
Motion Program
Machine Controller MP3000 Series

PROGRAMMING MANUAL

MANUAL NO. SIEP C880725 14D

1

2

3

4

5

6

7

Introduction to Motion Programs

Introduction to Sequence Programs

Program Development Flow

Registers

Programming Rules

Motion Language Instructions

Specifications

Sample Programs

Precautions

Differences between MP2000-series
 and MP3000-series Machine Controllers

Features of the MPE720
 Engineering Tool

AppA

AppB

AppC

AppD

Copyright © 2012 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted, in any form, or by any means, mechanical, electronic, photocopying,
recording, or otherwise, without the prior written permission of Yaskawa. No patent liabil-
ity is assumed with respect to the use of the information contained herein. Moreover,
because Yaskawa is constantly striving to improve its high-quality products, the informa-
tion contained in this manual is subject to change without notice. Every precaution has been
taken in the preparation of this manual. Nevertheless, Yaskawa assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use
of the information contained in this publication.

About this Manual

This manual provides information on motion programming for MP3000-series Machine Controllers.

Read this manual carefully to ensure the correct usage of the Machine Controller and apply the Machine Con-
troller to control your manufacturing system.

Keep this manual in a safe place so that it can be referred to whenever necessary.

Using this Manual

 Intended Audience

This manual is intended for the following personnel.

• Designers for systems that use MP3000-series Machine Controllers

• Programmers of the motion programs and sequence programs for MP3000-series Machine Controllers

 Basic Terms

Unless otherwise specified, the following definitions are used:

• Fixed parameters: The motion fixed parameters.

• Setting parameters: The motion setting parameters.

• Monitor parameters: The motion monitor parameters.

• Machine Controller: MP3000-series Machine Controller

• MP3200: A generic name for the Power Supply Unit, CPU Unit, Base Unit, and Rack Expansion Interface
Unit.

• MP3300: A generic name for the CPU Module and Base Unit.

• MPE720: The Engineering Tool or a personal computer running the Engineering Tool

• Motion Control Function Modules: The Function Modules in the Motion Modules and the Function Mod-
ules in the SVR, SVC, SVC 32, or SVR 32 built into the CPU Units/CPU Modules.

 MPE720 Engineering Tool Version Number

In this manual, the operation of MPE720 is described using screen captures of MPE720 version 7.

 The Meaning of “Torque” in This Manual

Although the term “torque” is commonly used when describing rotary Servomotors and “force” is used when
describing linear Servomotors, this manual uses “torque” when describing either one (excluding parameter
names).
iii

iv
 Visual Aids

The following aids are used to indicate certain types of information for easier reference.

Indicates precautions or restrictions that must be observed.

Indicates alarm displays and other precautions that will not result in machine damage.

Indicates items for which caution is required or precautions to prevent operating mistakes.

Indicates operating or setting examples.

Indicates supplemental information to deepen understanding or useful information.

Indicates definitions of difficult terms or terms that have not been previously explained in this
manual.

Important

Note

Example

Information

Terms

Related Manuals

The following table lists the related manuals. Refer to these manuals as required.

Be aware of all product specifications and restrictions to product application before you attempt to use any
product.

Category Manual Name Manual Number Contents

Basic
functionality

Machine Controller MP2000/
MP3000 Series Machine Controller
System
Setup Manual

SIEP C880725 00

Describes the functions of the MP2000/MP3000-series
Machine Controllers and the procedures that are required to
use the Machine Controller, from installation and connections
to settings, programming, trial operation, and debugging.

Machine Controller
MP3000 Series MP3200/MP3300
Troubleshooting Manual

SIEP C880725 01
Describes troubleshooting an MP3000-series Machine Con-
troller.

Machine Controller MP3000 Series
MP3200 User’s Manual

SIEP C880725 10
Describes the specifications and system configuration of the
Basic Units in an MP3000-series Machine Controller and the
functions of the CPU Unit.

Machine Controller MP3000 Series
MP3300 Product Manual

SIEP C880725 21
Describes the specifications and system configuration of an
MP3000-series MP3300 Machine Controller and the func-
tions of the CPU Module.

Communica-
tions func-
tionality

Machine Controller MP3000 Series
Communications User’s Manual

SIEP C880725 12

Describes the specifications, system configuration, and com-
munications connection methods for the Ethernet communi-
cations that are used with an MP3000-series Machine
Controller.

Motion con-
trol function-
ality

Machine Controller MP3000 Series
Motion Control User’s Manual

SIEP C880725 11

Describes the specifications, system configuration, and oper-
ating methods for the SVC, SVC32, SVR, and SVR32
Motion Function Modules that are used in an MP3000-series
Machine Controller.

Machine Controller MP2000 Series
Pulse Output Motion Module PO-01
User’s Manual

SIEP C880700 28
Describes the functions, specifications, and operating meth-
ods of the MP2000-series PO-01 Motion Module.

Machine Controller MP2000 Series
SVA-01 Motion Module
User’s Manual

SIEP C880700 32
Describes the functions, specifications, and operating meth-
ods of the MP2000-series SVA-01 Motion Module.

Machine Controller MP2000 Series
Built-in SVB/SVB-01 Motion
Module User’s Manual

SIEP C880700 33
Describes the functions, specifications, and operating meth-
ods of the MP2000-series Motion Module (built-in Function
Modules: SVB, SVB-01, and SVR).

Machine Controller MP2000 Series
SVC-01 Motion Module
User’s Manual

SIEP C880700 41
Describes the functions, specifications, and operating meth-
ods of the MP2000-series SVC-01 Motion Module.

Program-
ming

Machine Controller MP3000 Series
Ladder Programming Manual

SIEP C880725 13
Describes the ladder programming specifications and instruc-
tions of MP3000-series Machine Controller.

Engineering
Tool

Machine Controller MP2000/
MP3000 Series
Engineering Tool
MPE720 Version 7
User’s Manual

SIEP C880761 03 Describes how to operate MPE720 version 7.
v

vi
Safety Precautions

The following signal words and marks are used to indicate safety precautions in this manual.

Information marked as shown below is important for safety. Always read this information and heed the pre-
cautions that are provided.

The following precautions are for storage, transportation, installation, wiring, operation, maintenance, inspec-
tion, and disposal. These precautions are important and must be observed.

 General Precautions

Indicates precautions that, if not heeded, could possibly result in loss of life or
serious injury.

Indicates precautions that, if not heeded, could result in relatively serious or
minor injury, or property damage.

If not heeded, even precautions classified as cautions () can lead to
serious results depending on circumstances.

Indicates prohibited actions. For example, indicates prohibition of open
flame.

Indicates mandatory actions. For example, indicates that grounding is
required.

• The installation must be suitable and it must be performed only by an experienced technician.
There is a risk of electrical shock or injury.

• Before connecting the machine and starting operation, make sure that an emergency stop pro-
cedure has been provided and is working correctly.
There is a risk of injury.

• Do not approach the machine after a momentary interruption to the power supply. When power
is restored, the Machine Controller and the device connected to it may start operation suddenly.
Provide safety measures in advance to ensure human safety when operation restarts.
There is a risk of injury.

• Do not touch anything inside the Machine Controller.
There is a risk of electrical shock.

• Do not remove the front cover, cables, connector, or options while power is being supplied.
There is a risk of electrical shock, malfunction, or damage.

• Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch the cables.
There is a risk of electrical shock, operational failure of the Machine Controller, or burning.

• Do not attempt to modify the Machine Controller in any way.
There is a risk of injury or device damage.

WARNING

CAUTION
CAUTION

PROHIBITED

MANDATORY

WARNING

 Storage and Transportation

• Do not store the Machine Controller in any of the following locations.
• Locations that are subject to direct sunlight
• Locations that are subject to ambient temperatures that exceed the storage conditions
• Locations that are subject to ambient humidity that exceeds the storage conditions
• Locations that are subject to rapid temperature changes and condensation
• Locations that are subject to corrosive or inflammable gas
• Locations that are subject to excessive dust, dirt, salt, or metallic powder
• Locations that are subject to water, oil, or chemicals
• Locations that are subject to vibration or shock
There is a risk of fire, electrical shock, or device damage.

