br> This parameter adjusts the and it is used to be set whe ON. <br> - This parameter is motor is running is <br> - For the standard se ation). If gravity cau brake characteristic | lay Tim he mac <br> /BK ou <br> Servo opera ON st <br> to set in Cngs, the the m urning | /BK Signal Outp ves slightly due Servo ON <br> Brake released $\square$ Motor ON <br> ing when the m Cn-16. <br> will turn OFF simu to move slightly he Servo can be | Servo OFF gravity or other Brake holding Cn-12 OFF Ofor is stopped. ultaneously with at this time due | ping Servomotor output) s after turning the brake <br> operation while the <br> /BK output (Brake Op machine configuration e movement. |
| Parameter | Name | Unit | Setting/Range | Default | Control Mode |
| Cn-15 | Brake ON Timing when Motor Running | $\min ^{-1}$ | 0 to max. speed | 100 | Speed, torque, position control |
| Cn-16 |  | 10 ms | 0 to 100 | 50 | Speed, torque, position control |
|  | Details <br> Cn -15: Speed Level for <br> Cn -16: Timing of BK S <br> These settings are used to signal or alarm. | Signal al Output the tim | when Motor Run Motor Running pplying the brak | ing <br> when the Servo t | OFF due to an /S-ON inp |



- The brake on the Servomotor is designed as a holding brake and it must be applied only after the motor has stopped. Adjust this parameter while observing machine operation.


### 11.2 Overtravel Function

The overtravel function forces the machine to stop when the moving part of the machine exceeds the range of movement. With the MP2000-series Machine Controller, processing for stopping as a result of overtravel is achieved by using SERVOPACK functions.
The SERVOPACK connections and parameter setting depend on the model of SERVOPACK. The connections and parameter settings are described in the following sections.

### 11.2.1 Connections to $\Sigma$-II Series SGDH SERVOPACKs, $\Sigma$-III Series SGDS SERVOPACKs, $\Sigma$-V Series SGDV SERVOPACKs, and $\Sigma-7$ Series SGD7S SERVOPACKs

Connections to $\Sigma$-II, $\Sigma$-III, $\Sigma-\mathrm{V}$, or $\Sigma-7$ Series SGDH, SGDS, SGDV, and SGD7S SERVOPACKs
The following parameters must be set to ensure that the overtravel input signals are connected correctly for the overtravel function.

## (1) Overtravel Input Signal Connections

Correctly connect the input signals for the overtravel limit switches shown below to the corresponding pins on the SERVOPACK CN1 or 1CN connector.

■ Connections to $\Sigma$-II Series SERVOPACKs


| P-OT | When ON <br> CN1-42 is low. | Forward drive enabled. <br> Normal operating condition |
| :--- | :--- | :--- |
|  | When OFF | Forward drive disabled. <br> (Reverse movement possible.) |
|  | CN1-42 is high. | When ON |
|  | CN1-43 is low. | Reverse drive enabled. <br> Normal operating condition |
|  | When OFF <br>  CN1-43 is high. | Reverse drive disabled. <br> (Forward movement possible.) |

11．2．1 Connections to $\Sigma$－II Series SGDH SERVOPACKs，$\Sigma$－III Series SGDS SERVOPACKs，$\Sigma$－v Series SGDV SERVOPACKs，and $\Sigma-7$ Series SGD7S SERVOPACKs

## Connections to $\Sigma-\mathrm{III}, \Sigma$－V，and $\Sigma-7$ Series SERVOPACKs



| P－OT | When ON <br> CN1－7 is low． | Forward drive enabled． <br> Normal operating condition |
| :--- | :--- | :--- |
|  | When OFF <br> CN1－7 is high． | Forward drive disabled． <br> （Reverse movement possible．） |
|  | When ON <br> CN1－8 is low． | Reverse drive enabled． <br> Normal operating condition |
|  | When OFF <br> CN1－8 is high． | Reverse drive disabled． <br> （Forward movement possible．） |

## （2）Parameter Settings

## ［ a ］Use／Not Use Overtravel Input Signals

The following parameters are used to enable and disable the overtravel input signals．
－These parameters are disabled by executing a self－configuration command．
－SGDH SERVOPACKs

| Parameter | Name | Set Value | Item | Default |
| :---: | :---: | :---: | :--- | :---: |
| Pn50A．3 | P－OT Signal Mapping | 2 <br> （Recom－ <br> mended） | Enables use of Positive Prohibit Input Signal <br> （P－OT）．Forward rotation prohibited when <br> open，allowed for 0 V． |  |
|  |  | 8 | Disables the P－OT signal． | 2 |

－SGDS，SGDV，or SGD7S SERVOPACKs

| Parameter |  | Item |
| :--- | :--- | :--- |
| Pn50A | n．1ロロロ <br> （recommended） | Enables use of Positive Prohibit Input Signal（P－OT）． <br> Forward rotation prohibited when CN1－7 is open and allowed at 0 V．（Default setting） |
|  | n．8 $\square \square \square$ | Disables use of Positive Prohibit Input Signal（P－OT）． <br> Constant forward rotation allowed．Equivalent to short circuit between the CN1－7 and <br> 0 V （Control power supply for sequence signal input）． |
|  | n．$\square \square \square 2$ <br> （recommended） | Enables use of Negative Prohibit Input Signal（N－OT）． <br> Reverse rotation prohibited when CN1－8 is open and allowed at 0 V．（Default setting） |
|  | n．$\square \square \square 8$ | Disables use of Negative Prohibit Input Signal（N－OT）． <br> Constant reverse rotation allowed．Equivalent to short circuit between the CN1－8 <br> and 0 V（Control power supply for sequence signal input）． |

## [ b ] Selecting Motor Stopping Methods for Overtravel

When using the overtravel function has been enabled, the following parameters are used to set the methods for stopping the motor. Select the methods for stopping when the P-OT or N-OT is input during motor running.

| Parameter | Name | Set Value | Item | Default |
| :---: | :---: | :---: | :--- | :---: |
| Pn001.1 | Overtravel Stop Mode | 0 <br> (Recom- <br> mended) | Stops the motor according to Pn001.0 setting <br> (dynamic brake or coasting) when overtravel is <br> detected. | 0 |



### 11.2.2 Connections to $\Sigma$-I Series SGDB or SGD SERVOPACK

The following parameters must be set to ensure the overtravel input signals are connected correctly for the overtravel function.

## (1) Overtravel Input Signal Connections

Connect the input signals for the overtravel limit switches to the corresponding pins on the SERVOPACK CN1 or 1CN connector as shown below.

- Connections to SGDB and SGD SERVOPACK


| P-OT | When ON $1 \mathrm{CN}-7$ is low. | Forward drive enabled. <br> Normal operating condition |
| :---: | :---: | :---: |
|  | When OFF $1 \mathrm{CN}-7$ is high. | Forward drive disabled. <br> (Reverse movement possible.) |
| N-OT | When ON $1 \mathrm{CN}-8$ is low. | Reverse drive enabled. <br> Normal operating condition |
|  | When OFF $1 \mathrm{CN}-8$ is high. | Reverse drive disabled. <br> (Forward movement possible.) |

## (2) Parameter Settings

## [ a ] Use/Not Use Overtravel Input Signals

The following parameters are used to enable and disable the overtravel input signals.

| Parameter | Name | Set Value | Item | Default |
| :--- | :--- | :---: | :--- | :---: |
| $\begin{array}{l}\text { Cn-01 } \\ \text { Bit 2 }\end{array}$ | $\begin{array}{l}\text { Use/Not Use P-OT Input } \\ \text { Signal }\end{array}$ | $\begin{array}{l}0 \\ \text { (Recommended) }\end{array}$ | $\begin{array}{l}\text { Enables use of Positive Prohibit Input Signal } \\ \text { (P-OT). (Forward rotation prohibited when } \\ \text { open, allowed for 0 V.) }\end{array}$ | 0 |$]$| 0 |
| :--- |
| Cn-01 <br> Bit 3 |

## [ b ] Selecting Motor Stopping Methods for Overtravel

When using the overtravel function has been enabled, the following parameters are used to set the methods for stopping the motor. Select the methods for stopping when the P-OT or N-OT is input during motor running.

| Parameter | Name | Set Value | Item | Default |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Cn-01 } \\ & \text { Bit } 8 \end{aligned}$ | Selection of stopping method for overtravel | 0 (Recommended) | Uses the same stopping method as for Servo OFF. <br> Stops the motor according to Cn-01 bit 6 setting (dynamic brake or coasting) when overtravel is detected. | 0 |
|  |  | 1 | Decelerates the motor to a stop by applying the torque specified in Cn-06 (EMGTRQ Emergency Stop Torque) when overtravel is detected. |  |
| $\begin{aligned} & \text { Cn-01 } \\ & \text { Bit } 9 \end{aligned}$ | Selection of processing after stopping for overtravel | 0 (Recommended) | Decelerates the motor to a stop and then turns OFF the Servo. | 0 |
|  |  | 1 | Decelerates the motor to a stop and then sets it in the zero-clamp mode. |  |
| $\begin{aligned} & \text { Cn-01 } \\ & \text { Bit } 6 \end{aligned}$ | Selection of stopping method for motor when servo turns OFF | 0 | Stops the motor by applying dynamic brake (DB). | 0 |
|  |  | 1 | Makes the motor coast to a stop. Current is not supplied to the motor and the machine stops due to friction. |  |
| $\begin{aligned} & \text { Cn-01 } \\ & \text { Bit } 7 \end{aligned}$ | Selection of processing after stopping for overtravel | 0 | Stops the motor by applying dynamic brake (DB) and then releases the DB. | 0 |
|  |  | 1 | Stops the motor by applying dynamic brake (DB) and then holds the DB. |  |



### 11.3 Software Limit Function

The software limit function is used to set upper and lower limits for the range of machine movement in fixed parameters so the Machine Controller can constantly monitor the operating range of the machine. The function can be used to help prevent machine runaway or damage due to incorrect operation as well as incorrect references in a motion program.
Disable the software limits in the SERVOPACK to use the Machine Controller for position control in the machine coordinate system.

- Refer to your SERVOPACK manual for the procedure on disabling software limits.



### 11.3.1 Fixed Parameter Settings

The following fixed parameters must be set in order to use the software limit function.

| Fixed Parameter Number | Name | Unit | Setting/Range |
| :---: | :--- | :--- | :---: |
| 1 | Function Selection Flag 1 <br> Bit 1: Soft Limit (Positive Direction) <br> Enable/Disable <br> Bit 2: Soft Limit (Negative Direction) <br> Enable/Disable | - | 0: Disable, 1: Enable <br> $0:$ Disable, 1: Enable |
| 12 | Positive Software Limit Value | Reference unit | -2147483648 <br> to 2147483647 |
| 14 | Negative Software Limit Value | Reference unit | -2147483648 <br> to 2147483647 |

- The software limit function is enabled only after completing a Zero Point Return or Zero Point Setting operation. If any fixed parameters are changed and saved or the power is turned ON, the Zero Point Return or Zero Point Setting operation must be performed again.


### 11.3.2 Effects of the Software Limit Function

If a position command that exceeds the positive and negative software limit is executed with the software limit function enabled, an alarm will occur and the Machine Controller will stop the axis. The type that the axis stops depends on the motion command as shown below.

| Motion Command | Stop Operation |
| :--- | :--- |
| POSING | The axis will start decelerating before the software limit position and stop |
| EX_POSING | at the software limit position. |
| FEED |  |
| STEP | The pulse distribution command will stop executing at the software limit <br> position. The Servo will perform an emergency stop. |
| INTERPOLATE |  |
| ENDOF_INTERPOLATE |  |
| LATCH | The axis will start decelerating the software limit position and stop <br> beyond the software limit position. |
| VELO | TRQ |
| PHASE |  |

- The software limit settings is disabled for ZRET operation.


## 11．3．3 Processing after an Alarm Occurs

## （ 1 ）Monitoring Alarms

If a position command that moves to or exceeds the positive and negative software limit is received，the axis will be moved to the software limit position，and a Positive／Negative Direction Software Limit alarm will occur．This alarm can be monitored in the Alarm monitoring parameter（ILロロ04）．

| Name | Register Number | Meaning |  |
| :--- | :--- | :--- | :--- |
| Alarm | Bit 3： | Positive Direction Software <br> Limit |  |
|  |  | Bit 4： | Negative Direction Software <br> Limit |

## （ 2 ）Clearing Software Limit Alarms

Clear software limit alarms using the procedure below．

1．Set the Alarm Clear bit to 1 in the RUN Command Setting（OWDOOO bit F）to clear the alarm．
The alarm（ILDC04）will be cleared．

| Name | Register Number | Meaning |  |
| :--- | :--- | :--- | :--- |
| RUN Command <br> Setting | OWロロ00 | Bit F： | Alarm Clear |

2．Use the FEED or STEP command to return past the software limit．


## 11．4 Modal Latch Function

The Modal Latch function can be executed to latch a position independently from the motion command being executed as long as the motion command being executed is not a motion command with latch function such as EX＿POSING， ZRET，and LATCH．
－If a motion command with latch function，such as EX＿POSING，ZRET，and LATCH，is executed while the modal latch function is being executed，the motion command has priority over the modal latch function，therefore，the motion command will be executed first．

## Latch Request

A latch request is sent at the moment the Latch Detection Demand bit（setting parameter OWD $\square 00$ ，bit 4 ）turns ON from OFF．
When the latch is completed，the Latch Complete bit（monitoring parameter IWDロ0C，bit 2）will turn ON．
The latched position will be written in the monitoring parameter ILDᄆ 18 Machine Coordinate System Latch Position （LPOS）．


## Canceling Latch Request

Set the Latch Detection Demand（setting parameter OWDロ00，bit 4）to OFF to cancel the latch request．

## Signals Used for Latch

The phase－C pulse，or／EXT1，／EXT2 or／EXT3 signals can be used as a latch signal．Use the setting parameter Latch Detection Signal Selection（OWロロ04，bits 0 to 3）to select the signal to be used as a latch signal．

## －Parameters Related to Modal Latch Function

The following table shows the parameters related to the Modal Latch function．

| Parameter Type | Parameter No． | Parameter Name | Description |
| :---: | :---: | :---: | :---: |
| Setting parameter | OWDロ00，bit 4 | Latch Detection Demand | Executed when the bit 4 turns ON from OFF． <br> Canceled when the bit 4 turns OFF from ON． |
|  | OW $\square \square 04$ ，bits 0 to 3 | Latch Detection Signal Selection | 2：Phase－C pulse <br> 3：／EXT1 <br> 4：／EXT2 <br> 5：／EXT3 |
| Monitoring parameter | IWप口0C，bit 2 | Latch Completed | － |
|  | ILロロ18 | Machine Coordinate System Latch Position （LPOS） | $1=1$ reference unit |

### 11.5 Bank Switching Function

Prior to use the Bank Switching function, register multiple types of SERVOPACK parameters (Bank Members) in one group as a Parameter Bank, and register multiple combinations of different set values of Bank Members. The Bank Switching function switches all the set values of Bank Members at once by selecting a combination of set values using the setting parameter Bank Selector (OWDロ04, bits C to F).
To enable the MP2000-series SVB Module to use the Bank Switching function, the related SERVOPACK parameters must be set in advance so that the SERVOPACK can use the Bank Switching function.

- The Bank Switching function can be used with the following versions.
- Built-in SVB: Version 2.46 or later
- SVB-01 module: Version 1.18 or later
- MPE720: Version 5.33B or later



### 11.5.1 Bank Switching Specifications

There is no motion parameter to select whether or not to use the Bank Switching function. When the communications between the SVB Module and SERVOPACK is established, the SVB Module reads the settings of model, version number, and related SERVOPACK parameter settings and automatically determines the availability of the Bank Switching function. When the Bank Switching function is available, the values of the setting parameter Bank Selector (OWDD04, bits C to F ) will be sent to servo by executing the MECHATROLINK servo command. When it is not available, the set values of Bank Selector will be ignored.

- Refer to 4.4.2 ( 5 ) Function Setting 2 for details on the setting parameter Bank Selector.
- Refer to 11.5.4 Bank Member Setting for information on the related parameters.


### 11.5.2 Bank Switching Function Unsupported Motion Commands

The parameter Bank Selector is reported using the MECHATROLINK servo command option field. While the following MECHATROLINK commands are executed, the MECHATROLINK servo commands that have no option fields are issued. Therefore the setting of Bank Selector will not be reflected.

| NOP, | KVS, | ALM_HIST, |
| :--- | :--- | :--- |
| ZSET, | KPS, | ALMHIST_CLR, |
| ACC, | KFS, | ABS_RST, |
| DCC, | PRM_RD, | KIS, |
| SCC, | PRM_WR, | MLTTRN_SET |
| CHG_FILTER, | ALM_MON, |  |

### 11.5.3 SERVOPACK Parameter Settings for Bank Switching

Set the SERVOPACK parameters as shown in the following table and change the allocation of optional bits of MECHATROLINK servo commands to use the Bank Switching function. These settings will allocate BANK_SEL1 to bits 0 to 3 and ACCFIL to bits A and B. The SVB Module reads the allocations and determines the availability of Bank Switching function.

| Parameter No. | Setting |  |
| :--- | :--- | :--- |
|  | When Using Bank Switching Function | When Not Using Bank Switching Function |
| Pn81F | 0001 H | 0000 H |
| Pn82A | 181 AH | 1813 H |
| Pn82B | 1 D 1 CH | 1 D 1 CH |
| Pn82C | 1 F 1 EH | 1 F 1 EH |
| Pn82D | 0010 H | 0000 H |
| Pn82E | 0000 H | 0000 H |

- After changing the settings, turn OFF the power to the SERVOPACK and then turn ON again to validate the settings.
- Set the parameters exactly as shown in the above table. If not, the operation will not be guaranteed.

Information: Details on SERVOPACK Parameters Used for Bank Switching
The following table shows the details on SERVOPACK parameters used for bank switching.

| Parameter |  | Name |  | Size | Lower <br> Limit | Upper Limit | Unit | Factory Setting | Validation | Setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Digit |  |  |  |  |  |  |  |  |  |
| Pn81F | Function Selection Application 8 |  |  | 2 | 0000H | 0001H | - | 0000H | $\Delta$ | 0001H |
|  | 0 | Optional Function Bit Allocation Function | 0 | Disabled |  |  |  | 0 | $\Delta$ | 1 |
|  |  |  | 1 | Enabled |  |  |  |  |  |  |
|  | 1 | Reserved by the system | - | - |  |  |  | 0 | $\Delta$ | - |
|  | 2 | Reserved by the system | - | - |  |  |  | 0 | $\Delta$ | - |
|  | 3 | Reserved by the system | - | - |  |  |  | 0 | $\Delta$ | - |
| Pn82A | Optional Bit Allocation 1 |  |  | 2 | 000H | 1E1EH | - | 1813H | $\Delta$ | 181AH |
|  | 0 | ACCFIL Allocation Bit | 0 to E | Set the bit of option field to allocate ACCFIL. |  |  |  | 3 | $\Delta$ | A |
|  | 1 | With/Without ACCFIL Alloca- | 0 | Not allocated in option field |  |  |  |  | $\Delta$ | 1 |
|  | 1 | tion | 1 | Allocated in option field |  |  |  |  | $\Delta$ |  |
|  | 2 | GSEL Allocation Bit | 0 to E | Set the bit of option field to allocate GSEL. |  |  |  | 8 | $\Delta$ | 8 |
|  | 3 |  | 0 | Not allocated in option field |  |  |  |  | $\Delta$ |  |
|  | 3 | With/Without GSEL Allocation | 1 | Allocated in option field |  |  |  | 1 | $\Delta$ | 1 |
| Pn82B | Optional Bit Allocation 2 |  |  | 2 | 000H | 1F1FH | - | 1D1CH | $\Delta$ | 1D1CH |
|  | 0 | V_PPI Allocation Bit | 0 to F | Set the bit of option field to allocate V_PPI. |  |  |  | C | $\Delta$ | C |
|  | 1 | W | 0 | Not allocated in option field |  |  |  | 1 | $\Delta$ |  |
|  | 1 | Win/Without V_PPI Allocation | 1 | Allocated in option field |  |  |  | 1 | $\Delta$ | 1 |
|  | 2 | P_PL_CLR Allocation Bit | 0 to F | Set the bit of option field to allocate P_PL_CLR. |  |  |  | D | $\Delta$ | D |
|  | 3 | With/Without P PL_CLR Allo- | 0 | Not allocated in option field |  |  |  | 1 | $\Delta$ | 1 |
|  | 3 | cation | 1 | Allocated in option field |  |  |  | 1 | $\Delta$ | 1 |
| Pn82C | Optional Bit Allocation 3 |  |  | 2 | 000H | 1F1FH | - | 1F1EH | $\Delta$ | 1F1EH |
|  | 0 | P_CL Allocation Bit | 0 to F | Set the bit of option field to allocate P_CL. |  |  |  | E | $\Delta$ | E |
|  | 1 | With/Without P_CL Allocation | 0 | Not allocated in option field |  |  |  | 1 | $\Delta$ | 1 |
|  |  |  | 1 | Allocated in option field |  |  |  |  |  |  |
|  | 2 | N_CL Allocation Bit | 0 to F | Set the bit of option field to allocate N_CL. |  |  |  | F | $\Delta$ | F |
|  | 3 | With/Without N_CL Allocation | 0 | Not allocated in option field |  |  |  | 1 | $\Delta$ | 1 |
|  |  |  | 1 | Alloca | in optio | field |  |  |  |  |
| Pn82D | Optional Bit Allocation 4 |  |  | 2 | 000H | 001 CH | - | 0000H | $\Delta$ | 0010H |
|  | 0 | BANK_SEL1 Allocation Bit | 0 to C | Set the bit of option field to allocate BANK_SEL1. |  |  |  | 0 | $\Delta$ | 0 |
|  | 1 | With/Without BANK_SEL1 Allocation | 0 | Not allocated in option field |  |  |  | 0 | $\Delta$ | 1 |
|  |  |  | 1 | Allocated in option field |  |  |  |  |  |  |
|  | 2 | Reserved | 0 | - |  |  |  | - | $\Delta$ | 0 |
|  | 3 | Reserved | 0 | - |  |  |  | - | $\Delta$ | 0 |
| Pn82E | Optional Bit Allocation 5 |  |  | 2 | 000H | 001CH | - | 0000H | $\Delta$ | 0000H |
|  | 0 | R_MODE Allocation Bit | 0 to C | Set the bit of option field to allocate R_MODE. |  |  |  | 0 | $\Delta$ | 0 |
|  | 1 | With/Without R_MODE Allocation | 0 | Not allocated in option field |  |  |  | 0 | $\Delta$ | 0 |
|  |  |  | 1 | Allocated in option field |  |  |  |  |  |  |
|  | 2 | Reserved | 0 | - |  |  |  | - | $\Delta$ | 0 |
|  | 3 | Reserved | 0 | - |  |  |  | - | $\Delta$ | 0 |

- $\Delta$ : Valid after restart the power supply.


### 11.5.4 Bank Member Setting

## (1) SERVOPACK Parameters for Setting Bank Members

Set bank members using the following parameters.

| Parameter <br> No. | Name | Size | Setting Range |  | Unit | Factory <br> Setting | Valida- <br> tion | Setting |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pn900 | Number of Parameter <br> Banks |  | 0 | 15 | - | 0 | $\Delta$ | As <br> required |
| Pn901 | Number of Parameter <br> Bank Members | 2 | 0 | 15 | - | 0 | $\Delta$ | As <br> required |
| Pn902 <br> to <br> Pn910 | Parameter Bank Member <br> Definition | 2 | 0 | $08 F F$ | - | 0 | $\Delta$ | As <br> required |
| Pn920 <br> to <br> Pn95F | Parameter Bank Data | 2 | Depends on <br> member | Depends on <br> member | Depends on <br> member | 0 | $\checkmark$ | As <br> required |

- $\checkmark$ : Immediately valid.
$\Delta$ : Valid after restart the power supply.
- Refer to the related SERVOPACK manuals for the timing the Bank Switching function is validated.


## ( 2 ) Applicable Parameters for Bank Member

The following parameters can be registered in Parameter Bank Member Definition.

| Parameter <br> No. | Name | Size | Setting Range |  | Unit | Factory <br> Setting | Valida- <br> tion | Setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pn80A | First Step Linear <br> Acceleration Constant |  | 1 | 65535 | 10000 reference units/s ${ }^{2}$ | 0 | $\Delta$ | As <br> required |
| Pn80B | Second Step Linear <br> Acceleration Constant | 2 | 1 | 65535 | 10000 reference units/s $\mathrm{s}^{2}$ | 0 | $\Delta$ | As <br> required |
| Pn80C | Acceleration Constant <br> Switching Speed | 2 | 0 | 65535 | 100 reference units/s | 0 | $\Delta$ | As <br> required |
| Pn80D | First Step Linear <br> Deceleration Constant | 2 | 1 | 65535 | 10000 reference units/s ${ }^{2}$ | 0 | $\checkmark$ | As <br> required |
| Pn80E | Second Step Linear <br> Deceleration Constant | 2 | 1 | 65535 | 10000 reference units/s ${ }^{2}$ | 0 | $\checkmark$ | As <br> required |
| Pn80F | Deceleration Constant <br> Switching Speed | 2 | 0 | 65535 | 100 reference units/s | 0 | $\checkmark$ | As <br> required |
| Pn810 | Exponential Acceleration/ <br> Deceleration Bias | 2 | 0 | 32767 | reference unit/s | 0 | $\checkmark$ | As <br> required |
| Pn811 | Exponential Acceleration/ <br> Deceleration Time <br> Constant | 2 | 0 | 5100 | 0.1 ms | 0 | $\checkmark$ | As <br> required |
| Pn812 | Average Moving Time | 2 | 0 | 5100 | 0.1 ms | 0 | $\checkmark$ | As <br> required |

- $\checkmark$ : Immediately valid.
$\Delta$ : Valid after restart the power supply.


## ( 3 ) Setting Procedure

1. Set the Number of Parameter Banks (Pn900) and Number of Parameter Bank Members (Pn901).

- Number of Parameter Banks and Number of Parameter Bank Members must satisfy the following equation. Number of Parameter Banks $\times$ Number of Parameter Bank members $\leq 64$

2. Register the parameters to be Bank Members in the parameters Pn902 through Pn910.
3. Set each bank data in the parameter bank data area starting from Pn920. (See the following $\boldsymbol{\square}$ Setting Example.)
4. Turn OFF the power to the SERVOPACK and then turn ON again.

Setting Example: Three Banks with Members Pn80B, Pn80E, and Pn80C

|  |  |  | Bank Number |
| :---: | :---: | :---: | :---: |
| Pn900 = 3 | Number of Banks <br> Number of Members | Pn920 = 80BH value (0) | ¢ Bank 0 |
| Pn901 $=3$ |  | Pn921 = 80EH value (0) |  |
|  |  | Pn922 = 80CH value (0) |  |
| Pn902 = 80BH | Member 1 | Pn923 = 80BH value (1) |  |
| Pn903 $=80 \mathrm{EH}$ | Member 2 | Pn924 = 80EH value (1) | ¢ Bank 1 |
| Pn904 $=80 \mathrm{CH}$ | Member 3 | Pn925 = 80CH value (1) |  |
|  |  | Pn926 = 80BH value (2) |  |
|  |  | Pn927 = 80EH value (2) | \} Bank 2 |
|  |  | Pn928 = 80CH value (2) |  |

- The Bank Number starts from 0 (zero).
- Set above bank numbers in the Machine Controller's motion setting parameter Bank Selector (OWDロ04, bits C to F).


## (4) Precautions on Setting

- When the parameter Number of Banks (Pn900) or Number of Members (Pn901) is set to 0 , the standard parameters will be used so that the Bank Switching function is invalid.
- When the members registered in Parameter Bank Member Definition (Pn902 to Pn910) are overlapped, the bank data of the member with the bigger Parameter Bank Member Definition number will be applied.
- The Number of Parameter Banks (Pn900), Number of Parameter Bank Members (Pn901), and Parameter Bank Member Definition (Pn902 to Pn910) are offline parameters and these settings will be validated after turning OFF the power and turning ON, or by executing CONFIG command.
- When the Machine Controller setting parameter Bank Selector (OWDD04, bits C to F) is set to 0 (BANK SEL $=0$ ), the bank data will be used. Set the Bank 0 to the default value.
- The Bank will be switched after pulse distribution is completed ( $\mathrm{DEN}=1$ ). It will not be switched while pulse is being distributed ( $\mathrm{DEN}=0$ ).
- If the Parameter Bank Data (Pn920 to Pn95F) of the selected bank is changed while pulse is being distributed ( $\mathrm{DEN}=0$ ), the SERVOPACK will generate the warning A.95A and ignore the command.
- A.04A (Parameter Error) will occur after turning ON the power and then turning OFF, or after executing CONFIG command in the following cases.
- A parameter that is not applicable for bank member has been set.
- The bank data is out of the setting range.
- The total number of bank data exceeds $64(\operatorname{Pn} 900 \times \operatorname{Pn} 901>64)$
- When both the Bank Switching function and other torque feed forward compensation function are enabled at the same time, the 14th and 15th bytes are used for TFF field and the parameter bank designation cannot be changed. In this case, the latest bank settings will be maintained.
- If the BANK_SEL is allocated to the option field function bit, the BANK_SEL of the 14th byte will be invalid. Unless the 14th byte is used for interpolation torque feed forward compensation function, set it to 0 .
- In the servo parameters, set the Bank Switching function for SGDV or SGD7S SERVOPACKs.

The Parameter Bank data (Pn902 to Pn95F) is not saved in the nonvolatile memory. So, always set these parameters when using MECHATROLINK networks.

## 11．6 Parameters That Are Automatically Updated

Some of the parameters stored in SERVOPACK RAM may be overwritten automatically under certain conditions or as a result of self－configuration．This includes MP2000－series Machine Controller setting parameters and fixed parame－ ters，as well as fixed value SERVOPACK parameters．Some SERVOPACK parameters are also written to setting parameters automatically during self－configuration．The parameters that are updated automatically under specific con－ ditions are listed in the following tables．
－Refer to Chapter 4 Motion Parameters for details on Machine Controller parameters．Refer to your SERVOPACK manual for details on SERVOPACK parameters．

## 11．6．1 Parameters Updated when a MECHATROLINK Connection Is Established（1） （User Constants Self－writing Function Enabled）

The Machine Controller parameter settings in the left table below are automatically written to the SERVOPACK parameters given in the right table below when a connection is established between the Machine Controller and the SERVOPACK．This occurs after power is turned ON or alarms are cleared following a communication interruption． The parameters are written only when User Constants Self－writing Function is enabled when bit A of fixed parameter 1 in the Machine Controller is set to 0 ．

| MP2000－Series Machine Controller |  |  |  | SERVOPACK Parameter |  |  |  |  |  | Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | SGD－N，SGDB－N | NS100 | NS115 | SGDS | SGDV | SGD7S |  |  |
|  | Width of Positioning Completion | OLDCIE | $\rightarrow$ | － | － | $\begin{gathered} \mathrm{Pn500} \\ { }_{*_{1}} \end{gathered}$ | Pn522＊1 |  |  | ＊Settings are written only when using a MECHATROLINK－II operating at 10 Mbps in 32－byte mode． |  |
|  | Position Loop Gain | OWロロ2E | $\rightarrow$ | － | － | Pn102＊1 |  |  |  |  |  |
|  | Speed Loop Gain | OWDロ2F | $\rightarrow$ | － | － | Pn100＊1 |  |  |  |  |  |
|  | Speed Feed <br> Forward <br> Amends | OWDロ30 | $\rightarrow$ | － | － | Pn109＊1 |  |  |  |  |  |
|  | Position Integration Time Constant | OWDロ32 | $\rightarrow$ | － | － | Pn11F＊1 |  |  |  |  |  |
|  | Speed Integration Time Constant | OWDロ34 | $\rightarrow$ | － | － | Pn101 ${ }^{\text {1 }}$ |  |  |  |  |  |
|  | Straight Line Accel－ eration／Acceleration Time Constant | OLDロ36 | $\rightarrow$ | Cn－0020 |  | Pn80B |  | Pn80B／ | Pn836＊2 | Settings are written regard－ less of the communication method． |  |
|  | Straight Line Decel－ eration／Decelera－ tion Time Constant | OLDप38 | $\rightarrow$ | － |  | Pn80E |  | Pn80E | *3n83C |  |  |
|  | Filter Time Constant | OwDC3A | $\rightarrow$ | Cn－002E |  | Pn811 |  |  |  | When＂Expo－ nential <br> Acceleration／ Deceleration Filter＂is selected for filter type． | Settings are written regardless of the com－ munica－ tion method． |
|  |  |  |  | Cn－0026 |  | Pn812 |  |  |  | When either ＂Without fil－ ter＂or＂Mov－ ing Average Filter＂is selected for filter type． |  |
|  | Filter Type Selection | OWDロ03 <br> Bits 8 to B | $\rightarrow$ | $\rightarrow$ Settings are automatically enabled． |  |  |  |  |  |  |  |

＊1．Updated when using MECHATROLINK－II（10 Mbps， 32 bytes）．
＊2．When Pn833．0 is set to 0，Pn80B will be updated．When Pn833．0 is set to 1，Pn836 will be updated．
＊ 3 ．When Pn833．0 is set to 0, Pn80E will be updated．When Pn833．0 is set to 1, Pn83C will be updated．

## 11．6．2 Parameters Updated when a MECHATROLINK Connection Is Established（2） （Regardless of the User Constants Self－writing Function）

The Machine Controller parameter settings in the left table below are automatically written to the SERVOPACK parameters given in the right table below when a connection is established between the Machine Controller and the SERVOPACK．The parameters are written regardless of whether User Constants Self－writing Function is enabled or disabled at bit A of fixed parameter 1 in the Machine Controller．

| MP2000 Series Machine Controller |  |
| :--- | :--- |
| Fixed <br> parameters | No．16：Backlash Com－ <br> pensation Amount |
|  | 65535 |
|  | 32767 |
|  | $2^{30}-1$ |
|  | 100 |
|  | Pn820 and Pn822 are <br> set to the same value． |
|  | 0010 H |
|  | 0002 H |


|  | SERVOPACK Parameter |  |  |  |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { SGD-N, } \\ & \text { SGDB-N } \end{aligned}$ | NS100 | NS115 | SGDS | SGDV | SGD7S |  |
|  | － | － | Pn81B | Pn214 | － | Pn231 | － |
| $\rightarrow$ | Cn－001E | － |  |  |  |  | Position Error Overflow Range |
| $\rightarrow$ | － | Pn505 |  | － |  |  | Overflow Level |
| $\rightarrow$ | － | － |  | Pn520 |  |  | Excessive Position Error Alarm Level |
| $\rightarrow$ | － | Pn51E |  |  |  |  | Excessive Position Error Warning Level |
| $\rightarrow$ | － | －Pn820－＞Pn822 |  |  |  |  | Processing to disable the latch zone |
| $\rightarrow$ | － | Pn813 |  | － |  |  | Monitor Options 1 or 2 |
| $\rightarrow$ | － | Pn003 |  | Pn824 |  |  | Processing to monitor Torque／ Thrust Reference． |

## 11．6．3 Parameters Updated when a Setting Parameter Is Changed （MECHATROLINK－II Operating at 10 Mbps in 32 －byte Mode with User Con－ stants Self－writing Function Enabled）

When User Constants Self－writing Function is enabled at bit A of fixed parameter 1 in the Machine Controller，the parameters shown in the right table below are automatically updated every time the Machine Controller setting param－ eters in the left table below are updated．Updating occurs on all SERVOPACKs connected to a MECHATROLINK－II operating at 10 Mbps in 32 －byte mode．

| MP2000 Series Machine Controller |  |  |
| :---: | :---: | :---: |
| Setting parameters | Width of Positioning Completion | OLD口1E |
|  | Position Loop Gain | OW口口2E |
|  | Speed Loop Gain | OW口ロ2F |
|  | Speed Feed Forward Amends | OW口ロ30 |
|  | Position Integration Time Constant | OW口ロ32 |
|  | Speed Integration Time Constant | OW口ロ34 |
|  | Straight Line Accelera－ tion／Acceleration Time Constant | OLD口36 |
|  | Straight Line Decelera－ tion／Deceleration Time Constant | OLD口38 |


|  | SERVOPACK |  |  |  |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \hline \text { SGD-N, } \\ & \text { SGDB-N } \end{aligned}$ | NS100 | NS115 | SGDS | SGDV | SGD7S |  |
| $\rightarrow$ | － | － | Pn500 |  | Pn522 |  | － |
| $\rightarrow$ | － | － |  |  | 02 |  | － |
| $\rightarrow$ | － | － |  |  | 00 |  | － |
| $\rightarrow$ | － | － |  |  | 09 |  | － |
| $\rightarrow$ | － | － |  |  | 1F |  | － |
| $\rightarrow$ | － | － |  |  | 01 |  | － |
| $\rightarrow$ | － | － |  |  | Pn80B／ | Pn836 ${ }^{\text {1 }}$ |  |
| $\rightarrow$ | － | － |  | 0E | Pn80E／ | n83C＊2 |  |

＊1．When Pn833．0 is set to 0，Pn80B will be updated．When Pn833．0 is set to 1，Pn836 will be updated．
＊2．When Pn833．0 is set to 0, Pn80E will be updated．When Pn833．0 is set to $1, \mathrm{Pn} 83 \mathrm{C}$ will be updated．

### 11.6.4 Parameters Updated when a Motion Command Is Executed

A special care must be taken for the parameters listed in the table below because the Machine Controller parameter settings in the left table below are automatically written to the SERVOPACK parameters given in the right table below when the Machine Controller starts executing a motion command.