• Hold onto the main body of the Machine Controller when transporting it.
Holding the cables or connectors may damage them or result in injury.

• Do not overload the Machine Controller during transportation. (Follow all instructions.)
There is a risk of injury or an accident.

• Never subject the Machine Controller to an atmosphere containing halogen (fluorine, chlorine,
bromine, or iodine) during transportation.
There is a risk of malfunction or damage.

• If disinfectants or insecticides must be used to treat packing materials such as wooden frames,
pallets, or plywood, the packing materials must be treated before the product is packaged, and
methods other than fumigation must be used.
Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 minutes or
more.
If the electronic products, which include stand-alone products and products installed in machines, are
packed with fumigated wooden materials, the electrical components may be greatly damaged by the
gases or fumes resulting from the fumigation process. In particular, disinfectants containing halogen,
which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors.

CAUTION
vii

viii
 Installation

• Do not install the Machine Controller in any of the following locations.
• Locations that are subject to direct sunlight
• Locations that are subject to ambient temperatures that exceed the operating conditions
• Locations that are subject to ambient humidity that exceeds the operating conditions
• Locations that are subject to rapid temperature changes and condensation
• Locations that are subject to corrosive or inflammable gas
• Locations that are subject to excessive dust, dirt, salt, or metallic powder
• Locations that are subject to water, oil, or chemicals
• Locations that are subject to vibration or shock
There is a risk of fire, electrical shock, or device damage.

• Never install the Machine Controller in an atmosphere containing halogen (fluorine, chlorine,
bromine, or iodine).
There is a risk of malfunction or damage.

• Do not step on the Machine Controller or place heavy objects on the Machine Controller.
There is a risk of injury or an accident.

• Do not block the air exhaust ports on the Machine Controller. Do not allow foreign objects to
enter the Machine Controller.
There is a risk of internal element deterioration, malfunction, or fire.

• Always mount the Machine Controller in the specified orientation.
There is a risk of malfunction.

• Leave the specified amount of space between the Machine Controller, and the interior surface
of the control panel and other devices.
There is a risk of fire or malfunction.

• Do not subject the Machine Controller to strong shock.
There is a risk of malfunction.

• Suitable battery installation must be performed and it must be performed only by an experi-
enced technician.
There is a risk of electrical shock, injury, or device damage.

• Do not touch the electrodes when installing the Battery.
Static electricity may damage the electrodes.

CAUTION

 Wiring

• Check the wiring to be sure it has been performed correctly.
There is a risk of motor run-away, injury, or accidents.

• Always use a power supply of the specified voltage.
There is a risk of fire or accident.

• In places with poor power supply conditions, ensure that the input power is supplied within the
specified voltage range.
There is a risk of device damage.

• Install breakers and other safety measures to provide protection against shorts in external wir-
ing.
There is a risk of fire.

• Provide sufficient shielding when using the Machine Controller in the following locations.
• Locations that are subject to noise, such as from static electricity
• Locations that are subject to strong electromagnetic or magnetic fields
• Locations that are subject to radiation
• Locations that are near power lines
There is a risk of device damage.

• Configure the circuits to turn ON the power supply to the CPU Unit/CPU Module before the 24-
V I/O power supply. Refer to the following manual for details on circuits.

MP3000 Series CPU Unit Instructions (Manual No.: TOBP C880725 16)

MP3000 Series MP3300 CPU Module Instructions (Manual No.: SIEP C880725 23)

If the power supply to the CPU Unit/CPU Module is turned ON after the external power supply, e.g., the
24-V I/O power supply, the outputs from the CPU Unit/CPU Module may momentarily turn ON when
the power supply to the CPU Unit/CPU Module turns ON. This can result in unexpected operation that
may cause injury or device damage.

• Provide emergency stop circuits, interlock circuits, limit circuits, and any other required safety
measures in control circuits outside of the Machine Controller.
There is a risk of injury or device damage.

• If you use MECHATROLINK I/O Modules, use the establishment of MECHATROLINK commu-
nications as an interlock output condition.
There is a risk of device damage.

• Connect the Battery with the correct polarity.
There is a risk of battery damage or explosion.

• Suitable battery replacement must be performed and it must be performed only by an experi-
enced technician.
There is a risk of electrical shock, injury, or device damage.

• Do not touch the electrodes when replacing the Battery.
Static electricity may damage the electrodes.

• Select the I/O signal wires for external wiring to connect the Machine Controller to external
devices based on the following criteria:
• Mechanical strength
• Noise interference
• Wiring distance
• Signal voltage

CAUTION
ix

x

 Operation

• Separate the I/O signal cables for control circuits from the power cables both inside and outside
the control panel to reduce the influence of noise from the power cables.
If the I/O signal lines and power lines are not separated properly, malfunction may occur.

• Follow the procedures and instructions in the user’s manuals for the relevant Machine Control-
lers to perform normal operation and trial operation.
Operating mistakes while the Servomotor and machine are connected may damage the machine or even
cause accidents resulting in injury or death.

• Implement interlock signals and other safety circuits external to the Machine Controller to
ensure safety in the overall system even if the following conditions occur.
• Machine Controller failure or errors caused by external factors
• Shutdown of operation due to Machine Controller detection of an error in self-diagnosis and the subse-

quent turning OFF or holding of output signals
• Holding of the ON or OFF status of outputs from the Machine Controller due to fusing or burning of out-

put relays or damage to output transistors
• Voltage drops from overloads or short-circuits in the 24-V output from the Machine Controller and the

subsequent inability to output signals
• Unexpected outputs due to errors in the power supply, I/O, or memory that cannot be detected by the

Machine Controller through self-diagnosis.
There is a risk of injury, device damage, or burning.

• Observe the setting methods that are given in the manual for the following parameters.
• Parameters for absolute position detection when the axis type is set to a finite-length axis
• Parameters for simple absolute infinite-length position control when the axis type is set to an infinite-

length axis
MP3000 Series Motion Control User’s Manual (Manual No. SIEP C880725 11)

If any other methods are used, offset in the current position when the power supply is turned OFF and ON
again may result in device damage.

• OL48 (Zero Point Position Offset in Machine Coordinate System) is always valid when
the axis type is set to a finite-length axis. Do not change the setting of OL48 while the
Machine Controller is operating.
There is a risk of machine damage or an accident.

CAUTION

Example of Separated Cables

Power cable
I/O signal
cables in

control circuits

Steel separator

CAUTION

• Always check to confirm the paths of axes when any of the following axis movement instruc-
tions are used in programs to ensure that the system operates safely.
• Positioning (MOV)
• Linear Interpolation (MVS)
• Circular Interpolation (MCC or MCW)
• Helical Interpolation (MCC or MCW)
• Set-time Positioning (MVT)
• Linear Interpolation with Skip Function (SKP)
• Zero Point Return (ZRN)
• External Positioning (EXM)

There is a risk of injury or device damage.

• The same coordinate word will create a completely different travel operation in Absolute Mode
and in Incremental Mode. Make sure that the ABS and INC instructions are used correctly
before you start operation.
There is a risk of injury or device damage.

• The travel path for the Positioning (MOV) instructions will not necessarily be a straight line.
Check to confirm the paths of the axis when this instruction is used in programs to ensure that
the system operates safely.
There is a risk of injury or device damage.

• The Linear Interpolation (MVS) instruction can be used on both linear axes and rotary axes.
However, if a rotary axis is included, the linear interpolation path will not necessarily be a
straight line. Check to confirm the paths of the axis when this instruction is used in programs to
ensure that the system operates safely.
There is a risk of injury or device damage.

• The linear interpolation for the Helical Interpolation (MCW and MCC) instructions can be used
for both linear axes and rotary axes. However, depending on how the linear axis is taken, the
path of helical interpolation will not be a helix. Check to confirm the paths of the axis when this
instruction is used in programs to ensure that the system operates safely.
There is a risk of injury or device damage.

CAUTION

Example

Axis 1

Axis 2

Axis 3

Each axis is moved independently
at rapid traverse speed.

Current position

Positioning operation

End position

Axis 2

Axis 1

Axis 3

Example of Basic Path for Positioning (MOV) Instruction
xi

xii
• Unexpected operation may occur if the following coordinate instructions are specified incor-
rectly: Always confirm that the following instructions are specified correctly before you begin
operation.
• Absolute Mode (ABS)
• Incremental Mode (INC)
• Current Position Set (POS)

There is a risk of injury or device damage.

• The Set Current Position (POS) Instruction creates a new working coordinate system. There-
fore, unexpected operation may occur if the POS instruction is specified incorrectly. When you
use the POS instruction, always confirm that the working coordinate system is in the correct
position before you begin operation.
There is a risk of injury or device damage.

• The Move on Machine Coordinates (MVM) instruction temporarily performs positioning to a
coordinate position in the machine coordinate system. Therefore, unexpected operation may
occur if the instruction is executed without confirming the zero point position in the machine
coordinate system first. When you use the MVM instruction, always confirm that the machine
zero point is in the correct position before you begin operation.
There is a risk of injury or device damage.

CAUTION

Example
Current
position

Working coordinate
system

Machine coordinate system

(Axis 1)

(Axis 2)

Axis 1

Axis 1

Axis 2
Axis 2

(0, 0)

(0, 0)

Example of Working Coordinate System Created
with the Set Current Position (POS) Instruction

 Maintenance and Inspection

 Disposal

 Other General Precautions

• Do not attempt to disassemble or repair the Machine Controller.
There is a risk of electrical shock, injury, or device damage.

• Do not change any wiring while power is being supplied.
There is a risk of electrical shock, injury, or device damage.

• Suitable battery replacement must be performed and it must be performed only by an experi-
enced technician.
There is a risk of electrical shock, injury, or device damage.

• Replace the Battery only while power is supplied to the Machine Controller.
Replacing the Battery while the power supply to the Machine Controller is turned OFF may result in loss
of the data stored in memory in the Machine Controller.

• Do not touch the electrodes when you replace the Battery.
Static electricity may damage the electrodes.

• Do not forget to perform the following tasks when you replace the CPU Unit/CPU Module:
• Back up all programs and parameters from the CPU Unit/CPU Module that is being replaced.
• Transfer all saved programs and parameters to the new CPU Unit/CPU Module.
If you operate the CPU Unit/CPU Module without transferring this data, unexpected operation may
occur. There is a risk of injury or device damage.

• Do not touch the heat sink on the CPU Unit/CPU Module while the power supply is turned ON
or for a sufficient period of time after the power supply is turned OFF.
The heat sink may be very hot, and there is a risk of burn injury.

• Dispose of the Machine Controller as general industrial waste.

• Observe all local laws and ordinances when you dispose of used Batteries.

Observe the following general precautions to ensure safe application.

• The products shown in the illustrations in this manual are sometimes shown without covers or
protective guards. Always replace the cover or protective guard as specified first, and then
operate the products in accordance with the manual.

• The illustrations that are presented in this manual are typical examples and may not match the
product you received.

• If the manual must be ordered due to loss or damage, inform your nearest Yaskawa representa-
tive or one of the offices listed on the back of this manual.

CAUTION

CAUTION
xiii

xiv
Warranty

 Details of Warranty

Warranty Period

The warranty period for a product that was purchased (hereinafter called “delivered product”) is one year from
the time of delivery to the location specified by the customer or 18 months from the time of shipment from the
Yaskawa factory, whichever is sooner.

Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs
during the warranty period above. This warranty does not cover defects caused by the delivered product reach-
ing the end of its service life and replacement of parts that require replacement or that have a limited service
life.

This warranty does not cover failures that result from any of the following causes.

• Improper handling, abuse, or use in unsuitable conditions or in environments not described in product cata-
logs or manuals, or in any separately agreed-upon specifications

• Causes not attributable to the delivered product itself

• Modifications or repairs not performed by Yaskawa

• Abuse of the delivered product in a manner in which it was not originally intended

• Causes that were not foreseeable with the scientific and technological understanding at the time of shipment
from Yaskawa

• Events for which Yaskawa is not responsible, such as natural or human-made disasters

 Limitations of Liability
• Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises

due to failure of the delivered product.

• Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program
execution of the programs provided by the user or by a third party for use with programmable Yaskawa
products.

• The information described in product catalogs or manuals is provided for the purpose of the customer pur-
chasing the appropriate product for the intended application. The use thereof does not guarantee that there
are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties,
nor does it construe a license.

• Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights
or other proprietary rights of third parties as a result of using the information described in catalogs or manu-
als.

 Suitability for Use
• It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that apply

if the Yaskawa product is used in combination with any other products.

• The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment
used by the customer.

• Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the
application is acceptable, use the product with extra allowance in ratings and specifications, and provide
safety measures to minimize hazards in the event of failure.

• Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or
environments not described in product catalogs or manuals

• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medi-
cal equipment, amusement machines, and installations subject to separate industry or government regulations

• Systems, machines, and equipment that may present a risk to life or property
• Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems

that operate continuously 24 hours a day
• Other systems that require a similar high degree of safety

• Never use the product for an application involving serious risk to life or property without first ensuring that
the system is designed to secure the required level of safety with risk warnings and redundancy, and that the
Yaskawa product is properly rated and installed.

• The circuit examples and other application examples described in product catalogs and manuals are for ref-
erence. Check the functionality and safety of the actual devices and equipment to be used before using the
product.

• Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to pre-
vent accidental harm to third parties.

 Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be
changed at any time based on improvements and other reasons. The next editions of the revised catalogs or
manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm
the actual specifications before purchasing a product.
xv

xvi
Contents

About this Manual . iii
Using this Manual . iii
Related Manuals . v
Safety Precautions. vi
Warranty . xiv

Introduction to Motion Programs
1

1.1 What Is a Motion Program? .1-3

1.2 Features of Motion Programs .1-4
Motion Program Execution Methods .1-4
Full Synchronization of Sequence Control and Motion Control .1-4
Advanced Motion Control. .1-5
Easy-to-understand Motion Language Instructions .1-5
Numerical Calculations in Motion Programs .1-5
Data Transfer to and from Ladder Programs .1-6
Memory Usage Reduced by Use of Subprograms .1-6
Parallel Execution of Programs .1-7
Axis Alarm Checks. .1-10
Online Editing of Programs .1-12
Easy Programming Functions (MPE720 Version 7.0 or Later) .1-13

1.3 Motion Program System Configuration .1-14

1.4 Types of Motion Programs .1-15

1.5 Motion Program Groups .1-16

1.6 Motion Program Execution Timing .1-17

1.7 Executing Motion Programs .1-19
Execution Processing Method .1-19
Program Execution Registration Methods .1-22
Work Registers .1-23

1.8 Advanced Programming .1-31
Indirect Designation of a Program Number Using a Register .1-31
Controlling Motion Programs Directly from an External Device .1-32
Monitoring Motion Program Execution Information .1-33

1.9 Application Examples .1-43
Conveyance Device .1-43
Part Inserter .1-43
Panel Processing Machine .1-44
Metal Sheet Pressing Equipment. .1-44

Introduction to Sequence Programs
2

2.1 What Is a Sequence Program?. .2-2

2.2 Features of a Sequence Program. .2-3
Sequence Program Execution Methods. 2-3
Same Language as Motion Programs . 2-3
Data Transfer to and from Motion Programs . 2-3
Memory Usage Reduced by Use of Subprograms. 2-4
Easy Programming Functions . 2-4