* 1. The parameters are written when User Constants Self-writing Function is enabled at bit A of fixed parameter 1 in the Machine Controller.
* 2. When Pn833.0 is set to 0, Pn80B will be updated. When Pn833.0 is set to 1, Pn836 will be updated.
* 3. When Pn833.0 is set to 0, Pn80E will be updated. When Pn833.0 is set to 1, Pn83C will be updated.


## 11．6．5 Parameters Updated during Self－configuration

## （ 1 ）Motion Parameters

The motion parameters for each axis are set as shown below according to information from each SERVOPACK when self－configuration is executed．Some parameters are written to the SERVOPACK＇s RAM．
［a］Motion Fixed Parameters
－SERVOPACK to Machine Controller

| MP2000 Series Machine Controller |  |  |
| :---: | :---: | :---: |
| Fixed Parameters |  |  |
| No． |  | Name |
|  |  | Servomotor Type＊ |
| 30 |  | Encoder Selection |
| त̇ত¢¢ | 34 | Rated Motor Speed |
|  | 36 | Number of Pulses per Motor Rotation |
|  | 38 | Maximum Number of Absolute Encoder Turns Rotation |
| ¢ | 6 | Linear Scale Pitch |
|  | 34 | Rated Motor Speed |
|  | 36 | Number of Pulse per Linear Scale Pitch |


－The above processing is not performed when the axis has been set．
－The default settings are used for all those parameters not listed above．
＊The Servomotor Type is written in the Module Configuration Definition Window．
［ b ］Motion Setting Parameters
－SERVOPACK to Machine Controller

| MP2000 Series Machine Controller |  |
| :---: | :--- |
| Setting Parameters |  |
| Address | Name |
| OW口ロ2E | Position Loop Gain |
| OW口ロ2F | Speed Loop Gain |
| OW口ロ30 | Speed Feed Forward Amends |
| OW口ロ32 | Position Integration Time Constant |
| OW口ロ34 | Speed Integration Time Constant |
| OW口ロ3A | Filter Time Constant |


|  |  | SER | ACK |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { SGD-N, } \\ & \text { SGDB-N } \end{aligned}$ | $\begin{gathered} \text { SGDH + } \\ \text { NS100 } \end{gathered}$ | $\begin{gathered} \text { SGDH + } \\ \text { NS115 } \end{gathered}$ | $\begin{aligned} & \hline \text { SGDS, } \\ & \text { SGDV, or } \\ & \text { SGD7S } \end{aligned}$ |
| － | Cn－001A |  | Pn102 |  |
| $\leftarrow$ | Cn－0004 |  | Pn100 |  |
| － | Cn－001D |  | Pn109 |  |
| $\leftarrow$ | － |  | Pn11F |  |
| $\leftarrow$ | Cn－0005 |  | Pn101 |  |
| $\leftarrow$ | Cn－0026 |  | Pn812 |  |

－The above processing is not performed when the axis has been set．
－The default settings are used for all those parameters not listed above．

## （ 2 ）SERVOPACK Parameters

The SERVOPACK parameters are written to SERVOPACK EEPROM or RAM during self－configuration as shown below．Care must therefore be taken because the SERVOPACK parameters will be overwritten when self－configuration is executed．
－These settings，however，are not written to the set values for the SERVOPACK parameters saved in the Machine Controller．
［ a ］SERVOPACK Parameters（1）

| MP2000 Series Machine Controller |  |
| :---: | :---: |
| SERVOPACK Parameters |  |
| Name | Setting |
| P－OT Signal Mapping | Disable |
| N－OT Signal Mapping | Disable |
| SERVOPACK Software Limit Func－ tion（Positive） | Disable |
| SERVOPACK Software Limit Func－ tion（Negative） | Disable |
| SERVOPACK Electronic Gear Ratio （Numerator） | ＊1 |
| SERVOPACK Electronic Gear Ratio （Denominator） | 1 |
| Normal Autotuning Switches | Disable |
| ／DEC Signal Mapping | ＊2 |
| ／EXT1 Signal Mapping | ＊2 |
| ／EXT2 Signal Mapping | ＊2 |
| ／EXT3 Signal Mapping | ＊2 |
| Velocity Control Option | Use T－REF as the external torque limit input． |
| Torque Control Option | Use V－REF as the external speed limit input． |
| Forward Latching Allowable Area | Pn820 value |
| Command Data Allocation | 1 |
| Linear Accel／Decel Constant Selection | 1 |


|  | SERVOPACK |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { SGD-N, } \\ & \text { SGDB-N } \end{aligned}$ | $\begin{gathered} \text { SGDH + } \\ \text { NS100 } \end{gathered}$ | $\begin{gathered} \text { SGDH + } \\ \text { NS115 } \end{gathered}$ | SGDS | SGDV | SGD7S |
| $\rightarrow$ | Cn－0001 Bit 2 | Pn50A． 3 |  |  |  |  |
| $\rightarrow$ | Cn－0001 Bit 3 | Pn50B． 0 |  |  |  |  |
| $\rightarrow$ | Cn－0014 Bit 2 | Pn801．0 |  |  |  |  |
| $\rightarrow$ | Cn－0014 Bit 3 |  |  |  |  |  |
| $\rightarrow$ | Cn－0024 | Pn202 |  | Pn20E |  |  |
| $\rightarrow$ | Cn－0025 | Pn203 |  | Pn210 |  |  |
| $\rightarrow$ | － | Pn110 |  | － |  |  |
| $\rightarrow$ | － | Pn511．0 |  |  |  |  |
| $\rightarrow$ | － | Pn511．1 |  |  |  |  |
| $\rightarrow$ | － | Pn511．2 |  |  |  |  |
| $\rightarrow$ | － | Pn511．3 |  |  |  |  |
| $\rightarrow$ | － | Pn002．0 |  |  |  |  |
| $\rightarrow$ | － | Pn002．1 |  |  |  |  |
| $\rightarrow$ | － |  |  | Pn822 |  |  |
| $\rightarrow$ | － |  |  |  | Pn81F．1＊3 |  |
| $\rightarrow$ | － |  |  |  | Pn833．0＊4 |  |

＊1．The parameter setting differs with the model of SERVOPACK used as shown below．
Rotary SGD7S： 16
Other models： 1
＊2．The assigned SERVOPACK terminal differs with the model of SERVOPACK used as shown in the following table．

| Signal <br> Name | SERVOPACK Model | Setting | Signal Name | SERVOPACK Model | Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ／DEC | SGDS | CN1－9 | ／EXT2 | SGDS | CN1－11 |
|  | SGDH | CN1－41 |  | SGDH | CN1－45 |
|  | SGDV－口ロロJ1ロロ | CN1－41 |  | SGDV－口ロロJ1ロロ | CN1－45 |
|  | SGDV－ㅁㅁ밈ㅁ | N／A |  | SGDV－口ロロE1口口 | N／A |
|  | SGD7S and other SGDV models | CN1－9 |  | SGD7S and other SGDV models | CN1－11 |
| ／EXT1 | SGDS | CN1－10 | ／EXT3 | SGDS | CN1－12 |
|  | SGDH | CN1－44 |  | SGDH | CN1－46 |
|  | SGDV－पロロJ1口ロ | CN1－44 |  | SGDV－ロロロJ1ロロ | CN1－46 |
|  | SGDV－口ᄆ口E1口ᄆ | N／A |  | SGDV－口ᄆ口E1口口 | N／A |
|  | SGD7S and other SGDV models | CN1－10 |  | SGD7S and other SGDV models | CN1－12 |

＊3．Allocated for the TFF／TLIM function of the position control command．

* 4. Uses Pn834 to Pn83E.
- The above processing is not performed when the axis has been set.
- The above set values are written to the SERVOPACK's EEPROM.
[ b ] SERVOPACK Parameters (2)

| MP2000 Series Machine Controller |  |
| :--- | :---: |
| SERVOPACK Parameters |  |
| Name | Setting |
| Position Error Overflow Range | 65535 |
| Overflow Level | 32767 |
| Excessive Position Error <br> Alarm Level | $2^{30}-1$ |
| Excessive Position Error <br> Warning Level | 100 |


|  |  |  | SERVOPAC |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { SGD-N, } \\ & \text { SGDB-N } \end{aligned}$ | $\begin{gathered} \text { SGDH + } \\ \text { NS100 } \end{gathered}$ | $\begin{gathered} \text { SGDH + } \\ \text { NS115 } \end{gathered}$ | SGDS | SGDV | SGD7S |
| $\rightarrow$ | Cn-001E |  |  | - |  |  |
| $\rightarrow$ | - |  |  |  | - |  |
| $\rightarrow$ |  | - |  |  | Pn520 |  |
| $\rightarrow$ | - |  |  | 51 E |  |  |

- The above set values are written to the SERVOPACK's RAM.


## 11．7 Precautions When Using $\Sigma$－V－series SGDV SERVOPACKs

## 11．7．1 Software Limit Settings

Use the software limit setting of the Machine Controller，not that of the SGDV SERVOPACK．

## 11．7．2 When the Tuning－less Function is Enabled

In SGDV SERVOPACKs，Pn170．0 is set to 1 （default setting）and the tuning－less function is enabled．Any actions related to the settings of gain－related parameters are disabled．

## （1）Gain Related Settings

The related servo parameters are changed when the User Constants Self－Writing Function of Function Selection Flag 1 （fixed parameter）is enabled and the following parameters are changed．The settings，however，do not affect actual operations．

| Register no． | Name | Setting range | Default value | Meaning |
| :---: | :--- | :---: | :---: | :---: |
| OWロロ2E | Position Loop Gain | 0 to 32767 | 300 | $1=0.1 / \mathrm{s}$ |
| OWロロ2F | Speed Loop Gain | 1 to 2000 | 40 | $1=1 \mathrm{~Hz}$ |
| OWロロ30 | Speed Feed Forward Amends | 0 to 32767 | 0 | $1=0.01 \%$ |
| OWロロ32 | Position Integration Time Constant | 0 to 32767 | 0 | $1=1 \mathrm{~ms}$ |
| OWロロ34 | Speed Integration Time Constant | 15 to 65535 | 0 | $1=0.01 \mathrm{~ms}$ |

## （ 2 ）Gain－related Motion Commands

The related servo parameters are changed in accordance with the results obtained by executing the following motion commands．
The settings，however，do not affect actual operations．

| Register no． | Setting | Meaning |
| :--- | :---: | :--- |
| OWロロ08 | 14 | Change Speed Loop Gain（KVS） |
|  | 15 | Change Position Loop Gain（KPS） |
|  | 16 | Change Feed－forward（KFS） |
|  | 26 | Change Position Loop Integral Time Constant（KIS） |

（3）Gain Switching
Even if the setting for Mode Setting lof the Gain Switch is changed，this setting does not affect actual operations．

| Register no． | Name | Meaning | Remark |
| :---: | :---: | :---: | :---: |
| OW口ロ01 | Mode Setting 1 | Bit 4：Gain Switch | $0:$ OFF，1：ON |

## 11．7．3 Saving the Parameter Bank Data

When using the Parameter Bank function，the Bank data（Pn920 to Pn95F）is not saved in the nonvolatile memory． These parameters must always be reset if using a MECHATROLINK network between the Motion Controller and the SERVOPACK．
If these parameters are set to 0 and have not been changed，the Parameter Bank function operates in accordance with the minimum value of each parameter．

### 11.7.4 Motion Command Operation for External Latches with DC Power Input $\Sigma$-Vseries SERVOPACKs

If you use an external latch signal (/EXT1) with a DC Power Input $\Sigma$-V-series SERVOPACK, always change the setting of the Input Signal Selection 5 in the Pn511 SERVOPACK parameter so that /EXT1 is used. This signal is disabled in the default settings.
If you attempt to execute a motion command ${ }^{* 2}$ using $/$ EXT1 $^{* 1}$ when /EXT1 is disabled, a Set Parameter Error warning (Monitoring Parameter ILDD02, bit 1) will occur and execution of the motion command will end in an error.

* 1. Set bits 0 to 3 (Latch Detection Signal Selection) or bits 4 to 7 (External Positioning Signal Setting) of Setting Parameter OWDC04 to 3 (/EXT1) or set Setting Parameter OWDD3C (Zero Point Return Method) to 1 (ZERO), 2 (DEC1 + ZERO), 14 (Home LS \& C Pulse), or 15 (Home Only).
*2. Set Setting Parameter OWロロ08 (Interpolation Mode with Latch Input) to 2 (EX_POSING (External Positioning)), 6 (LATCH), or 9 (ZSET) Set Zero Point)).


### 11.8 Precautions When Using $\Sigma$ - 7 -series SGD7S SERVOPACKs with Rotary Servomotors

### 11.8.1 SGD7S Electronic Gear Ratio Settings

Set Pn20E (Electronic Gear Ratio (Numerator)) and Pn210 (Electronic Gear Ratio (Denominator)) for the SGD7S as shown in the following table.
These settings are made automatically if you execute self configuration.

| Servo Parameter No. | Name | Setting | Default |
| :---: | :--- | :---: | :---: |
| Pn20E | Electronic Gear Ratio (Numerator) | 16 | 64 |
| Pn210 | Electronic Gear Ratio (Denominator) | 1 | 1 |

### 11.8.2 Assignment

Open the Module Configuration Tab Page in the MPE720, and set the model to SGD7S-****10* or SGD7S-***10* (Linear) of the SERVOPACK that connects to the slave cell to assign to a Function Module/Slave Cell.
These settings are made automatically if you execute self configuration.

### 11.8.3 Number of Pulses per Motor Rotation

Set Fixed Parameter No. 36 Number of Pulses per Motor Rotation as shown in the following table. These settings are made automatically if you execute self configuration.

| Fixed Parameter No. | Name | Setting |
| :---: | :---: | :---: |
| 36 | Number of Pulses per Motor Rotation | 1048576 |

- If you set fixed parameter No. 36 (Number of Pulses per Motor Rotation) to a value of 16777216 (24 bits) or higher, the monitoring parameters will be as follows:

| IW $\square \square 00$, Bit0 | Motion Controller Operation Ready | OFF |
| :--- | :--- | :--- |
| IW $\square \square 01$ | Parameter Number When Range Over is Generated | 1036 |
| IL $\square \square 02$, Bit2 | Fixed Parameter Error | ON |

### 11.8.4 Motion Image



### 11.8.5 Software Limit Settings

Use the software limit setting of the Machine Controller, not that of the SGDV SERVOPACK.

### 11.8.6 When the Tuning-less Function is Enabled

The default servo parameter setting for the SGD7S is 1 (Tuning-less Function Selection is enabled) for Pn170.0 (Tun-ing-less Selection).
For functions that are disabled in this state, refer to 11.7.2 When the Tuning-less Function is Enabled.

### 11.8.7 Saving the Parameter Bank Data

When using the Parameter Bank function, the Bank data ( Pn 920 to Pn 95 F ) is not saved in the nonvolatile memory. For details, refer to 11.7.3 Saving the Parameter Bank Data.

## Troubleshooting

This chapter describes the system registers used for troubleshooting the SVB Module and troubleshooting related to motion.
12.1 Troubleshooting Motion Errors ..... 12-2
12.1.1 Overview of Motion Errors ..... 12-2
12.1.2 Causes of Command Error End Alarms (IWप्009 Bit 3) ..... 12-3
12.1.3 Motion Errors Details and Corrections ..... 12-6
12.1.4 SERVOPACK Status/SERVOPACK Error Codes ..... 12-14
12.2 Troubleshooting System Errors ..... 12-25
12.2.1 Overview of System Errors ..... 12-25
12.2.2 System Register Configuration and Error Status ..... 12-27
12.3 Motion Program Alarm ..... 12-43
12.3.1 Structure of Motion Program Alarms ..... 12-43
12.3.2 Motion Program Alarm Codes ..... 12-43

## 12．1 Troubleshooting Motion Errors

## 12．1．1 Overview of Motion Errors

Motion errors are errors that are detected in motion control．
You can check the details of motion errors with the system registers shown next．

＊1．Refer to 12．1．2 Causes of Command Error End Alarms（IWDL09 Bit 3）．
＊2．Refer to 12．1．3（1）Warnings in ILロロ02．
＊3．Refer to 12．1．3（ 2 ）Alarms（ILロロ04）Table and Corrections．
＊4．Refer to 12．1．4（ 1 ）SERVOPACK Status Monitor（IWDロ2C）Table．
＊5．Refer to 12．1．4（ 2 ）SERVOPACK Alarm Code（IWDロ2D）Tables．

### 12.1.2 Causes of Command Error End Alarms (IWDロ09 Bit 3)

Bit 3 (Command Error End) of the IW $\square \square 09$ monitor parameter will turn ON when a motion command cannot be executed for some reason or if execution does not end normally. The reasons that cause this bit to turn ON depend on the motion command.
The following table gives the reasons that cause this bit to turn ON for each motion command.

| Motion Command Code |  | Reason for Command Error End | Warnings (W) and Alarms (A) That Occur at the Same Time |
| :---: | :---: | :---: | :---: |
| 1 | POSING (Positioning) | The positioning travel distance exceeded the allowed value. | A: Excessive Positioning Travel Distance |
|  |  | An absolute infinite-length axis is being used but the zero point is not set. | A: Zero Point Unset |
|  |  | The power to the Servomotor is OFF. | A: Servo OFF |
|  |  | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
| 2 | EX_POSING (External Positioning) | The positioning travel distance exceeded the allowed value. | A: Excessive Positioning Travel Distance |
|  |  | An absolute infinite-length axis is being used but the zero point is not set. | A: Zero Point Unset |
|  |  | The power to the Servomotor is OFF. | A: Servo OFF |
|  |  | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
|  |  | Writing the SERVOPACK parameters was not completed within the specified time. | A: SERVOPACK Communications Timeout Error |
|  |  | An A. 94 or A. 95 warning occurred in the SERVOPACK. | W: SERVOPACK Error |
|  |  | An external signal selection is not within the setting range. | W: Setting Parameter Error |
| 3 | Zero Point Return (ZRET) | The machine is locked. | - |
|  |  | The power to the Servomotor is OFF. | A: Servo OFF |
|  |  | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
|  |  | Reading or writing the SERVOPACK parameters was not completed within the specified time. | A: SERVOPACK Communications Timeout Error |
|  |  | An A. 94 or A. 95 warning occurred in the SERVOPACK. | W: SERVOPACK Error |
|  |  | The zero point return method is not set within the setting range. | W: Setting Parameter Error |
|  |  | The zero point return method is set to P-OT, but the approach speed is negative. | W: Setting Parameter Error |
|  |  | The zero point return method is set to $\mathrm{N}-\mathrm{OT}$, but the approach speed is positive. | W: Setting Parameter Error |
|  |  | The zero point return method is set to DEC1 + phaseC pulse, ZERO signal, DEC1 + ZERO signal, or Phase-C pulse, but the OT signal in the zero point return direction is ON . | OT alarm or OT warning in the zero point return direction |
| $\begin{gathered} 4 \\ \text { or } \\ 5 \end{gathered}$ | INTERPOLATE <br> (Interpolation) <br> ENDOF_INTERPOLATE <br> (Last Interpolation Segment) | The travel distance for one scan exceeded the allowable segment for a SERVOPACK with MECHATROLINK Communications or the speed feedforward value exceeded the maximum speed. | A: Excessive Speed |
|  |  | An absolute infinite-length axis is being used but the zero point is not set. | A: Zero Point Unset |
|  |  | The power to the Servomotor is OFF. | A: Servo OFF |
|  |  | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |

(cont'd)

|  | Motion Command Code | Reason for Command Error End | Warnings (W) and Alarms (A) That Occur at the Same Time |
| :---: | :---: | :---: | :---: |
| 6 | LATCH (Latch) | The travel distance for one scan exceeded the allowable segment for a SERVOPACK with MECHATROLINK Communications or the speed feedforward value exceeded the maximum speed. | A: Excessive Speed |
|  |  | An absolute infinite-length axis is being used but the zero point is not set. | A: Zero Point Unset |
|  |  | The power to the Servomotor is OFF. | A: Servo OFF |
|  |  | An alarm has occurred. | - |
|  |  | The latch signal is set outside of the setting range. | W: Setting Parameter Error |
| 7 | FEED (Jog) | The machine is locked. | - |
|  |  | The power to the Servomotor is OFF. | A: Servo OFF |
|  |  | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
| 8 | STEP (STEP Operation) | The positioning travel distance exceeded the allowed value. | A: Excessive Positioning Travel Distance |
|  |  | The power to the Servomotor is OFF. | A: Servo OFF |
|  |  | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
| 9 | ZSET (Set Zero Point) | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
| $\begin{aligned} & 10 \\ & \text { or } \\ & 11 \end{aligned}$ | ACC (Change Linear Acceleration Time Constant) DCC (Change Linear Deceleration Time Constant) | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
|  |  | The command was executed when pulse distribution was not completed (i.e., when DEN was OFF). | - |
|  |  | Writing the SERVOPACK parameters was not completed within the specified time. | A: SERVOPACK Communications Timeout Error |
|  |  | An A. 94 or A. 95 warning occurred in the SERVOPACK. | W: SERVOPACK Error |
| 12 | SCC (Change Filter Time Constant) | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
|  |  | The command was executed when pulse distribution was not completed (i.e., when DEN was OFF). | A: Filter Time Constant Change Error |
|  |  | Writing the SERVOPACK parameters was not completed within the specified time. | A: SERVOPACK Communications Timeout Error |
|  |  | An A. 94 or A. 95 warning occurred in the SERVOPACK. | W: SERVOPACK Error |
| 13 | CHG_FILTER <br> (Change Filter Type) | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
|  |  | The command was executed when pulse distribution was not completed (i.e., when DEN was OFF). | A: Filter Time Constant Change Error |
|  |  | The filter type is set outside of the setting range. | W: Setting Parameter Error |
| $\begin{gathered} 14 \\ \text { or } \\ 15 \\ \text { or } \\ 16 \end{gathered}$ | KVS <br> (Change Speed Loop Gain) KPS <br> (Change Position Loop Gain) KFS <br> (Change Feedforward) | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
|  |  | Writing the SERVOPACK parameters was not completed within the specified time. | A: SERVOPACK Communications Timeout Error |
|  |  | An A. 94 or A. 95 warning occurred in the SERVOPACK. | W: SERVOPACK Error |


| Motion Command Code |  | Reason for Command Error End | Warnings (W) and Alarms (A) That Occur at the Same Time |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 17 \\ & \text { or } \\ & 18 \end{aligned}$ | PRM_RD <br> (Read SERVOPACK <br> Parameter) <br> PRM_WR <br> (Write SERVOPACK <br> Parameter) | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
|  |  | Reading the SERVOPACK parameter was not completed within the specified time. | A: SERVOPACK Communications Timeout Error |
|  |  | An A. 94 or A. 95 warning occurred in the SERVOPACK. | W: SERVOPACK Error |
|  |  | The SERVOPACK parameter number or parameter size is set outside of the setting range. | W: Setting Parameter Error |
| $\begin{aligned} & 19 \\ & \text { or } \\ & 20 \end{aligned}$ | ALM_MON <br> (Monitor Alarms) <br> ALM_HIST <br> (Alarm History Monitor) | The command to the SERVOPACK was not completed within the specified time. | A: SERVOPACK Communications Timeout Error |
|  |  | The SERVOPACK alarm monitor number was set outside of the setting range. | W: Setting Parameter Error |
| 21 | ALMHIST_CLR (Clear Alarm History) | The command to the SERVOPACK was not completed within the specified time. | A: SERVOPACK Communications Timeout Error |
| 22 | ABS_RST <br> (Reset Absolute Encoder) | The command was issued to a $\Sigma$-I Type SERVOPACK. | - |
|  |  | The command was issued when the power to the Servomotor was ON. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
|  |  | The command to the SERVOPACK was not completed within the specified time. | A: SERVOPACK Communications Timeout Error |
| 23 | VELO <br> (Issue Speed Reference) | The command was issued for a MECHATROLINK-I connection. | - |
|  |  | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
| 24 | TRQ (Issue Torque Reference) | The command was issued for a MECHATROLINK-I connection. | - |
|  |  | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
| 25 | PHASE <br> (Issue Phase Reference) | An absolute infinite-length axis is being used but the zero point is not set. | A: Zero Point Unset |
|  |  | The power to the Servomotor is OFF. | A: Servo OFF |
|  |  | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
| 26 | KIS <br> (Change Position Loop Integral Time) | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
|  |  | Writing the SERVOPACK parameters was not completed within the specified time. | A: SERVOPACK Communications Timeout Error |
|  |  | An A. 94 or A. 95 warning occurred in the SERVOPACK. | W: SERVOPACK Error |
| - | Others <br> SERVOPACK parameter auto-write when movement commands are executed* | An alarm has occurred. | - |
|  |  | Communications are not synchronized. | A: SERVOPACK Synchronized Communications Error |
|  |  | Writing the SERVOPACK parameters was not completed within the specified time. | A: SERVOPACK Communications Timeout Error |
|  |  | An A. 94 or A. 95 warning occurred in the SERVOPACK. | W: SERVOPACK Error |
|  |  | Pulse distribution is not completed (i.e., DEN is OFF). | - |

This applies when No. 1 Function Selection Flag 1 Bit A SERVOPACK Parameter Auto-Write fixed parameter is set to 0 (Enabled) and the set value of the OW $\square \square 3$ A Filter Time Constant, OL $\square \square 36$ Linear Acceleration Rate/Acceleration Time Constant, or OLDロ38 Deceleration Rate/Deceleration Time Constant setting parameter is changed at the same time as the movement command is set.

## 12．1．3 Motion Errors Details and Corrections

This section gives tables and details for the Axis Warnings（ILDロ02）and Axis Alarms（ILDロ04）parameters．

## （1）Warnings in ILDप02

The following table lists the bits in the Warnings（ILDप02）parameter．

| Register No． | Name | Contents |
| :---: | :---: | :---: |
| IL $\square \square 02$ | Warnings | Bit 0：Excessive Deviation |
|  |  | Bit 1：Setting Parameter Error |
|  |  | Bit 2：Fixed Parameter Error |
|  |  | Bit 3：SERVOPACK Error |
|  |  | Bit 4：Motion Command Setting Error |
|  |  | Bit 5：Reserved for system． |
|  |  | Bit 6：Positive Overtravel |
|  |  | Bit 7：Negative Overtravel |
|  |  | Bit 8：Servo ON Incomplete |
|  |  | Bit 9：SERVOPACK Communications Warning |
|  |  | Bit A：SERVOPACK Stop Signal Active |
|  |  | Bits B to 1F：Reserved for system． |

［ a ］Troubleshooting Warnings（ILDD02）

## Bit 0：Excessive Deviation

| Detection Timing | Anytime except during speed or torque control． <br> This warning is detected only when bit 0 （Excessive Deviation Error Level Setting）in the OW口口01 <br> setting parameter is set to 1（Warning）． |
| :--- | :--- |
| Processing When <br> Warning Occurs | The current movement command is continued． <br> Movement commands can be executed． |
| Details and Cause | The position deviation exceeded the OL $\square \square 22$ setting parameter（Excessive Deviation Detection <br> Value）． <br> Any of the following is possible． <br> －Response was poor because the position loop or speed loop gain is not suitable． <br> －The value of OL $\square 22$（Excessive Deviation Detection Value）is too small． <br> －The capacity of the Servomotor is too small for the load． <br> －SERVOPACK failure |
| Correction | Check the following and make suitable corrections where necessary． <br> －Check the position loop or speed loop gain． <br> －Check the OLD口22（Excessive Deviation Detection Value）parameter． <br> －Check the capacity of the Servomotor． |

－The deviation is not checked if the OLDD22（Excessive Deviation Detection Value）parameter is set to 0 ．

## Bit 1：Setting Parameter Error

| Detection Timing | At execution of a motion command． |
| :--- | :--- |
| Processing When <br> Warning Occurs | The number of the setting parameter in which an error was detected is reported in the IW口口01 moni－ <br> tor parameter（Out－of－range Parameter Number）． |
| Details and Cause | Any of the following is possible． <br> －The set value of the setting parameter exceeds the setting range． <br> －The value of the setting parameter that was specified when a motion command was executed was not <br> correct． |
| Correction | Check the set value of the setting parameter that was reported in the IW $\square \square 01$ monitor parameter <br> （Out－of－range Parameter Number）． |

## Bit 2：Fixed Parameter Error

| Detection Timing | When saving the fixed parameters． |
| :--- | :--- |
| Processing When <br> Warning Occurs | The number of the fixed parameter in which an error was detected is reported in the IW $\square \square 01$ monitor <br> parameter（Out－of－range Parameter Number）． <br> Bit 0（Motion Operation Ready）in the IW口 $\square 01$ monitor parameter changes to 0（Motion operation <br> not ready）． |
| Details and Cause | A setting range error or operation error occurred in internal processing that used more than one fixed <br> parameter． |
| Correction | Check the set value of the fixed parameter that was reported in the IW <br> of－range Parameter Number）． |

－The following fixed parameters are related to a fixed parameter error for the electronic gear．Check the settings of these parameters．
Bit 0 （Axis Selection）and bit 9 （Simple Absolute Infinite Axis Position Management）in the No． 1 Function Selection Flags 1 parameter，and the No． 4 Reference Unit Selection，No． 6 Travel Distance per Machine Rotation，No． 8 Servo－ motor Gear Ratio Term，No． 9 Machine Gear Ratio Term，No． 10 Infinite－length Axis Reset Position，No． 30 Encoder Selection，No． 36 Number of Pulses per Motor Rotation，and No． 38 Maximum Number of Absolute Encoder Rota－ tions parameters

Bit 3：SERVOPACK Error

| Detection Timing | Anytime |
| :--- | :--- |
| Processing When <br> Warning Occurs | The current movement command is continued． <br> Movement commands can be executed． |
| Details and Cause | This warning indicates that a warning occurred in the SERVOPACK． <br> Check the nature of the warning in IW口口2D monitor parameter（SERVOPACK Alarm Code）． <br> Refer to 12．1．4（2）SERVOPACK Alarm Code（IWםロ2D）Tables for details． |
| Correction | Check the nature of the SERVOPACK warning and eliminate the cause． |

－Bit 4：Motion Command Setting Error

| Detection Timing | At start of motion command execution． |
| :--- | :--- |
| Processing When <br> Warning Occurs | The motion command is disabled． |
| Details and Cause | An unsupported motion command code was set． |
| Correction | Correct the motion command code． |

－Bit 6：Positive Overtravel and Bit 7：Negative Overtravel

| Detection Timing | During execution of a movement motion command． Overtravel detection is enabled while the OT signal in travel direction is OFF． |
| :---: | :---: |
| Processing When Warning Occurs | －Stop processing is performed in the SERVOPACK． <br> The stop method and the operation after stopping depend on the SERVOPACK parameter settings． <br> －Controller Processing The current movement command is continued． |
| Details and Cause | Any of the following is possible． <br> －A command was issued that caused a travel limit of the machine to be exceeded for one of the fol－ lowing： <br> A command from a user program <br> Manual operation that exceeds the travel limit <br> －An error in the overtravel signal |
| Correction | －Check the following items： <br> Check the overtravel signal． <br> Check programmed and manual operation． <br> －After completing the above checks，return the axis to eliminate the overtravel condition． |

## Bit 8：Servo ON Incomplete

| Detection Timing | Anytime |
| :--- | :--- |
| Processing When <br> Warning Occurs | Movement commands cannot be executed． |
| Details and Cause | The power to the Servomotor was not turned ON even though bit 0（Servo ON）of the OW口口00 set－ <br> ting parameter was turned ON． <br> Any of the following is possible． <br> －The change in the Servo ON command from OFF to ON was not detected． <br> －There is an alarm in the SERVOPACK． <br> －The main circuit power supply to the SERVOPACK is OFF． |
| Correction | Turn ON the Servo ON command again． <br> Check the SERVOPACK for alarms and check the power supply status and stop signal status． |

－Bit 9：SERVOPACK Communications Warning

| Detection Timing | Anytime |
| :--- | :--- |
| Processing When <br> Warning Occurs | The current movement command is continued． <br> Movement commands can be executed． |
| Details and Cause | This bit shows individual errors in MECHATROLINK communications． |
| Correction | When the communications error stops，normal status is recovered automatically． <br> If warnings occur frequently，reroute the MECHATROLINK cable，change the ground，or implement <br> other noise countermeasures． |

－If communications errors occur consecutively，an alarm will be shown in ILDD04 bit 11 （SERVOPACK Communica－ tions Error）．

■ Bit A：SERVOPACK Stop Signal Active

| Detection Timing | Anytime |
| :--- | :--- |
| Processing When <br> Warning Occurs | The power supply to the Servomotor is turned OFF and movement commands are not executed． |
| Details and Cause | The stop signal（or an HWBB for $\Sigma$－V／$\Sigma-7$ SERVOPACKs）was received by the SERVOPACK． |
| Correction | Confirm safety，and then disable the stop signal． |

## （ 2 ）Alarms（ILDD04）Table and Corrections

This section describes the alarms that are given in IL $\square \square 04$ and the corrections for them．
［ a ］Alarms in ILDD04
The following table lists the bits in the Alarms（ILDロ04）parameter．

| ILロロ04 | Alarm | IL口口04 |  |
| :---: | :--- | :--- | :--- |
| Bit 0 | SERVOPACK Error | Bit 10 | SERVOPACK Synchronized Communications Error |
| Bit 1 | Positive Overtravel | Bit 11 | SERVOPACK Communications Error |
| Bit 2 | Negative Overtravel | Bit 12 | SERVOPACK Communications Timeout Error |
| Bit 3 | Positive Software Limit | Bit 13 | Excessive Absolute Encoder Rotations |
| Bit 4 | Negative Software Limit | Bit 14 | Reserved for system． |
| Bit 5 | Servo OFF | Bit 15 | Reserved for system． |
| Bit 6 | Positioning Time Exceeded | Bit 16 | Not used． |
| Bit 7 | Excessive Positioning Travel Distance | Bit 17 | Not used． |
| Bit 8 | Excessive Speed | Bit 18 | Not used． |
| Bit 9 | Excessive Deviation | Bit 19 | Not used． |
| Bit A | Filter Type Change Error | Bit 1A | Not used． |
| Bit B | Filter Time Constant Change Error | Bit 1B | Not used． |
| Bit C | Not used． | Bit 1C | Not used． |
| Bit D | Zero Point Unset | Bit 1D | Detected SERVOPACK Model Error |
| Bit E | Not used． | Bit 1E | Motor Type Setting Error |
| Bit F | Not used． | Bit 1F | Connected Encoder Model Error |

## ［ b ］Corrections for Alarms（ILDD04）

## ■ Bit 0：SERVOPACK Error

| Detection Timing | SERVOPACK alarms are detected in the alarm control section（always）． |
| :--- | :--- |
| Processing When | The current command is canceled． <br> If a SERVOPACK Error alarm occurs during execution of a POSING command，the POSING opera－ <br> tion is canceled and the axis decelerates to a stop． <br> Bit 3 （Command Error End）in IW口 $\square 09$（Motion Command Status）turns ON． |
| Details and Cause | The cause depends on the specific alarm．The specific alarm is given in IW $\square \square 2 D ~(S E R V O P A C K ~$ <br> Alarm Code）． <br> Refer to 12．1．4（2）SERVOPACK Alarm Code（IW $\square \square 2 D) ~ T a b l e s ~ f o r ~ d e t a i l s . ~$ |
| Correction | • Check the specific SERVOPACK alarm and eliminate the cause． <br> －Reset the alarm． |

－This bit changes to 1 when an alarm that is classified as a SERVOPACK alarm occurs in MECHATROLINK commu－ nications．

## －Bit 1：Positive Overtravel and Bit 2：Negative Overtravel

| Detection Timing | These alarms are detected by the position control section during execution of a motion command （always）． <br> Overtravel detection is enabled while the OT signal in travel direction is OFF． |
| :---: | :---: |
| Processing When Alarm Occurs | －Stop processing is performed in the SERVOPACK． <br> The stop method and the operation after stopping depend on the SERVOPACK parameter settings． Bit 3 （Command Error End）in IW $\square \square 09$（Motion Command Status）turns ON． <br> －Controller Processing <br> The command is canceled and the axis decelerates to a stop．Followup processing to align the com－ mand position with the current machine position is performed． |
| Details and Cause | Any of the following is possible． <br> －A command was issued that caused a travel limit of the machine to be exceeded for one of the fol－ lowing： <br> A command from a user program <br> Manual operation that exceeds the travel limit <br> －An error in the overtravel signal |
| Correction | －Check the following items： <br> Check the overtravel signal． <br> Check programmed and manual operation． <br> －After checking the above item，clear the motion command code and reset the alarm．Then return the axis to eliminate the overtravel condition．（Commands in the overtravel direction will be disabled．If you attempt to execute one，the alarm will occur again．） |

－For a vertical axis，we recommend that you make the following settings in the SERVOPACK to prevent falling or oscillation at the overtravel boundary．
－Using an emergency stop to decelerate to a stop
－Implementing a zero clamp after decelerating to a stop

## －Bit 3：Positive Software Limit and Bit 4：Negative Software Limit

| Detection Timing | Detection is enabled when a motion command is used．These alarms are detected by the position con－ <br> trol section． <br> Detection is enabled after completion of a Zero Point Return or a Set Zero Point command． |
| :--- | :--- |
| Processing When <br> Alarm Occurs | The axis decelerates to a stop at the software limit． <br> Bit 3（Command Error End）in IW口口09（Motion Command Status）turns ON． |
| Details and Cause | A command was issued that caused a software limit to be exceeded for one of the following： <br> A command from a user program that exceeds the travel limit <br> Manual operation that exceeds the travel limit |
| Correction | －Check programmed and manual operation． <br> －After checking the above items，clear the motion command code and reset the alarm．Then return the <br> axis to within the software limit．（Commands in the direction of the software limit will be disabled．If <br> you attempt to execute one，the alarm will occur again．） |

## Bit 5：Servo OFF

| Detection Timing | This alarm is detected when a movement command is attempted when the power to the Servomotor is <br> OFF． |
| :--- | :--- |
| Processing When <br> Alarm Occurs | The movement command is not executed． <br> Bit 3（Command Error End）in IW口口09（Motion Command Status）turns ON． |
| Details and Cause | A movement command（Positioning，External Positioning，Jog，or STEP Operation）was issued when <br> the power to the Servomotor was OFF． |
| Correction | Clear the motion command code，reset the alarm，and then turn ON the power to the Servomotor． |

## Bit 6：Positioning Time Exceeded

| Detection Timing | This alarm is detected when positioning was not completed within the time set in OW $\square \square 26$（Position－ <br> ing Completion Check Time）after the completion of pulse distribution． |
| :--- | :--- |
| Processing When <br> Alarm Occurs | The current command is aborted． <br> Bit 3 （Command Error End）in IW $\square \square 09$（Motion Command Status）turns ON． |
| Details and Cause | Any of the following is possible． <br> －Response was poor or oscillation occurred because the position loop or speed loop gain is not suit－ <br> able． <br> －The time in OW口口26（Positioning Completion Check Time）is too short． <br> －The capacity of the Servomotor is too small for the load． <br> －The SERVOPACK and Servomotor are not connected correctly． |
| Correction | Check the following items： <br> －Check the parameters that are related to the characteristics（gains）of the SERVOPACK． <br> －Check the connection between the SERVOPACK and Servomotor． <br> －See if the capacity of the Servomotor is sufficient． <br> －Check the time in OW口口26（Positioning Completion Check Time）． |

－The positioning time is not checked if the OWDप26（Positioning Completion Check Time）parameter is set to 0 ．

## Bit 7：Excessive Positioning Travel Distance

| Detection Timing | This alarm is detected when a positioning command is executed． |
| :--- | :--- |
| Processing When <br> Alarm Occurs | Movement commands are not executed． <br> Bit 3（Command Error End）in IW口口09（Motion Command Status）turns ON． |
| Details and Cause | A movement command（Positioning，STEP Operation，or External Positioning）that exceeded the posi－ <br> tioning travel limit was issued． |
| Correction | Check the axis travel distance specification in the positioning command． |

The positioning travel limits depend on the setting of fixed parameter No． 4 （Reference Unit Selection）as given below．

| Fixed Parameter No． 4 Setting | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Reference unit | pulse | mm | deg | inch | $\mu \mathrm{m}$ |
| Positioning travel limit | 2147483647 | $2147483647 \times \frac{\text { No.6: Travel Distance per Machine Rotation } \times}{\text { No.9: Machine Gear Ratio }} \begin{gathered} \text { No.36: Number of Pulses per Motor Rotation } \times \\ \text { No.8: Servo Motor Gear Ratio } \end{gathered}$ |  |  |  |

## Bit 8：Excessive Speed

| Detection Timing | This alarm is detected when a movement command is executed． |
| :--- | :--- |
| Processing When <br> Alarm Occurs | Movement commands are not executed． <br> Bit 3（Command Error End）in IW口ロ09（Motion Command Status）turns ON． |
| Details and Cause | The command speed（or，for interpolation，the distributed travel distance for one scan）that was sent to <br> the SERVOPACK with MECHATROLINK communications exceeded the allowed upper limit． |
| Correction | Check the speed reference，travel distance per scan for the interpolation reference，and the speed com－ <br> pensation setting． |

The speed limit that can be set depends on the connected SERVOPACK as shown next．However，the speed limit in simulation mode is $32,767,000$ for all SERVOPACKs．

| Model | Description | Speed Limit（pulse／s） |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { SGD-ロロロN } \\ & \text { SGDB-ロロAN } \end{aligned}$ | MECHATROLINK－I－compatible AC SERVOPACK | 16，384，000 |
| $\begin{aligned} & \text { SGDH-पロपE } \\ & \text { JUSP-NS100 } \end{aligned}$ | $\begin{aligned} & \text { SGDH SERVOPACK } \\ & \text { NS100 MECHATROLINK-I Interface } \end{aligned}$ | 131，068，000 |
| SGDH－पロपE JUSP－NS115 | SGDH SERVOPACK <br> NS115 MECHATROLINK－II Interface | 32，767，000 |
| SGDS－ロロロ1ロロ | SGDS SERVOPACK | 1，048，576，000 |
| SGDV－口ロロロ1ロロ | SGDV SERVOPACK | 2，097，152，000 |
| SGD7S－प口ロロ10ロ | SGD7S SERVOPACK | 2，097，152，000 |
| SJDE－प口AND | SJDE SERVOPACK | 1，048，576，000 |

Bit 9：Excessive Deviation

| Detection Timing | Anytime except during speed or torque control． |
| :--- | :--- |
| Processing When <br> Alarm Occurs | Movement commands are not executed． <br> Bit 3 （Command Error End）in IW口口09（Motion Command Status）turns ON． |
| Details and Cause | Any of the following is possible． <br> －Response was poor because the position loop or speed loop gain is not suitable． <br> －The value of OL口 $\square 22$（Excessive Deviation Detection Value）is too small． <br> －The capacity of the motor is too small for the load． <br> －SERVOPACK failure |
| Correction | Check the following and make suitable corrections where necessary．If recovery is not possible，contact <br> the maintenance division． <br> • Check the position loop or speed loop gain． <br> －Check the OL口口22（Excessive Deviation Detection Value）parameter． <br> • Check the capacity of the motor． |

－The deviation is not checked if the OLDप22（Excessive Deviation Detection Value）parameter is set to 0 ．

## Bit A：Filter Type Change Error

| Detection Timing | Always detected（This alarm is detected by the motion command processing section．） |
| :--- | :--- |
| Processing When <br> Alarm Occurs | The Change Filter Type command is not executed． <br> Bit 3 （Command Error End）in IW $\square \square 09$（Motion Command Status）turns ON． |
| Details and Cause | An error will occur if the Change Filter Type command is specified when pulse distribution has not <br> been completed for a command（i．e．，when bit 0 in IW $\square$ <br> boC is OFF）． |
| Correction | Correct the program so that the Change Filter Type command is executed only after pulse distribution <br> is completed（i．e．，only when bit 0 in IW $\square 0 \mathrm{C}$ is ON）． |

－Note：The current command will not stop even if this error occurs．To stop the current command，program stop pro－ cessing in a user program．

## Bit B: Filter Time Constant Change Error

| Detection Timing | Always detected (This alarm is detected by the motion command processing section.) |
| :--- | :--- |
| Processing When <br> Alarm Occurs | Commands are not executed. <br> Bit 3 (Command Error End) in IW $\square \square 09$ (Motion Command Status) turns ON. |
| Details and Cause | An error will occur if the Change Filter Time Constant command is specified when pulse distribution <br> has not been completed for a command (i.e., when bit 0 in IW $\square$ <br> hoC is OFF). |
| Correction | Correct the program so that the Change Filter Time Constant command is executed only after pulse dis- <br> tribution is completed (i.e., only when bit 0 in IW $\square 0 \mathrm{C}$ is ON). |

- The current command will not stop even if this error occurs. To stop the current command, program stop processing in a user program.

Bit D: Zero Point Unset

| Detection Timing | Detection of this alarm is enabled only when an absolute encoder and an infinite-length axis are used. <br> The alarm is detected when the following command is set in OWD $\square 08$ (Motion Commands). <br> Commands: Positioning, External Positioning, Interpolation, Latch, or Issue Phase Reference |
| :--- | :--- |
| Processing When <br> Alarm Occurs | The command that was set is not executed. <br> Bit 3 (Command Error End) in IW $\square \square 09$ (Motion Command Status) turns ON. |
| Details and Cause | A movement command was set when the zero point was not set (i.e., when bit 5 of IW口口0C was <br> OFF). |
| Correction | Clear the motion command, reset the alarm, and then perform an operation to set the zero point. |

## Bit 10: SERVOPACK Synchronized Communications Error

| Detection Timing | This alarm is detected by the communications control section when MECHATROLINK communica- <br> tions are synchronized between the Machine Controller and the SERVOPACK. |
| :--- | :--- |
| Processing When <br> Alarm Occurs | The current command is canceled. |
| Details and Cause | Data was not updated properly on either the Machine Controller or the SERVOPACK. |
| Correction | Check the connection of the MECHATROLINK cable, and then reset the alarm. |

- Bit 11: SERVOPACK Communications Error

| Detection Timing | This alarm is detected by the communications control section when MECHATROLINK communica- <br> tions is being performed between the Machine Controller and the SERVOPACK. |
| :--- | :--- |
| Processing When <br> Alarm Occurs | - The current command is canceled. <br> - The SERVOPACK turns OFF the power to the Servomotor. |
| Details and Cause | MECHATROLINK communications stopped because the cable was disconnected, there is an error in <br> MECHATROLINK communications (e.g., noise entered the communications path), the power supply <br> to the SERVOPACK was interrupted, etc. |
| Correction | • Check the connection of the MECHATROLINK cable, and then reset the alarm. <br> - If communications error occur frequently, review the wiring and implement countermeasures for <br> noise according to "MECHATROLINK-II Installation Guide" (Document No. MMATDEP011A) <br> published by the MECHATROLINK Members Association. Download this document from the <br> MECHATROLINK Members Association website. |

## Bit 12: SERVOPACK Communications Timeout Error

| Detection Timing | This alarm is detected during execution of a motion command. <br> This alarm is detected by the MECHATROLINK communications control section when the servo com- <br> mand/response check is performed in the processing sections. |
| :--- | :--- |
| Processing When <br> Alarm Occurs | The current command is canceled. |
| Details and Cause | The servo command in MECHATROLINK communications was not completed within the specified <br> time (5 seconds). |
| Correction | Check for alarms in the SERVOPACK with MECHATROLINK Communications. |

- This alarm occurs in the SERVOPACK with MECHATROLINK Communications when module assignment is completed but the power supply to the SERVOPACK is not turned ON.


## Bit 13: Excessive Absolute Encoder Rotations

| Detection Timing | Detection of this alarm is enabled only when an absolute encoder, finite-length axis, and electronic gear <br> are used. This alarm is detected by the position control section when the power supply is turned ON. |
| :--- | :--- |
| Processing When <br> Alarm Occurs | The absolute position information that is read from the absolute encoder when the SEN signal turns ON <br> is ignored. |
| Details and Cause | An operation error occurred when converting the absolute position information that was read from the <br> absolute encoder when the power supply was turned ON from pulses to reference units. |
| Correction | Correct the settings of the gear ratio, encoder pulses, and other related fixed parameters. |

## Bit 1D: Detected SERVOPACK Model Error

| Detection Timing | This alarm is detected when trying to establish MECHATROLINK communications with a SERVO- <br> PACK. |
| :--- | :--- |
| Processing When <br> Alarm Occurs | Communications cannot be performed with the SERVOPACK where this error occurred. |
| Details and Cause | The SERVOPACK model assigned in the module configuration definitions does not match the actual <br> SERVOPACK model that is connected. |
| Correction | • Change the model selected for the SERVOPACK to match the one that is actually connected. <br> - If the model is not supported by the latest version of the MPE720, assign it as a wildcard <br> SERVOPACK. |

## - Bit 1E: Motor Type Setting Error

| Detection Timing | This alarm is detected when communications is established with the SERVOPACK. |
| :--- | :--- |
| Processing When <br> Alarm Occurs | No special processing is performed. |
| Details and Cause | The setting (rotary/linear) of the Motor Type fixed parameter does not agree with the setting in the <br> SERVOPACK (Pn000.3 (Startup Selection Settings) for an SGDH SERVOPACK or Rotary/Linear for <br> an SGDS/SGDV SERVOPACK). |
| Correction | Check the settings and model number of the SERVOPACK. |

## Bit 1F: Connected Encoder Model Error

| Detection Timing | This alarm is detected when communications is established with the SERVOPACK. |
| :--- | :--- |
| Processing When <br> Alarm Occurs | No special processing is performed. |
| Details and Cause | The setting (rotary/linear) of the Motor Type fixed parameter does not agree with the Servomotor that <br> is connected to the SERVOPACK. |
| Correction | Check the Servomotor. |

### 12.1.4 SERVOPACK Status/SERVOPACK Error Codes

## (1) SERVOPACK Status Monitor (IWDप2C) Table

The status of the SERVOPACK with MECHATROLINK Communications can be monitored in the SERVOPACK Status Monitor parameter (IWロロ2C).

| Bit | Status | Meaning |
| :---: | :---: | :---: |
| Bit 0 | Alarm <br> (ALM) | 0: No alarm occurred. <br> 1: Alarm |
| Bit 1 | Warning (WARNING) | 0 : No warning occurred. <br> 1: Warning occurred. |
| Bit 2 | Command Ready (CMDRDY) | 0: Commands cannot be received. <br> 1: Commands can be received. |
| Bit 3 | Servo ON (SVON) | 0: Servo OFF <br> 1: Servo ON |
| Bit 4 | Main Power supply ON (PON) | 0: Main power OFF <br> 1: Main power ON |
| Bit 5 | Machine Lock (MLOCK) | 0 : Machine lock mode released. <br> 1: Machine lock mode |
| Bit 6 | Zero Position (ZPOINT) | 0: Outside of the zero point position range <br> 1: Inside the zero point position range |
| Bit 7 | Positioning Completed (PSET) | 0 : Outside of the width of positioning completion <br> 1: Inside width of positioning completion (for position control) |
|  | Speed Coincidence (V-CMP) | 0: Speed does not coincide. <br> 1: Speed coincides (for speed control). |
| Bit 8 | Distribution Completed (DEN) | 0: Distributing pulses. <br> 1: Distribution completed (for position control). |
|  | Zero Speed (ZSPD) | 0: Zero speed not detected. <br> 1: Zero speed detected (during speed control). |
| Bit 9 | Torque Restriction (T_LIM) | 0 : Torque limit is not being limited. <br> 1 : Torque limit is being limited. |
| Bit A | Latch Completed (L_CMP) | 0 : Latch not completed. <br> 1: Latch completed. |
| Bit B | Near Position (NEAR) | 0: Outside of NEAR signal output width <br> 1: Inside NEAR signal output width |
|  | Speed Limit (V_LIM) | 0 : Speed limit not detected. <br> 1: Speed limit detected. |
| Bit C | Positive Software Limit (P_SOT) | 0 : Inside positive direction software limit range <br> 1: Outside of positive direction software limit range |
| Bit D | Negative Software Limit (N_SOT) | 0 : Inside negative direction software limit range <br> 1: Outside of negative direction software limit range |

## （ 2 ）SERVOPACK Alarm Code（IW口प2D）Tables

The alarm codes／warning codes of the SERVOPACK with MECHATROLINK Communications can be monitored in the SERVOPACK Alarm Code（IWロロ2D）．
The alarm codes are listed in the following tables．Refer to the relevant SERVOPACK manual for corrective measures．
［ a ］$\Sigma$－7－series SERVOPACKs
－The upper two digits of the alarm code are normally stored in the SERVOPACK Alarm Code（IWDD2D） （e．g．， 71 is stored in IWDD2D when the alarm code is 710）．Three－digit codes are stored when the ALM＿MON motion command is used．

| Code | Meaning | ILDD02 Bit 3 <br> （Warning： <br> SERVOPACK Error） | $\begin{array}{c\|} \hline \text { ILDC04 Bit } 0 \\ \text { (Alarm: } \\ \text { SERVOPACK Error) } \end{array}$ |
| :---: | :---: | :---: | :---: |
| 000 | Normal | OFF | OFF |
| 900 | Position Error Overflow | ON | OFF |
| 901 | Excessive Position Deviation for Servo ON | ON | OFF |
| 910 | Overload | ON | OFF |
| 911 | Vibration | ON | OFF |
| 912 | Internal Temperature Warning 1 （Control Board Temperature Error） | ON | OFF |
| 913 | Internal Temperature Warning 2 （Power Board Temperature Error） | ON | OFF |
| 920 | Regeneration Overload | ON | OFF |
| 921 | Dynamic Brake Overload | ON | OFF |
| 923 | Internal－in Fan in SERVOPACK Stopped | ON | OFF |
| 930 | Absolute Encoder Battery Error | ON | OFF |
| 93B | Overheat Warnings | ON | OFF |
| 942 | Speed Ripple Compensation Information Disagreement | ON | OFF |
| 94A | Data Setting Warning 1 （Parameter Number） | ON | OFF |
| 94b | Data Setting Warning 2 （Data Out of Range） | ON | OFF |
| 94C | Data Setting Warning 3 （Calculation Error） | ON | OFF |
| 94d | Data Setting Warning 4 （Parameter Size） | ON | OFF |
| 94E | Data Setting Warning 5 （Latch Mode Error） | ON | OFF |
| 95A | Command Warning 1 （Command Conditions Not Met） | ON | OFF |
| 95b | Command Warning 2 （Unsupported Command） | ON | OFF |
| 95d | Command Warning 4 （Command Conflict） | ON | OFF |
| 95E | Command Warning 5 （Subcommand Cannot Be Executed） | ON | OFF |
| 95F | Command Warning 6 （Undefined Command） | ON | OFF |
| 960 | MECHATROLINK Communications Warning | ON | OFF |
| 971 | Undervoltage | ON | OFF |
| 9A0 | Overtravel | ON | OFF |
| 9 b 0 | Preventive Maintenance Warnings | ON | OFF |
| 020 | Parameter Checksum Error | OFF | ON |
| 021 | Parameter Format Error | OFF | ON |
| 022 | System Checksum Error | OFF | ON |
| 024 | System Alarm | OFF | ON |
| 025 | System Alarm | OFF | ON |
| 030 | Main Circuit Detector Error | OFF | ON |
| 040 | Parameter Setting Error | OFF | ON |
| 041 | Encoder Output Pulse Setting Error | OFF | ON |
| 042 | Parameter Combination Error | OFF | ON |
| 044 | Semi－closed／Fully－closed Loop Control Parameter Setting Error | OFF | ON |
| 050 | Combination Error | OFF | ON |
| 051 | Unsupported Device Alarm | OFF | ON |

(cont'd)

| Code | Meaning |  | ILDロ04 Bit 0 (Alarm: SERVOPACK Error) |
| :---: | :---: | :---: | :---: |
| 070 | Detected Motor Type Change | OFF | ON |
| 080 | Linear Encoder Scale Pitch Setting Error | OFF | ON |
| 0B0 | Canceled Servo ON Command Alarm | OFF | ON |
| 100 | Overcurrent Detected | OFF | ON |
| 300 | Regeneration Error | OFF | ON |
| 320 | Regeneration Overload | OFF | ON |
| 330 | Main Circuit Power Supply Wiring Error | OFF | ON |
| 331 | Power Monitor Input Signal Error | OFF | ON |
| 400 | Overvoltage | OFF | ON |
| 410 | Undervoltage | OFF | ON |
| 450 | Main Circuit Capacitor Overvoltage | OFF | ON |
| 510 | Overspeed | OFF | ON |
| 511 | Overspeed of Encoder Output Pulse Rate | OFF | ON |
| 520 | Vibration Alarm | OFF | ON |
| 521 | Autotuning Alarm | OFF | ON |
| 550 | Maximum Speed Setting Error | OFF | ON |
| 710 | Maximum Momentary Overload | OFF | ON |
| 720 | Maximum Continuous Overload | OFF | ON |
| 730, 731 | Dynamic Brake Overload | OFF | ON |
| 740 | Overload of Surge Current Limit Resistor | OFF | ON |
| 7A1 | Internal Temperature Error 1 (Control Board Temperature Error) | OFF | ON |
| 7A2 | Internal Temperature Error 2 (Power Board Temperature Error) | OFF | ON |
| 7A3 | Internal Temperature Detector Error | OFF | ON |
| 7AB | Built-in Fan in SERVOPACK Stopped | OFF | ON |
| 810 | Encoder Backup Alarm | OFF | ON |
| 820 | Encoder Checksum Alarm | OFF | ON |
| 830 | Encoder Battery Alarm | OFF | ON |
| 840 | Encoder Data Alarm | OFF | ON |
| 850 | Encoder Overspeed | OFF | ON |
| 860 | Encoder Overheated | OFF | ON |
| 861 | Overheat | OFF | ON |
| 890 | Encoder Scale Error | OFF | ON |
| 891 | Encoder Module Error | OFF | ON |
| 8A0 | External Encoder Error | OFF | ON |
| 8A1 | External Encoder Module Error | OFF | ON |
| 8A2 | External Incremental Encoder Sensor Error | OFF | ON |
| 8A3 | External Absolute Encoder Position Error | OFF | ON |
| 8A5 | External Encoder Overspeed Error | OFF | ON |
| 8A6 | External Encoder Overheat Error | OFF | ON |
| B10 | Speed Reference A/D Error | OFF | ON |
| B11 | Speed Reference A/D Conversion Data Error | OFF | ON |
| B20 | Torque Reference A/D Error | OFF | ON |
| B33 | Current Detection Error 3 | OFF | ON |
| BF0 | System Alarm 0 | OFF | ON |
| BF1 | System Alarm 1 | OFF | ON |
| BF2 | System Alarm 2 | OFF | ON |
| BF3 | System Alarm 3 | OFF | ON |
| BF4 | System Alarm 4 | OFF | ON |
| C10 | Runaway Detected | OFF | ON |

（cont＇d）

| Code | Meaning | ILDロ02 Bit 3 <br> （Warning： <br> SERVOPACK Error） | ILDロ04 Bit 0 <br> （Alarm： <br> SERVOPACK Error） |
| :---: | :--- | :---: | :---: |
| C20 | Phase Detection Error | OFF | ON |
| C21 | Hole Sensor Error | OFF | ON |
| C22 | Phase Information Disagreement | OFF | ON |
| C50 | Magnetic Pole Detection Failed | OFF | ON |
| C51 | Overtravel Detected during Magnetic Pole Detection | OFF | ON |
| C52 | Magnetic Pole Detection Incomplete | OFF | ON |
| C53 | Magnetic Pole Detection Variable Range Exceeded | OFF | ON |
| C54 | Magnetic Pole Detection Failed 2 | OFF | ON |
| C80 | Absolute Encoder Clear Error and Multiturn Limit Setting Error | OFF | ON |
| C90 | Encoder Communications Error | OFF | ON |
| C91 | Encoder Communications Position Data Acceleration Rate Error | OFF | ON |
| C92 | Encoder Communications Timer Error | OFF | ON |
| CA0 | Encoder Parameter Error | OFF | ON |
| CB0 | Encoder Echoback Error | OFF | ON |
| CC0 | Multiturn Limit Disagreement | OFF | ON |
| CF1 | Feedback Optional Module Communications Error，Reception <br> Failed | OFF | ON |
| CF2 | Feedback Optional Module Communications Error，Timer Stopped | OFF | ON |
| D00 | Position Error Overflow | OFF | ON |
| D01 | Position Error Overflow Alarm at Servo ON | OFF | ON |
| D02 | Position Error Overflow Alarm by Speed Limit at Servo ON | OFF | ON |
| D10 | Motor－load Position Error Overflow | OFF | ON |
| D30 | Position Data Overflow | OFF | ON |
| E72 | Feedback Optional Module Detection Failure Alarm | OFF | ON |
| EB1 | Safety Function Signal Input Timing Error | OFF | ON |
| F10 | Main Circuit Cable Open Phase | OFF | ON |
| F50 | Motor Main Circuit Cable Disconnection | OFF | ON |

［ b ］$\Sigma$－V－series SERVOPACKs
－The upper two digits of the alarm code are normally stored in the SERVOPACK Alarm Code（IWDD2D） （e．g．， 71 is stored in IWDC2D when the alarm code is 710 ）．Three－digit codes are stored when the ALM＿MON motion command is used．

| Code | Meaning | $\begin{array}{c}\text { ILDロ02 Bit 3 } \\ \text {（Warning：} \\ \text { SERVOPACK Error）}\end{array}$ | $\begin{array}{c}\text { ILDD04 Bit 0 } \\ \text {（Alarm：}\end{array}$ |
| :---: | :--- | :---: | :---: |
| SERVOPACK Error） |  |  |  |$)$

(cont'd)

| Code | Meaning |  | $\begin{array}{c\|} \hline \text { ILDロ04 Bit } 0 \\ \text { (Alarm: } \\ \text { SERVOPACK Error) } \end{array}$ |
| :---: | :---: | :---: | :---: |
| 95A | Command Warning 1 (Command Conditions Not Met) | ON | OFF |
| 95B | Command Warning 2 (Unsupported Command) | ON | OFF |
| 95D | Command Warning 4 (Command Conflict) | ON | OFF |
| 95E | Command Warning 5 (Subcommand Cannot Be Executed) | ON | OFF |
| 95F | Command Warning 6 (Undefined Command) | ON | OFF |
| 960 | MECHATROLINK Communications Warning | ON | OFF |
| 971 | Undervoltage | ON | OFF |
| 9A0 | Overtravel | ON | OFF |
| 020 | Parameter Checksum Error | OFF | ON |
| 021 | Parameter Format Error | OFF | ON |
| 022 | System Checksum Error | OFF | ON |
| 023 | Parameter Password Error | OFF | ON |
| 030 | Main Circuit Detector Error | OFF | ON |
| 040 | Parameter Setting Error | OFF | ON |
| 041 | Encoder Output Pulse Setting Error | OFF | ON |
| 042 | Parameter Combination Error | OFF | ON |
| 044 | Semi-closed/Fully-closed Loop Control Parameter Setting Error | OFF | ON |
| 050 | Combination Error | OFF | ON |
| 051 | Unsupported Device Alarm | OFF | ON |
| 0B0 | Canceled Servo ON Command Alarm | OFF | ON |
| 100 | Overcurrent Detected | OFF | ON |
| 300 | Regeneration Error | OFF | ON |
| 320 | Regeneration Overload | OFF | ON |
| 330 | Main Circuit Power Supply Wiring Error | OFF | ON |
| 400 | Overvoltage | OFF | ON |
| 410 | Undervoltage | OFF | ON |
| 510 | Overspeed | OFF | ON |
| 511 | Overspeed of Encoder Output Pulse Rate | OFF | ON |
| 520 | Vibration Alarm | OFF | ON |
| 521 | Autotuning Alarm | OFF | ON |
| 710 | Maximum Momentary Overload | OFF | ON |
| 720 | Maximum Continuous Overload | OFF | ON |
| 730, 731 | Dynamic Brake Overload | OFF | ON |
| 740 | Overload of Surge Current Limit Resistor | OFF | ON |
| 7A0 | Heat Sink Overheated | OFF | ON |
| 7AB | Built-in Fan in SERVOPACK Stopped | OFF | ON |
| 810 | Encoder Backup Alarm | OFF | ON |
| 820 | Encoder Checksum Alarm | OFF | ON |
| 830 | Encoder Battery Alarm | OFF | ON |
| 840 | Encoder Data Alarm | OFF | ON |
| 850 | Encoder Overspeed | OFF | ON |
| 860 | Encoder Overheated | OFF | ON |
| 891 | Encoder Module Error | OFF | ON |
| 8A0 | External Encoder Scaling Error | OFF | ON |
| 8A1 | External Encoder Module Error | OFF | ON |
| 8A2 | External Incremental Encoder Sensor Error | OFF | ON |
| 8A3 | External Absolute Encoder Position Error | OFF | ON |
| B10 | Speed Reference A/D Error | OFF | ON |
| B11 | Speed Reference A/D Conversion Data Error | OFF | ON |

(cont'd)

| Code | Meaning |  | $\begin{gathered} \hline \text { ILDロ04 Bit } 0 \\ \text { (Alarm: } \\ \text { SERVOPACK Error) } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| B20 | Torque Reference A/D Error | OFF | ON |
| B31 | Current Detection Error 1 | OFF | ON |
| B32 | Current Detection Error 2 | OFF | ON |
| B33 | Current Detection Error 3 | OFF | ON |
| BF0 | System Alarm 0 (Scan C Error) | OFF | ON |
| BF1 | System Alarm 1 (CPU Stack Memory Error) | OFF | ON |
| BF2 | System Alarm 2 (Current Control Processing Section Program Error) | OFF | ON |
| BF3 | System Alarm 3 (Scan A Error) | OFF | ON |
| BF4 | System Alarm 4 (CPU WDT Error) | OFF | ON |
| C10 | Runaway Prevention Detected | OFF | ON |
| C20 | Phase Detection Error* ${ }^{*}$ | OFF | ON |
| C21 | Hall Sensor Error* ${ }^{* 1}$ | OFF | ON |
| C22 | Phase Information Disagreement** | OFF | ON |
| C50 | Magnetic Pole Detection Failed ${ }^{* 1}$ | OFF | ON |
| C51 | Overtravel Detected during Magnetic Pole Detection* ${ }^{1}$ | OFF | ON |
| C52 | Magnetic Pole Detection Incomplete*1 | OFF | ON |
| C53 | Magnetic Pole Detection Variable Range Exceeded | OFF | ON |
| C54 | Magnetic Pole Detection Failed 2 | OFF | ON |
| C80 | Absolute Encoder Clear Error and Multiturn Limit Setting Error | OFF | ON |
| C90 | Encoder Communications Error | OFF | ON |
| C91 | Encoder Communications Position Data Acceleration Rate Error | OFF | ON |
| C92 | Encoder Communications Timer Error | OFF | ON |
| CA0 | Encoder Parameter Error | OFF | ON |
| CB0 | Encoder Echoback Error | OFF | ON |
| CC0 | Multiturn Limit Disagreement | OFF | ON |
| CF1 | Fully-closed Serial Conversion Unit Communications Error** | OFF | ON |
| CF2 | Fully-closed Serial Conversion Unit Communications Error ${ }^{* 1}$ | OFF | ON |
| D00 | Position Error Overflow | OFF | ON |
| D01 | Position Error Overflow Alarm at Servo ON | OFF | ON |
| D02 | Position Error Overflow Alarm by Speed Limit at Servo ON | OFF | ON |
| D10 | Motor-load Position Error Overflow | OFF | ON |
| EB0 | Safety Function Drive Monitor Circuit Error*2 | OFF | ON |
| EB1 | Safety Function Signal Input Timing Error | OFF | ON |
| EB2 | Safety Function Drive Internal Signal Error*2 | OFF | ON |
| EB3 | Safety Function Drive Communications Error 1 ${ }^{* 2}$ | OFF | ON |
| EB4 | Safety Function Drive Communications Error 2*2 | OFF | ON |
| EB5 | Safety Function Drive Communications Error 3*2 | OFF | ON |
| EB6 | Safety Function Drive Communications Data Error ${ }^{* 2}$ | OFF | ON |
| EC7 | Safety Option Card Stop Command Error*2 | OFF | ON |
| F10 | Main Circuit Cable Open Phase | OFF | ON |
| CPFO0 | Digital Operator Transmission Error 1 | OFF | ON |
| CPF01 | Digital Operator Transmission Error 2 | OFF | ON |
| -- | Not an error. | OFF | ON |

* 1. These alarm codes are possible only when the feedback option is used.
* 2. These alarm codes are possible only when the safety function is used.
[ c ] $\Sigma$--III-series SERVOPACKs
- The upper two digits of the alarm code are normally stored in the SERVOPACK Alarm Code (IWDD2D) (e.g., 71 is stored in IWDC2D when the alarm code is 710 ). Three-digit codes are stored when the ALM_MON motion command is used.

| Code | Meaning | $\begin{array}{c\|} \hline \text { ILDप02 Bit } 3 \\ \text { (Warning: } \\ \text { SERVOPACK Error) } \end{array}$ | $\begin{array}{c\|} \hline \text { ILDप04 Bit } 0 \\ \text { (Alarm: } \\ \text { SERVOPACK Error) } \end{array}$ |
| :---: | :---: | :---: | :---: |
| 000 | Normal | OFF | OFF |
| 900 | Position Error Overflow | ON | OFF |
| 901 | Excessive Position Deviation for Servo ON | ON | OFF |
| 910 | Overload | ON | OFF |
| 911 | Vibration | ON | OFF |
| 920 | Regeneration Overload | ON | OFF |
| 930 | Absolute Encoder Battery Error | ON | OFF |
| 941 | Parameter Changed That Requires Turning Power Supply OFF and ON | ON | OFF |
| 94A | Data Setting Warning 1 (Parameter Number) | ON | OFF |
| 94B | Data Setting Warning 2 (Data Out of Range) | ON | OFF |
| 94C | Data Setting Warning 3 (Calculation Error) | ON | OFF |
| 94D | Data Setting Warning 4 (Parameter Size) | ON | OFF |
| 95A | Command Warning 1 (Command Conditions Not Met) | ON | OFF |
| 95B | Command Warning 2 (Unsupported Command) | ON | OFF |
| 95C | Command Warning 3 | ON | OFF |
| 95D | Command Warning 4 | ON | OFF |
| 95E | Command Warning 5 | ON | OFF |
| 960 | MECHATROLINK Communications Warning | ON | OFF |
| 020 | Parameter Checksum Error 1 | OFF | ON |
| 021 | Parameter Format Error 1 | OFF | ON |
| 022 | System Parameter Checksum Error 1 | OFF | ON |
| 023 | Parameter Password Error 1 | OFF | ON |
| 02A | Parameter Checksum Error 2 | OFF | ON |
| 02B | System Parameter Checksum Error 2 | OFF | ON |
| 030 | Main Circuit Detector Error | OFF | ON |
| 040 | Parameter Setting Error 1 | OFF | ON |
| 04A | Parameter Setting Error 2 | OFF | ON |
| 041 | Encoder Output Pulse Setting Error | OFF | ON |
| 042 | Parameter Combination Error | OFF | ON |
| 050 | Combination Error | OFF | ON |
| 051 | Unsupported Device Alarm | OFF | ON |
| 0B0 | Canceled Servo ON Command Alarm | OFF | ON |
| 100 | Overcurrent or Heat Sink Overheated | OFF | ON |
| 300 | Regeneration Error | OFF | ON |
| 320 | Regeneration Overload | OFF | ON |
| 330 | Main Circuit Wiring Error | OFF | ON |
| 400 | Overvoltage | OFF | ON |
| 410 | Undervoltage | OFF | ON |
| 510 | Overspeed | OFF | ON |
| 511 | Overspeed of Encoder Output Pulse Rate | OFF | ON |
| 520 | Vibration Alarm | OFF | ON |
| 710 | Maximum Momentary Overload | OFF | ON |
| 720 | Maximum Continuous Overload | OFF | ON |