2.3 Types of Sequence Programs .2-5

2.4 Executing Sequence Programs .2-6
Execution Processing Method . 2-6
Registering Program Execution . 2-8
Work Registers. 2-9

Program Development Flow
3

3.1 Program Development Flow .3-2

3.2 Program Development Procedures .3-3
Preparation for Devices to be Connected . 3-3
Creating a Project. 3-4
Self Configuration. 3-6
Going Online . 3-6
Group Definition Settings . 3-6
Creating Programs . 3-8
Registering Program Execution . 3-10
Transferring the Programs . 3-13
Debugging Programs . 3-16
Saving the Programs to Flash Memory . 3-17
Executing the Programs . 3-18

Registers
4

4.1 Registers. .4-2
Types of Registers . 4-2
Global Registers. 4-5
Local Registers. 4-6
Data Types . 4-8

4.2 Using Registers . 4-11
System Registers (S Registers) .4-11
Data Registers (M Registers) . 4-12
Data Registers (G Registers) . 4-13
Input Registers (I Registers). 4-14
Output Registers (O Registers) . 4-15
C Registers. 4-16
D Registers. 4-17
xvii

xvii
4.3 Using Indices i and j .4-18

4.4 Using Array Registers .4-20

Programming Rules
5

5.1 Entering Programs .5-2
Motion Program Structure .5-2
Block Format .5-2
Notation for Constants and Registers .5-8

5.2 Group Definition Details .5-9

5.3 Operation Priority Levels. 5-11

5.4 Instruction Types and Execution Scans .5-13
Instruction Types .5-13
Instruction Type Table .5-15

5.5 Programming with Variables .5-17
Declaring Variables .5-17
Variable Format .5-18
Strings That Cannot Be Used in Variable Names .5-20
Programming Examples. .5-21

Motion Language Instructions
6

6.1 Axis Setting Instructions .6-4
Absolute Mode (ABS) .6-7
Incremental Mode (INC). 6-11
Change Acceleration Time (ACC) .6-15
Change Deceleration Time (DCC) .6-21
Change S-curve Time Constant (SCC) .6-27
Set Speed (VEL) .6-33
Set Maximum Interpolation Feed Speed (FMX). .6-39
Set Maximum Individual Axis Speeds for Interpolation (IFMX) .6-42
Change Interpolation Feed Speed Unit (FUT) .6-45
Set Interpolation Feed Speed Ratio (IFP) .6-47
Change Interpolation Acceleration Time (IAC) .6-50
Change Interpolation Deceleration Time (IDC) .6-52
Change Interpolation Deceleration Time for Temporary Stop (IDH) 6-54
Change Interpolation Acceleration/Deceleration Unit (IUT) .6-58
Set Interpolation Feed Speed Axes (+ and -). .6-60
Set Interpolation Acceleration/Deceleration Mode (ACCMODE)6-63
i

6.2 Axis Movement Instructions .6-77
Positioning (MOV) . 6-81
Linear Interpolation (MVS) . 6-85
Circular Interpolation with Specified Center Point (MCW and MCC) 6-90
Circular Interpolation with Specified Radius (MCW and MCC) 6-95
Helical Interpolation with Specified Center Point (MCW and MCC) 6-99
Helical Interpolation with Specified Radius (MCW and MCC) 6-102
Zero Point Return (ZRN) . 6-104
Position after Distribution (DEN) . 6-107
Linear Interpolation with Skip Function (SKP) . 6-109
Set-time Positioning (MVT) . 6-111
External Positioning (EXM) .6-113

6.3 Axis Control Instructions. 6-115
Current Position Set (POS) .6-117
Move on Machine Coordinates (MVM). .6-119
Update Program Current Position (PLD) . 6-120
In-position Check (PFN) . 6-122
In-Position Range (INP) . 6-124
Positioning Completed Check (PFP) . 6-126
Coordinate Plane Setting (PLN) . 6-128

6.4 Program Control Instructions .6-129
Branching Instructions (IF, ELSE, and IEND). 6-131
Repetition Instructions (WHILE, WEND) . 6-134
Repetition with One Scan Wait (WHILE and WENDX). 6-137
Parallel Execution Instructions (PFORK, JOINTO, and PJOINT). 6-140
Selective Execution Instructions (SFORK, JOINTO, SJOINT) 6-143
Call Motion Subprogram (MSEE) . 6-148
Call Sequence Subprogram (SSEE) . 6-149
Call User Function from Motion Program (UFC) . 6-150
Call User Function from Sequence Program (FUNC) . 6-158
Program End (END) . 6-159
Subprogram Return (RET) . 6-160
Dwell Time (TIM) . 6-161
Dwell Time (TIM1MS). 6-162
I/O Variable Wait (IOW) . 6-163
One Scan Wait (EOX) . 6-166
Disable Single-block Signal (SNGD) and Enable Single-block Signal (SNGE) 6-167

6.5 Numeric Operation Instructions .6-168
Substitute (=) . 6-169
Add (+) . 6-170
Subtract (-) . 6-171
Extended Add (++) . 6-172
Extended Subtract (--) . 6-174
Multiply (*) . 6-176
Divide (/) . 6-177
Modulo (MOD) . 6-178

6.6 Logic Operation Instructions. .6-179
Inclusive OR (|). 6-180
AND (&) . 6-181
Exclusive OR (^). 6-182
NOT (!) . 6-183
xix

xx
6.7 Numeric Comparison Instructions. .6-184
Numeric Comparison Instructions (==, <>, >, <, >=, <=) .6-186

6.8 Data Manipulations .6-189
Bit Shift Right (SFR). .6-189
Bit Shift Left (SFL) .6-191
Move Block (BLK) .6-192
Clear (CLR) .6-193
Table Initialization (SETW). .6-194
ASCII Conversion 1 (ASCII). .6-196

6.9 Basic Functions. .6-198
Sine (SIN) .6-200
Cosine (COS). .6-201
Tangent (TAN) .6-202
Arc Sine (ASN). .6-203
Arc Cosine (ACS). .6-204
Arc Tangent (ATN) .6-205
Square Root (SQT) .6-206
BCD to Binary (BIN). .6-208
Binary to BCD (BCD) .6-209
Set Bit (S{ }) .6-210
Reset Bit (R{ }) . 6-211
Rising-edge Pulse (PON). .6-212
Falling-edge Pulse (NON) .6-214
On-delay Timer: Measurement unit = 10 ms (TON). .6-216
1-ms ON-Delay Timer (TON1MS) .6-217
Off-delay Timer: Measurement unit = 10 ms (TOF) .6-218
1-ms OFF-Delay Timer (TOF1MS) .6-219

6.10 Vision Instructions. .6-220

Features of the MPE720 Engineering Tool
7

7.1 Motion Editor. .7-2

7.2 Motion Instruction Entry Assistance .7-5

7.3 Task Assignments .7-9

7.4 Debug Operation. 7-11

7.5 Drive Control Panel. .7-18

7.6 Test Runs .7-20

7.7 Axis Monitor and Alarm Monitor .7-23

7.8 Cross References .7-27

Specifications
AppendixA

A.1 Applicable Units and Modules .A-2

A.2 Machine Controller Specifications .A-3

Sample Programs
AppendixB

B.1 Motion Program Control Program. .B-2

B.2 Parallel Processing. .B-3

B.3 Performing Speed Control with a Motion ProgramB-4

B.4 Simple Synchronized Operation with a Virtual AxisB-5

B.5 Sequence Programs. .B-7

Differences between MP2000-series and MP3000-series Machine Controllers
AppendixC

Precautions
AppendixD

D.1 General Precautions. D-2
Saving Data to Flash Memory when Changing Applications . D-2
Debugging a System in Operation . D-2

D.2 Precautions on Motion Parameters . D-3
Performing Axis Movement Instructions on the Same Axis in Motion Programs D-3
Using a Subscript to Reference a Motion Register from an I/O Register D-3
Referencing the Motion Register of a Different Circuit . D-4
OL1C (Position Reference Setting) Setting Parameter . D-5
Axis Operation for Software Limit Alarms. D-5

Index

Revision History
xxi

This chapter introduces motion programs, their features, and how
to use them for first-time users of motion programs.