(cont'd)

| Code | Meaning | ILDD02 Bit 3 <br> (Warning: <br> SERVOPACK Error) | ILDロ04 Bit 0 (Alarm: SERVOPACK Error) |
| :---: | :---: | :---: | :---: |
| 730, 731 | Dynamic Brake Overload | OFF | ON |
| 740 | Inrush Resistance Overload | OFF | ON |
| 7A0 | Heat Sink Overheated | OFF | ON |
| 810 | Encoder Backup Alarm | OFF | ON |
| 820 | Encoder Checksum Alarm | OFF | ON |
| 830 | Encoder Battery Alarm | OFF | ON |
| 840 | Encoder Data Alarm | OFF | ON |
| 850 | Encoder Overspeed | OFF | ON |
| 860 | Encoder Overheated | OFF | ON |
| 870 | Fully-closed Serial Encoder Checksum Alarm | OFF | ON |
| 880 | Fully-closed Serial Encoder Data Alarm | OFF | ON |
| 8A0 | Fully-closed Serial Encoder Scaling Error | OFF | ON |
| 8A1 | Fully-closed Serial Encoder Module Error | OFF | ON |
| 8A2 | Fully-closed Serial Encoder Sensor Error (Incremental Encoder) | OFF | ON |
| 8A3 | Fully-closed Serial Absolute Encoder Position Error | OFF | ON |
| B31 | Current Detection Error 1 | OFF | ON |
| B32 | Current Detection Error 2 | OFF | ON |
| B33 | Current Detection Error 3 | OFF | ON |
| B6A | MECHATROLINK Communications ASIC Error 1 | OFF | ON |
| B6B | MECHATROLINK Communications ASIC Error 2 | OFF | ON |
| BFO | System Alarm 0 | OFF | ON |
| BF1 | System Alarm 1 | OFF | ON |
| BF2 | System Alarm 2 | OFF | ON |
| BF3 | System Alarm 3 | OFF | ON |
| BF4 | System Alarm 4 | OFF | ON |
| C10 | Runaway Prevention Detected | OFF | ON |
| C80 | Absolute Encoder Clear Error and Multiturn Limit Setting Error | OFF | ON |
| C90 | Encoder Communications Error | OFF | ON |
| C91 | Encoder Communications Position Data Acceleration Rate Error | OFF | ON |
| C92 | Encoder Communications Timer Error | OFF | ON |
| CA0 | Encoder Parameter Error | OFF | ON |
| CB0 | Encoder Echoback Error | OFF | ON |
| CC0 | Multiturn Limit Disagreement | OFF | ON |
| CF1 | Fully-closed Serial Conversion Unit Communications Error, Reception Failure | OFF | ON |
| CF2 | Fully-closed Serial Conversion Unit Communications Error, Timer Stopped | OFF | ON |
| D00 | Position Error Overflow | OFF | ON |
| D01 | Position Error Overflow Alarm at Servo ON | OFF | ON |
| D02 | Position Error Overflow Alarm by Speed Limit at Servo ON | OFF | ON |
| D10 | Motor-load Position Error Overflow | OFF | ON |
| E00 | COM Alarm 0 | OFF | ON |
| E01 | COM Alarm 1 | OFF | ON |
| E02 | COM Alarm 2 | OFF | ON |
| E07 | COM Alarm 7 | OFF | ON |
| E08 | COM Alarm 8 | OFF | ON |
| E09 | COM Alarm 9 | OFF | ON |
| E40 | MECHATROLINK-II Communications Cycle Setting Error | OFF | ON |
| E50 | MECHATROLINK-II Synchronization Error | OFF | ON |

（cont＇d）

| Code | Meaning | ILDロ02 Bit 3 <br> （Warning： <br> SERVOPACK Error） | ILDロ04 Bit 0 <br> （Alarm： <br> SERVOPACK Error） |
| :---: | :--- | :---: | :---: |
| E51 | MECHATROLINK－II Synchronization Failed | OFF | ON |
| E60 | MECHATROLINK－II Communications Error | OFF | ON |
| E61 | MECHATROLINK－II Communications Cycle Error | OFF | ON |
| EA0 | DRV Alarm 0 | OFF | ON |
| EA1 | DRV Alarm 1 | OFF | ON |
| EA2 | DRV Alarm 2 | OFF | ON |

［d］इ－II－series SERVOPACKs

| Code | Meaning | $\begin{array}{c}\text { ILDロ02 Bit 3 } \\ \text {（Warning：} \\ \text { SERVOPACK Error）}\end{array}$ | $\begin{array}{c}\text { ILDD04 Bit 0 } \\ \text {（Alarm：}\end{array}$ |
| :---: | :--- | :---: | :---: |
| SERVOPACK Error） |  |  |  |$)$

(cont'd)

| Code | Meaning | $\begin{array}{c}\text { ILDロ02 Bit 3 } \\ \text { (Warning: } \\ \text { SERVOPACK Error) }\end{array}$ | $\begin{array}{c}\text { ILDD04 Bit 0 } \\ \text { (Alarm: }\end{array}$ |
| :---: | :--- | :---: | :---: |
| SERVOPACK Error) |  |  |  |$)$

[e] [-I-series SERVOPACKs

| Code | Meaning | $\begin{array}{c}\text { ILDロ02 Bit 3 } \\ \text { (Warning: } \\ \text { SERVOPACK Error) }\end{array}$ | $\begin{array}{c}\text { ILDD04 Bit 0 } \\ \text { (Alarm: }\end{array}$ |
| :---: | :--- | :---: | :---: |
| SERVOPACK Error) |  |  |  |$)$

(cont'd)

| Code | Meaning | ILDロ02 Bit 3 <br> (Warning: <br> SERVOPACK Error) | ILDロ04 Bit 0 <br> (Alarm: <br> SERVOPACK Error) |
| :---: | :--- | :---: | :---: |
| B1 | Gate Array 1 Error | OFF | ON |
| B2 | Gate Array 2 Error | OFF | ON |
| B3 | Current Feedback Phase U Error | OFF | ON |
| B4 | Current Feedback Phase V Error | OFF | ON |
| B5 | Watchdog Detector Error | OFF | ON |
| C1 | Servo Runaway | OFF | ON |
| C2 | Encoder Phase Detection Error | OFF | ON |
| C3 | Encoder Phase A/B Disconnection | OFF | ON |
| C4 | Encoder Phase C Disconnection | OFF | ON |
| C5 | Incremental Encoder Initial Pulses Error | OFF | ON |
| D0 | Excessive Position Deviation | OFF | ON |
| E5 | MECHATROLINK Synchronization Error | OFF | ON |
| E6 | MECHATROLINK Communications Error | OFF | ON |
| F1 | Main Circuit Cable Open Phase | OFF | ON |
| F3 | Momentary Power Failure | OFF | ON |

### 12.2 Troubleshooting System Errors

This section describes how to troubleshoot system errors.

### 12.2.1 Overview of System Errors

The indicators on the Machine Controller show the operating status and error status of the Machine Controller.

- Refer to MP2000 Series Troubleshooting Manual (manual No.: SIEP C880700 40) for the flow of troubleshooting and details on the indicators.
You can use the system (S) registers to obtain more detailed information on errors. The contents of the system registers will allow you to isolate errors and implement corrections.
Details on the system registers are given in the following tables.


## (1) Overall Configuration of the System Registers

The following table shows the overall configuration of the system registers. Refer to the sections that are given in the righthand column for details.

| Register No. | Description | Details |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { SW00000 to } \\ & \text { SW00029 } \end{aligned}$ | System Service Registers | A.1 System Service Registers |
| $\begin{aligned} & \text { SW00030 to } \\ & \text { SW00049 } \end{aligned}$ | System Status | * |
| $\begin{aligned} & \text { SW00050 to } \\ & \text { SW00079 } \end{aligned}$ | System Error Status | * |
| SW00080 to SW00089 | User Operation Error Status | * |
| $\begin{aligned} & \hline \text { SW00090 to } \\ & \text { SW00103 } \end{aligned}$ | System Service Execution Status | * |
| SW00104 to SW00109 | Reserved for system. | - |
| SW00110 to SW00189 | Detailed User Operation Error Status | * |
| $\begin{aligned} & \text { SW00190 to } \\ & \text { SW00199 } \end{aligned}$ | Reserved for system. | - |
| SW00200 to SW00503 | System I/O Error Status | 12.2.2 ( 1 ) System I/O Error Status 12.2.2 (2) Error Status for SVB-01 Module |
| $\begin{aligned} & \text { SW00504, } \\ & \text { SW00505 } \end{aligned}$ | Reserved for system. | - |
| SW00506, SW00507 | Security Status | * |
| SW00508 to SW00693 | Reserved for system. | - |
| SW00694 to SW00697 | Message Relaying Status | * |
| SW00698 to SW00789 | Interrupt Status | * |
| $\begin{aligned} & \text { SW00790 to } \\ & \text { SW00799 } \end{aligned}$ | Reserved for system. | - |
| SW00800 to SW00815 | CPU Unit Information | 12.2.2 (3) CPU Unit/CPU Module Information |
| SW00816 to SW01095 | Optional Module Information | 12.2.2 (4) Option Module Information |
| SW01096 to SW01410 | Reserved for system. | - |
| SW01411 to <br> SW01442 | MPU-01 Status | * |
| SW01443 to SW02687 | Reserved for system. | - |


| Register No. | Description | Details |
| :--- | :--- | :--- |
| SW02688 to <br> SW03199 | IOPS status for PROFINET controller (266IF-01) | $*$ |
| SW03200 to <br> SW05119 | Motion Program Information | 12.2.2 (5) Motion Program Execution Information <br> 12.3 Motion Program Alarm |
| SW05120 to <br> SW05247 | Reserved for system. | - |
| SW05248 to <br> SW08191 | Reserved for system. | - |

* Refer to MP2000 Series Troubleshooting Manual (manual No.: SIEP C880700 40) for details.


## (2) Viewing the Contents of the System Registers

To view the contents of the system registers, start the MPE720 Engineering Tool and display a register list. Use the following procedure to display the register list.

1. Display the Register List 1 Pane in the MPE720 tab page.

By default, there will be a Register List 1 Tab at the bottom of the Pane.

2. Enter the register address of the first system register to display in the Register Box in the form SWㅁㅁㅁㅁㅁ. The contents of the system registers starting with the specified first register will be displayed.

| Register List 1 - + P |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\text { Regist } 5 \text { W00000 }$ |  |  |  |  |  |  |  |  |  | $\checkmark$ Auto |  |  | - $\sqrt{ }$ |  |  |  |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | $\triangle$ |
| SW00000 | 0010 | 0705 | 0000 | 0705 | 0064 | 0001 | 0002 | 01F4 | 0000 | 0000 | 07D0 | 0000 | 0001 | 0000 | 07D0 |  |
| Sw00015 | 0007 | 0424 | 0909 | 0042 | 0005 | 0250 | 0000 | 0000 | 0000 | 0000 | 0000 | A9E0 | 0057 | 0000 | 0058 |  |
| 5w00030 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 8083 | 0000 | 0000 | 0000 | 0000 |  |
| SW00045 | 0000 | 0000 | 0000 | 000c | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |  |
| SW00060 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |  |
| SW00075 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |  |
| SW00090 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | $-$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

- By default, the data type will be decimal. Right-click in the list and select Hexadecimal from the pop-up menu to display hexadecimal values (as shown above).


## 12．2．2 System Register Configuration and Error Status

## （1）System I／O Error Status

The system I／O error status shows the I／O error status of the system．The data is stored in the following system regis－ ters．

| Name | Register No． | Remarks |  |
| :---: | :---: | :---: | :---: |
| I／O Error Count | SW00200 | Number of I／O error occurrences |  |
| Input Error Count | SW00201 | Number of input error occurrences |  |
| Input Error Address | SW00202 | Latest input error address（register address in IWपロप्व） |  |
| Output Error Count | SW00203 | Number of output error occurrences |  |
| Output Error Address | SW00204 | Latest output error address（register address in OWपロपロ） |  |
| Reserved for system | $\begin{aligned} & \text { SW00205 to } \\ & \text { SW00207 } \end{aligned}$ | － |  |
| I／O Error Status | SW00208 to SW00215 | CPU Board／Basic Module CPU／CPU Module error status <br> －The built－in SVB error status is stored in these system registers． Refer to 12．2．2（1）［b］CPU Board／ Basic Module CPU／CPU Module Error Status on page 12－30 for details on the error status． | The system registers that store I／O error status differ according to the Machine Controller type and configuration．Refer to 12.2 .2 （ 1 ）［ a ］Configuration of I／O Error Status System Registers on page 12－28 for details． |
|  | $\begin{aligned} & \hline \text { SW00216 to } \\ & \text { SW00223 } \end{aligned}$ | Reserved for system． |  |
|  | SW00224 to SW00503 | Optional Modules／SVB Board／SVC <br> Board error status＊ <br> －The SVB－01 Module error status is stored in these system regis－ ters． <br> Refer to 12．2．2（2）Error Status for SVB－ 01 Module for details on the SVB－01 Module error status． |  |

＊The SVB Board is mounted on only MP2100M and MP2101M．
[ a ] Configuration of I/O Error Status System Registers
The configuration of I/O error status system registers differs as follows according to the Machine Controller type and configuration.

■ MP2100 to MP2101TM

| Register Address | Machine Controller Type |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MP2100 | MP2101 | MP2101T | MP2100M | MP2101M | MP2101TM |
| CPU Board Error Status SW00208 to SW00215 | Error status for products |  |  |  |  |  |
| Reserved for system |  |  |  |  |  |  |
| SW00216 to SW00223 |  | - | - |  |  |  |
| Error Status for Optional Modules/SVB Board/SVC Board | - | - | - | SVB Board error status |  | SVC Board error status |
| SW00224 to SW00231 |  |  |  |  |  |  |
| SW00232 to SW00239 | - | - | - | - | - | - |
| SW00240 to SW00247 | - | - | - | Rack 2, slot 1 |  |  |
| SW00248 to SW00255 | - | - | - | Rack 2, slot 2 |  |  |
| SW00256 to SW00263 | - | - | - | Rack 2, slot 3 |  |  |
| SW00264 to SW00271 | - | - | - | Rack 2, slot 4 |  |  |
| SW00272 to SW00279 | - | - | - | Rack 2, slot 5 |  |  |
| SW00280 to SW00287 | - | - | - | Rack 2, slot 6 |  |  |
| SW00288 to SW00295 | - | - | - | Rack 2, slot 7 |  |  |
| SW00296 to SW00303 | - | - | - | Rack 2, slot 8 |  |  |
| SW00304 to SW00311 | - | - | - | Rack 2, slot 9 |  |  |
| SW00312 to SW00319 | - | - | - | Rack 3, slot 1 |  |  |
| SW00320 to SW00327 | - | - | - | Rack 3, slot 2 |  |  |
| SW00328 to SW00335 | - | - | - | Rack 3, slot 3 |  |  |
| SW00336 to SW00343 | - | - | - | Rack 3, slot 4 |  |  |
| SW00344 to SW00351 | - | - | - | Rack 3, slot 5 |  |  |
| SW00352 to SW00359 | - | - | - | Rack 3, slot 6 |  |  |
| SW00360 to SW00367 | - | - | - | Rack 3, slot 7 |  |  |
| SW00368 to SW00375 | - | - | - | Rack 3, slot 8 |  |  |
| SW00376 to SW00383 | - | - | - | Rack 3, slot 9 |  |  |
| SW00384 to SW00391 | - | - | - | Rack 4, slot 1 |  |  |
| SW00392 to SW00399 | - | - | - | Rack 4, slot 2 |  |  |
| SW00400 to SW00407 | - | - | - | Rack 4, slot 3 |  |  |
| SW00408 to SW00415 | - | - | - | Rack 4, slot 4 |  |  |
| SW00416 to SW00423 | - | - | - | Rack 4, slot 5 |  |  |
| SW00424 to SW00431 | - | - | - | Rack 4, slot 6 |  |  |
| SW00432 to SW00439 | - | - | - | Rack 4, slot 7 |  |  |
| SW00440 to SW00447 | - | - | - | Rack 4, slot 8 |  |  |
| SW00448 to SW00455 | - | - | - | Rack 4, slot 9 |  |  |
| SW00456 to SW00463 | - | - | - | - | - | - |
| SW00464 to SW00471 | - | - | - | - | - | - |
| SW00472 to SW00479 | - | - | - | - | - | - |
| SW00480 to SW00487 | - | - | - | - | - | - |
| SW00488 to SW00495 | - | - | - | - | - | - |
| SW00496 to SW00503 | - | - | - | - | - | - |

MP2200 to MP2400

[ b ] CPU Board/Basic Module CPU/CPU Module Error Status

- The following models lack the SVB function so details about this error status are not listed in this manual.
- MP2101T
- MP2101TM
- MP2200

■ MP2100/MP2100M/MP2101/MP2101M Error Status
(IO)

| SW00208 | $\begin{aligned} & \text { Bit } 8 \text { to Bit F } \\ & \text { Not used. } \end{aligned}$ |  |  | Bit 0 to Bit 7 <br> Subslot (function) number (=2) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (SVB) |  |  |  |  |  |  |
| SW00209 | Bit 8 to Bit FError code $($ station error $=1)$ |  |  | Bit 0 to Bit 7 <br> Subslot (function) number (=3) |  |  |
| SW00210 | $\begin{gathered} \text { Bit F } \\ \text { ST\#15 } \end{gathered}$ |  | . | $\begin{aligned} & \text { Bit } 2 \\ & \text { ST\#2 } \end{aligned}$ | Bit 1 <br> ST\#1 | Bit 0 <br> Not used. |
| SW00211 | Bit F <br> Not used. | $\begin{gathered} \text { Bit E } \\ \text { ST\#30 } \end{gathered}$ | $\begin{gathered} \text { Bit D } \\ \text { ST\#29 } \end{gathered}$ | ....... | $\begin{gathered} \text { Bit } 1 \\ \text { ST\#17 } \end{gathered}$ | $\begin{gathered} \text { Bit } 0 \\ \text { ST\#16 } \end{gathered}$ |
| SW00212 | Not used. |  |  |  |  |  |
| SW00213 | Not used. |  |  |  |  |  |
| (BUSIF) |  |  |  |  |  |  |
| SW00214 | $\begin{gathered} \text { Bit } 8 \text { to Bit F } \\ \text { Error code }(\mathrm{I} / \mathrm{O} \text { error }=2) \end{gathered}$ |  |  | Bit 0 to Bit 7 <br> Subslot (function) number ( $=7$ ) |  |  |
| SW00215 | Bit F to Bit 2 <br> Not used. |  |  |  | Bit 1 <br> Output error | Bit 0 <br> Input error |

- SVB can be connected to a maximum of 21 stations (16 of which are servos totaling a maximum of 16 axes), including I/O.
- SVB Error Status Details

| Item | Code | Remarks |
| :--- | :---: | :--- |
| Error Code | 0 | No error |
|  | 1 | Station error |
| ST\#n | 0 | Communications normal |
|  | 1 | Communications error at station n |

- BUSIF Error Status Details

| Item | Code | Remarks |
| :--- | :---: | :--- |
| Error Code | 0 | Normal |
|  | 2 | I/O error |
| Input Error | 0 | Communications normal |
|  | 1 | Communications abnormal: Input timeout <br> $(2 \mathrm{~ms})$ |
|  | 0 | Communications normal |
|  | 1 | Communications abnormal: Output time- <br> out $(2 \mathrm{~ms})$ |

MP2300 Error Status
(IO)


- SVB can be connected to a maximum of 21 stations (16 of which are servos totaling a maximum of 16 axes), including I/O.
- SVB Error Status Details

| Item | Code | Remarks |
| :--- | :---: | :--- |
| Error Code | 0 | No error |
|  | 1 | Station error |
| ST\#n | 0 | Communications normal |
|  | 1 | Communications error at station n |

MP2300S/MP2310/MP2400 Error Status

| (218IFA) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SW00208 | Bit 8 to Bit FError code (station error $=1$ ) |  |  | Bit 0 to Bit 7 <br> Subslot (function) number ( $=2$ ) |  |
| SW00209 | Bit 2 to Bit F <br> Not used. |  |  | Bit 1 <br> Write | $\begin{aligned} & \text { Bit } 0 \\ & \text { Read } \end{aligned}$ |
| SW00210 | Bit C <br> Write trans | Bit F <br> ssion ST | Bit <br> Reserve | Bit 0 to Bit 3 Reserved for system. |  |
| $\begin{gathered} \text { SW00211 to } \\ \text { SW00212 } \\ \text { (SVB) } \end{gathered}$ | Not used. |  |  |  |  |
|  |  |  |  |  |  |
| SW00213 | $\begin{gathered} \text { Bit } 8 \text { to Bit F } \\ \text { Error code }(\text { station error }=1) \end{gathered}$ |  |  | Bit 0 to Bit 7Subslot (function) number $(=3)$ |  |
| SW00214 | $\begin{gathered} \text { Bit F } \\ \text { ST\#15 } \end{gathered}$ |  | ........... | $\begin{gathered} \hline \text { Bit } 1 \\ \text { ST\#1 } \end{gathered}$ | Bit 0 <br> Not used. |
| SW00215 | Bit F <br> Not used. | $\begin{gathered} \text { Bit E } \\ \text { ST\#30 } \end{gathered}$ | $\begin{gathered} \text { Bit D } \\ \text { ST\#29 } \end{gathered}$ | $\begin{gathered} \text { Bit } 1 \\ \text { ST\#17 } \end{gathered}$ | $\begin{gathered} \text { Bit } 0 \\ \text { ST\#16 } \end{gathered}$ |

- 218IFA Error Status Details

| Item | Code | Remarks |
| :--- | :---: | :--- |
| Error Code | 0 | Normal |
|  | 1 | Station error |
| Read/Write | 0 | Communications normal |
|  | 1 | Communications error |
|  | $0 \square 0$ | No error |
|  | $0 \square 4$ | Parameter formatting error |
|  | $0 \square 5$ | Command sequence error |
|  | $0 \square 6$ | Reset |
|  | $0 \square 7$ | Data reception error |
|  | $0 \square 8$ | Data sending error |
|  | $0 \square \mathrm{~A}$ | Connection error |

- SVB Error Status Details

| Item | Code | Remarks |
| :--- | :---: | :--- |
| Error Code | 0 | No error |
|  | 1 | Station error |
| ST\#n | 0 | Communications normal |
|  | 1 | Communications error at station n |

## [ c ] SVB Board Error Status

- The SVB Board is mounted on only MP2100M and MP2101M.

| SW00224 | Bit 8 to Bit FError code $($ station error $=1)$ |  |  |  | $\begin{gathered} \text { Bit } 0 \text { to Bit } 7 \\ \text { Subslot (function) number }(=1) \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SW00225 | $\begin{gathered} \hline \text { Bit F } \\ \text { ST\#15 } \end{gathered}$ |  |  |  | $\begin{aligned} & \text { Bit } 2 \\ & \text { ST\#2 } \end{aligned}$ | Bit 1 ST\#1 | Bit 0 <br> Not used. |
| SW00226 | Bit F <br> Not used. | $\begin{gathered} \hline \text { Bit E } \\ \text { ST\#30 } \end{gathered}$ | $\begin{gathered} \text { Bit D } \\ \mathrm{ST} \# 29 \end{gathered}$ |  | ........ | $\begin{gathered} \text { Bit } 1 \\ \text { ST\#17 } \end{gathered}$ | $\begin{gathered} \text { Bit } 0 \\ \text { ST\#16 } \end{gathered}$ |
| $\begin{aligned} & \text { SW00227 to } \\ & \text { SW00231 } \end{aligned}$ | Not used. |  |  |  |  |  |  |

- SVB Board Error Status Details

| Item | Code | Remarks |
| :--- | :---: | :--- |
| Error Code | 0 | No error |
|  | 1 | Station error |
| ST\#n | 0 | Communications normal |
|  | 1 | Communications error at station n |

## ( 2 ) Error Status for SVB-01 Module

- System register addresses differ according to mounted rack and slot.

For example, the first register address for rack 1, slot 1 (SW $\square \square \square \square \square+0$ ) becomes SW00224.
Refer to 12.2.2 (1) [ a ] Configuration of I/O Error Status System Registers on page 12-28 for details on other first register addresses other than rack 1 , slot 1.

| SW | $\begin{gathered} \text { Bit } 8 \text { to Bit } \mathrm{F} \\ \text { Error code }(\text { station error }=1) \end{gathered}$ |  | Bit 0 to Bit 7Subslot (function) number (= 1 ) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SW | $\begin{gathered} \text { Bit F } \\ \text { ST\#15 } \end{gathered}$ |  |  | $\begin{aligned} & \text { Bit } 2 \\ & \text { ST\#2 } \end{aligned}$ | $\begin{aligned} & \text { Bit } 1 \\ & \text { ST\#1 } \end{aligned}$ | $\begin{gathered} \text { Bit 0 } \\ \text { Not used. } \end{gathered}$ |
| SW |  | Bit 6 to Bit F <br> Not used. | $\begin{gathered} \text { Bit } 5 \\ \text { ST\#21 } \end{gathered}$ | $\ldots$ | $\begin{gathered} \text { Bit } 1 \\ \text { ST\#17 } \end{gathered}$ | $\begin{gathered} \text { Bit } 0 \\ \text { ST\#16 } \end{gathered}$ |
| SW | Not used. |  |  |  |  |  |
| SW | Not used. |  |  |  |  |  |
| SW | Not used. |  |  |  |  |  |
| SW | Not used. |  |  |  |  |  |
| SW | Not used. |  |  |  |  |  |

- Module can be connected to a maximum of 21 stations (16 of which are servos totaling a maximum of 16 stations), including I/O.
- Error Status Details

| Item | Code | Remarks |
| :--- | :---: | :--- |
| Error Code | 0 | No error |
|  | 1 | Station error |
| ST\#n | 0 | Communications normal |
|  | 1 | Communications error at station n |

## ( 3 ) CPU Unit/CPU Module Information

The data in these registers give information about the CPU Unit/CPU Module, and is stored in the following system registers.
[ a ] Configuration of System Registers

| Register No. |  |
| :--- | :--- |
| SW00800 | CPU Module ID |
| SW00801 | Hardware version (hex) |
| SW00802 | Software version (BCD) |
| SW00803 | Number of subslots (hex) |
| SW00804 | Function Module 1 ID (hex) |
| SW00805 | Function Module 1 Status |
| SW00806 | Function Module 2 ID (hex) |
| SW00807 | Function Module 2 Status |
| SW00808 | Function Module 3 ID (hex) |
| SW00809 | Function Module 3 Status |
| SW00810 | Function Module 4 ID (hex) |
| SW00811 | Function Module 4 Status |
| SW00812 | Function Module 5 ID (hex) |
| SW00813 | Function Module 5 Status |
| SW00814 | Function Module 6 ID (hex) |
| SW00815 | Function Module 6 Status |

[b] Details

- The following models lack the SVB function so details about this information are not listed in this manual.
- MP2101T
- MP2101TM
- MP2200

MP2100 to MP2101M

| Register No. | Machine Controller Type |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MP2100 | MP2100M | MP2101 | MP2101M |
| SW00800 | MP2100ID <br> (C180H) | MP2100M ID (C181H) | MP2101 ID <br> (C182H) | $\begin{aligned} & \text { MP2101M ID } \\ & (\mathrm{C} 183 \mathrm{H}) \end{aligned}$ |
| SW00801 | Hardware version (hex) |  |  |  |
| SW00802 | Software version (BCD) |  |  |  |
| SW00803 | (0008H) | (0008H) | (0008H) | (0008H) |
| SW00804 | CPU Function Module ID ( C 110 H ) |  |  |  |
| SW00805 | CPU Function Module Status |  |  |  |
| SW00806 | IO Function Module ID (8070H) |  |  |  |
| SW00807 | IO Function Module Status |  |  |  |
| SW00808 | SVB Function Module ID (9112H) |  |  |  |
| SW00809 | SVB Function Module Status |  |  |  |
| SW00810 | SVR Function Module ID (9210H) |  |  |  |
| SW00811 | SVR Function Module Status |  |  |  |
| SW00812 | - | - | - | - |
| SW00813 | - | - | - | - |
| SW00814 | - | - | - | - |
| SW00815 | - | - | - | - |

MP2300 to MP2400

| Register No. | Machine Controller Type |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | MP2300 | MP2310 | MP2300S | MP2400 |  |
| SW00800 | MP2300 ID <br> (C380H) | MP2310 ID <br> (C382H) | MP2300S ID <br> (C383H) | MP2400 ID <br> (C480H) |  |
| SW00801 | Hardware version (hex) | (0005H) |  |  |  |
| SW00802 | Software version (BCD) |  |  |  | (0005H) |

(4) Option Module Information

Information on each Optional Module differs in system register depending on the rack, unit, and slot in which the Optional Module is installed.
[ a ] Configuration of the System Registers
MP2100 to MP2101TM

| Register No. | Machine Controller Type |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MP2100 | MP2101 | MP2101T | MP2100M | MP2101M | MP2101TM |
| SW00816 to SW00823 | - | - | - | SVB Board information |  | SVC Board information |
| SW00824 to SW00831 | - | - | - | - | - | - |
| SW00832 to SW00839 | - | - | - | Rack 2, slot 1 |  |  |
| SW00840 to SW00847 | - | - | - | Rack 2, slot 2 |  |  |
| SW00848 to SW00855 | - | - | - | Rack 2, slot 3 |  |  |
| SW00856 to SW00863 | - | - | - | Rack 2, slot 4 |  |  |
| SW00864 to SW00871 | - | - | - | Rack 2, slot 5 |  |  |
| SW00872 to SW00889 | - | - | - | Rack 2, slot 6 |  |  |
| SW00880 to SW00887 | - | - | - | Rack 2, slot 7 |  |  |
| SW00888 to SW00895 | - | - | - | Rack 2, slot 8 |  |  |
| SW00896 to SW00903 | - | - | - | Rack 2, slot 9 |  |  |
| SW00904 to SW00911 | - | - | - | Rack 3, slot 1 |  |  |
| SW00912 to SW00919 | - | - | - | Rack 3, slot 2 |  |  |
| SW00920 to SW00927 | - | - | - | Rack 3, slot 3 |  |  |
| SW00928 to SW00935 | - | - | - | Rack 3, slot 4 |  |  |
| SW00936 to SW00943 | - | - | - | Rack 3, slot 5 |  |  |
| SW00944 to SW00951 | - | - | - | Rack 3, slot 6 |  |  |
| SW00952 to SW00959 | - | - | - | Rack 3, slot 7 |  |  |
| SW00960 to SW00967 | - | - | - | Rack 3, slot 8 |  |  |
| SW00968 to SW00975 | - | - | - | Rack 3, slot 9 |  |  |
| SW00976 to SW00983 | - | - | - | Rack 4, slot 1 |  |  |
| SW00984 to SW00991 | - | - | - | Rack 4, slot 2 |  |  |
| SW00992 to SW00999 | - | - | - | Rack 4, slot 3 |  |  |
| SW01000 to SW01007 | - | - | - | Rack 4, slot 4 |  |  |
| SW01008 to SW01015 | - | - | - | Rack 4, slot 5 |  |  |
| SW01016 to SW01023 | - | - | - | Rack 4, slot 6 |  |  |
| SW01024 to SW01031 | - | - | - | Rack 4, slot 7 |  |  |
| SW01032 to SW01039 | - | - | - | Rack 4, slot 8 |  |  |
| SW01040 to SW01047 | - | - | - | Rack 4, slot 9 |  |  |
| SW01048 to SW01055 | - | - | - | - | - | - |
| SW01056 to SW01063 | - | - | - | - | - | - |
| SW01064 to SW01071 | - | - | - | - | - | - |
| SW01072 to SW01079 | - | - | - | - | - | - |
| SW01080 to SW01087 | - | - | - | - | - | - |
| SW01088 to SW01095 | - | - | - | - | - | - |

MP2200 to MP2400

| Register No. | Machine Controller Type |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MP2200 | MP2300 | MP2310 | MP2300S | MP2400 |
| SW00816 to SW00823 | Rack 1, slot 1 |  |  |  | - |
| SW00824 to SW00831 | Rack 1, slot 2 |  |  | - | - |
| SW00832 to SW00839 | Rack 1, slot 3 |  |  | - | - |
| SW00840 to SW00847 | Rack 1, slot 4 | - | - | - | - |
| SW00848 to SW00855 | Rack 1, slot 5 | - | - | - | - |
| SW00856 to SW00863 | Rack 1, slot 6 | - | - | - | - |
| SW00864 to SW00871 | Rack 1, slot 7 | - | - | - | - |
| SW00872 to SW00889 | Rack 1, slot 8 | - | - | - | - |
| SW00880 to SW00887 | Rack 2, slot 1 | - | - | - | - |
| SW00888 to SW00895 | Rack 2, slot 2 | - | - | - | - |
| SW00896 to SW00903 | Rack 2, slot 3 | - | - | - | - |
| SW00904 to SW00911 | Rack 2, slot 4 | - | - | - | - |
| SW00912 to SW00919 | Rack 2, slot 5 | - | - | - | - |
| SW00920 to SW00927 | Rack 2, slot 6 | - | - | - | - |
| SW00928 to SW00935 | Rack 2, slot 7 | - | - | - | - |
| SW00936 to SW00943 | Rack 2, slot 8 | - | - | - | - |
| SW00944 to SW00951 | Rack 2, slot 9 | - | - | - | - |
| SW00952 to SW00959 | Rack 3, slot 1 | - | - | - | - |
| SW00960 to SW00967 | Rack 3, slot 2 | - | - | - | - |
| SW00968 to SW00975 | Rack 3, slot 3 | - | - | - | - |
| SW00976 to SW00983 | Rack 3, slot 4 | - | - | - | - |
| SW00984 to SW00991 | Rack 3, slot 5 | - | - | - | - |
| SW00992 to SW00999 | Rack 3, slot 6 | - | - | - | - |
| SW01000 to SW01007 | Rack 3, slot 7 | - | - | - | - |
| SW01008 to SW01015 | Rack 3, slot 8 | - | - | - | - |
| SW01016 to SW01023 | Rack 3, slot 9 | - | - | - | - |
| SW01024 to SW01031 | Rack 4, slot 1 | - | - | - | - |
| SW01032 to SW01039 | Rack 4, slot 2 | - | - | - | - |
| SW01040 to SW01047 | Rack 4, slot 3 | - | - | - | - |
| SW01048 to SW01055 | Rack 4, slot 4 | - | - | - | - |
| SW01056 to SW01063 | Rack 4, slot 5 | - | - | - | - |
| SW01064 to SW01071 | Rack 4, slot 6 | - | - | - | - |
| SW01072 to SW01079 | Rack 4, slot 7 | - | - | - | - |
| SW01080 to SW01087 | Rack 4, slot 8 | - | - | - | - |
| SW01088 to SW01095 | Rack 4, slot 9 | - | - | - | - |

［b］Detailed Configuration of System Registers of Information on SVB－01 Module

| Register No． | Remarks | Value |
| :---: | :---: | :---: |
| SW0ㅁㅁㅁ＋ 0 | Optional Module ID | 9195H |
| SW0ロロロロ＋ 1 | Hardware version（hex） | The value is displayed according to the actual prod－ uct． |
| SW0ロロロロ＋ 2 | Software version（BCD） |  |
| SW0ロロロロ＋ 3 | Number of subslots（hex） | 0001H |
| SW0ロロロロ＋ 4 | Function Module 1 Function Module ID（hex） | 9115H |
| SW0ㅁㅁㅁㅏ＋ 5 | Status of Function Module 1 | Refer to Function Module Status Details． |
| SW0ㅁㅁㅁㅏ＋ 6 | Function Module 2 Function Module ID（hex） | （Nothing is displayed because the SVB－01 Module lacks Function Module 2．） |
| SW0ㅁㅁㅁㅁ＋ 7 | Status of Function Module 2 |  |

－Function Module Status Details

| Value | Text Displayed in MPE720 Module <br> Configuration Definition | Status |
| :---: | :--- | :--- |
| 0 | None | There is no module definition and the Module is not mounted． |
| 1 | Empty | There is a module definition，but the Module is not mounted． |
| 2 | Operating（Driving） | The Module is operating normally． |
| 3 | Standby（Reserved for system．） | The Module is on standby． |
| 4 | Failure | An error was detected in the Module． |
| 5 | Module name | The mounted Module does not match the definition． |
| 6 | Waiting for initialization | The Module is mounted，but there is no detailed function module definition． |
| 7 | Driving Stop | Local I／O is stopped． |
| 8 or higher | - | Reserved for system． |

－Details of Function Modules can be confirmed in the Module Configuration Tab Page of the MPE720．

| Mosule Con | gurson |  |  |  |  |  |  |  |  |  |  | －15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File 迢 9 sue lo project | Edit［1］Sesting | Online til Read it Whis |  |  |  |  | ve｜｜Snap | Svien Ereel |  |  |  |  |
| － |  |  |  |  |  |  | Motion Register | Register（Inowtortput） |  |  |  | Comment |
| Eda | Modulo | Functon |  | Sta | Start | wpied circo |  | Disobled | Stan－End | Sizo | Scan |  |
| Eda | 01 MP2200－02］：－ |  |  |  |  |  |  |  |  |  |  |  |
| Stous | －CPU－02｜Pirininal | ${ }^{0} \mathrm{CPU}$ |  | Driven | － | － | － | － | － | － | － |  |
| Version |  |  |  |  |  |  |  | － |  |  |  |  |
|  |  | p21）svR |  | Orwing | $\int_{\text {a }}$ Cirsoul No 1 | 1 | 8000－877FPN | － | － | － | － |  |
|  |  | p3 Card |  | Driven | － | － | － | － | － | － | － |  |
|  |  | p4 uss | 2 | Driving | \＆Circuin ${ }^{\text {a }} 1$ | 1 | － | － | － | － | － |  |
|  | ［］sve－01Pminnal | （f）sv801 | 2 | Diring | ${ }^{(m)}$ Circuin $\mathrm{No2}$ | ， | 8800－85FFp\％ | $\begin{aligned} & \text { Dinput } \\ & \text { Bouput } \end{aligned}$ | 0000．03FFPT | 1024 | － |  |
|  | （1）2170 | 21217F | 2 | Driving | 00 Circuil No 1 | 1 | － | － | － | － | － |  |
|  | （1） | 0221717 | 2 | Drining | Do Cirsuin ${ }^{\text {a } 2}$ | 1 | － | － | － | － | － |  |
|  |  | 012171F | 2 | Dining | Do Circuin ${ }^{\text {a }} 3$ | 1 | － | － | － | － | － |  |
|  | 21af－021Emeen | 02218198 | 4 | Diving | 옹 Circuin ${ }^{\text {o }} 1$ | 1 | － | － | － | － | － |  |
|  | 219F016 | 01217F | 4 | Diving | 100 Cirsuin Nos | 1 | － | － | － | － | － |  |
|  | diarolemow | 022 2181F | 4 | Diving |  | ， | － | － | － | － | － |  |
|  | 21501F．01Emot | 012171 | 4 | Diving | 00 Cirwin $\mathrm{No5}$ | 1 | － |  | － | － | － |  |
|  | 5A｜FOTIEC | D22 MPLink | 4 | Diming |  | ， | － |  | 0400－13FFMI | 4096 | － |  |

## ( 5 ) Motion Program Execution Information

This section gives the system register configuration of and details on the motion program execution information.

## [ a ] Configuration of System Registers

The data in these registers give the execution status of the motion programs, and is stored in the following system registers.

| Register No. | Name | Reference |
| :---: | :---: | :---: |
| SW03200 | Number of Currently Executing Program for Work 1 | - |
| SW03201 | Number of Currently Executing Program for Work 2 | - |
| SW03202 | Number of Currently Executing Program for Work 3 | - |
| SW03203 | Number of Currently Executing Program for Work 4 | - |
| SW03204 | Number of Currently Executing Program for Work 5 | - |
| SW03205 | Number of Currently Executing Program for Work 6 | - |
| SW03206 | Number of Currently Executing Program for Work 7 | - |
| SW03207 | Number of Currently Executing Program for Work 8 | - |
| SW03208 | Number of Currently Executing Program for Work 9 | - |
| SW03209 | Number of Currently Executing Program for Work 10 | - |
| SW03210 | Number of Currently Executing Program for Work 11 | - |
| SW03211 | Number of Currently Executing Program for Work 12 | - |
| SW03212 | Number of Currently Executing Program for Work 13 | - |
| SW03213 | Number of Currently Executing Program for Work 14 | - |
| SW03214 | Number of Currently Executing Program for Work 15 | - |
| SW03215 | Number of Currently Executing Program for Work 16 | - |
| $\begin{array}{\|l} \hline \text { SW03216 to } \\ \text { SW03231 } \end{array}$ | Reserved for system. | - |
| SW03232 to SW03263 | Program Running Bits | 12.2.2 (5) [b] Details |
| $\begin{array}{\|l} \hline \text { SW03264 to } \\ \text { SW03321 } \end{array}$ | Work 1 Program Information |  |
| $\begin{array}{\|l} \hline \text { SW03322 to } \\ \text { SW03379 } \end{array}$ | Work 2 Program Information |  |
| SW03380 to SW03437 | Work 3 Program Information |  |
| $\begin{array}{\|l} \hline \text { SW03438 to } \\ \text { SW03495 } \end{array}$ | Work 4 Program Information |  |
| SW03496 to SW03553 | Work 5 Program Information | - System Work Numbers I to 8 |
| $\begin{array}{\|l} \hline \text { SW03554 to } \\ \text { SW03611 } \end{array}$ | Work 6 Program Information |  |
| SW03612 to SW03669 | Work 7 Program Information |  |
| $\begin{array}{\|l} \hline \text { SW03670 to } \\ \text { SW03727 } \end{array}$ | Work 8 Program Information |  |


| Register No. | Name |  |
| :--- | :--- | :--- |
| SW03728 to <br> SW03785 | Work 9 Program Information |  |
| SW03786 to <br> SW03843 | Work 10 Program Information |  |
| SW03844 to <br> SW03901 | Work 11 Program Information |  |
| SW03902 to <br> SW03959 | Work 12 Program Information |  |
| SW03960 to <br> SW04017 | Work 13 Program Information |  |
| SW04018 to <br> SW04075 | Work 14 Program Information Work Numbers 9 to 16 |  |
| SW04076 to <br> SW04133 | Work 15 Program Information |  |
| SW04134 to <br> SW04191 | Work 16 Program Information |  |
| SW04192 to <br> SW05119 | Reserved for system. |  |

[b] Details
The following table gives details on the Program Execution Bits from system register addresses SW03232 to SW03263.
The program is being executed when the corresponding bit is 1 .

| Register No. | Description |
| :--- | :--- |
| SW03232 | MP $\square 016$ (Bit F) to MP $\square 001$ (Bit 0) |
| SW03233 | MP $\square 032$ (Bit F) to MP $\square 017$ (Bit 0) |
| SW03234 | MP $\square 048$ (Bit F) to MP $\square 033$ (Bit 0) |
| SW03235 | MP $\square 064$ (Bit F) to MP $\square 049$ (Bit 0) |
| SW03236 | MP $\square 080$ (Bit F) to MP $\square 065$ (Bit 0) |
| SW03237 | MP $\square 096$ (Bit F) to MP $\square 081$ (Bit 0) |
| SW03238 | MP $\square 112$ (Bit F) to MP $\square 097$ (Bit 0) |
| SW03239 | MP $\square 128$ (Bit F) to MP $\square 113$ (Bit 0) |
| SW03240 | MP $\square 144$ (Bit F) to MP $\square 129$ (Bit 0) |
| SW03241 | MP $\square 160$ (Bit F) to MP $\square 145$ (Bit 0) |
| SW03242 | MP $\square 176$ (Bit F) to MP $\square 161$ (Bit 0) |
| SW03243 | MP $\square 192$ (Bit F) to MP $\square 177$ (Bit 0) |
| SW03244 | MP $\square 208$ (Bit F) to MP $\square 193$ (Bit 0) |
| SW03245 | MP $\square 224$ (Bit F) to MP $\square 209$ (Bit 0) |
| SW03246 | MP $\square 240$ (Bit F) to MP $\square 225$ (Bit 0) |
| SW03247 | MP $\square 256$ (Bit F) to MP $\square 241$ (Bit 0) |
| SW03248 to SW03263 | Reserved for system. |

## [ c ] List of Used System Registers

The registers that are used are given in the following table.
Refer to 12.3.2 Motion Program Alarm Codes for details on alarm codes.

## - System Work Numbers 1 to 8

|  | tem Work Numbers | Work 1 | Work 2 | Work 3 | Work 4 | Work 5 | Work 6 | Work 7 | Work 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Executing Main Program Number |  | SW03200 | SW03201 | SW03202 | SW03203 | SW03204 | SW03205 | SW03206 | SW03207 |
| Status |  | SW03264 | SW03322 | SW03380 | SW03438 | SW03496 | SW03554 | SW03612 | SW03670 |
| Control Signals |  | SW03265 | SW03323 | SW03381 | SW03439 | SW03497 | SW03555 | SW03613 | SW03671 |
| $\begin{aligned} & \text { O} \\ & \text { y } \\ & \text { ㅎ } \end{aligned}$ | Program Number | SW03266 | SW03324 | SW03382 | SW03440 | SW03498 | SW03556 | SW03614 | SW03672 |
|  | Block Number | SW03267 | SW03325 | SW03383 | SW03441 | SW03499 | SW03557 | SW03615 | SW03673 |
|  | Alarm Code | SW03268 | SW03326 | SW03384 | SW03442 | SW03500 | SW03558 | SW03616 | SW03674 |
| $\begin{aligned} & \bar{y} \\ & \dot{y} \text { 人 } \\ & \hline \end{aligned}$ | Program Number | SW03269 | SW03327 | SW03385 | SW03443 | SW03501 | SW03559 | SW03617 | SW03675 |
|  | Block Number | SW03270 | SW03328 | SW03386 | SW03444 | SW03502 | SW03560 | SW03618 | SW03676 |
|  | Alarm Code | SW03271 | SW03329 | SW03387 | SW03445 | SW03503 | SW03561 | SW03619 | SW03677 |
| $\begin{aligned} & N \\ & \text { N } \\ & \text { 한 } \end{aligned}$ | Program Numb | SW03272 | SW03330 | SW03388 | SW03446 | SW03504 | SW03562 | SW03620 | SW03678 |
|  | Block Number | SW03273 | SW03331 | SW03389 | SW03447 | SW03505 | SW03563 | SW03621 | SW03679 |
|  | Alarm Code | SW03274 | SW03332 | SW03390 | SW03448 | SW03506 | SW03564 | SW03622 | SW03680 |
| $\begin{aligned} & \text { M } \\ & \text { y } \\ & \text { ¿ } \end{aligned}$ | Program Number | SW03275 | SW03333 | SW0339 | SW03449 | SW03507 | SW03565 | SW03623 | SW03681 |
|  | Block Number | SW03276 | SW03334 | SW03392 | SW03450 | SW03508 | SW03566 | SW03624 | SW03682 |
|  | Alarm Code | SW03277 | SW03335 | SW03393 | SW03451 | SW03509 | SW03567 | SW03625 | SW03683 |
|  | Program Number | SW03278 | SW03336 | SW03394 | SW03452 | SW03510 | SW03568 | SW03626 | SW03684 |
|  | Block Number | SW03279 | SW03337 | SW03395 | SW03453 | SW03511 | SW03569 | SW03627 | SW03685 |
|  | Alarm Code | SW03280 | SW03338 | SW03396 | SW03454 | SW03512 | SW03570 | SW03628 | SW03686 |
| $\begin{aligned} & 10 \\ & \vdots \\ & \vdots \mathbf{y} \\ & \hline \mathbf{4} \end{aligned}$ | Program Number | SW03281 | SW03339 | SW03397 | SW03455 | SW03513 | SW03571 | SW03629 | SW03687 |
|  | Block Number | SW03282 | SW03340 | SW03398 | SW03456 | SW03514 | SW03572 | SW03630 | SW03688 |
|  | Alarm Code | SW03283 | SW03341 | SW03399 | SW03457 | SW03515 | SW03573 | SW03631 | SW03689 |
| $\begin{aligned} & 0 \\ & \text { o } \\ & \text { 늠 } \end{aligned}$ | Program Number | SW03284 | SW03342 | SW03400 | SW03458 | SW03516 | SW03574 | SW03632 | SW03690 |
|  | Block Number | SW03285 | SW03343 | SW03401 | SW03459 | SW03517 | SW03575 | SW03633 | SW03691 |
|  | Alarm Code | SW03286 | SW03344 | SW03402 | SW03460 | SW03518 | SW03576 | SW03634 | SW03692 |
|  | Program Number | SW03287 | SW03345 | SW03403 | SW03461 | SW03519 | SW03577 | SW03635 | SW03693 |
|  | Block Number | SW03288 | SW03346 | SW03404 | SW03462 | SW03520 | SW03578 | SW03636 | SW03694 |
|  | Alarm Code | SW03289 | SW03347 | SW03405 | SW03463 | SW03521 | SW03579 | SW03637 | SW03695 |
| Logical Axis 1ProgramCurrent Position |  | SL03290 | SL03348 | SL03406 | SL03464 | SL03522 | SL03580 | SL03638 | SL03696 |
| Logical Axis 2 <br> Program <br> Current Position |  | SL03292 | SL03350 | SL03408 | SL03466 | SL03524 | SL03582 | SL03640 | SL03698 |
| Logical Axis 3 <br> Program <br> Current Position |  | SL03294 | SL03352 | SL03410 | SL03468 | SL03526 | SL03584 | SL03642 | SL03700 |
| Logical Axis 4 <br> Program <br> Current Position |  | SL03296 | SL03354 | SL03412 | SL03470 | SL03528 | SL03586 | SL03644 | SL03702 |
| Logical Axis 5 <br> Program <br> Current Position |  | SL03298 | SL03356 | SL03414 | SL03472 | SL03530 | SL03588 | SL03646 | SL03704 |
| Logical Axis 6 Program Current Position |  | SL03300 | SL03358 | SL03416 | SL03474 | SL03532 | SL03590 | SL03648 | SL03706 |
|  | gical Axis 7 ogram urrent Position | SL03302 | SL03360 | SL03418 | SL03476 | SL03534 | SL03592 | SL03650 | SL03708 |


| System Work Numbers | Work 1 | Work 2 | Work 3 | Work 4 | Work 5 | Work 6 | Work 7 | Work 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Logical Axis 8 <br> Program <br> Current Position | SL03304 | SL03362 | SL03420 | SL03478 | SL03536 | SL03594 | SL03652 | SL03710 |
| Logical Axis 9 <br> Program <br> Current Position | SL03306 | SL03364 | SL03422 | SL03480 | SL03538 | SL03596 | SL03654 | SL03712 |
| Logical Axis 10 <br> Program <br> Current Position | SL03308 | SL03366 | SL03424 | SL03482 | SL03540 | SL03598 | SL03656 | SL03714 |
| Logical Axis 11 <br> Program <br> Current Position | SL03310 | SL03368 | SL03426 | SL03484 | SL03542 | SL03600 | SL03658 | SL03716 |
| Logical Axis 12 <br> Program <br> Current Position | SL03312 | SL03370 | SL03428 | SL03486 | SL03544 | SL03602 | SL03660 | SL03718 |
| Logical Axis 13 <br> Program <br> Current Position | SL03314 | SL03372 | SL03430 | SL03488 | SL03546 | SL03604 | SL03662 | SL03720 |
| Logical Axis 14 <br> Program <br> Current Position | SL03316 | SL03374 | SL03432 | SL03490 | SL03548 | SL03606 | SL03664 | SL03722 |
| Logical Axis 15 <br> Program <br> Current Position | SL03318 | SL03376 | SL03434 | SL03492 | SL03550 | SL03608 | SL03666 | SL03724 |
| Logical Axis 16 <br> Program <br> Current Position | SL03320 | SL03378 | SL03436 | SL03494 | SL03552 | SL03610 | SL03668 | SL03726 |

System Work Numbers 9 to 16

| System Work Numbers |  | Work 9 | Work 10 | Work 11 | Work 12 | Work 13 | Work 14 | Work 15 | Work 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Executing Main Program Number |  | SW03208 | SW03209 | SW03210 | SW03211 | SW03212 | SW03213 | SW03214 | SW03215 |
| Status |  | SW03728 | SW03786 | SW03844 | SW03902 | SW03960 | SW04018 | SW04076 | SW04134 |
| Control Signals |  | SW03729 | SW03787 | SW03845 | SW03903 | SW03961 | SW04019 | SW04077 | SW04135 |
| $\begin{array}{\|l} 0 \\ \text { 는 } \\ \mathbf{o} \end{array}$ | Program Number | SW03730 | SW03788 | SW03846 | SW03904 | SW03962 | SW04020 | SW04078 | SW04136 |
|  | Block Number | SW03 | SW03 | SW0384 | SW03905 | SW03963 | SW04021 | SW04079 | SW04137 |
|  | Alarm Code | SW0373 | SW0379 | SW03848 | SW03906 | SW03964 | SW04022 | SW04080 | SW04138 |
| $\left\lvert\, \begin{aligned} & \bar{y} \\ & \text { x } \\ & \hline \mathbf{L} \end{aligned}\right.$ | Program Number | SW03733 | SW03791 | SW03849 | SW03907 | SW03965 | SW04023 | SW04081 | SW04139 |
|  | Block Numbe | SW0373 | SW0379 | SW0385 | SW03908 | SW03966 | SW04024 | SW04082 | SW04140 |
|  | Alarm Code | SW03735 | SW03793 | SW03851 | SW03909 | SW03967 | SW04025 | SW04083 | SW04141 |
| $\left\lvert\, \begin{aligned} & N \\ & \text { y } \\ & \vdots \\ & \hline \mathbf{L} \end{aligned}\right.$ | Program Number | SW03736 | SW03794 | SW03852 | SW03910 | SW03968 | SW04026 | SW04084 | SW04142 |
|  | Block Numbe | SW0373 | SW0379 | SW0385 | SW03911 | SW03969 | SW04027 | SW04085 | SW04143 |
|  | Alarm Code | SW03738 | SW03796 | SW03854 | SW03912 | SW03970 | SW04028 | SW04086 | SW04144 |
| $\begin{array}{\|l} \hline \\ \text { n } \\ \text { 는 } \end{array}$ | Program Numbe | SW03739 | SW0379 | SW03855 | SW03913 | SW03971 | SW04029 | SW04087 | SW04145 |
|  | Block Number | SW03740 | SW03798 | SW03856 | SW03914 | SW03972 | SW04030 | SW04088 | SW04146 |
|  | Alarm Code | SW03741 | SW03799 | SW03857 | SW03915 | SW03973 | SW04031 | SW04089 | SW04147 |
|  | Program Number | SW03742 | SW03800 | SW03858 | SW03916 | SW03974 | SW04032 | SW04090 | SW04148 |
|  | Block Number | SW03743 | SW03801 | SW03859 | SW03917 | SW03975 | SW04033 | SW04091 | SW04149 |
|  | Alarm Code | SW03744 | SW03802 | SW03860 | SW03918 | SW03976 | SW04034 | SW04092 | SW04150 |
| $\begin{aligned} & \text { م } \\ & \text { y } \\ & \vdots \mathbf{0} \\ & \hline \end{aligned}$ | Program Number | SW03745 | SW03803 | SW03861 | SW03919 | SW03977 | SW04035 | SW04093 | SW04151 |
|  | Block Number | SW03746 | SW03804 | SW03862 | SW03920 | SW03978 | SW04036 | SW04094 | SW04152 |
|  | Alarm Code | SW03747 | SW03805 | SW03863 | SW03921 | SW03979 | SW04037 | SW04095 | SW04153 |


| System Work Numbers | Work 9 | Work 10 | Work 11 | Work 12 | Work 13 | Work 14 | Work 15 | Work 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Program Number | SW03748 | SW03806 | SW03864 | SW03922 | SW03980 | SW04038 | SW04096 | SW04154 |
| $\underset{\sim}{*}$ ) Block Number | SW03749 | SW03807 | SW03865 | SW03923 | SW03981 | SW04039 | SW04097 | SW04155 |
| ㄴ. Alarm Code | SW03750 | SW03808 | SW03866 | SW03924 | SW03982 | SW04040 | SW04098 | SW04156 |
| Program Number | SW03751 | SW03809 | SW03867 | SW03925 | SW03983 | SW04041 | SW04099 | SW04157 |
| 는 | SW03752 | SW03810 | SW03868 | SW03926 | SW03984 | SW04042 | SW04100 | SW04158 |
| 나 Alarm Code | SW03753 | SW03811 | SW03869 | SW03927 | SW03985 | SW04043 | SW04101 | SW04159 |
| Logical Axis 1 Program Current Position | SL03754 | SL03812 | SL03870 | SL03928 | SL03986 | SL04044 | SL04102 | SL04160 |
| Logical Axis 2 Program Current Position | SL03756 | SL03814 | SL03872 | SL03930 | SL03988 | SL04046 | SL04104 | SL04162 |
| Logical Axis 3 Program Current Position | SL03758 | SL03816 | SL03874 | SL03932 | SL03990 | SL04048 | SL04106 | SL04164 |
| Logical Axis 4 Program Current Position | SL03760 | SL03818 | SL03876 | SL03934 | SL03992 | SL04050 | SL04108 | SL04166 |
| Logical Axis 5 Program Current Position | SL03762 | SL03820 | SL03878 | SL03936 | SL03994 | SL04052 | SL04110 | SL04168 |
| Logical Axis 6 Program Current Position | SL03764 | SL03822 | SL03880 | SL03938 | SL03996 | SL04054 | SL04112 | SL04170 |
| Logical Axis 7 Program Current Position | SL03766 | SL03824 | SL03882 | SL03940 | SL03998 | SL04056 | SL04114 | SL04172 |
| Logical Axis 8 Program Current Position | SL03768 | SL03826 | SL03884 | SL03942 | SL04000 | SL04058 | SL04116 | SL04174 |
| Logical Axis 9 Program Current Position | SL03770 | SL03828 | SL03886 | SL03944 | SL04002 | SL04060 | SL04118 | SL04176 |
| Logical Axis 10 Program Current Position | SL03772 | SL03830 | SL03888 | SL03946 | SL04004 | SL04062 | SL04120 | SL04178 |
| Logical Axis 11 Program Current Position | SL03774 | SL03832 | SL03890 | SL03948 | SL04006 | SL04064 | SL04122 | SL04180 |
| Logical Axis 12 Program Current Position | SL03776 | SL03834 | SL03892 | SL03950 | SL04008 | SL04066 | SL04124 | SL04182 |
| Logical Axis 13 Program Current Position | SL03778 | SL03836 | SL03894 | SL03952 | SL04010 | SL04068 | SL04126 | SL04184 |
| Logical Axis 14 Program Current Position | SL03780 | SL03838 | SL03896 | SL03954 | SL04012 | SL04070 | SL04128 | SL04186 |
| Logical Axis 15 Program Current Position | SL03782 | SL03840 | SL03898 | SL03956 | SL04014 | SL04072 | SL04130 | SL04188 |
| Logical Axis 16 Program Current Position | SL03784 | SL03842 | SL03900 | SL03958 | SL04016 | SL04074 | SL04132 | SL04190 |

### 12.3 Motion Program Alarm

If an alarm occurs in the motion program, use the alarm code to isolate the cause.

### 12.3.1 Structure of Motion Program Alarms

You can monitor for motion program alarms in the SW03268 to SW04159 system registers.
The structure of the motion program alarm data stored in the system registers is shown below.


- The system register addresses depend on the system work number. Refer to 12.2.2 ( 5 ) [ c ] List of Used System Registers for details.
- Alarm Indications

| Alarm (Example) | Motion Program Alarm |
| :--- | :---: |
| Program Alarm | $00 \square \square \mathrm{H}$ |
| Axis Alarm for Circuit 2 Axis 3 | $03 \square \square \mathrm{H}$ |

### 12.3.2 Motion Program Alarm Codes

The following table lists the alarm codes for motion programs.

## (1) Program Alarm

| Alarm Code | Alarm Name | Alarm Contents | Correction |
| :---: | :---: | :---: | :---: |
| 0002H | Division error | The data was divided by 0 . | Correct the motion program. |
| 0010H | Turn specified instead of radius | A number of turns (T) was specified instead of a radius for a circular or helical interpolation instruction. | - Convert the radius setting to a center point coordinate setting to execute the circular or helical interpolation instruction. <br> - Do not specify a number of turns. |
| 0011H | Interpolation feed speed over limit | The interpolation feed speed exceeded the setting range of the FMX instruction. | Correct the feed speed of the interpolation instruction. |
| 0012H | No interpolation feed speed setting | The interpolation feed speed has never been set. (If you set it once, further settings can be omitted within the same program.) | Set the feed speed of the interpolation instruction. |
| 0013H | Range exceeded after acceleration parameter conversion | The indirectly designated acceleration parameter exceeded the setting range. | Change the value of the register that is used for the indirect designation. |
| 0014H | Circular arc length exceeded LONG_MAX | The circular arc length that was specified for a circular or helical interpolation instruction exceeded the setting range. | Correct the circular arc length setting for the circular or helical interpolation instruction. |
| 0015H | No vertical axis set for the circular arc plane | The vertical axis was not set for a circular or helical interpolation instruction. | Set the vertical axis with the PLN instruction. |
| 0016H | No horizontal axis set for the circular arc plane | The horizontal axis was not set for a circular or helical interpolation instruction. | Set the horizontal axis with the PLN instruction. |
| 0017H | Number of axes over limit | The number of specified axes exceeds the limit of a circular interpolation instruction (2 axes max.) or a helical interpolation instruction (3 axes max.). | Correct the axis setting of the circular or helical interpolation instruction. |
| 0018H | Number of turns over limit | The number of turns that was specified for a circular or helical interpolation instruction exceeded the setting range. | Correct the number of turns setting of the circular or helical interpolation instruction. |
| 0019H | Radius exceeded LONG_MAX | The radius that was specified for a circular or helical interpolation instruction exceeded the setting range. | Correct the radius setting of the circular or helical interpolation instruction. |


| (cont'd) |  |  |  |
| :--- | :--- | :--- | :--- |
| Alarm Code | Alarm Name | Alarm Contents | Correction |
| 001 AH | Center point setting <br> error | The correct center point was not set for a <br> circular or helical interpolation instruc- <br> tion. | Correct the center point setting of the cir- <br> cular or helical interpolation instruction. |
| 001 BH | Emergency stop | The axis movement instruction was <br> stopped due to a Request for Stop of Pro- <br> gram. | Turn OFF the Request for Stop of Program <br> motion program control signal, and turn <br> ON the Alarm Reset Request. |
| 001 CH | Linear interpolation <br> travel distance ex- <br> ceeded LONG_MAX | The travel distance that was specified for a <br> linear interpolation instruction exceeded <br> the setting range. | Correct the travel distance for the linear <br> interpolation instruction. |
| 001 DH | FMX is not defined | There was no FMX instruction executed in <br> a motion program that includes an interpo- <br> lation instruction. | Execute an FMX instruction. An FMX <br> instruction is required for each program <br> that contains an interpolation instruction. |
| 001 EH | T address out of <br> range | The address setting in an IAC/IDC/FMX <br> instruction exceeds the setting range. | Correct the setting in the IAC/IDC/FMX <br> instruction. |
| 001 FH | P address out of <br> range | The address setting in an IFP instruction <br> exceeds the setting range. | Correct the IFP instruction setting. |
| 0021 H | PFORK execution <br> error | Motion instructions were executed at the <br> same time in the second fork of the <br> PFORK instruction in the calling motion <br> program and the second fork of the <br> PFORK instruction in the subprogram. | Correct the calling motion program or the <br> subprogram. |
| 0022 H | Indirect designation <br> register range error | The specified register address exceeds the <br> range of the register size. | Correct the motion program. |
| 0023 H | Travel distance out of <br> range | The decimal-format axis travel distance <br> specified in an axis movement instruction <br> exceeds the allowed range. | Correct the axis travel distance. |

## (2) Axis Alarm

- If an axis alarm occurs, the axis number is stored in bits 8 to C .

| 0080 H | Logical axis use <br> prohibited | More than one motion instruction was exe- <br> cuted for the same axis. | Correct the motion program. |
| :--- | :--- | :--- | :--- |
| 0081 H | The infinite-length <br> axis setting exceeded <br> POSMAX | The travel distance setting for infinite- <br> length axis exceeded the POSMAX set- <br> ting. | • Correct the setting of fixed parameter <br> No. 10 (Infinite-length Axis Reset Posi- <br> tion). <br> • Correct the motion program. |
| 0082 H | The axis travel <br> distance exceeded <br> LONG_MAX | The axis travel distance setting exceeded <br> the allowed range. | Correct the motion program. |
| 0084 H | Duplicated motion <br> command | More than one instruction was executed <br> for the same axis. | Check for and remove simultaneous refer- <br> ences for the same axis from other pro- <br> grams. |
| 0085 H | Motion command <br> response error | A response for a different motion com- <br> mand was reported by the motion control <br> function when a motion language instruc- <br> tion was executed. | - Remove the cause of the alarm at the tar- <br> - If the Servo is not ON, turn ON the <br> Servo. <br> - Check for and remove simultaneous ref- <br> erences for the same axis from other pro- <br> grams. |
| 0087 H | VEL setting out of <br> range | The setting in the VEL instruction exceeds <br> the allowed range. | Correct the VEL instruction. |
| 0088 H | INP setting out of <br> range | The setting in the INP instruction exceeds <br> the allowed range. | Correct the INP instruction. |
| 0089 H | ACC/SCC/DCC <br> setting out of range | The setting in the ACC/SCC/DCC instruc- <br> tion exceeds the allowed range. | Correct the ACC/SCC/DCC instruction. |
| 008 AH | No time setting in <br> MVT instruction | The T setting in the MVT instruction is <br> zero. | Correct the MVT instruction. |


| (cont'd) |  |  |  |
| :--- | :--- | :--- | :--- |
| 008 BH | Command cannot be <br> executed | The specified motion instruction cannot be <br> executed on the target motion control <br> function. | Correct the motion program. |
| 008 CH | Distribution <br> incomplete | A motion instruction was executed when <br> the Motion Control Function Module had <br> not completed distribution for a previous <br> instruction. | Correct the motion program so that the <br> motion instruction is executed when the <br> Distribution Completed Bit is ON. |
| 008 DH | Motion command <br> error termination | The Motion Control Function Module is in <br> Command Error status. | - Clear the error at the target axis. <br> - Correct the motion program. |

## Appendices

A System Registers Lists ..... A-3
A. 1 System Service Registers ..... A-3
A. 2 Scan Execution Status and Calendar ..... A-5
A. 3 Program Software Numbers and Remaining Program Memory Capacity Name ..... A-5
B Settings When Connecting MECHATROLINK Compatible I/O Modules, MYVIS, and MP940 ..... -A-6
B. 1 Settings in the Module Configuration Definition Window ..... A-6
B. 2 I/O Register Configuration ..... A-7
C Initializing the Absolute Encoder- ..... A-12
C. $1 \Sigma$-III, $\Sigma-\mathrm{V}$, and $\Sigma-7$ Series SERVOPACKs ..... A-12
C. 2 上-II SERVOPACK ..... A-14
C. 3 上-I SERVOPACK ..... A-16
D Setting the Multiturn Limit ..... A-18
D. 1 Overview ..... A-18
D. 2 Setting Method ..... A-18
E Fixed Parameter Setting According to Encoder Type and Axis Type ..... A-20
F SVB Module Throughput ..... A-22
F. 1 For Servos and Inverters- ..... A-22
F. 2 For I/Os ..... A-22
G Settings when Connecting MECHATROLINK-II Compatible Stepping Motor Drivers ..... A-23
G. 1 Required Firmware and Engineering Tool Versions ..... A-23
G. 2 Applicable Communication Methods and Cycles ..... A-23
G. 3 Module Configuration Definition ..... A-24
G. 4 Restrictions on the Use of Motion Parameters ..... A-25
G. 5 Availability When Using M-II Steppers ..... A-27
G. 6 Motion Command Details ..... A-29
G. 7 Automatic Parameter Updating Function ..... A-30
G. 8 Writing and Changing Parameters During Self-configuration ..... A-31
G. 9 M-II Stepper Parameters ..... A-32
H Wild Card Servos ..... A-35
H. 1 Required Firmware and Engineering Tool Versions ..... A-35
H. 2 Applicable Communication Methods and Cycles ..... A-35
H. 3 Link Assignment ..... A-36
H. 4 Invalid Motion Parameters When Using Wild Card Servos ..... A-36
H. 5 Availability When Using Wild Card Servos ..... A-37
I Servo Driver Transmission Reference Mode ..... A-39
I. 1 What is Servo Driver Transmission Reference Mode? ..... A-39
I. 2 MECHATROLINK Communication Management by the System ..... A-39
I. 3 Motion Parameters That Can be Used in Servo Driver Transmission Reference Mode ..... A-40
I. 4 MECHATROLINK Commands That Cannot Be Used ..... A-40
I. 5 Operation Procedure in Servo Driver Transmission Reference Mode ..... A-41
I. 6 Precautions When Using Servo Driver Transmission Reference Mode ..... A-43
J Terminology ..... A-44
K Functions Added to $\Sigma$-V-series SERVOPACKs ..... A-46

## Appendix A System Registers Lists

## A. 1 System Service Registers

(1) Shared by All Drawings

| Name | Register No. | Remarks |
| :--- | :---: | :--- |
| Reserved (Reserved for the system) | SB000000 | (Not used) |
| First High-speed Scan | SB000001 | ON for only the first scan after high-speed scan is <br> started. |
| First Low-speed Scan | SB000003 | ON for only the first scan after low-speed scan is <br> started. |
| Always ON | SB000004 | Always ON (=1) |
| Reserved (Reserved for the system) | SB000005 to SB00000F | (Not used) |

## ( 2 ) DWG.H Only

Operation starts when high-speed scan starts.
Name $\quad$ Register No.