1.1 What Is a Motion Program? 1-3

1.2 Features of Motion Programs 1-4

Motion Program Execution Methods 1-4
Full Synchronization of Sequence Control and Motion Control . . 1-4
Advanced Motion Control . 1-5
Easy-to-understand Motion Language Instructions 1-5
Numerical Calculations in Motion Programs 1-5
Data Transfer to and from Ladder Programs 1-6
Memory Usage Reduced by Use of Subprograms 1-6
Parallel Execution of Programs . 1-7
Axis Alarm Checks . 1-10
Online Editing of Programs . 1-12
Easy Programming Functions (MPE720 Version 7.0 or Later) . . 1-13

1.3 Motion Program System Configuration 1-14

1.4 Types of Motion Programs 1-15

1.5 Motion Program Groups 1-16

1.6 Motion Program Execution Timing 1-17

1.7 Executing Motion Programs 1-19

Execution Processing Method . 1-19
Program Execution Registration Methods 1-22
Work Registers . 1-23

Introduction to Motion
Programs 1

1.8 Advanced Programming 1-31

Indirect Designation of a Program Number
Using a Register . 1-31
Controlling Motion Programs Directly
from an External Device . 1-32
Monitoring Motion Program Execution Information 1-33

1.9 Application Examples . 1-43

Conveyance Device . 1-43
Part Inserter . 1-43
Panel Processing Machine . 1-44
Metal Sheet Pressing Equipment . 1-44

1.1 What Is a Motion Program?

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

1-3

1.1 What Is a Motion Program?

Motion programs are programs that are written in Yaskawa’s motion language, which is a textual program-
ming language.
In comparison with ladder programs, motion programs allow you to execute various operations with one
line of motion language code. As opposed to ladder programs, motion programs allow you to set the target
position, acceleration/deceleration times, or interpolation feed speeds for interpolation instructions to
automatically calculate the travel distance each scan based on parameters that are set in the system.
You can execute motion programs either by placing an MSEE instruction in a ladder program or by calling
the motion programs from the M-EXECUTOR program execution definitions.

You can create up to 512 motion programs. These are in addition to any ladder programs.

The following is an example of a motion program.

1.2 Features of Motion Programs

Motion Program Execution Methods

1-4

1.2 Features of Motion Programs

This section describes the features of motion programs.

Motion Program Execution Methods

Motion programs are executed in a different way from ladder programs.
With a ladder program, processing from the start of the program to the END command is completed in one
scan.
With a motion program, the processing requested for even one instruction normally requires more than
one scan. Also, the instructions are executed sequentially in the order that they are programmed.
In this manual, the execution method for ladder programs is called scan execution, and the execution
method for motion programs is called sequential execution.

Full Synchronization of Sequence Control and Motion Control

Execution of the processing that is programmed in a motion program is completely synchronized with the
high-speed scan of a MP3000-series Machine Controller. Execution of the motion program occurs within
one scan from when a start request is executed in a ladder program. There is no time delay.

IB00000IB00001 OB00000

IB00002

IB00003

DB000005

IB00004 DB000006 OB00001

END

MOV [X]1000 [Y]2000;

MOV [X]-1000 [Y]-2000;

MVS [X]2000 [Y]1000 F30000;

END;

Ladder Program
(Scan Execution)

Instructions
are executed
in a fixed
period.

Motion Program
(Sequential Execution)

The next instruction
in the sequence is
executed only after
execution of the
current motion
language instruction
is completed.

MPM001

VEL [X]2000 [Y]2000;
ACC [X]100 [Y]100;
DCC [X]100 [Y]100;
MOV [X]0 [Y]0;
MVS [X]100.0 [Y]200.0;

Sequence Control

Ladder Program
(High-speed Scan)

Motion control is completely
synchronized with the

high-speed scan.

Motion Control Functions

Synchronized
phase control

Position
control

Speed
control

Torque
control

M
ot

io
n

pa
ra

m
et

er
s

Motion Program

Motion
parameters

are set.

1.2 Features of Motion Programs

 Advanced Motion Control

1-5

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

Advanced Motion Control

In addition to basic motion control, motion programs can also be used to easily achieve motion control for
complex movements.

Easy-to-understand Motion Language Instructions

A motion program uses intuitive motion language commands such as VEL to set a velocity and MOV for
positioning.

Numerical Calculations in Motion Programs

The motion language includes commands for arithmetic operations and logic operations.
These commands allow you to include various calculations, such as calculations of target positions, in
motion programs.

Positioning

Linear interpolation

Circular interpolation

Helical interpolation

VEL [A1]1000 [B1]500;

MOV [A1]100 [B1]200;

Speed setting

Positioning

DL00000 = DL00002 + DW00004;
DL00000 = DW00002 ∗ DL00004;
MW00000 = MW00000 & 00FFH;
MF00000 = SIN(30.0);

1.2 Features of Motion Programs

Data Transfer to and from Ladder Programs

1-6

Data Transfer to and from Ladder Programs

You can pass data between ladder programs and motion programs.
Data registers (M registers) are used to transfer data.
For example, this allows a value that is updated in a ladder program to be used in a motion program, and
vice-versa.

Memory Usage Reduced by Use of Subprograms

Subprograms can be created within a motion program. Subprograms are created to perform common oper-
ations. They help minimizing the number of program steps and allow the efficient use of memory.

MOV [A1] ML00000;

Ladder Program

Data registers
(M registers)

Motion Program

Read Read RefreshedRefreshed

MPM001 MPM002 MPM003

MPS010

Main Program Main Program Main Program

Called
(MSEE)

Called
(MSEE)

Called
(MSEE)

Subprogram

The common
process is
written as a
subprogram.

1.2 Features of Motion Programs

 Parallel Execution of Programs

1-7

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

Parallel Execution of Programs

Up to 32 tasks can be executed simultaneously with a single MP3000-series Machine Controller using
motion programs. This type of parallel execution can be used to control many different motion operations
simultaneously.

Use the PFORK instruction in a main program or subprogram to perform operations in parallel. Up to 8
forks can be performed in parallel for each task.

The parallel execution mode is set in the Program Properties Dialog Box.

There are four parallel execution modes for the PFORK instruction. The following sections describe these
modes individually.

Main 4 × Sub 2 (MP2000-compatible Mode)

In this mode, up to four forks can be executed in parallel in a main program, and up to two forks can be
executed in parallel in a subprogram.

This is the default mode.

Main 8 × Sub 1

This mode allows the parallel execution of up to 8 forks in a main program.

Parallel execution is not possible for subprograms in this mode.

PFORK

PFORK PFORK PFORK PFORK

MSEE MSEE MSEE MSEE

Main
programs

(MPM���)

Subprograms
(MPS���)

Fork 1 Fork 2 Fork 3 Fork 4

Fork 1 Fork 2 Fork 1 Fork 2 Fork 1 Fork 2 Fork 1 Fork 2

PFORK

MSEE MSEE MSEE MSEE MSEE MSEE MSEE MSEE

Main programs
(MPM���)

Fork 1 Fork 2 Fork 3 Fork 4 Fork 5 Fork 6 Fork 7 Fork 8

Subprograms
(MPS���)

1.2 Features of Motion Programs

Parallel Execution of Programs

1-8

Main 2 × Sub 4

In this mode, up to two forks can be executed in parallel in a main program, and up to four forks can be
executed in parallel in a subprogram.

Main 1 × Sub 8

This mode allows the parallel execution of up to 8 forks in a subprogram.

Parallel execution is not possible in main programs in this mode.

PFORK

PFORK PFORK

MSEE MSEE

Main programs
(MPM���) Fork 1 Fork 2

Fork 1 Fork 2 Fork 3 Fork 4 Fork 1 Fork 2 Fork 3 Fork 4

Subprograms
(MPS���)

PFORK

MSEE

Main program
(MPM���)

Subprograms
(MPS���)

Fork 1 Fork 2 Fork 3 Fork 4 Fork 5 Fork 6 Fork 7 Fork 8

1.2 Features of Motion Programs

 Parallel Execution of Programs

1-9

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

Setting the PFORK Parallel Execution Mode

This section describes how to set the PFORK parallel execution mode.

The parallel execution mode is set in the Program Properties Dialog Box of the main program. By default,
the parallel execution mode is set to Main 4 × Sub 2.

1. Right-click MPM001 under Motion Program - Main Program in the Motion Pane and select
Properties from the menu.

2. Select the parallel execution mode under PFORK Parallel Execution Mode in the Program
Properties Dialog Box.

 Timing at Which the Parallel Execution Mode Setting Becomes Valid

The parallel execution mode setting becomes valid as soon as the OK Button is clicked in the Program
Properties Dialog Box.

1.2 Features of Motion Programs

Axis Alarm Checks

1-10

Axis Alarm Checks

With an MP3000-series Machine Controller, you can check for alarms (IL04) that can occur in axes
specified in axis movement instructions in a motion program.

You can enable or disable these checks in the environment settings of MPE720 version 7.

Refer to the following manual for information on the environment settings of MPE720 version 7.
MP2000/MP3000 Series Engineering Tool MPE720 Version 7 User’s Manual (Manual No.: SIEP C880761 03)

Refer to the following appendix for details on checking for axis alarms.
Appendix C Differences between MP2000-series and MP3000-series Machine Controllers

Checking for Axis Alarms (MP3000-series Standard Feature)

If an alarm occurs (IL04 ≠ 0) for an axis specified in an axis movement instruction, a motion pro-
gram alarm will occur, all axes will stop (OW09 Bit 1 = ON), and NOP (OW08 = 0) motion
commands will be issued.

This is the default operation for the MP3000-series Machine Controllers.

Not Checking for Axis Alarms (MP2000-series Compatible)

Even if an alarm occurs (IL04 ≠ 0) for an axis specified in an axis movement instruction, references
continue for axes for which no alarm has occurred.

If you use this mode, implement interlocks externally.

This mode produces the same operation as the MP2000-series Machine Controllers. Select this
mode if you are replacing an MP2000-series Machine Controller with an MP3000-series Machine
Controller or want to use the same operation as the MP2000-series Machine Controller.

Information

1.2 Features of Motion Programs

 Axis Alarm Checks

1-11

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

Procedure to Check for Axis Alarms

This section describes how to set the mode to check for axis alarms.

1. Select Environment Setting from the File Menu of the MPE720 Version 7 Window.

2. Select Motion - General in the Environment Setting Dialog Box.

3. Set Axis Alarm Check under Motion Program Operation Mode to Check (MP3000-series
Standard).

Combinations of MP3000-series Machine Controllers and MPE720
Version 7 Revisions

The following table shows the combinations of MP3000-series Machine Controller and MPE720 versions.

MP3000-series
Software Version

MPE720 Version 7.21.0100 or Later MPE720 Version 7.20.0100 or Earlier

Axis Alarm Check
Selection

Axis Alarm Checks
(Performed/Not

Performed)

Axis Alarm Check
Selection

Axis Alarm Checks
(Performed/Not

Performed)

MP3000-series
Machine Control-
ler Version 1.05 or

Earlier

Cannot be selected. Always performed. Cannot be selected. Always performed.

MP3000-series
Machine Control-
ler Version 1.06 or

Later

Can be selected.
Performed by
default.

Cannot be selected. Always performed.

If you enable axis alarm checks with an MP3000-series Machine Controller version 1.06 or later
and MPE720 version 7.21.0100 or later and then save the setting to flash memory, the setting will
be used in the future as well.

Information

1.2 Features of Motion Programs

Online Editing of Programs

1-12

Online Editing of Programs

Motion programs can be edited online in the same way as ladder programs.
Online editing allows you to edit programs while you are logged onto the Machine Controller. In online
editing mode, the edited program is automatically transferred to the Machine Controller when the program
is saved. This helps save time through the elimination of any operations to manually transfer the program
to the Machine Controller.

Online editing is not possible while execution of the motion program is in process.

Operation to Transfer a Program to the Machine Controller

Offline editing

Online editing

Programming Debugging

Information

1.2 Features of Motion Programs

 Easy Programming Functions (MPE720 Version 7.0 or Later)

1-13

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

Easy Programming Functions (MPE720 Version 7.0 or Later)

MPE720 Engineering Tool version 7.0 for MP3000-series Machine Controllers includes the following
easy programming functions.

● Instruction Entry Assistance

You can simply select an instruction and set the data in the
dialog box shown below to insert the instruction into the editor.

You can control the axes from the following dialog box.

Inserts the instruction.

You can view the operating status of each axis.

You can execute motion programs from the Motion Editor. You can debug motion programs.
Common debugging operations, such as step-by-step
execution and setting breakpoints, are provided.

You can easily register the programs to execute in the system.

● Test Runs

● Axis Monitor

● Operation Control Panel ● Debugging

● Task Assignments

1.3 Motion Program System Configuration

1-14

1.3 Motion Program System Configuration

Motion programs are transferred to the MP3000-series Machine Controller after they are created in the
MPE720 Motion Editor. The transferred motion programs can be called with MSEE instructions in a lad-
der program, or from the M-EXECUTOR execution definitions. Motion language instructions are sent to
the Motion Control Function Module through the motion parameters to operate the axes.
The following figure shows the system configuration of a motion program.

H

H01

H02

H01.01

H01.02

M-EXECUTOR

SVR or
SVR32

SVC or
SVC32

SVB-01

SVA-01

PO-01

SVC-01

MPE720

VEL [X]2000 [Y]2000;
ACC [X]100 [Y]100;
DCC [X]100 [Y]100;
MOV [X]0 [Y]0;
MVS [X]100.0 [Y]200.0;

ABS;
FMX T100000;
MVS [C1]300 [D1]400F1000;
END;

MPM001

MPM002

Programming Dialog Box

The completed programs
are transferred.

MP3000-series Machine Controller

Ladder Program
Motion Program

MSEE Instruction

Program Execution Definitions

You can call up
to 32 programs at
the same time.

You can create
up to 512
programs.

Called.

M
ot

io
n

pa
ra

m
et

er
s

Called
.

You can call motion pro-
grams without a ladder
program.

1.4 Types of Motion Programs

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

1-15

1.4 Types of Motion Programs

There are two types of motion programs. These are given in the following table.

Type
Designation

Method
Features Number of Programs

Main programs
MPM
(= 1 to 512)

• Main programs can be called
from the M-EXECUTOR
program execution defini-
tions.

• Main programs can be called
from a DWG.H drawing.

You can create up to 512 motion pro-
grams, including the following pro-
grams:
• Motion main programs
• Motion subprograms
• Sequence main programs
• Sequence subprogramsSubprograms

MPS
(= 1 to 512)

• Subprograms are called from
a main program.

1. Use a unique program number for each motion program and sequence program. If the same number
is used more than once, an error will be displayed on the MPE720.

2. MP3000-series Machine Controllers can execute up to 32 motion programs simultaneously.
If 33 or more programs are executed simultaneously, a motion program alarm occurs (No System
Work Available Error).
• The No System Work Available Error is indicated by bit E in the Status Flags of the motion pro-

gram.