## (3) DWG.L Only

Operation starts when low-speed scan starts.

| Name | Register No. | Remarks |
| :---: | :---: | :---: |
| One-scan Flicker Relay | SB000030 |  |
| 0.5-s Flicker Relay | SB000031 |  |
| 1.0-s Flicker Relay | SB000032 |  |
| 2.0-s Flicker Relay | SB000033 |  |
| 0.5-s Sampling Relay | SB000034 |  |
| 1.0-s Sampling Relay | SB000035 |  |
| 2.0-s Sampling Relay | SB000036 |  |
| 60.0-s Sampling Relay | SB000037 |  |
| 1.0 s After Start of Scan Relay | SB000038 | $\xrightarrow{ }$ |
| 2.0 s After Start of Scan Relay | SB000039 |  |
| 5.0 s After Start of Scan Relay | SB00003A |  |

## A． 2 Scan Execution Status and Calendar

| Name | Register No． | Remarks |
| :--- | :---: | :--- |
| High－speed Scan Set Value | SW00004 | High－speed Scan Set Value（0．1 ms） |
| High－speed Scan Current Value | SW00005 | High－speed Scan Current Value $(0.1 \mathrm{~ms})$ |
| High－speed Scan Maximum Value | SW00006 | High－speed Scan Maximum Value $(0.1 \mathrm{~ms})$ |
| Reserved by the system | SW00007 <br> to <br> SW00009 | （Not used） |
| Low－speed Scan Set Value | SW00010 | Low－speed Scan Set Value（0．1 ms） |
| Low－speed Scan Current Value | SW00011 | Low－speed Scan Current Value（0．1 ms） |
| Low－speed Scan Maximum Value | SW00012 | Low－speed Scan Maximum Value $(0.1 \mathrm{~ms})$ |
| Reserved by the system． | SW00013 | （Not used） |
| Executing Scan Current Value | SW00014 | Executing Scan Current Value（0．1 ms） |
| Calendar：Year | SW00015 | 1999：0099（BCD）（Last two digits only） |
| Calendar：Month Day | SW00016 | December 31：1231（BCD） |
| Calendar：Hours Minutes | SW00017 | 23 hours 59 minutes：2359（BCD） |
| Calendar：Seconds | SW00018 | 59 s：59（BCD） |
| Calendar：Day of Week | SW00019 | 0 to 6：Sun．，Mon．to Sat． |
| H Scan Time Over Counter | SW00044 | H Scan Time Over Counter |
| L Scan Time Over Counter | SW00046 | L Scan Time Over Counter |

## A． 3 Program Software Numbers and Remaining Program Memory Capacity Name

| Name | Register No． | Remarks |
| :--- | :---: | :--- |
| System Program Software Number | SW00020 | S口ロロロ（口ロロロ is stored as BCD） |
| System Number | SW00021 <br> to <br> SW00025 | （Not used） |
| Remaining Program Memory Capacity | SL00026 | Unit：Bytes |
| Total Memory Capacity | SL00028 | Unit：Bytes |

## Appendix B Settings When Connecting MECHATROLINK Compatible I/O Modules, MYVIS, and MP940

When connecting MECHATROLINK compatible Distributed I/O Module, MYVIS, and MP940 as slave stations, set as described below in the Module Configuration Definition Window.

- Refer to 3.4.2 (1) Opening the MECHATROLINK Transmission Definition Window for further information.


## B. 1 Settings in the Module Configuration Definition Window

After setting the required items in the Module Configuration Definition Window, and save the settings.

|  |  | Model | Setting |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | TYPE | SIZE |  | SCAN |
|  |  | INPUT | OUTPUT |  |
|  | MECHATROLINK-I only |  | JEPMC-IO350 |  | 4 | 4 | Can be set |
|  |  | MP940 |  | 8 | 8 | Can be set |
|  |  | JAMSC-120DRA83030 |  | 0 | 1 | Can be set |
|  |  | JAMSC-120DAI53330 |  | 1 | 0 | Can be set |
|  |  | JAMSC-120DAI73330 |  | 1 | 0 | Can be set |
|  |  | JAMSC-120DDI34330 |  | 1 | 0 | Can be set |
|  |  | JAMSC-120DDO34340 |  | 0 | 1 | Can be set |
|  |  | JAMSC-120AVI02030 |  | 7 | 2 | Can be set |
|  |  | JAMSC-120AVO01030 |  | 2 | 4 | Can be set |
|  |  | JAMSC-120EHC21140 |  | 7 | 8 | Can be set |
|  |  | JAMSC-120MMB20230 |  | 8 | 8 | Can be set |
|  |  | JAMSC-120DAO83330 |  | 0 | 1 | Can be set |
|  | $\begin{aligned} & \text { MECHATROLINK-I } \\ & \text { and } \\ & \text { MECHATROLINK-II } \end{aligned}$ | JEPMC-IO2310/30(-E) |  | 4 | 4 | Can be set |
|  |  | JEPMC-PL2900(-E) |  | 7 | 8 | Can be set |
|  |  | JEPMC-PL2910(-E) |  | 8 | 8 | Can be set |
|  |  | JEPMC-AN2900(-E) |  | 7 | 2 | Can be set |
|  |  | JEPMC-AN2910(-E) |  | 2 | 4 | Can be set |
|  |  | JEPMC-IO2320 |  | 8 | 8 | Can be set |
|  |  | JAPMC-IO2900-E |  | 1 | 0 | Can be set |
|  |  | JAPMC-IO2910-E |  | 0 | 1 | Can be set |
|  |  | JAPMC-IO2920-E |  | 1 | 1 | Can be set |
|  |  | JAPMC-IO2950-E |  | 0 | 1 | Can be set |
|  |  | SVB-01 |  | 8 (15) | 8 (15) | Can be set |
|  |  | MYVIS YV250 and YV260 |  | 8 (16) | 8 (16) | Can be set |

- The values in parentheses are the sizes in MECHATROLINK-II 32-byte mode.

■ Slave Devices That Are Not Detected by Self-configuration
The following slave devices (I/O Modules) have no model code. Therefore, "*****I/O" (wild card I/O) will be displayed in the TYPE column after allocation by self-configuration.

- JEPMC-IO350
- JAMSC-120DAI53330
- JAMSC-120DAI73330
- JAMSC-120DAO83330
- JAMSC-120DRA83030

For the slave devices with the "*****I/O" display, set the correct device type in the Module Configuration Definition Window.

## B． 2 I／O Register Configuration

This section describes the I／O register configuration of each MECHATROLINK compatible Module．
（ 1 ）120DRA83030，120DAO83330，and JAPMC－IO2950－E（8－point Output）

（2）120DAI53330 and 120DAI73330（8－point Input）

（ 3 ）120DDI34330 and JAPMC－IO2900－E（16－point Input）
 control data （1 word）
（ 4 ）120DDO34340 and JAPMC－IO2910－E（16－point Output）

|  | Response <br> Data | Righ－speed／ <br> OWロロロロLow－speed <br> control data <br> （1 word） |
| :---: | :--- | :---: |
|  |  | Response <br> Data |

（ 5 ）JAPMC－IO2920－E（16－point I／O）

| OW $\square \square \square \square$ | Response | High－speed／ | Response |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Data |  |  | Data | High－speed／ |
|  |  | Low－speed control data | IW $\square \square \square \square$ |  | Low－speed control data |
|  |  | （1 word） |  |  | （1 word） |

（ 6 ）JEPMC－IO350，JEPMC－IO2310（－E），and JEPMC－IO2330（－E）（64－point I／O）

（ 7 ）JEPMC－IO2320（128－point I／O）

（ 8 ）120AVI02030 and JEPMC－AN2900（－E）（Analog Input）

| ownara <br> OWロロロロ＋1 | Command Data | High－speed／ <br> Low－speed control data （2 words） |  | Response Data |  | High－speed／ Low－speed control data （7 words） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | （Reserved by the system） |  | IWロロロロ |  |  |  |
|  | Not used |  | IWロロロロ＋1 |  |  |  |
|  |  |  | IWロロロロ＋2 | CH1 Analog input value |  |  |
|  |  |  | IWロロロロ＋3 | CH2 Analog input value |  |  |
|  |  |  | IWロロロロ＋4 | CH3 Analog input value |  |  |
|  |  |  | IWロロロロ＋5 | CH4 Analog input value |  |  |
|  |  |  | IWロロロロ＋6 | Status |  |  |

（ 9 ）120AVO01030 and JEPMC－AN2910（－E）（Analog Output）

（ 10 ）120EHC21140 and JEPMC－PL2900（－E）（Counter with Preset Function）

| Command Data |  |  |  | IWㅁㅁㅁ <br> IWㅁㅁㅁㅁ | Response Data |  | High－speed Low－speed control data （7 words） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OW $\square \square \square \square$ | Scan counter |  | High－speed／ Low－speed control data （8 words） |  |  |  |  |
| OW $\square \square \square \square+1$ | Not used |  |  |  |  |  |  |
| OW $\square \square \square \square+2$ | Output coil |  |  | IWロロロロ＋2 | Input relay |  |  |
| OWロロロロ＋3 | Output coil |  |  | IWロロロロ＋3 | Input register |  |  |
| OWロロロロ＋4 | Output register |  |  | IWロロロロ＋4 | Input register |  |  |
| OWロロロロ＋5 | Output register |  |  | IWロロロロ＋5 | Input register |  |  |
| OWロロロロ＋6 | Output register |  |  | IWロロロロ＋6 | Input register |  |  |
| OWロロロロ＋7 | Output register |  |  |  |  |  |  |

－For counters with the preset function，the first two words are reserved by the system，and various settings are required for outputs．Refer to Machine Controller MP2000／MP3000 Series Distributed I／O Module User＇s Manual for MECHATROLINK－II（manual number SIEP C880732 13）for details．
（ 11 ）120MMB20230 and JEPMC－PL2910（－E）（Pulse MC）

－For pulse output modules，the first two words are reserved by the system，and various settings are required for outputs．Refer to Machine Controller MP2000／MP3000 Series Distributed I／O Module User＇s Manual for MECHATROLINK－II（manual number SIEP C880732 13）for details．
（ 12 ）MP940（Machine Controller）

( 13 )SVB-01 (Motion Module)
<ln 17-byte mode>

<ln 32-byte mode>

( 14 ) MYVIS YV250 and MYVIS YV260 (Machine Vision System)
<ln 17-byte mode>

<ln 32-byte mode>


High-speed/ Low-speed control data (16 words)

- The shaded area ( $\square$ ) indicates areas for system use.

I/O registers are allocated in word units. However, the following precautions must be observed when handling 1-byte module data.
<Output module>
The most significant bytes will be valid, and the least significant bytes will not be specified.

$$
\begin{array}{lll}
F & 8 \quad 7 & 0 \\
\hline
\end{array}
$$

Most significant bytes Least significant bytes

OB $\square \square \square 8$ to OB $\square \square \square F$ are valid.
<Input module>
The least significant bytes will be valid, and the most significant bytes will not be specified.

| F | 7 | 0 |
| :--- | :--- | :--- |
| Most significant bytes | Least significant bytes |  |

IB $\square \square \square 0$ to IB $\square \square \square 7$ are valid.

## Appendix C Initializing the Absolute Encoder

The procedures for initializing absolute encoders for $\Sigma$-I, $\Sigma$-II, $\Sigma$-III, $\Sigma-\mathrm{V}$, and $\Sigma-7$ SERVOPACKs are given below.

- Refer to 9.2.1 System Startup Flowchart for the procedure for absolute-position detection.


## C. $1 \quad \Sigma$-III, $\Sigma$-V, and $\Sigma-7$ Series SERVOPACKs

- For details on the $\Sigma$-III, $\Sigma$-V, and $\Sigma-7$ series SERVOPACKs, refer to the following manuals.

| SERVOPACK Series | Manual Name | Manual Number |
| :---: | :---: | :---: |
| $\Sigma$-III | SGMDロ/SGDS <br> User's Manual | SIEP S800000 00 |
|  | SGMDD/SGDS <br> USER'S MANUAL, Rotational Motor <br> MECHATROLINK-II Communications Reference | SIEP S800000 11 |
|  | SGM $\square$ S/SGDS Digital Operator Operating Instructions | TOBP S800000 01 |
| $\Sigma$-V | User's Manual <br> Design and Maintenance, Rotational Motor <br> MECHATROLINK-II Communications Reference | SIEP S800000 46 |
|  | User's Manual <br> Design and Maintenance, Linear Motor <br> MECHATROLINK-II Communications Reference | SIEP S800000 48 |
|  | User's Manual Operation of Digital Operator | SIEP S800000 55 |
| S-7 | $\Sigma$-7S SERVOPACKs with MECHATROLINK-II Communications References Product Manual | SIEP S800001 27 |
|  | Digital Operator Operating Manual | SIEP S800001 33 |

Follow the setup procedure below using a Digital Operator.

1. Press the Kane Key to display the Utility Function Mode main menu. Use the UP Key or DOWN Key to select Fn008.

| BB | -FUNCTION- |
| :--- | :--- |
| FnOO7 |  |
| FnOO8 |  |
| FnOO9 |  |
| FnOOA |  |

2. Press the 0 апA Key.

The display is switched to the execution display of Fn008 (Absolute encoder multi-turn reset and encoder alarm reset).

```
B B
    Multiturn Clear
    PGCL_1
```

- If the display is not switched and "NO_OP" is displayed in the status display, the Write Prohibited setting ( $\mathrm{Fn} 010=0001$ ) is set. Check the status and reset. Then clear the Write Prohibited setting.

3. Keep pressing the $\wedge$ Key until "PGCL1" is changed to "PGCL5."

| BB |  |
| :--- | :--- |
| Multiturn Clear |  |
|  | PGCL5 |

4. Press the Kam Key.
"BB" in the status display changes to "Done."



This completes setting up the absolute encoder. Turn the power supply OFF and then back ON to reset the SERVOPACK.

## C． $2 \quad \Sigma$－II SERVOPACK

－Refer to the following manuals for information on $\Sigma$－II SERVOPACKs．
AC Servo Drives $\Sigma$ I－II Series SGMロロ／SGDH User＇s Manual Rotational Motor／Analog Voltage and Pulse Train Ref－ erence（Manual No．SIEP S8000000 05）
AC Servo Drives $\Sigma$ I－II Series SGMロם／SGDM User＇s Manual Rotational Motor／Analog Voltage and Pulse Train Ref－ erence（Manual No．SIEP S800000 15）
（1）Initialization Using a Hand－held Digital Operator
1．Press the DSPL／SET Key to select the Auxiliary Function Mode．


2．Select parameter Fn008 by pressing the LEFT（＜）and RIGHT（＞）Keys to select the digit to be changed and then using the UP $(\wedge)$ and DOWN $(\vee)$ Keys to change the value of the digit．


3．Press the DATA／ENTER Key．
The following display will appear．


4．The rightmost digit will be incremented each time the UP（ $\wedge$ ）Key is pressed．Press the UP（ $\wedge$ ）Key sev－ eral times until＂PGCL5＂is displayed．
If a mistake is made in the key operation，＂nO＿OP＂will blink on the display for 1 second and then the display will return to the Auxiliary Function Mode．If this happens，return to step 3，above，and repeat the operation．

Mistake in Key Operation


Blinks for 1 s.

Returns to the Auxiliary Function Mode．

5．Press the DSPL／SET Key．
The display will change as shown below and the clear operation will be performed for multiturn data for the absolute encoder．


This completes initializing the absolute encoder．Reset the SERVOPACK to turn the power supply OFF and then back ON．

## (2) Initialization Using the Built-in Panel Operator

1. Press the MODE/SET Key to select the Auxiliary Function Mode.

2. Press the UP $(\mathbf{\Delta})$ and DOWN ( $\boldsymbol{\nabla})$ Keys to select parameter Fn008.

3. Press the DATA/ < Key for more than one second.

The following display will appear.

4. The rightmost digit will be incremented each time the UP ( $\mathbf{\Delta}$ ) Key is pressed. Press the UP ( $\mathbf{\Delta}$ ) Key several time until "PGCL5" is displayed.

If a mistake is made in the key operation, "nO_OP" will blink on the display for 1 second and then the display will return to the Auxiliary Function Mode. If this happens, return to step 3, above, and repeat the operation.


Mistake in Key Operation


Blinks for 1 s .
5. Press the MODE/SET Key.

The display will change as shown below and the clear operation will be performed for multiturn data for the absolute encoder.


This completes initializing the absolute encoder. Reset the SERVOPACK to turn the power supply OFF and then back ON.

## C. $3 \quad \Sigma$-I SERVOPACK

- Refer to the following manuals for information on $\Sigma$-I SERVOPACKS.
$\Sigma$ Series SGM■/SGD User's Manual High-speed Field Network MECHATROLINK-compatible AC Servo Driver (Manual No. SIE-S800-26.3)
$\Sigma$ Series SGMם/SGDB User's Manual High-speed Field Network MECHATROLINK-compatible AC Servo Driver (Manual No. SIE-S800-26.4)
( 1 ) Initializing a 12-bit Absolute Encoder
Use the following procedure to initialize a 12-bit absolute encoder.

1. Properly connect the SERVOPACK, Servomotor, and Machine Controller.
2. Disconnect the connector on the encoder end and short-circuit pins 13 and 14 on the encoder end connector for 2 seconds or more.

3. Remove the short piece and insert the connector securely in its original position.
4. Connect the cables using normal wiring and make sure the encoder battery is connected.
5. Turn ON the system.

Repeat the procedure starting from step 1 if an Absolute Encoder Alarm occurs, so the system has been successfully initialized.

## ( 2 ) Initializing a 15-bit Absolute Encoder

Use the following procedure to initialize a 15 -bit absolute encoder.

1. Turn OFF the SERVOPACK and Machine Controller.
2. Discharge the large-capacity capacitor in the encoder using one of the following methods.

- At the SERVOPACK End Connector
a) Disconnect the connector on the SERVOPACK end.
b) Use a short piece to short-circuit together connector pins 10 and 13 on the encoder end and leave the pins short-circuited for at least 2 minutes.
c) Remove the short piece and insert the connector securely in its original position.
- At the Encoder End Connector
a) Disconnect the connector on the encoder end.
b) Use a short piece to short-circuit together connector pins R and S on the encoder end and leave the pins short-circuited for at least 2 minutes.
c) Remove the short piece and insert the connector securely in its original position.


3. Connect the cables using normal wiring and make sure the encoder battery is connected.
4. Turn ON the system.

Repeat the procedure starting from step 1 if an Absolute Encoder Alarm occurs, so the system has been successfully initialized.

## Appendix D Setting the Multiturn Limit

## D. 1 Overview

When using the absolute encoder of a $\Sigma$-II, $\Sigma$-III, $\Sigma$-V, or $\Sigma-7$ series SERVOPACK for an infinite axis, satisfy the following conditions.
If these conditions are not satisfied, a "fixed parameter setting error" or "multiturn limit mismatch error" will occur.

- Fixed parameter No. $38=65534$ or less
- Value set for fixed parameter No. 38 = value set for SERVOPACK user parameter Pn205


## D. 2 Setting Method

The procedure for using SigmaWin+ is explained here.
When using the digital operator or panel operator, refer to the user's manual for the SERVOPACK being used.

1. Change the multiturn reset value of Pn 205 .

After setting a value not exceeding 65534 for Pn205 on the [Edit Parameters] screen, click [Write to SERVOPACK].
2. Turn the power to the SERVOPACK OFF and back ON.

A "multiturn limit mismatch error (A.CC0)" will be displayed.
3. Click [Setup] - [Absolute encoder setting] - [Multiturn limit setting].
4. Click [Continue].
5. After setting the same value as was set for Pn205 for [Multiturn limit value], click [Write to SERVOPACK].
6. Turn the power to the SERVOPACK OFF and back ON.

## Appendix E Fixed Parameter Setting According to Encoder Type and Axis Type

The method of setting or changing the coordinate zero point differs depending on the encoder type, motor type, and axis type (infinite length axis or finite length axis) to be used. Use the flowchart below to correctly set the fixed parameter according to your application.


| Coordinate Zero Point is Determined By | Precautions When Turning the Power Back ON | Setting Mode | How to Change the Coordinate Zero Point |
| :---: | :---: | :---: | :---: |
| Zero point return method and zero point position offset （OLD口48）． <br> The way the axis returns to zero point depends on the motion pattern． （See the relevant SERVOPACK manual．） | Requires zero point return operation after turning ON the power． When zero point return operation is not performed，the position when the power is turned ON becomes the coordinate zero point．In this case， if ZSET（Set Zero Point）command is not executed，the software limit function will not be valid． | Either Absolute mode or in Incremental Addition mode （relative value）． <br> Depends on the setting of OWDロ09，bit 5. <br> Setting range：$-2^{31}$ to $2^{31}-1$ | The coordinate zero point offset is always calculated． The coordinate zero point will be changed whenever the OLD口48 is changed． When setting the current position as the zero point， set OLD口48 to the result of OLDप48－ILD口10． |
|  |  | In Incremental Addition mode （relative value） |  |
| Encoder zero－point position （incremental pulses）and Machine Controller coordinate zero point offset（OLDप48）． <br> Encoder zero－point position is set by encoder initialization． | Requires no special processing since the encoder retains the position data while the power to the Machine Controller is OFF． <br> However，the ZSET（Set Zero Point） command must be executed to validate the software limit function | Either Absolute mode or in Incremental Addition mode （relative value）． <br> Depends on the setting of OWD $\square 09$ ，bit 5. <br> Setting range：$-2^{31}$ to $2^{31}-1$ |  |
| Encoder zero－point position （incremental pulses）and Machine Controller coordinate zero point offset（OLD口48）． <br> Encoder zero－point position is set by encoder initialization． | While the power to the Machine Controller is OFF，the encoder retains the position data within one turn（incremental pulses），however， it does not retain multiturn data． Requires to execution of the ZSET （Set Zero Point）command after turning ON the power． | Incremental Addition mode （relative value） |  |
| Encoder zero－point position （incremental pulses）and Machine Controller coordinate zero point offset（OLDD48）． <br> Encoder zero－point position is set by encoder initialization． | Requires no special processing since the encoder retains the position data while the power to the Machine Controller is OFF． <br> However，the ZSET（Set Zero Point） command must be executed after turning ON the power．（If not an alarm will occur．） | Incremental Addition mode （relative value） |  |
| Encoder zero－point position （incremental pulses）and by executing ZSET（Set Zero Point） command． | Requires processing to request coordinate setup（set bit 7 of OW口ロ00 to ON．） <br> The current position coordinate must be backed up even during normal operation． <br> Both processes can be implemented by using a ladder program． <br> For details，refer to 9．4．5（4）Lad－ der Program for Infinite Length Axis Position Control． | Incremental Addition mode （relative value） | Executing ZSET（Set Zero Point） command will re－set the coordinate system． <br> Set OLDD48 to the coordinate value to be set，and then execute ZSET command． |

## Appendix F SVB Module Throughput

The maximum time for data to be received via the SVB Module is described below.

## F. 1 For Servos and Inverters

(1) Time Required to Transmit a Command from an Application to a Servo
<When the high-speed scan setting = Communication cycle $\times \mathrm{n}$ ( $\mathrm{n}=$ an integer)>
Required time for command = High-speed scan set time $\times 2+$ Communication cycle $\times 1$
<When the high-speed scan setting = Communication cycle $\times \mathrm{n}$ ( $\mathrm{n}=$ a non-integer)>
Required time for command = High-speed scan set time $\times 2+$ Communication cycle $\times 2$

- The time from the moment the servo receives a command until it outputs the command is not included.
- This also applies to built-in and optional SVB Modules
(2) Time Required to Transmit a Response from a Servo to an Application
- Built-in SVB Modules
<When the high-speed scan setting = Communication cycle $\times \mathrm{n}$ ( $\mathrm{n}=$ an integer)> Required time for response $=$ High-speed scan set time $\times 1+$ Communication cycle $\times 1$ <When the high-speed scan setting = Communication cycle $\times \mathrm{n}$ ( $\mathrm{n}=\mathrm{a}$ non-integer)> Required time for response $=$ High-speed scan set time $\times 1+$ Communication cycle $\times 2$
- The time required for the response from the servo to be written in MECHATROLINK input data is not included.
- Optional SVB Modules
<When the high-speed scan setting = Communication cycle $\times \mathrm{n}$ ( $\mathrm{n}=$ an integer)>
Required time for response $=$ High-speed scan set time $\times 2+$ Communication cycle $\times 1$
<When the high-speed scan setting = Communication cycle $\times \mathrm{n}$ ( $\mathrm{n}=\mathrm{a}$ non-integer)>
Required time for response $=$ High-speed scan set time $\times 2+$ Communication cycle $\times 2$
- When Wait For Monitor Data Update mode is used, the required time will be same as for built-in SVB Modules.


## F. 2 For I/Os

( 1 ) Time Required to Transmit an output from the Application to an I/O Module
<When the high-speed scan setting = Communication cycle $\times \mathrm{n}$ ( $\mathrm{n}=$ an integer)>
Required time for command $=$ High-speed scan set time $\times 2+$ Communication cycle $\times 1$
$<$ When the high-speed scan setting = Communication cycle $\times \mathrm{n}$ ( $\mathrm{n}=$ a non-integer)>
Required time for command $=$ High-speed scan set time $\times 2+$ Communication cycle $\times 2$

- The time from the moment the output module receives a command until it outputs a signal is not included.
- This also applies to built-in and optional SVB Modules
( 2 ) Time Required to Transmit an I/O Module Input Data to an Application
<When the high-speed scan setting = Communication cycle $\times \mathrm{n}$ ( $\mathrm{n}=$ an integer)>
Required time for response $=$ High-speed scan set time $\times 1+$ Communication cycle $\times 1$
<When the high-speed scan setting = Communication cycle $\times \mathrm{n}$ ( $\mathrm{n}=$ a non-integer)>
Required time for response $=$ High-speed scan set time $\times 1+$ Communication cycle $\times 2$
- The time required for the response from the input module to be written in MECHATROLINK input data is not included.
- This also applies to built-in and optional SVB Modules


## Appendix G Settings when Connecting MECHATROLINK-II Compatible Stepping Motor Drivers

## G. 1 Required Firmware and Engineering Tool Versions

The following table shows the firmware and engineering tool versions required to control MECHATROLINK-II stepping motor drivers (hereinafter referred to as M-II Stepper) using the MP2000-series SVB Module.

| Type | Model | Model Number | Version Number |
| :--- | :--- | :--- | :--- |
| Machine Controller | MP2100 | JAPMC-MC2100 (-E) | Version 2.46 or later |
|  | MP2100M | JAPMC-MC2140 (-E) | Version 2.46 or later |
|  | MP2300 | JEPMC-MP2300 (-E) | Version 2.46 or later |
|  | MP2300S | JEPMC-MP2300S-E | Version 2.60 or later |
|  | MP2310 | JEPMC-MP2310-E | Version 2.60 or later |
|  | MP2400 | JEPMC-MP2400-E | Version 2.60 or later |
| Optional SVB Module | SVB-01 | JAPMC-MC2310 (-E) | Version 1.18 or later |
|  | MPE720 Version 5 | CPMC-MPE720 | Version 5.34 or later |
|  | MPE720 Version 6 | CPMC-MPE770 (D) | Version 6.00 or later |
|  | MPE720 Version 7 | CPMC-MPE780 (D) | Version 7.10 or later |

## G. 2 Applicable Communication Methods and Cycles

|  |  | Communication Method and Cycle |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | M-I | M-II in 17-byte mode |  | M-II in 32-byte mode |  |  |  |
|  |  | 0.5 ms | 1.0 ms | 0.5 ms | 1.0 ms | 1.5 ms | 2.0 ms |
| $\begin{aligned} & \overline{\mathrm{D}} \\ & \stackrel{\mathrm{D}}{2} \end{aligned}$ | MP2100 |  | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|  | MP2100M (with built-in SVB) | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|  | MP2100M (with SVB board) | $\checkmark$ |
|  | MP2300 | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|  | MP2300S | $\checkmark$ |
|  | MP2310 | $\checkmark$ |
|  | MP2400 | $\checkmark$ |
|  | SVB-01 Module | $\checkmark$ |

- $\checkmark$ : Applicable, -: Not applicable
- SVB-01 Module operates with the setting Communication Cycle = Transmission Cycle
- Always confirm the specifications of the M-II Stepper to be used, since the applicable communication settings differ depending on the model.


## G. 3 Module Configuration Definition

To use a M-II Stepper, open the Module Configuration Tab Page in the MPE720, and set SteppingMotorDRV(M-I/MII) to the slave cell to assign to a Function Module/Slave Cell.

- Refer to 3.4.2 (1) Opening the MECHATROLINK Transmission Definition Window for information on how to open the Module Configuration Definition Window.


## G． 4 Restrictions on the Use of Motion Parameters

When using an M－II Stepper，the specifications of some motion parameters are different from when using servos．

## （ 1 ）Invalid Parameters When Using an M－II Stepper

－Fixed Parameters

| No． | Name | Setting Range | Default | Description |
| :---: | :---: | :---: | :---: | :---: |
| 16 | Backlash Compensation Amount | $-2^{31}$ to $2^{31}-1$ | 0 | $1=1$ reference unit |

Setting Parameters

| Register | Name | Setting Range | Default | Description |
| :---: | :---: | :---: | :---: | :---: |
| OWDロ00 | Run Command Setting | Bit setting | 0 | Bit 4：Latch Detection Demand |
|  |  |  |  | Bit 8：Forward Outside Limiting Torque／Thrust Input |
|  |  |  |  | Bit 9：Reverse Outside Limiting Torque／Thrust Input |
|  |  |  |  | Bit B：Integration Reset |
| OWDロ01 | Mode Setting 1 | Bit setting | 0 | Bit 3：Speed Loop P／PI Switch |
|  |  |  |  | Bit 4：Gain Switch |
| OWपロ03 | Function Setting 1 | 0 to 2 | 0 | Bits 8 to B：Filter Type Selection |
|  |  | 0 or 1 | 0 | Bits C to F：Torque Unit Selection |
| OWDロ05 | Function Setting 3 | Bit setting | 0 | Bit 1：Phase Reference Creation Calculation Disable |
|  |  |  |  | Bit B：Zero Point Return Input Signal |
| OWDロ09 | Motion Command Control Flag | Bit setting | 0 | Bit 4：Latch Zone Effective Selection |
|  |  |  |  | Bit 6：Phase Compensation Type |
| OLDロ0C | Torque／Thrust Reference Setting | $-2^{31}$ to $2^{31}-1$ | 0 | $1=0.01 \%$ or $0.0001 \%$ |
| OW－ロ0E | Speed Limit Setting at the Torque／Thrust Reference | －32768 to 32767 | 15000 | $1=0.01 \%$ |
| OLDロ14 | Positive Side Limiting Torque／ Thrust Setting at the Speed Ref－ erence | $-2^{31}$ to $2^{31}-1$ | 30000 | $1=0.01 \%$ |
| OLDप1E | Width of Positioning Completion | 0 to 65535 | 100 | $1=1$ reference unit |
| OLDロ28 | Phase Correction Setting | $-2^{31}$ to $2^{31}-1$ | 0 | $1=1$ reference unit |
| OLDロ2A | Latch Zone Lower Limit Setting | $-2^{31}$ to $2^{31}-1$ | $-2^{31}$ | $1=1$ reference unit |
| OLDロ2C | Latch Zone Upper Limit Setting | $-2^{31}$ to $2^{31}-1$ | $2^{31}-1$ | $1=1$ reference unit |
| OWロロ2E | Position Loop Gain | 0 to 32767 | 300 | $1=0.1 / \mathrm{s}$ |
| OWDG2F | Speed Loop Gain | 1 to 2000 | 40 | $1=1 \mathrm{~Hz}$ |
| OWロロ30 | Speed Feed Forward Amends | 0 to 32767 | 0 | $1=0.01 \%$ |
| OWDL32 | Position Integration Time Con－ stant | 0 to 32767 | 0 | $1=1 \mathrm{~ms}$ |
| OWDロ34 | Speed Integration Time Constant | 15 to 65536 | 2000 | $1=0.01 \mathrm{~ms}$ |
| OWDロ3A | Filter Time Constant | 0 to 65535 | 0 | $1=0.1 \mathrm{~ms}$ |
| OWDロ3C | Zero Point Return Method | 0 to 19 | 0 | － |

－Monitoring Parameter

| Register | Name | Range | Description |
| :---: | :--- | :---: | :---: |
| ILロロ42 | Feedback Torque／Thrust | $-2^{31}$ to $2^{31}-1$ | $1=0.01 \%$ or $0.0001 \%$ |

（ 2 ）Parameters Valid Only When Using an M－II Stepper
Setting Parameters

| Register | Name | Setting Range | Default | Description |
| :---: | :--- | :--- | :---: | :--- |
| OW口ロ06 | Option Setting | Bit setting | 0 | Bits 0 to F：Copied in the option field of <br> MECHATROLINK stepper command |
| OW口口4E | Servo User <br> Monitor Setting | Bit setting | 0 E 00 H | Bits 8 to B：Monitor 3 |

## （ 3 ）Stepper Parameters

For the axis for which＂SteppingMotorDRV（M－I／M－II）＂is allocated on the Module Configuration Definition Window，the stepper parameter can be set on the Motion Parameter Window．
－Refer to 3．4．3（1）Opening the Motion Parameter Window for information on how to open the Motion Parameter Window．

## G. 5 Availability When Using M-II Steppers

## (1) Limitation in Motion Command Application

For M-II Steppers, the applications of some motion commands are limited as follows.

| Motion Command |  | Application | Description |
| :---: | :---: | :---: | :---: |
| 0 | No command (NOP) | $\bigcirc$ | - |
| 1 | Position Mode (POSING) (Positioning) | $\bigcirc$ | - |
| 2 | Latch Target Positioning (EX_POSING) (External positioning) | 0 | The axis motion depends on the setting of the Parameter Switch. |
| 3 | Zero Point Return (ZRET) | $\Delta$ | Zero Point Return Method (zero point return method selection) is invalid. <br> The axis motion depends on the setting of the Parameter Switch. |
| 4 | Interpolation (INTERPOLATE) | $\bigcirc$ | - |
| 5 | Last Interpolation Segment (ENDOF_INTERPOLATE) | 0 | - |
| 6 | Interpolation Mode with Latch Input (LATCH) | 0 | - |
| 7 | Jog Mode (FEED) | O | - |
| 8 | Relative Position Mode (STEP) (Step mode) | $\bigcirc$ | - |
| 9 | Set Zero Point (ZSET) | O | - |
| 10 | Change Acceleration Time (ACC) | $\bigcirc$ | The axis motion depends on the setting of the Parameter Switch. |
| 11 | Change Deceleration Time (DCC) | 0 | The axis motion depends on the setting of the Parameter Switch. |
| 12 | Change Filter Time Constant (SCC) | $\times$ | Invalid. If executed, a normal completion response will be returned although no processing has been implemented. |
| 13 | Change Filter Type (CHG_FILTER) | $\times$ | Invalid. If executed, a normal completion response will be returned although no processing has been implemented. Use the Option Setting parameter OWDD 06 to select a filter type. |
| 14 | Change Speed Loop Gain (KVS) | $\times$ |  |
| 15 | Change Position Loop Gain (KPS) | $\times$ |  |
| 16 | Change Feed Forward (KFS) | $\times$ |  |
| 17 | Read User Constant (PRM_RD) | $\bigcirc$ | - |
| 18 | Write User Constant (PRM_WR) | 0 | - |
| 19 | Alarm Monitor (ALM_MON) | 0 | - |
| 20 | Alarm History Monitor (ALM_HIST) | 0 | - |
| 21 | Clear Alarm History (ALMHIST_CLR) | 0 | - |
| 22 | Absolute Encoder Reset (ABS_RST) | $\times$ |  |
| 23 | Speed Reference (VELO) | $\times$ | Use is prohibited. If executed, the Command Error Com- |
| 24 | Torque/Thrust Reference (TRQ) | $\times$ | pleted Status bit will turn ON |
| 25 | Phase Reference (PHASE) | $\times$ |  |
| 26 | Change Position Loop Integral Time Constant (KIS) | $\times$ | Invalid. If executed, a normal completion response will be returned although no processing has been implemented. |
| 27 | Stored Parameter Write (PPRM_WR) | 0 | - |
| 39 | Multiturn Limit Setting (MLTTRN_SET) | $\times$ | Use is prohibited. If executed, the Command Error Completed Status bit will turn ON. |

- O: Applicable, $x$ : Not applicable, $\Delta$ : Limited application
- Refer to G. 6 Motion Command Details for details.


## (2) Absolute Encoder Infinite Length Axis Setting

For M-II Steppers, absolute encoder infinite length axis setting is not supported.
( 3 ) Absolute Encoder Finite Length Axis Setting
For M-II Steppers, absolute encoder finite length axis setting is possible. However, the allowable stroke range will be determined by the M-II Stepper specifications.
Check the absolute position data range that the M-II Stepper can store, and determine whether the absolute encoder finite length axis can be used or not.
( 4 ) Instructions That Cannot be Used in Motion Programs
The following instructions cannot be used.

| Instruction | Description |
| :---: | :--- |
| VCS | Speed reference |
| VCR | Cancel speed reference |
| TCS | Torque reference |
| TCR | Cancel torque reference |

## G． 6 Motion Command Details

## （1）Latch Torque Positioning（EX＿POSING）（External Positioning）

The axis motion depends on the setting of the External Positioning Move Distance Parameter Options（bit 9）of the stepper parameter Parameter Switch（0000h）．

| Parameter Switch（0000h）， <br> bit 9：External Positioning Move Distance <br> Parameter Options | Operation |
| :--- | :--- |
| 0：Standard Parameter | The external positioning will be carried out using the value set in the setting <br> parameter External Positioning Final Travel Distance（OLDロ46）as the move <br> amount after the external signal input． |
| 1：Unique Parameter | The external positioning will be carried out using the stepper parameter of the <br> stepper model as the move amount after the external signal input． |

## （2）Zero Point Return（ZRET）

The setting parameter Zero Point Return Method（OWDD3C）is invalid and will be ignored．
Select the latch signal for zero point return motion by using Latch Detection Signal Selection bits 0 to 3 of the setting parameter Function Setting 2.
The axis motion depends on the setting of Zero Point Return Speed Parameter Options（bit A）and Home Offset Param－ eter Options（bit B）of the stepper parameter Parameter Switch（ 0000 h ）．

| Parameter Switch（0000h） | Operation |
| :--- | :--- |
|  | The zero point return will be carried out according to the following parameter <br> settings： <br> 0：Standard Parameter <br> OWロロ09 Motion Command Control Flag，bit 3：Zero Point Return Direction <br> Selection <br> OLDロ3E：Approach Speed <br> OLDロ40：Creep Rate <br> OLDロ42：Zero Point Return Travel Distance |
| 1：Unique Parameter | The zero point return will be carried out according to the parameter of the stepper <br> model． |

## （3）Change Acceleration Time（ACC）

| Parameter Switch（0000h）， <br> bit 8：Acceleration／Deceleration Rate <br> Parameter Options | Operation |
| :--- | :--- |
| 0：Standard Parameter | The values determined by the following setting parameters will be written into <br> stepper parameters： <br> OWDロ03 Function setting 1，bits 4 to 7：Acceleration／Deceleration Degree Unit <br> Selection <br> OLロロ36：Straight Line Acceleration／Acceleration Time Constant |
| 1：Unique Parameter | The values determined by the setting parameters will not be written into the step－ <br> per parameters．The execution will be normally completed． |

## （ 4 ）Change Deceleration Time（DCC）

| Parameter Switch（0000h）， <br> bit 8：Acceleration／Deceleration Rate <br> Parameter Options | Operation |
| :--- | :--- |
|  | The value determined by the following setting parameter will be written to the <br> stepper parameter． <br> OWDप03 Function Setting 1，bits 4 to 7：Acceleration／Deceleration Degree <br> Unit Selection <br> OLDロ38：Straight Line Deceleration／Deceleration Time Constant |
| 1：Unique Parameter Parameter | Writing to the stepper parameter will not be implemented．The execution will be <br> normally completed． |

## G． 7 Automatic Parameter Updating Function

（ 1 ）Parameters Updated when a MECHATROLINK Connection Is Established （Machine Controller to Stepper）
－When communication is in MECHATROLINK－II 32－byte mode and the User Constants Self－writing Function bit（fixed parameter No．1，bit A）is set to 0 （enabled）

| Machine Controller／Setting Parameter |  |
| :---: | :---: |
| Straight Line Acceleration／ <br> Acceleration Time Constant | OLロロ36 |
| Straight Line Deceleration／Decel－ <br> eration Time Constant | OLロロ38 |


$\rightarrow$| M－II Stepper／Parameter |  |
| :--- | :--- |
| No．15 |  |
| No．16 |  |

－Only when using standard parameters．
（ 2 ）Parameters Updated when a Setting Parameter is Changed （Machine Controller to Stepper）
－When communication is in MECHATROLINK－II 32－byte mode and the User Constants Self－writing Function bit（fixed parameter No．1，bit A）is set to 0 （enabled）

| Machine Controller／Setting Parameter |  |
| :---: | :---: |
| Straight Line Acceleration／ <br> Acceleration Time Constant | OLロロ36 |
| Straight Line Deceleration／Decel－ <br> eration Time Constant | OLDロ38 |


$\rightarrow$| M－II Stepper／Parameters |  |
| :--- | :--- |
|  | No．15 |
| No．16 |  |

－The above parameters will also be automatically updated when Acceleration／Deceleration Degree Unit Selection bits （OWロロ03，bits 4 to 7 ）is changed．
－Only when using standard parameters
（ 3 ）Parameters Updated When Execution of Motion Command Starts （Machine Controller to Stepper）
$\square$ In any communication mode when the User Constants Self－writing Function bit（fixed parameter No． 1 ，bit $A$ ）is set to 0 （enabled）

| Machine Controller／Setting Parameter |  |
| :---: | :---: |
| Straight Line Acceleration／ <br> Acceleration Time Constant | OLロロ36 |
| Straight Line Deceleration／Decel－ <br> eration Time Constant | OLロロ38 |


$\rightarrow$| $\rightarrow$ | M－II Stepper／Parameter |  |
| :--- | :--- | :--- |
| $\rightarrow$ | No．15 | Updated when execution of POSING， <br> EX＿POSING，ZRET，FEED，or STEP starts |
|  | No．16 | Updated when execution of POSING， <br> EX＿POSING，ZRET，FEED，or STEP starts |

－Only when using standard parameters
－In any communication mode，regardless of the setting of fixed parameter No．1，bit A

| Machine Controller／Setting Parameter |  |
| :---: | :---: |
| Approach Speed | OLDロ3E |
| Creep Rate | OLDロ40 |
| Zero Point Return Travel <br> Distance | OLDロ42 |
| External Positioning Final Travel <br> Distance | OLDप46 |


| $\rightarrow$ | M－II Stepper／Parameter |  |
| :--- | :--- | :--- |
| $\rightarrow$ | No．18 | Updated when execution of ZRET starts |
| $\rightarrow$ | No．19 | Updated when execution of ZRET starts |
| $\rightarrow$ | No．20 | Updated when execution of ZRET starts |
|  | No．17 | Updated when execution of EX＿POSING <br> starts |

[^7]
## ( 4 ) Parameters Updated During Self-configuration (Machine Controller to Stepper)

- In any communication mode, regardless of the setting of fixed parameter No. 1, bit A

| Machine Controller/Setting Parameter |  |
| :---: | :---: |
| P-OT | Invalid |
| N-OT | Invalid |
| Software Limit by Stepper (Positive) | Invalid |
| Software Limit by Stepper (Negative) | Invalid |
| Electronic Gear (Numerator) | 1 |
| Electronic Gear (Denominator) | 1 |


|  | M-II Stepper/Parameter |  |
| :--- | :--- | :--- |
| $\rightarrow$ | No.1, bit 2 |  |
| $\rightarrow$ | No.1, bit 3 |  |
| $\rightarrow$ | No.2, bit 6 |  |
| $\rightarrow$ | No.2, bit 7 |  |
| $\rightarrow$ | No.5 |  |
|  | No.6 |  |
|  |  |  |

- The above processing will not be implemented for an axis that has been already defined.


## G. 8 Writing and Changing Parameters During Self-configuration

When a M-II Stepper is recognized as a slave, the data will be written into the Machine Controller fixed parameters, and the settings of the stepper parameters will be changed accordingly as described below.

## (1) Fixed Parameters

The setting of the Basic Resolution Parameter Options bit of the stepper parameter Parameter Switch ( 0000 h, bit 1 ) will be read out. When set to Use Standard Parameter, the value of the stepper parameter Basic Resolution (0007h) will be written into the Machine Controller fixed parameter No. 36: Encoder Resolution.

| Stepper/Parameter |  |
| :---: | :---: |$\rightarrow$| Machine Controller/Fixed Parameter |  | Remarks |
| :---: | :---: | :---: |
| No. 7 | Basic Resolution | No.36 |

Additionally, the setting of the User Constants Self-writing Function bit of the fixed parameter Function Selection Flag 1 (No.1, bit A) will be changed to 1 (disabled).

$\rightarrow$| Machine Controller/Fixed Parameter |  | Details | Value |
| :---: | :--- | :--- | :---: |
| No.1 | Function Selection Flag 1 | Bit A: User Constant Self-writing Function | 1 (disabled) |

## ( 2 ) Stepper Parameters

The settings of the following parameters will be changed. Where the definition has already been made, it will stay unchanged.

| No. | Name | Setting |
| :---: | :--- | :--- |
| 1 | Memory Switch 1 |  |
|  | Bit 2: P-OT Mask | 1: P-OT signal disabled |
|  | Bit 3: N-OT Mask | $1:$ N-OT signal disabled |
| 2 | Memory Switch 2 |  |
|  | Bit 6: Positive Software Limit Check | $0:$ No check |
|  | Bit 7: Negative Software Limit Check | $0:$ No check |
| 3 | Electronic Gear (Numerator) | 1 |
| 4 | Electronic Gear (Denominator) | 1 |

## G. 9 M-II Stepper Parameters

## (1) Standard Parameters

| No. | Name | Size (Byte) | Unit |
| :---: | :--- | :---: | :--- |
| 0 | Parameter Switch | 2 | Bit |
| 1 | Memory Switch 1 | 2 | Bit |
| 2 | Memory Switch 2 | 2 | Bit |
| 3 | Memory Switch 3 | 2 | Bit |
| 4 | Memory Switch 4 | 2 | Bit |
| 5 | Electronic Gear (Numerator) | 2 | Bit |
| 6 | Electronic Gear (Denominator) | 2 | Bit |
| 7 | Basic Resolution | 2 | pulse/rev |
| 8 | Zero Point Position Range | 4 | Reference unit |
| 9 | Home Offset (For Absolute Encoder) | 2 | Reference unit |
| 10 | Positioning Completed Width | 2 | Reference unit |
| 11 | Positioning Completed Width 2 (NEAR) | 4 | Reference unit |
| 12 | Forward Software Limit | 2 | Reference unit |
| 13 | Reserve Software Limit | 2 | 100 reference units |
| 14 | Start Speed | 10000 reference units |  |
| 15 | Linear Acceleration Constant (Acceleration <br> Rate) | 2 | 10000 reference units |
| 16 | Linear Deceleration Constant (Deceleration <br> Rate) | 4 | Reference unit |
| 17 | External Positioning Move Distance | 2 | 100 reference units/s |
| 18 | Zero Point Return Approach Speed | 2 | 100 reference units/s |
| 19 | Zero Point Return Creep Speed | 4 | Reference unit |
| 20 | Home Offset (Home Offset) | 2 | $\%$ |
| 21 | Current at Run | 2 | $\%$ |
| 22 | Current at Stop | 2 |  |

Details on the parameters No. 0 (Parameter Switch) to 4 (Memory Switch 4) are described in the following pages.

## (2) No. 0: Parameter Switch

| Bit | Name | Setting |  |
| :---: | :---: | :---: | :---: |
| 0 | Electronic Gear Parameter Options (Numerator and Denominator) | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| 1 | Definition of Basic Resolution Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| 2 | Zero Point Position Range Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| 3 | Home Offset Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| 4 | Positioning Completed Width Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| 5 | Positioning Completed Width 2 (NEAR) Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| 6 | Software Limit Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| 7 | Start Speed Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| 8 | Acceleration/Deceleration Rate Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| 9 | External Positioning Move Distance Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| A | Zero Point Return Speed (Approach Speed and Creep Speed) Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| B | Home Offset (Zero Point Return Final Travel Distance) Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| C | Current at Run Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| D | Current at Stop Parameter Options | 0 | Use standard parameter |
|  |  | 1 | Use unique parameter |
| E | Undefined |  |  |
| F | Use of Unique Non-standard Parameters | 0 | Use only standard parameters |
|  |  | 1 | Use standard parameters and unique non-standard parameters |

( 3 ) No. 1: Memory Switch 1

| Bit | Name |  | Setting |
| :---: | :---: | :---: | :---: |
| 0 and 1 | Undefined |  |  |
| 2 | P-OT Mask | 0 | P-OT signal enabled |
|  |  | 1 | P-OT signal disabled |
| 3 | N-OT Mask | 0 | N-OT signal enabled |
|  |  | 1 | N-OT signal disabled |
| 4 to 7 | Undefined |  |  |
| 8 | Stopping Method at OT | 0 | Decelerate to a stop |
|  |  | 1 | Stop immediately (Emergency stop) |
| 9 to E | Undefined |  |  |
| F | Encoder Type (Optional) | 0 | Incremental encoder |
|  |  | 1 | Absolute encoder |

( 4 ) No. 2: Memory Switch 2

| Bit | Name |  | Setting |  |
| :---: | :--- | :---: | :--- | :---: |
| 0 | Reverse Rotation Mode (Rotation Direction) | 0 | CCW as forward rotation |  |
|  |  | 1 | CW as forward rotation |  |
| 1 to 5 | Undefined |  |  |  |
| 6 | Positive Software Limit Check | 0 | No check |  |
|  |  | 1 | Check |  |
| 7 | Negative Software Limit Check | 0 | No check |  |
|  |  | 1 | Check |  |
| 8 to F | Undefined |  |  |  |

( 5 ) No. 3: Memory Switch 3

| Bit | Name |  | Setting |
| :---: | :---: | :---: | :---: |
| 0 to 9 | Undefined |  |  |
| A | MECHATROLINK Communication Check (For Debugging) | 0 | With communication check |
|  |  | 1 | Without communication check Ignores the command errors 01,02 , and 03 . |
| B | WDT Check (For Debugging) | 0 | With WDT check |
|  |  | 1 | Without WDT check Ignores error 04. |
| C | Communication Error Count | 0 to F | Communication error processing will be implemented when received errors (timeout and CRC error) occur continuously a set number of times. <br> - Processing to a safe stop, such as power disconnection and excitation OFF. <br> - 0 : Select a value from the options specified for the system. <br> - Valid only for transmission in a single direction. |
| D |  |  |  |
| E |  |  |  |
| F |  |  |  |

(6) No. 4: Memory Switch 4

| Bit | Name |  | Setting |
| :---: | :---: | :---: | :---: |
| 0 | Undefined |  |  |
| 1 | Home Direction | 0 | Forward direction |
|  |  | 1 | Reverse direction |
| 2 to 8 | Undefined |  |  |
| 9 | Brake ON/OFF (Optional) | 0 | Use BRK_ON and BRK_OFF commands. |
|  |  | 1 | BRK_ON/BRK_OFF command disabled. |
| A | P-OT Signal Logic | 0 | Positive logic |
|  |  | 1 | Negative logic |
| B | N-OT Signal Logic | 0 | Positive logic |
|  |  | 1 | Negative logic |
| C | DEC Signal Logic | 0 | Positive logic |
|  |  | 1 | Negative logic |
| D to F | Undefined |  |  |

## Appendix H Wild Card Servos

Wild Card Servos refer to general-purpose servo drivers.
A MECHATROLINK servo driver that is not compatible with the MP2000-series SVB Module can be connected to a SVB Module by allocating the servo driver as a general-purpose servo driver, and can be operated using an user application.

- Wild Card Servos cannot use all the functions of the SVB Module since it is a general-purpose servo driver. Also, the functions of some servo driver models may be limited by the product specifications.


## H. 1 Required Firmware and Engineering Tool Versions

The following firmware and engineering tool versions numbers are required to use wild card servos with the MP2000series SVB Module.

| Type | Model | Model Number | Version Number |
| :--- | :--- | :--- | :--- |
| Machine Controller | MP2100 | JAPMC-MC2100 (-E) | Version 2.48 or later |
|  | MP2100M | JAPMC-MC2140 (-E) | Version 2.48 or later |
|  | MP2300 | JEPMC-MP2300 (-E) | Version 2.48 or later |
|  | MP2300S | JEPMC-MP2300S-E | Version 2.60 or later |
|  | MP2310 | JEPMC-MP2310-E | Version 2.60 or later |
|  | MP2400 | JEPMC-MP2400-E | Version 2.60 or later |
| Optional <br> Module | SVB-01 | JAPMC-MC2310 (-E) | Version 1.19 or later |
|  | MPE720 Version 5 | CPMC-MPE720 | Version 5.36 or later |
|  | MPE720 Version 6 | CPMC-MPE770 (D) | Version 6.00 or later |
|  | MPE720 Version 7 | CPMC-MPE780 (D) | Version 7.10 or later |

## H. 2 Applicable Communication Methods and Cycles

The communication method and cycle that can be set for each SVB Module is shown in the table below.

|  |  | Communication Method/Communication Cycle |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | M-I | M-II (17-byte mode) |  | M-II (32-byte mode) |  |  |  |
|  |  | 0.5 ms | 1.0 ms | 0.5 ms | 1.0 ms | 1.5 ms | 2.0 ms |
| $\begin{aligned} & \frac{\overline{0}}{0} \\ & \frac{0}{2} \end{aligned}$ | MP2100 |  | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|  | MP2100M (Built-in SVB) | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|  | MP2100M (SVB board) | $\checkmark$ |
|  | MP2300 | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|  | MP2300S | $\checkmark$ |
|  | MP2310 | $\checkmark$ |
|  | MP2400 | $\checkmark$ |
|  | SVB-01 Module | $\checkmark$ |

$\checkmark$ : Applicable, - : Not applicable

- SVB-01 Module operates with the setting of Communication cycle = Transmission cycle.
- Check the specifications of the slave device, because the communication setting depends on the product specifications.


## H． 3 Link Assignment

Open the Module Configuration Tab Page in the MPE720，and set Wild Card Servo or Wild Card Servo（Linear）to the slave cell to assign to a Function Module／Slave Cell．
－Refer to 3．4．3（1）Opening the Motion Parameter Window for information on how to open the Module Configuration Definition Window．
－SVB Module operates as though the actual object is true，despite the setting．If Wild Card Servo or Wild Card Servo（Linear）is set in place of SGDS－＊＊＊${ }^{* *}$ for example，the SVB Module recognizes it as SGDS and operates accordingly．

## H． 4 Invalid Motion Parameters When Using Wild Card Servos

The following motion parameters are invalid when using wild card servos．
－Fixed Parameters

| No． | Name | Setting Range | Default | Description |
| :---: | :--- | :--- | :--- | :---: |
| 16 | Backlash Compensation Amount | $-2^{31}$ to $2^{31}-1$ | 0 | $1=1$ reference unit |
| 29 | Motor Type Selection | $0:$ Rotation type motor， <br> $1:$ Linear motor | $0:$ Rotation <br> type motor |  |

Setting Parameters

| Register | Name | Setting Range | Default | Description |
| :---: | :---: | :---: | :---: | :---: |
| OWD－03 | Function Setting 1 | 0 or 1 | 0 | Bits 4 to 7：Acceleration／Deceleration Degree Unit Selection |
| OWDロ04 | Function Setting 2 | 0 to 14 | 0 | Bits C to F：Bank Selector |
| OWロロ06 | Option Setting | Bit setting | 0 | Bits A to F：Options for Stepper |
| OWDL09 | Motion Command Control Flag | Bit setting | 0 | Bit 3：Zero Point Return Direction Selec－ tion <br> Bit 4：Latch Zone Effective Selection |
| OLDロ1E | Width of Positioning Completion | 0 to 65535 | 100 | 1 ＝ 1 reference unit |
| OLDロ2A | Latch Zone Lower Limit Setting | $-2^{31}$ to $2^{31}-1$ | $0-2^{31}$ | $1=1$ reference unit |
| OLロロ2C | Latch Zone Upper Limit Setting | $-2^{31}$ to $2^{31}-1$ | $2^{31}-1$ | $1=1$ reference unit |
| OWDロ2E | Position Loop Gain | 0 to 32767 | 300 | $1=1.0 / \mathrm{s}$ |
| OWDロ2F | Speed Loop Gain | 1 to 2000 | 40 | $1=1 \mathrm{~Hz}$ |
| OWロロ30 | Speed Feedforward Amends | 0 to 32767 | 0 | $1=0.01 \%$ |
| OWDロ32 | Position Integration Time Constant | 0 to 32767 | 0 | $1=1 \mathrm{~ms}$ |
| OWDप34 | Speed Integration Time Constant | 15 to 65535 | 2000 | $1=0.01 \mathrm{~ms}$ |
| OWDロ36 | Straight Line Acceleration／Accelera－ tion Time Constant ${ }^{*}$ | 0 to $2^{31}-1$ | 0 | $1=1 \mathrm{reference}$ unit $/ \mathrm{s}^{2}, 1=1 \mathrm{~ms}$ |
| OWDロ38 | Straight Line Deceleration／Decelera－ tion Time Constant ${ }^{*}$ | 0 to $2^{31}-1$ | 0 | $1=1$ reference unit／s ${ }^{2}, 1=1 \mathrm{~ms}$ |
| OWDロ3A | Filter Time Constant＊ | 0 to 65535 | 0 | $1=0.1 \mathrm{~ms}$ |
| OLDロ42 | Zero Point Return Travel Distance | $-2^{31}$ to $2^{31}-1$ | 0 | 1 ＝ 1 reference unit |
| OLDロ46 | External Positioning Final Travel Distance | $-2^{31}$ to $2^{31}-1$ | 0 | $1=1$ reference unit |

＊Valid only for VELO（Speed Reference）command．
－Monitoring Parameters

| Register | Name | Setting Range | Description |
| :---: | :--- | :--- | :---: |
| ILロロ42 | Feedback Torque／Thrust | $-2^{31}$ to $2^{31}-1$ | $1=0.01 \%$ or $0.0001 \%$ |

## H. 5 Availability When Using Wild Card Servos

## (1) Limitation in Application of Motion Commands

- O: Applicable, $\times$ : Not applicable, $\Delta$ : Limited Application

| Motion Command |  | Application | Remarks |
| :---: | :---: | :---: | :---: |
| 0 | No command (NOP) | $\bigcirc$ | - |
| 1 | Position Mode (POSING) (Positioning) | 0 | - |
| 2 | Latch Target Positioning (EX_POSING) (External positioning) | $\Delta$ | The setting parameter Zero Point Return Travel Distance is invalid. <br> The axis moves according to the settings of servo driver parameter. |
| 3 | Zero Point Return (ZRET) | $\Delta$ | The following limitation will be applied for each home return type. <br> DEC + C-Phase Pulse <br> The following setting parameters are invalid: Zero Point Return Direction Selection, Approach Speed, Creep Rate, and Zero Point Travel Distance <br> ZERO (ZERO Signal) <br> The following setting parameters are invalid: Zero Point Return Direction Selection and Zero Point Return Travel Distance <br> DEC1 + ZERO (DEC1 and ZERO Signal): <br> The following setting parameters are invalid: <br> Zero Point Return Direction Selection, Approach Speed, Creep Rate, and Zero Point Return Travel Distance <br> C-Phase Pulse <br> The following setting parameters are invalid: <br> Zero Point Return Direction Selection and Zero Point Return <br> Travel Distance <br> C pulse only, <br> POT \& C pulse, <br> HOME LS \& C pulse, <br> HOME only, <br> NOT \& C pulse, and <br> INPUT \& C pulse: <br> The setting parameter Zero Point Return Travel Distance is invalid. <br> - The servo driver parameters are used for the above invalid parameters. <br> - Applicable home return types will differ depending on the servo being used. |
| 4 | Interpolation (INTERPOLATE) | 0 | - |
| 5 | Last Interpolation Segment (ENDOF_INTERPOLATE) | 0 | - |
| 6 | Interpolation Mode with Latch Input (LATCH) | 0 | - |
| 7 | JOG Mode (FEED) | $\bigcirc$ | - |
| 8 | Relative Position Mode (STEP) (Step mode) | 0 | - |
| 9 | Set Zero Point (ZSET) | 0 | - |
| 10 | Change Acceleration Time (ACC) | $\times$ | Invalid |
| 11 | Change Deceleration Time (DCC) | $\times$ | Invalid |
| 12 | Change Filter Time Constant (SCC) | $\times$ | Invalid |
| 13 | Change Filter Type (CHG_FILTER) | $\times$ | Invalid |
| 14 | Change Speed Loop Gain (KVS) | $\times$ | Invalid |

(cont'd)

| Motion Command |  | Application | Remarks |
| :---: | :---: | :---: | :---: |
| 15 | Change Position Loop Gain (KPS) | $\times$ | Invalid |
| 16 | Change Feed Forward (KFS) | $\times$ | Invalid |
| 17 | Read User Constant (PRM_RD) | $\bigcirc$ | - |
| 18 | Write User Constant (PRM_WR) | $\bigcirc$ | - |
| 19 | Alarm Monitor (ALM_MON) | $\bigcirc$ | - |
| 20 | Alarm History Monitor (ALM_HIST) | $\bigcirc$ | - |
| 21 | Clear Alarm History (ALMHIST_CLR) | $\bigcirc$ | - |
| 22 | Absolute Encoder Reset (ABS_RST) | $\times$ | Executing this command will cause Command Error Completed Status (FAIL). |
| 23 | Speed Reference (VELO) | $\times$ | Operation is possible. <br> The internal processing will be implemented while assuming the maximum speed to be $4500 \mathrm{~min}^{-1}$, however, some servos may operate adversely at a speed significantly different from the target speed. |
| 24 | Torque/Thrust Reference (TRQ) | $\times$ | Operation is possible. <br> The internal processing will be implemented while assuming the maximum torque to be $300 \%$, however, some servos may operate adversely with a torque significantly different from the target torque. |
| 25 | Phase Reference (PHASE) | $\times$ | Operation is possible. <br> However, execution of this command may not result as intended for some servos. |
| 26 | Change Position Loop Integral Time Constant (KIS) | $\times$ | Invalid |
| 27 | Stored Parameter Write (PPRM_WR) | $\bigcirc$ | - |
| 39 | Multiturn Limit Setting (MLTTRN_SET) | $\times$ | Executing this command will cause Command Error Completed Status (FAIL). |

## (2) Absolute Encoder Infinite Length Axis

Wild card servos do not support the absolute encoder infinite length axis.

## ( 3 ) Absolute Encoder Finite Length Axis

The absolute encoder finite length axis is supported for wild card servos, but the allowable stroke is determined by the specifications of the servo driver being used.
Check the absolute position data range that the servo driver can handle to know whether the absolute encoder finite length axis can be used or not.

## ( 4 ) User Constants Self-writing Function

The automatic updating of the parameters function is invalid for wild card servos.

## ( 5 ) Self-configuration

When the Machine Controller recognizes the slave station as an unsupported servo, the servo is allocated as "****SERVO" type and the fixed parameters will be set by default.

## Appendix I Servo Driver Transmission Reference Mode

## I． 1 What is Servo Driver Transmission Reference Mode？

Users can directly send MECHATROLINK servo commands in Servo Driver Transmission Reference Mode． Set the fixed parameter No． 0 （Selection of Operation Modes）of the corresponding axis to 3 （Servo Driver Transmis－ sion Reference Mode）to enable the mode．
MECHATROLINK servo command data can be sent using the motion setting parameters OWロロ70 to OWDD7E in 32－byte mode or OWロロ70 to OWロロ77 in 17－byte mode，and the response data can be received using the motion monitoring parameters IWपด70 to IWपด7E in 32－byte mode or IWपด70 to IWपด77 in 17－byte mode．

－Refer to the relevant SERVOPACK user＇s manual for details on MECHATROLINK commands．

## I． 2 MECHATROLINK Communication Management by the System

## （1）Connection Management

When the power to the system is turned ON，the system will automatically execute the processing to shift the operation to MECHATROLINK communication phase 3 （synchronous communication status）by establishing a connection and synchronous communications．
When an alarm is cleared，the system automatically clears the alarms of MECHATROLINK connected servos．At the same time，the system will execute processing to restore MECHATROLINK communication phase 3 （synchronous communication status．）

## （2）Watchdog Timer Processing

The WDT field of the 16th byte（both command and response）of the MECHATROLINK servo command is used by the system to automatically prepare transmission data and detect errors．
When an error is detected，the MECHATROLINK communication phase is shifted to phase 2 （asynchronous communi－ cation status）and then to phase 4 （communication stop status）．As a result，the Motion Controller Operation Ready bit （bit 0 of the motion monitoring parameter Drive Status）will be set to 0 ：Operation Not Ready．

## （3）Interpolation Segment Distribution

When the Interpolation Segment Distribution Processing bit（fixed parameter No． 1 Function Selection Flag 1，bit 8）is set to 0 （enabled）and interpolation segment distribution per high－speed scan is constant，processing to control interpo－ lation segment distribution per MECHATROLINK communication cycle to be constant is implemented．

## I． 3 Motion Parameters That Can be Used in Servo Driver Transmission Reference Mode

The motion parameters that can be used in transparent command mode are limited to those listed below．Motion Com－ mands other than those listed below cannot be used．
－Motion Fixed Parameters

| No． | Name | Setting Range | Default Setting | Description |
| :---: | :--- | :--- | :--- | :---: |
| 1 | Function Selection <br> Flag 1 | Bit setting | 0 | Bit 8：Interpolation Segment dis－ <br> tribution Processing |
| 2 | Function Selection <br> Flag 2 | Bit setting | 0 | Bit 0：Communication Abnor－ <br> mality Detection Mask <br> Bit 1：WDT Abnormality <br> Detection Mask |

－Motion Setting Parameters

| Register | Name | Setting Range | Default Setting | Description |
| :---: | :--- | :--- | :--- | :--- |
| OWロロ00 | Run Command Setting | Bit setting | 0 | Bit E：Communication <br> Reset <br> Bit F：Clear Alarm |
| OWपロ70 <br> to <br> OWロロ7E | Command Buffer for Servo Driver <br> Transmission Reference Mode |  | 0 |  |

＊For SVB－01 Module version 1.20 or later or built－in SVB Module version 2.50 or later
－Motion Monitoring Parameters

| Register | Name | Setting Range | Description |
| :---: | :---: | :---: | :---: |
| IW口ロ00 | RUN Status | Bit setting | Bit 0：Motion Controller Operation Ready |
| IWロロ01 | Parameter Number When Range Over is Generated | 0 to 65535 |  |
| ILロロ02 | Warning | Bit setting | Bit 2：Fixed Parameter Error |
| ILDロ04 | Alarm | Bit setting | Bit 10：Servo Driver Synchronization Communication Error <br> Bit 11：Servo Driver Communication Error |
| ILロロ18 | Machine Coordinate System Latch Position（LPOS） | $-2^{31}$ to $2^{31}-1$ |  |
| IWDロ70 <br> to IWロロ7E | Response Buffer for Servo Driver Transmission Reference Mode |  |  |

## I． 4 MECHATROLINK Commands That Cannot Be Used

Do not use the following MECHATROLINK commands unless it is absolutely necessary，since connection manage－ ment is carried out by the system．
－Connection request command（CONNECT）
－Disconnection request command（DISCONNECT）
－Synchronization request command（SYNC＿SET）
－Device setup request command（CONFIG）
－Sensor ON command（SENS＿ON）
－Sensor OFF command（SENS＿OFF）

## I． 5 Operation Procedure in Servo Driver Transmission Reference Mode

Use the following procedure to send commands in Servo Driver Transmission Reference Mode mode using the Regis－ ter List Window of MPE720．

1．Start the MPE720 to open the Fixed Parameter Tab Page in the Module Configuration Definition Window．
－Refer to 3．4．3（1）Opening the Motion Parameter Window for information on how to open the Fixed Parameter Tab Page．

2．In the Fixed Parameters of the corresponding axis，select Servo Driver Transmission Reference Mode）for fixed parameter No．0：Selection of Operation Mode，and click Write．


3．Click OK．


4．Display the registers OWDロ70 to OWロロ7E in the Register List．
－Refer to 12.2 .1 （ 2 ）Viewing the Contents of the System Registers formation on how to display the register list．
5．Enter MECHATROLINK application layer commands for the registers OWDロ70 to OWDロ7E in the Register List．


■＜Setting Example＞Sending the main command PPRM＿WR
In the MECHATROLINK application layer command setting example given below，the main command PPRM＿WR is sent．

1．Enter 0 for all registers from OWロロ70 to OWロロ77 in the Register List Window of MPE720．


This results in No Command（NOP）status．
2．First，enter the data for registers from OWDロ71 to OWם口77．Then，set 001CH（PPRM＿WR com－ mand）for OWロロ70 at the end．

| Register List $1 \times$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Register | OW8070 | $\checkmark$ | － |  | 4 － | D |
|  | 0 | 1 | 2 | 3 |  | $\triangle$ |
| OW8070 | 0015 | 0000 | 0120 | B402 |  |  |
| OW8074 | 0000 | 0000 | 0000 | 0000 |  | ， |
| 0W8078 | 0000 | 0000 | 0000 | 0000 |  |  |
| OW807C | 0000 | 0000 | 0000 | 0000 |  | $\checkmark$ |

－Use the little－endian format to set the data．
＜Setting Example to Write 180 （00B4H）in Pn－102＞

| MECHATROLINK Command |  |  |
| :---: | :---: | :---: |
| Byte | Command | Set Value |
| 1 | PPRM＿WR | 1－H |
| 2 |  | 0 |
| 3 |  | 0 |
| 4 |  | 0 |
| 5 |  | 02H |
| 6 | NO | 01H |
| 7 | SIZE（byte） | 2 |
| 8 |  | B4H |
| 9 |  | 0 |
| 10 |  | 0 |
| 11 |  | 0 |
| 12 | PARAMETER | 0 |
| 13 |  | 0 |
| 14 |  | 0 |
| 15 |  | 0 |
| 16 | WDT | 0 |


|  | Settings in Register List |  |
| :---: | :---: | :---: |
|  | Register | Set Value（HEX） |
| $\rightarrow$ $\rightarrow$ | OW口ロ70 | $001 \mathrm{CH}$ <br> （Enter at the end．） |
| $\rightarrow$ | OW口ロ71 | 0 |
| $\rightarrow$ $\rightarrow$ | OW口ロ72 | 0120H |
| $\rightarrow$ $\rightarrow$ | OW口ロ73 | B402H |
| $\rightarrow$ $\rightarrow$ | OW口ロ74 | 0 |
| $\rightarrow$ | OW口ロ75 | 0 |
| $\rightarrow$ $\rightarrow$ | OW口ロ76 | 0 |
| $\rightarrow$ $\rightarrow$ | OW口ロ77 | 0 |

3．Display registers IWDロ70 to IWD $\square 77$ in the Register List．
The response to the PPRM＿WR command can be confirmed in registers IWवप70 to IWロロ77 as shown below．


## I. 6 Precautions When Using Servo Driver Transmission Reference Mode

- Note that the response to a MECHATROLINK servo command will be delayed because of the delay in the MECHATROLINK communications.
For example, when sending a move command such as POSING for the axis being stopped, it will take some time for the Commanded Profile Complete bit to turn OFF. Wait the following number of scans to monitor the response data to the MECHATROLINK servo command.

When High-speed scan set time $<$ MECHATROLINK communication cycle $\times 3$
Number of scans (rounded up to the nearest integer) $=$
MECHATROLINK communication cycle $\times 7 \div$ High-speed scan set time
When MECHATROLINK communication cycle $\times 3 \leq$ High-speed scan set time $\leq$ MECHATROLINK communication cycle $\times 6$

Number of scans (rounded up to the nearest integer) $=$
MECHATROLINK communication cycle $\times 6 \div$ High-speed scan set time +1
When High-speed scan set time $>$ MECHATROLINK communication cycle $\times 6$
Number of scans $=1$

- Always set the Interpolation Segment Distribution Processing bit (fixed parameter No. 1 Function Selection Flag 1, bit 8 ) to 0 (enabled) when using an interpolation MECHATROLINK servo command, INTERPOLATE or LATCH.
If this bit is set to 1 (disabled), interpolation segment distribution per MECHATROLINK communication cycle will not be constant, though that per high-speed scan will be constant. As a result, the speed waveform will be disordered.
- Precaution on operation of MPE720 parameter windows of MECHATROLINK compatible servos Current value reading, writing, and saving operations are allowed only when the MECHATROLINK servo command NOP is set. The operations in parameter windows are disabled while any command other than NOP is being executed.


## Appendix J Terminology

## Phase-C Pulse

The encoders mounted on Yaskawa's servomotors output three types of pulse data, phase-A, -B, and -C. Phase-C pulse is a signal that reverses once per motor rotation and is called Zero-point Pulse.

## POSMAX

Reset position of infinite length axis
Refer to 4.4.1 Motion Fixed Parameter Details for details.

## Override

The original meaning of Override is annulling. In descriptions on Machine Controllers, override means overwriting the setting

## Machine Coordinate System

The basic coordinate system set by executing the motion command ZRET (Zero Point Return) or ZSET (Set Zero Point). The Machine Controller manages positions using the Machine Coordinate System.
With a system using an incremental encoder, or absolute encoder as the incremental encoder, the Machine Coordinate System is automatically set by the first zero point return operation after the power turns ON.
With the system using an absolute encoder, it is automatically set after the power turns ON.