In this manual, the high-speed process drawing for a ladder program is called DWG.H (high-speed
drawing).

Important

Information

1.5 Motion Program Groups

1-16

1.5 Motion Program Groups

With motion programs, the axes that have related operations are organized into individual groups. You can
create programs for each group. Motion program groups allow a single Machine Controller to control mul-
tiple machines independently. A group operation can be an operation as a single group or an operation
with multiple groups.

The definitions for axes to be grouped are made in the Group Definitions. Refer to the following section
for the procedure to set group definitions.

5.2 Group Definition Details (page 5-9)

Operation with One Group

Operation with Multiple Groups

Group1
SG

D
V

SG
D

V

SG
D

V

SG
D

V

SG
D

V

A1 B1 C1 F1 G1

MP3000-series
Machine Controller

S
G

D
V

S
G

D
V

S
G

D
V

S
G

D
V

S
G

D
V

A1 B1 A2 D2 A3

Group1 Group2 Group3

MP3000-series
Machine Controller

Groups are organized
in a hierarchical tree
structure.

1.6 Motion Program Execution Timing

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

1-17

1.6 Motion Program Execution Timing

The processing in a motion program is executed in full synchronization with the high-speed scan of the
MP3000-series Machine Controller.

In the high-speed scan cycle, I/O services are performed first, and then the motion programs that are regis-
tered in the M-EXECUTOR are executed. Next, the motion programs that are called with the MSEE
instructions that are programmed in DWG.H are executed when the individual MSEE instructions are exe-
cuted.

The following figure shows the execution timing of a motion program.

I/O Service
I/O services process the execution of data I/O between the MP3000-series CPU Unit/CPU Module and
external devices (i.e., the Optional Modules).Terms

1.6 Motion Program Execution Timing

1-18

DWG.H

M-EXECUTOR

M-EXECUTOR

MSEE

END;

MPM001

RET;

MPS101

DWG.H

MSEE

END;

MPM002

RET;

MPS102

High-speed scan High-speed scan High-speed scan

Not used. Not used. Not used.

System processing

I/O service
(outputs)

I/O service
(inputs)

MP3000-series CPU
Function Module External devices

Motion Program

Subprogram

Motion Program

Subprogram

Status

Control Signals

Reported.

Execution
requested.

Status
Reported.

Execution
requested.

Control Signals

I registers

Batch
input

Batch
output

O registers

1.7 Executing Motion Programs

Execution Processing Method

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

1-19

1.7 Executing Motion Programs

This section describes how to execute motion programs.

Execution Processing Method

You must register the motion programs that you create in the system to execute them. The motion pro-
grams that are registered in the system are called in the high-speed scan cycle.

There are two execution methods that you can use when a motion program is registered in the system for
execution.

• Calling the motion program from a ladder program with an MSEE instruction

• Calling the motion program using the M-EXECUTOR program execution definitions

1.7 Executing Motion Programs

Execution Processing Method

1-20

Calling the Motion Programs from a Ladder Program with an MSEE
Instruction

After you create the motion program, insert an MSEE (Call Motion Program) instruction in the high-speed
drawing.

Motion programs can be called from any H drawing, regardless of whether it is a parent, child, or grand-
child drawing.
The following figure shows an execution example.

The ladder instructions in the high-speed drawing are executed every high-speed scan cycle according to
the hierarchical organization of parent-child-grandchild drawings.
The above programming only prepares for execution of the motion program. The motion program is not
executed at the location where the MSEE instruction is inserted. To execute the motion program, use a
control signal to turn ON the request for start of program operation after the MSEE instruction has been
inserted.
The motion program is executed in the scan cycle, but unlike ladder programs, the entire program is not
executed in a single scan. Execution of motion programs is controlled by the system.

DWG.H MPM001

INC;

VEL [A1]100 [B1]200;

MOV [A1]1000 [B1]2000;

END;
Work Registers

Status

Control Signals

Interpolation Override
System Work Number

Called.

Motion Program

MSEE
MPM001

DWG.H

SEE
H01

DEND

DWG.H01

SEE H01.01

END
DEND

END

RETEND

DEND

MPM003
MPS101

DWG.H01.01 MPM001

MPM002
MSEE

MPM002

MSEE
MPM003

MSEE
MPS101

VEL [a1]5000 [b1]..
FMX T10000000;
IAC T25;
IDC T30;
MOV [a1]300. [b1]..
MVS [a1]200. [b1]..

 .
 .
 .

Execution is started by the system program
when the execution condition is met.

Parent Drawing Child Drawing Grandchild Drawing Motion Program

Subprogram

1.7 Executing Motion Programs

 Execution Processing Method

1-21

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

Calling the Motion Programs Using the M-EXECUTOR Program
Execution Definitions

After creating a motion program, register it in the M-EXECUTOR program execution definitions.
Control registers (I/O registers) are used to start and stop the registered motion programs.
Programs registered in the M-EXECUTOR program execution definitions are executed in ascending
numeric order.
The following figure shows an execution example.

To execute a motion program, first register the program in the M-EXECUTOR program execution defini-
tions, then use a control signal to turn ON the request for start of program operation.
A motion program that is registered in the M-EXECUTOR program execution definitions is executed in
the scan cycle, but unlike a ladder program, the entire program is not executed in a single scan. Execution
of motion programs is controlled by the system.

Observe the following precautions when executing motion programs:
• Motion programs that are registered in the M-EXECUTOR cannot be executed with MSEE instruc-

tions.
• More than one instance of the same motion program (i.e., the same program number) cannot be exe-

cuted with MSEE instructions.
• Subprograms (MPS) cannot be executed with MSEE instructions in ladder programs.

You can call subprograms from other motion programs (MPM and MPS) only.
• Sequence programs (SPM or SPS) cannot be called with MSEE instructions from lad-

der programs.

Observe the following precautions when registering motion programs in the M-EXECUTOR program
execution definitions:
• Each motion program must be registered with a unique program number.
• More than one motion program with the same number cannot be called using indirect designation.

Note

END

RETEND

MPM003
MPS101

MPM001

MPM002

MSEE
MPS101

END

VEL [a1]5000 [b1]..
FMX T10000000;
IAC T25;
IDC T30;
MOV [a1]300. [b1]..
MVS [a1]200. [b1]..

 .
 .
 .

M-EXECUTOR Program Execution Definitions

Motion Program

Subprogram

Note

1.7 Executing Motion Programs

Program Execution Registration Methods

1-22

Program Execution Registration Methods

There are two methods to register a program for execution.
The following examples demonstrate how to register motion program MPM001 for execution.

Inserting an MSEE Instruction into a Ladder Program

Registering Motion Programs in the M-EXECUTOR Program Exe-
cution Definitions

Program an MSEE instruction in the
high-speed drawing.
Program the MSEE instruction so
that it is executed every scan.

MPM number

Register the program to execute.

1.7 Executing Motion Programs

 Work Registers

1-23

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

Work Registers

When a program is registered for execution, that program is assigned work registers to control and moni-
tor the execution of the program. The work registers are used to send commands to the motion programs
from the motion program control program, and to get the motion program status.

When a Motion Program Is Called from a Ladder Program with an MSEE Instruction

Four registers (words) starting from the register that is specified with the Data parameter of the MSEE
instruction (MA or DA) are used as work registers.

When the Motion Program Is Registered in the M-EXECUTOR Program Execution Defini-
tions

The M-EXECUTOR control registers are used as the work registers.
The M-EXECUTOR control registers are automatically assigned by the system.

DW00000
DW00001

DW00002

DW00003

OUT

IN

IN

IN

Work Register

1st register

2nd register

3rd register

4th register

Status Flags

Control Signals

Interpolation Override

System Work Number

Register Address
in the Example Contents I/O

IW0C00

OW0C01

OW0C02

Work Register
(M-EXECUTOR

Control Register)

Status

Control Signals

Override

Status Flags

Control Signals

Interpolation Override

Register Address
in the Example Contents I/O

OUT

IN

IN

1.7 Executing Motion Programs

Work Registers

1-24

Status Flags

The Motion Program Status Flags give the execution condition of the motion program.