## Deceleration LS

Limit switch for deceleration
For SERVOPACKs, deceleration LS for zero point return is connected to the Zero Point Return Deceleration signal DEC.

## Absolute Mode

One of target position (CPOS) coordinate data setting methods for position control. Target position (CPOS) coordinate data is directly set in Absolute Mode.
Refer to 5.1.4 Position Reference for details.

- Incremental Addition Mode

One of the target position (CPOS) coordinate data setting methods for position control. Target position (CPOS) coordinate data is set by adding the movement amount to the previous position reference value in Incremental Addition Mode.
Refer to 5.1.4 Position Reference for details.

- Infinite Length Axis

An axis that employs the infinite length position control method, which resets the position data after one motor rotation.
Refer to 5.1.3 Axis Type Selection for details.

- Infinite Length Position Control

This control method is used to perform position control without limiting the movement range for movements such as rotation in one direction.
Refer to 5.1.3 Axis Type Selection for details.

## Finite Length Axis

An axis that employs the finite length position control method or infinite length position control that does not reset the position data after one motor rotation to move in one direction.
Refer to 5.1.3 Axis Type Selection for details.

## Finite Length Position Control

This control method is used to perform position control within a specified section for movements such as go-and-return motions.
Refer to 5.1.3 Axis Type Selection for details.

## Work Coordinate System

The coordinate system used in motion programs. It is called the Work Coordinate System to distinguish it from the Machine Coordinate System. The work coordinate system can be set by executing the Change Current Value (POS) instruction of the motion program.
Refer to Machine Controller MP2000 Series User's Manual Motion Programming (manual number: SIEP C880700 38) for details.

## Appendix K Functions Added to $\Sigma$-V-series SERVOPACKs

The functions that were added to $\Sigma$-V-series SERVOPACKs are listed in the following table.

| No. | Function | Description | Reference |
| :---: | :---: | :---: | :---: |
| 1 | Setting and Changing <br> Torque Limit during <br> SGDV SERVOPACK <br> Operations | The torque limit can be set or changed during SERVOPACK operations if the following parameter settings have been made. <br> - Pn81F. 1 = 1 (Position Control Command TFF/TLIM Function Allocation is enabled.) <br> - Pn002.0 = 1 (PTLIM and NTLIM operate as the torque limit values.) <br> Or <br> - Pn81F. $1=1$ (Position Control Command TFF/TLIM Function Allocation is enabled.) <br> - Pn002.0 $=3$ (When P-CL and N-CL are available, PTLIM and NTLIM operate as the torque limit value.) | 4.4.2 (12) Positive Side Limiting Torque/Thrust Setting at the Speed Reference |
| 2 | Changing the Maximum Value of Acceleration and Deceleration | When the SERVOPACK parameter Pn833.0 is set to 1 (Accel/Decel Constant Selection $=$ Uses Pn834 to Pn840), a wilder range of speed for acceleration and deceleration can be obtained by raising the upper limit of acceleration and deceleration for the following motion commands. <br> - Positioning (POSING) <br> - External input positioning (EX_POSING) <br> - Zero Point Return (ZRET) <br> - JOG operation (FEED) <br> - STEP operation (STEP) | 4.4.2(23) Acceleration/Deceleration Settings |
| 3 | Continuous Latch | By selecting Latch Detection Demand in the parameter RUN Command Setting (OW口 $\square 00$, bit 4), the Continuous Latch Function is enabled. <br> This function is for SGDV SERVOPACKs, so the appropriate parameter settings must be made in the SGDV SERVOPACKs. | 4.4.2 (2) Mode Setting 1 |
| 4 | Stop Signal Input Warning | When an HWBB signal (stop signal) is input, bit A of IL $\square \square 02$ is turned ON, and a warning is issued. <br> The warning (Servo Driver Stop Signal Input) indicates that the SERVOPACK is being stopped forcibly. <br> This warning is cleared automatically when the HWBB signal turns OFF. <br> The status of the HWBB signal can be checked with the stop signal (HWBB) of Servo Driver I/O Monitor (IWD口2E, bit A). | 4.4.3 (3) Warning |
| 5 | Gain Switch | Two different gain switching are available. When the tuning-less function is available, the setting is ignored. | 4.4.2 (2) Mode Setting 1 |
| 6 | Bank Switching Functions | In the servo parameters, set the Bank Switching function for SGDV SERVOPACKs. <br> The Parameter Bank data (Pn902 to Pn95F) is not saved in the nonvolatile memory. So, always set these parameters when using MECHATROLINK networks. | 11.5.4 (4) Precautions on Setting |

Index

## Symbols

*****I/O ..... 3-15, A-6
*****SERVO ..... 3-15
Numerics
32-bit coordinate system position ..... 4-66
AABS encoder
excessive rotations ..... 4-62
ABS system infinite length position control information LOAD complete ..... 4-65
ABSLDE ..... 4-65
absolute data ..... 9-3
absolute encoder ..... 9-2
initializing ..... -12
max. revolution ..... -9-8
maximum number of encoder rotation ..... 4-25
reset completed ..... 4-63
resetting ..... 6-77
usage ..... 9-8
absolute mode ..... A-44
absolute position
calculation ..... 9-3
detection function ..... 9-2
setting procedure of detection function ..... 9-4
absolute position detection for finite length axes ..... 9-6
absolute position detection for infinite length axis ..... 9-15
ABS_RST ..... 6-77
ACC ..... 6-53
acceleration/deceleration filter settings ..... 5-13
acceleration/deceleration settings ..... 5-11
acceleration/deceleration units ..... 4-37
alarm ..... 4-61
clearing alarm history ..... 6-75
ILロロ04 table ..... 12-8
monitoring ..... 6-71
monitoring alarm history ..... 6-73
occurred ..... 4-67
alarm clear ..... 4-28
ALM ..... 4-67
ALM_HIST ..... 6-73
ALMHIST CLR ..... 6-75
ALM_MON ..... 6-71
APOS ..... 4-66
approach speed ..... 4-52
auxiliary servo driver
user constant number ..... 4-56
user constant set point ..... 4-56
user constant size ..... 4-56
axis alarms ..... 12-6
axis selection ..... 4-20, 9-8
axis type selection ..... 5-4

B
backlash compensation ..... 4-24
ball screw ..... 5-3
bank selector ..... 4-38
bank switching function ..... 11-17
bias speed for exponential acceleration/deceleration filter ..... 4-52
built-in SVB ..... 1-2
BUSY ..... 4-63, 4-64
C
C pulse only method ..... 6-24
cables ..... 1-6
calculating the zero point of the machine coordinate system 9-9, 9-20
change linear acceleration time constant ..... 6-53
change linear deceleration time constant ..... 6-55
change position loop integral time constant ..... 6-92
CHG_FILTER ..... 6-59
CMDRDY ..... 4-67
command
causes of command error end alarms ..... 12-3
error completed status ..... 4-63, 4-64
execution completed ..... 4-63, 4-64
execution flag ..... 4-63, 4-64
hold completed ..... 4-63
holding ..... 4-40
interrupting ..... 4-40
ready ..... 4-67
command buffer for transparent command mode ..... 4-57
communication abnormality detection mask ..... 4-21
communication reset ..... 4-28
COMPLETE ..... 4-63, 4-64
control block diagram for phase control ..... 8-12
control block diagram for position control ..... 8-6
control block diagram for speed control ..... 8-24
control block diagram for torque control ..... 8-18
controlling vertical axes ..... 11-3
CPOS ..... 4-65
CPU (CPU Board/Basic Module/
CPU Module) error status ..... 12-30
CPU information ..... 12-33
creep speed ..... 4-53
D
DCC ..... 6-55
DEC1 + phase-C method ..... 6-20
DEC1 + ZERO signal method ..... 6-22
deceleration LS ..... A-44
DEN ..... 4-64, 4-67
DIP switch ..... 2-4
distribution completed ..... 4-64, 4-67
DPOS ..... 4-66
E
EEROM ..... 3-33
electronic gear ..... 5-2
encoder
fixed parameter setting according to encoder type and
axis type ..... A-20
position ..... 9-21
selection ..... 4-24
type ..... 9-8
encoder position at power OFF
lower 2 words ..... 4-57, 4-71
upper 2 words ..... 4-57, 4-71
ENDOF_INTERPOLATE
switching the motion command being executed ..... 7-20
error count alarm
detection ..... 4-47
excessive absolute encoder rotations ..... 12-13
excessive deviation 4-59, 4-62, 12-6, 12-11
error level setting ..... 4-29
excessive speed ..... 4-61, 12-11
EX POSING ..... 6-10
switching the motion command being executed ..... 7-10
external positioning ..... 6-10
final travel distance ..... 4-54
signal setting ..... 4-38
F
FAIL ..... 4-63, 4-64
FEED ..... 6-43
switching the motion command being executed ..... 7-21
feed forward changing ..... 6-65
feedback speed ..... 4-70
movement averaging time constant ..... 4-25
filter time constant ..... 4-52
change error ..... 4-62, 12-12
changing ..... 6-57
filter type
change error ..... 4-62, 12-11
changing ..... 6-59
selection ..... 4-37
finite length axis ..... 9-3, A-44
finite length position control ..... A-45
fixed parameter error ..... 12-7
fixed parameters
details ..... 4-19
list ..... 4-7
monitoring ..... 4-70
number ..... 4-56
reading ..... 6-108
setting error ..... 4-59
setting window ..... 4-4
fixed parameters for absolute position detection
(finite length axis) ..... 9-6
(simple absolute infinite length axis) ..... 9-17
FIXPRM_RD ..... 6-108
flash memory ..... 3-33
forward
positive overtravel ..... 12-7, 12-9
positive software limit ..... 12-9
forward outside limiting torque input ..... 4-27
function selection flag 1 ..... 4-20
function selection flag 2 ..... 4-21
function setting 1 ..... 4-37
function setting 2 ..... 4-38
function setting 3 ..... 4-38
G
gain switch - ..... 4-29
gain switch 2 ..... 4-29H
HOLDL ..... 4-63
HOME LS \& phase-C pulse method ..... 6-27
HOME LS signal method ..... 6-29
I
I/O map tab ..... 3-20
incremental addition mode ..... A-44
incremental encoder ..... 6-15
infinite length axes ..... 9-3
infinite length axis ..... A-44
ladder program for position control ..... 9-23
reset position ..... 4-23
infinite length axis position control without simple absolute positions ..... 9-21
infinite length axis with absolute encoder position information
LOAD request ..... 4-27
infinite length position control ..... A-44
INPUT \& phase-C pulse method ..... 6-32
INPUT signal method ..... 6-34
integration reset ..... 4-27
INTERPOLATE ..... 6-35
switching the motion command being executed ..... 7-17
interpolation ..... 6-35
Inverter
alarms (A1000) ..... 10-56
alarms (V1000) ..... 10-60
alarms (Varispeed G7, Varispeed F7, and VS mini V7) ..... 10-63
allocations ..... 10-48
connection specifications ..... 10-2
fixed parameter list ..... 10-4
input data details ..... 10-23
list ..... - 1-4
list of main commands ..... 10-27
list of subcommands ..... 10-28
main command details ..... 10-29
monitor parameter list ..... 10-12
Option Card settings ..... 10-66
Option Unit settings ..... 10-66
output data details ..... 10-19
setting parameter list ..... 10-5
setup procedure ..... 10-47
subcommand details ..... 10-37
warnings (A1000) ..... 10-59
warnings (V1000) ..... 10-62
warnings (Varispeed G7, Varispeed F7, and VS mini V7) ..... 10-65
J
JOG mode ..... 6-43
K
KFS ..... 6-65
KIS ..... 6-92
KPS ..... 6-63
KVS ..... 6-61
LATCH ..... 6-39
switching the motion command being executed ..... 7-20
latch ..... 6-39
completed ..... 4-64, 4-67
completion status clear request ..... 4-9, 4-27
detection demand ..... 4-26
detection demand completed ..... 4-58
detection signal selection ..... 4-38
mode selection ..... 4-9, 4-29
latch zone
effective selection ..... 4-40
lower limit setting ..... 4-48
upper limit setting ..... 4-48
L_CMP ..... 4-67
LCOMP ..... 4-64
leading register numbers ..... 4-2
limiting torque/force setting at the speed reference ..... 4-43
linear acceleration/acceleration time constant ..... 4-50
linear deceleration/deceleration time constant ..... 4-50
linear scale pitch ..... 4-22, 5-14
LPOS ..... 4-66
M
machine coordinate system ..... 4-66, A-44
calculated position ..... 4-65
feedback position ..... 4-66
latch position ..... 4-66
reference position ..... 4-66
target position ..... 4-65
zero point offset ..... 4-54
machine gear ratio ..... 4-22
machine lock - ..... 4-26, 4-67
machine lock ON ..... 4-65
main power ON ..... 4-67
maximum number of slave stations ..... 1-12
MECHATROLINK
cables ..... 1-6
communication specifications ..... 1-12
compatible distributed I/O modules ..... A-6
transmission definition ..... 3-16
MLKL ..... 4-65
MLOCK ..... 4-67
modal latch function ..... 11-16
mode setting 1 ..... 4-29
mode setting 2 ..... 4-35
module configuration definition ..... 3-13
module list ..... 1-5
monitor 2 ..... 4-55
monitor 2 enabled ..... 4-35
monitor 4 ..... 4-55
monitoring parameters
details ..... 4-58
list ..... 4-15
motion command
response codes ..... 4-63
setting error ..... 4-59
status ..... 4-63
motion commands ..... 4-39
control flags ..... 4-40
setting error ..... 12-7
switching between motion commands ..... 7-2
switching motion commands ..... 7-5
table ..... 6-3
motion commands supported by SERVOPACK models ..... 6-4
motion control functions ..... 1-10
motion controller operation ready ..... 4-58
motion errors
details ..... 12-6
overview ..... 12-2
motion monitor parameter window ..... 4-4
motion parameter window ..... 3-22
motion parameters
example setting ..... 5-2
register numbers ..... 4-2
setting window ..... 4-4
motion parameters for phase control ..... 8-8
motion parameters for position control ..... 8-2
motion parameters for speed control ..... 8-20
motion parameters for torque control ..... 8-14
motion program
alarm codes ..... 12-43
execution information ..... 12-38
structure of alarms ..... 12-43
motion subcommand
response code ..... 4-64
status ..... 4-64
motion subcommands ..... 4-41
setting a subcommand during command execution ..... 7-4
table ..... 6-100
motor gear ratio ..... 4-22
motor type ..... 4-69
alarm when motor type is unmatched ..... 4-6
moving direction ..... 4-40
MP940 ..... A-6
MPOS ..... 4-66
Multiturn limit mismatch detection mask for finite length axis $------------------------------------4-21$
multiturn limit setting ..... 6-96, 9-8
MYVIS ..... A-6
N
NEAR ..... 4-64, 4-67
negative direction
overtravel ..... 4-59, 4-61
software limit ..... 4-23, 4-61
negative direction software limit ..... 4-67
no command ..... 6-101
NOP ..... 6-101
NOT \& phase-C pulse method ..... 6-30
NOT signal method ..... 6-31
N_SOT ..... 4-67
number of decimal places ..... 4-22
number of pulses per linear scale pitch ..... 4-25
number of pulses per motor rotation ..... 4-25, 9-8
0
OLDロ10 ..... 5－10
Option module information ..... 12－35
optional SVB ..... 1－2
override ..... 4－45，5－10，A－44
overtravel
function ..... 11－9
negative direction enabled ..... 4－20
positive direction enabled ..... 4－20
OWDロ18 ..... 5－10
P
parameter settings for simple absolute infinite length position
control ..... 9－17
parameters that are automatically updated ..... 11－22
parameters updated during self－configuration ..... 11－25
PERR ..... 4－66
PHASE ..... －88
switching the motion command being executed ..... 7－39
phase compensation type with an electronic cam ..... 4－41
phase correction setting ..... 4－47
phase reference ..... 6－88
creation calculation disabled ..... 4－38
phase－C method ..... 6－23
phase－C pulse ..... A－44
PON ..... 4－67
POSCOMP ..... 4－64
POSING ..... 6－5
switching the motion command being executed ..... 7－6
position error ..... 4－66
position integration time constant ..... 4－49
position loop gain ..... 4－48
changing ..... 6－63
position management status ..... 4－64
position reference ..... 5－5
setting ..... 4－45
type ..... 4－40
positioning ..... 6－5
completed ..... 4－64，4－67
completion check time ..... 4－47
excessive moving amount ..... 4－61
excessive travel distance ..... 12－10
near signal output width ..... 4－46
positioning completed width ..... 4－46
proximity ..... 4－64，4－67
time exceeded ..... 12－10
time over ..... 4－61
positive direction
overtravel ..... 4－59，4－61
software limit ..... 4－23，4－61
positive direction software limit ..... 4－67
POSMAX ..... 4－23，A－44
number of turns ..... 4－66
number of turns presetting data ..... 4－54
turn number presetting demand ..... 4－27
turn preset completed ..... 4－65
POT \＆C pulse method ..... 6－25
POT signal method ..... 6－26
PPRM WR ..... 6－94
PRM＿RD ..... 6－67，6－102
PRM＿WR ..... 6－69，6－104
PSET ..... 4－67
P＿SOT ..... 4－67
pulse position ..... 9－21
pulse position at power OFF
lower 2 words 4－57，4－71
upper 2 words 4－57，4－71
R
RAM ..... 3－33
range over parameter number ..... 4－58
rated motor speed ..... 4－25
rated speed ..... 4－25，5－14
reference unit ..... 5－2
selection ..... 4－22
response buffer for transmission reference mode ..... 4－71
Reverse
Negative overtravel ..... 12－7，12－9
Negative software limit ..... 12－9
reverse outside limiting torque input ..... 4－27
rotary switches ..... 2－5
rotating table ..... 5－3
RUN commands ..... 4－26
run status ..... 4－58
running（at servo ON ） ..... 4－58
S
saving OLD口48 values ..... 9－10
SCC ..... 6－57
SDRAM ..... 3－33
secondary speed compensation ..... 4－44
segment distribution processing ..... 4－20
selection of operation modes ..... 4－19
self－configuration ..... 3－2
how to execute self－configuration ..... 3－4
servo driver
alarm code ..... 4－68
alarm monitor number ..... 4－56
command timeout error ..... 4－62
communication error ..... 4－62
communication warning ..... 4－59
error ..... 4－59，4－61
I／O monitor ..... 4－68
reading user constant ..... 6－67，6－102
status ..... 4－67
synchronization communications error－ ..... 4－62
transmission reference mode ..... A－39
user constant number ..... 4－56，4－69
user constant reading data ..... 4－69
user constant set point ..... 4－56
user constant size ..... 4－56
user monitor 2 ..... 4－69
user monitor 3 ..... 4－69
user monitor 4 ..... 4－69
user monitor information ..... 4－69
user monitor setting ..... 4－55
writing user constant ..... 6－69，6－104
servo OFF ..... 4－61，12－10
servo ON ..... 4－26，4－67
servo ON incomplete ..... 4－59，12－8
servo ready ..... 4-58
SERVOPACK
alarm code tables ..... 12-15
communications error ..... 12-12
communications timeout error ..... 12-12
communications warning ..... 12-8
connected encoder model error ..... 12-13
connected encoder type error ..... 4-63
detected SERVOPACK model error ..... 12-13
error ..... 12-7, 12-9
list ..... 1-4
motor type set error ..... 4-62
motor type setting error ..... 12-13
Status monitor table ..... 12-14
Stop signal active ..... 12-8
Synchronized communications error ..... 12-12
unmatched ..... 4-62
SERVOPACK parameter window ..... 3-31
SERVOPACK parameters for absolute position detection
(finite length axis) ..... -9-7
(simple absolute infinite length axis) ..... 9-18
set parameters
setting error ..... 4-59
setting parameter error ..... 12-6
setting parameters
details ..... 4-26
list ..... 4-9
settings when connecting MECHATROLINK-II compatible stepping motor drivers ..... A-23
setup parameters
setting window ..... 4-4
simple ABS infinite axis infinite length position control selection ..... 4-21
simple absolute infinite length position control ..... 9-15
setting ..... 9-17
SMON ..... 6-106
software limit
function ..... 11-14
negative direction enabled ..... 4-20
positive direction enabled ..... 4-20
speed coincidence ..... 4-67
speed compensation ..... 4-49
speed feed forward compensation ..... 4-48
speed integration time constant ..... 4-49
speed limit ..... 4-67
speed limit setting at torque/thrust reference ..... 4-42
speed loop gain ..... 4-48
changing ..... 6-61
speed loop P/PI switch ..... 4-29
speed reference ..... 5-9, 6-80
output monitor ..... 4-66
setting ..... 4-43, 5-10
speed unit selection ..... 4-37
SRAM ..... 3-33
status
monitoring ..... 6-106
tab page ..... 3-20
STEP ..... 6-47
switching the motion command being executed ..... 7-25
travel distance ..... 4-53
step mode ..... 6-47
store ..... 4-19
supplementary servo driver
user constant number ..... 4-69
user constant reading data ..... 4-69
SVB board ..... 1-2
SVB Board/SVC Board error status ..... 12-32
SVB function ..... 1-2
SVB module throughput ..... A-22
SVB-01
adding ..... 2-9
applicable machine controllers ..... 2-6
hardware specifications ..... 1-9
indicators ..... 2-2
mounting ..... 2-8
removing ..... 2-8
SVB-01 Module ..... 1-2
SVON ..... 4-67
SVR virtual motion module ..... 1-13
switching motion commands
switching from ENDOF INTERPOLATE ..... 7-20
switching from EX POSING ..... 7-10
switching from FEED ..... 7-21
switching from INTERPOLATE ..... 7-17
switching from LATCH ..... 7-20
switching from PHASE ..... 7-39
switching from POSING ..... 7-6
switching from STEP ..... 7-25
switching from TRQ ..... 7-34
switching from VELO ..... 7-29
switching from ZRET ..... 7-14
switching from ZSET ..... 7-28
synchronization between modules ..... 1-7
system busy ..... 4-58
system configuration example ..... 1-3
System errors
Troubleshooting ..... 12-25
System I/O error status ..... 12-27
System registers
Configuration ..... 12-27
system registers
list ..... A-3
system startup ..... 3-5
T
target position difference monitor ..... 4-66
terminator ..... 1-6
terminology ..... A-44
T LIM ..... 4-67
torque (thrust) reference monitor ..... 4-70
torque being limited ..... 4-67
torque feed forward compensation ..... 4-42
torque reference ..... 6-84
torque unit selection ..... 4-37
torque/thrust reference setting ..... 4-42
TPOS ..... 4-65
TPRSE ..... 4-65
transmission parameters tab ..... 3-17
travel distance per machine rotation ..... 4-22
TRQ ..... 6-84
switching the motion command being executed ..... 7-34
U
user constants self-writing function ..... 4-21
user constants that are automatically updated ..... 1-22
V
V-CMP ..... 4-67
VELO ..... 6-80
switching the motion command being executed ..... 7-29
virtual motion module ..... 1-13
V_LIM ..... 4-67
W
wait for monitor data update ..... 3-19
warning ..... 4-59, 4-67
ILロᄆ02 table ..... 12-6
occurred ..... 4-67
troubleshooting ILDD02 ..... 12-6
WDT abnormality detection mask ..... 4-21
wild card I/O ..... 3-15, A-6
wild card servo ..... 3-15
wild card servos ..... A-35
work coordinate system ..... A-45
offset ..... 4-54
writing stored parameter ..... 6-94
Z
ZERO ..... 4-65
zero point position ..... 4-65, 4-67
output width ..... 4-52
zero point return ..... 6-15
(setting) completed ..... 4-65
direction selection ..... 4-40
final travel distance ..... 4-53
zero point return input signal ..... 4-38
zero point return method ..... 4-52
selection ..... 6-15
zero point setting ..... 6-51
zero point unsetting ..... 4-62, 12-12
ZERO signal method ..... 6-21
zero speed ..... 4-67
ZPOINT ..... 4-67
ZRET ..... 6-15
switching the motion command being executed ..... 7-14
ZRNC ..... 4-65
ZSET ..... 6-51
switching the motion command being executed ..... 7-28
ZSPD ..... 4-67

## Revision History

The date of publication，revision number，and web revision number are given at the bottom right of the back cover．Refer to the following example．

MANUAL NO．SIEP C880700 33A＜1＞－1


| Date of Publication | Rev． No． | Web Rev． No． | Section | Revised Contents |
| :---: | :---: | :---: | :---: | :---: |
| April 2020 | ＜14＞ | 1 | 1．1．5，1．2．2 | Partly revised． |
| December 2019 |  | 0 | All chapters | Completely revised |
|  |  |  | Back cover | Revision：Address |
| March 2019 | ＜13＞ | 1 | 1．2．1 | Revision：Vibration Resistance，Noise Resistance |
| November 2018 |  | 0 | Back cover | Revision：Address |
| June 2018 | ＜12＞ | 0 | 4．3．1，4．4．1（3） | Addition：Bit 5 of No． 2 Function Selection Flag 2 |
|  |  |  | 4．4．2（10） | Revision：Description of OLDD0C Torque／Thrust Reference Setting／Torque Feed Forward Compensation |
|  |  |  |  | Revision：Description of OWDロ0E Speed Limit Setting at the Torque／Thrust Refer－ ence |
|  |  |  | 4．4．2（21） | Revision：Description of OLD口2A Latch Zone Lower Limit Setting |
|  |  |  | 4．4．2（24） | Revision：Description of OWDप3A Filter Time Constant |
|  |  |  | 6．1．2 |  |
|  |  |  | 6．2．4，6．2．5 | Revision：Notes of Interpolation（INTERPOLATE） |
|  |  |  | $\begin{aligned} & \text { 6.4.2 (3) [b], 6.4.3 (3), } \\ & 6.4 .4 \text { (3) [a], 6.4.5 (3) } \end{aligned}$ | Revision：Timing charts |
| February 2018 | ＜11＞ | 0 | 1．2．1 | Revision：Pollution Level，Vibration Resistance |
|  |  |  | 2.2 | Revision：Applicable machine controllers for the SVB－01 modules |
|  |  |  | All chapter | Partly revised |
| August 2017 | ＜10＞ | 0 | － | Printed version of the manual that is available on the web（web version：SIEP C880700 33G＜9＞－1） |
|  |  |  | Back cover | Revision：Address |
| October 2016 | ＜9＞ | 1 | 3．4．3（3）［a］ | Revision：Compatible versions under（3）Environmental Requirements of SGD7S SERVOPACKs |
| July 2016 |  | 0 | － | Printed version of the user＇s manual that is available on the web（web version：SIEP C880700 33G＜8＞－2） |
| June 2016 | ＜8＞ | 2 | $\begin{aligned} & \text { 3.4.3 (2) [a], (3) [a], } \\ & \text { 6.2.27 (1), } \\ & \text { Appendix G.1, } \\ & \text { Appendix H.1 } \end{aligned}$ | Revision：Controller model numbers and version of MPE720 |
| December 2015 |  | 1 | 4．4．3（16） | Addition：Information on servo parameter set value for ILD口42 |
|  |  |  | 8．4．2 | Deletion：Filter Time Constant（OWDप3A） |
| October 2015 |  | 0 | Front cover，spine | Revision：Format |
|  |  |  | Preface，1．1．5（1）， 3．4．3（3），Chapter 4， 6．2，8．2，Chapter 9， Chapter 11，12．5．2（8） | Addition：Information on $\Sigma$－7－series SERVOPACKs |
|  |  |  | 6．2．2（5） | Addition：Precautions on EX＿POSING |
|  |  |  | － | Based on Japanese user＇s manual，SIJP C880700 33J＜19＞－1，published in June 2014. |
|  |  |  | Back cover | Revision：Address and format |
| July 2015 | ＜7＞ | 0 | Front cover | Revision：Format |
|  |  |  | Back cover | Revision：Address and format |
| September 2013 | ＜6＞ | 0 | － | SIEP C880700 33E＜5＞－1，available on the web． |
|  |  |  | 8．2．2 | Revision：Diagram of move command generation processing（When using an electronic shaft） |
|  |  |  | Back cover | Revision：Address |


| Date of Publication | Rev． No． | Web <br> Rev． <br> No． | Section | Revised Contents |
| :---: | :---: | :---: | :---: | :---: |
| January 2013 | ＜5＞ | 1 | $\begin{aligned} & \text { 4.4.2(30), } \\ & 6.2 .18(3), 6.2 .19 \end{aligned}$ | Revision：Description of OWDロ4F |
|  |  |  | 4．4．3（9） | Revision：Description of IWロロ0C Bit 1 |
|  |  |  | Back cover | Revision：Address |
| December 2012 |  | 0 | － | Printed version of the user＇s manual that is available on the web（web version：SIEP C880700 33C＜4＞－4） |
|  |  |  | － | Based on Japanese user＇s manual，SIEP C880700 33I＜18＞－1，published in October 2012. |
|  |  |  | Back cover | Revision：Address |
| May 2012 | ＜4＞ | 4 | 12．5．2（14） | Revision：Name of reference manual described in Correction |
| January 2012 |  | 3 | 8．1．1（2） | Revision：OLDप0C（disable $\rightarrow$ enable） |
|  |  |  | Back cover | Revision：Address |
| December 2011 |  | 2 | 2.2 | Revision：Description of applicable machine controllers for SVB－01 modules |
| October 2011 |  | 1 | 6．4．4 | Revision：Setting value of＂OWDロ0A＂$(3 \rightarrow 4)$ Setting value of＂IWロロ0A＂$(3 \rightarrow 4)$ ＂IWロロ2D＂$\rightarrow$＂IWロロ2F＂ |
| September 2011 |  | 0 | － | Based on Japanese user＇s manual，SIJP C880700 33F＜15＞－3，available on the Web in September 2011. |
| May 2011 | ＜3＞ | 0 | － | SIEP C880700 33B＜2＞－4，available on the Web． |
| April 2011 | ＜2＞ | 4 | 8．3．1（2） | Revision：Availability of＂OLD口38＂and＂OWप口3A＂（Available $\rightarrow$ Unavailable） |
|  |  |  | 1．1．5（1），10．1，10．4．3 | Addition：Description of A1000 and V1000 |
| October 2010 |  | 3 | Front cover， back cover | Revision：Format |
|  |  |  | $\begin{aligned} & \text { 10.3.3 (2), } \\ & 10.3 .4(2) \end{aligned}$ | Addition：Setting range of IWD－15 |
| September 2010 |  | 2 | 5．1．4 | Revision：Description of OWप口09，bit 5 |
|  |  |  | Back cover | Revision：Address |
| June 2010 |  | 1 | $\begin{aligned} & \text { 6.2.1 (4) [a], } \\ & \text { 6.2.2 (4) [a], } \\ & \text { 6.2.6 (4) [a], } \\ & 6 \cdot 2.7 \text { (4) [a] } \end{aligned}$ | Revision：Setting of OLDप10 |
| June 2010 |  | 0 | － | Based on Japanese user＇s manual，SIJP C880700 33D＜12＞－1，available on the Web in May 2010. |
|  |  |  | All chapters | Completely revised |
|  |  |  | 12．5．3（2）［d］ | Revision：Servo driver alarm code |
|  |  |  | Back cover | Revision：Address |
| December 2009 | ＜1＞ | 5 | 12．5．3（2）［c］ | Deletion：Alarm code 941 for $\Sigma$－III series SERVOPACK of Servo Driver Alarm Code （monitoring parameter IWDロ2D） |
| November 2009 |  | 4 | 5．1．4 | Revision：Description of disadvantages for using absolute mode |
|  |  |  | 6．4．2 | Addition：Step1 in（1）Executing／Operating Procedure |
| September 2009 |  | 3 | 4．4．2（14） | Revision：Control mode |
| September 2009 |  | 2 | Preface | Addition：Warranty |
|  |  |  | Back cover | Revision：Address |
| August 2009 |  | 1 | 4．4．2（10） | Deletion：Related parameters Pn407，Pn408．1，and Pn300 |
|  |  |  | 4．4．2（18） | Slightly revised |
|  |  |  | 4．4．3（4） | Revision：Description of Bit8 |
|  |  |  | 4．4．3（9） | Revision：＂ILDप12＂$\rightarrow$＂ILD $\square 16$＂in description of Bit4 |
|  |  |  | 4．4．3（13） | Addition：Explanation of the alarm code in Simulation Mode |
|  |  |  | 8．3．1（2） | Revision：＂OLDप38＂and＂OWDロ3A＂unshaded in table |
|  |  |  | 11．1．2（2） | Revision：Output terminals for Pn50F． 2 |
|  |  |  | Back cover | Revision：Address |
| April 2008 |  | 0 | All chapters | Slightly revised |
|  |  |  | Back cover | Revision：Address |
| December 2007 | － | － | － | First edition |

## IRUMA BUSINESS CENTER (SOLUTION CENTER)

480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan
Phone: +81-4-2962-5151 Fax: +81-4-2962-6138
www.yaskawa.co.jp
YASKAWA AMERICA, INC.
2121, Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone: +1-800-YASKAWA (927-5292) or $+1-847-887-7000$ Fax: $+1-847-887-7310$
www.yaskawa.com
YASKAWA ELÉTRICO DO BRASIL LTDA.
777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil
Phone: $+55-11-3585-1100 \quad$ Fax: $+55-11-3585-1187$
www.yaskawa.com.br

## YASKAWA EUROPE GmbH

Hauptstraße 185, 65760 Eschborn, Germany
Phone: +49-6196-569-300 Fax: +49-6196-569-398
www.yaskawa.eu.com E-mail: info @yaskawa.eu.com
YASKAWA ELECTRIC KOREA CORPORATION
35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea
Phone: +82-2-784-7844 Fax: +82-2-784-8495
www.yaskawa.co.kr
YASKAWA ASIA PACIFIC PTE. LTD.
30A, Kallang Place, \#06-01, 339213, Singapore
Phone: +65-6282-3003 Fax: +65-6289-3003
www.yaskawa.com.sg
YASKAWA ELECTRIC (THAILAND) CO., LTD.
59, 1F-5F, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand
Phone: +66-2-017-0099 Fax: +66-2-017-0799
www.yaskawa.co.th
YASKAWA ELECTRIC (CHINA) CO., LTD.
22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China
Phone: +86-21-5385-2200 Fax: +86-21-5385-3299
www.yaskawa.com.cn
YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Avenue,
Dong Cheng District, Beijing, 100738, China
Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

## YASKAWA ELECTRIC TAIWAN CORPORATION

12F, No. 207, Section 3, Beishin Road, Shindian District, New Taipei City 23143, Taiwan
Phone: $+886-2-8913-1333$ Fax: $+886-2-8913-1513$ or $+886-2-8913-1519$
www.yaskawa.com.tw


[^0]:    －For information on how to use these functions，refer to Chapter 9 Absolute Position Detection．

[^1]:    －When the incremental addition mode is selected for Position Reference Type（OWDD09，bit $5=0$ ），execute a POS－ ING command in distribution completed status（IWDCOC，bit $0=1$ ）．
    When the absolute mode is selected for Position Reference Type（OWDD09，bit $5=1$ ），a POSING command can be exe－ cuted if the distribution is not completed（IWロロ0C，bit $0=0$ ）．

[^2]:    - M-I: MECHATROLINK-I

    M-II: MECHATROLINK-II

    - O: Can be specified. $\times$ : Cannot be specified. $\Delta$ : Can be specified only in 32 -byte mode.

[^3]:    ＊This condition is a basic execution condition．Refer to Chapter 7 Switching Commands during Execution when changing the command being executed to a VELO command．

[^4]:    - Switching the command INTERPOLATE, ENDOF_INTERPOLATE, LATCH, or PHASE to ACC, DCC, SCC, or CHG_FILTER before the pulse distribution is completed will cause a Command Error.

[^5]:    ！
    －Save the value of OLDप48（Zero Point Position Offset in Machine Coordinate System）to the M registers only when the value of OLDप48 is updated，such as when the origin is set．Processing that constantly saves the value of OLロप48 to the M registers may cause position variations．

[^6]:    The manually allocated $\boldsymbol{V} \boldsymbol{S}-\mathbf{7 / 1 0 0 0 S e r i e s}$ device will be saved to the Machine Controller.

[^7]:    －Only when using standard parameters