The following table describes the meanings of the Status Flags.

Bit No Name Contents

Bit 0 Program Executing
This bit is set to 1 when a motion program is running.

0: Motion program is stopped.
1: Motion program is running.

Bit 1 Program Paused

This bit is set to 1 when execution of a motion program is paused by a
Request for Pause of Program.
After a Request for Pause of Program control signal is input, it is confirmed
that the axis decelerated to a stop and then the status flag is turned ON.

0: Program is not stopped by a pause request.
1: Program is stopped by a pause request.

Bit 2
Program Stopped for
Request for Stop
Request

This bit is set to 1 when execution of a motion program is stopped by a
Request for Stop of Program.

0: Program is not stopped by a stop request.
1: Program is stopped by a stop request.

Bit 3 (Reserved for system.) −

Bit 4
Program Single-block
Execution Stopped

This bit is set to 1 when execution of a single block is stopped in Debug
Operation Mode.

0: Single block execution is not stopped.
1: Single block execution is stopped.

Bit 5 (Reserved for system.) −
Bit 6 (Reserved for system.) −
Bit 7 (Reserved for system.) −

Bit 8 Program Alarm

This bit is set to 1 when a program alarm occurs.
When this bit is set to 1, details on the error will be displayed in the Error
Information Dialog Box and are given in the S registers.

0: There is no program alarm.
1: A program alarm occurred.

Bit 9
Program Stopped at
Breakpoint

This bit is set to 1 when execution of a program stops at a breakpoint in
Debug Operation Mode.

0: Not stopped at a breakpoint.
1: Stopped at a breakpoint.

Bit A (Reserved for system.) −

Bit B
Debug Operation
Mode

This bit is set to 1 when a program is running in Debug Operation Mode.
0: Not in Debug Operation Mode (Normal Execution Mode).
1: In Debug Operation Mode.

Bit C Program Type

This bit reports whether the program that is being executed is a motion pro-
gram or a sequence program.

0: Motion program
1: Sequence program

Bit D Start Request History
This bit is set to 1 when the Request for Start of Program Operation is ON.

0: Turn OFF the request to start the program.
1: Turn ON the request to start the program.

Bit E
No System Work
Available Error or
Execution Scan Error

This bit is set to 1 when a system work number that was needed to execute a
motion program could not be obtained, or when an MSEE instruction is pro-
grammed in a drawing other than a DWG.H.

0: There is no system work available error or execution scan error.
1: A no system work available error or execution scan error occurred.

Continued on next page.

1.7 Executing Motion Programs

 Work Registers

1-25

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

Note: If a motion program alarm occurs, program error information is provided in the Error Information Dialog Box and
in the S registers.

Bit F
Main Program Num-
ber Limit Exceeded
Error

This bit is set to 1 when the specified motion program number is out of range.
Motion program number range:1 to 512

0: There is no motion program number error.
1: A motion program number error occurred.

Continued from previous page.

Bit No Name Contents

1.7 Executing Motion Programs

Work Registers

1-26

Control Signals

To control the execution of a motion program, you must input program control signals (Request for Start
of Program Operation, or Request for Stop of Program, etc.). The following table describes the control sig-
nals for motion programs.

: This symbol indicates that the signal must be kept ON until the system acknowledges it.

: This symbol indicates that the signal needs to be turned ON only for one high-speed scan.

Bit No Name Description

Bit 0 Request for Start
of Program Oper-
ation

This bit makes a request to start execution of a motion program. The
motion program starts when this bit changes from 0 to 1. This bit is
ignored when there is a program alarm.

0: Turn OFF the request to start the program.
1: Turn ON the request to start the program.

Bit 1 Request for Pause
of Program

This bit makes a request to pause execution of a motion program.
Execution of the program that was paused will resume when the pause
request is turned OFF.

0: Turn OFF the request to pause the program (i.e., cancels the pause).
1: Turn ON the request to pause the program.

Bit 2 Request for Stop
of Program

This bit makes a request to stop execution of a motion program.
A motion program alarm occurs if this bit is set to 1 while the axis is in
motion.

0: Turn OFF the request to stop the program.
1: Turn ON the request to stop the program.

Bit 3 Program Single-
block Mode
Selection

This bit makes a request to select Program Single-block Execution Mode.
This mode can be used in place of Debug Operation Mode.

0: Deselect single block mode.
1: Select single block mode.

Bit 4 Program Single-
block Start
Request

When this bit is changed from 0 to 1, program execution changes to single-
block execution (step execution). This bit is only valid when bit 3 (Pro-
gram Single-block Mode Selection) in the control signal word is set to 1.

0: Turn OFF the request to start a single program block.
1: Turn ON the request to start a single program block.

Bit 5 Program Reset
and Alarm Reset
Request

This bit resets motion programs and alarms.
0: Turn OFF the request to reset the program and alarms.
1: Turn ON the request to reset the program and alarms.

Bit 6 Request for Start
of Continuous
Program Opera-
tion

This bit makes a request to resume execution of a program that was
stopped by a Request for Stop of Program.

0: Turn OFF the request to resume the program.
1: Turn ON the request to resume the program.

Bit 7
(Reserved for sys-
tem.)

−

Bit 8 Skip 1 Informa-
tion

If this bit changes to 1 while an axis is in motion due to a SKP instruction
(when the skip input signal selection is set to SS1), the axis will decelerate
to a stop, and the reference in the remaining travel distance will be can-
celed.

0: Turn OFF the skip 1 signal.
1: Turn ON the skip 1 signal.

Bit 9 Skip 2 Informa-
tion

If this bit changes to 1 while an axis is in motion due to a SKP instruction
(when the skip input signal selection is set to SS2), the axis will decelerate
to a stop, and the reference in the remaining travel distance will be can-
celed.

0: Turn OFF the skip 2 signal.
1: Turn ON the skip 2 signal.

Continued on next page.

1.7 Executing Motion Programs

 Work Registers

1-27

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

*1. System Work Number Setting
• When the Motion Program Is Registered in M-EXECUTOR:

The system work number cannot be specified. The system will use the definition number as the system work num-
ber.

• When a Motion Program Is Called from a Ladder Program with an MSEE Instruction:
OFF: The system will use an automatically acquired system work number. The system work number will be different each
time.
ON: The work number that is specified by the system will be used.
However, if the work number is assigned to the M-EXECUTOR, a No System Work Available Error (Status Flag
Bit E) is reported.

*2. Interpolation Override Setting
OFF: The interpolation override is always 100%.
ON: The interpolation override in the parameter setting is used.

Note: 1. Use the specified signal types for the ladder program inputs.
2. At startup, the motion programs for which the Request for Start of Program Operation control signals are ON

will be executed.

Bit A, B
(Reserved for sys-
tem.)

−

Bit C
(Reserved for sys-
tem.)

−

Bit D System Work

Number Setting∗1

To specify a system work number, set this bit to 1.
0: Do not specify a system work number.
1: Specify a system work number.

Bit E Interpolation

Override Setting∗2

To specify an interpolation override, set this bit to 1.
0: Do not specify an interpolation override.
1: Specify an interpolation override.

Bit F
(Reserved for sys-
tem.)

−

Continued from previous page.

Bit No Name Description

1.7 Executing Motion Programs

Work Registers

1-28

Motion Program Control Signals Timing Chart

Timing chart examples for axis operations and status flags after a control signal is input are provided
below.

• Request for Start of Program Operation

• Request for Pause

* Status flags related to control signal input are updated after one scan.

• Request for Stop

* Status flags related to control signal input are updated after one scan.

When restarting operation of a program that has been stopped by the Request for Stop of Program con-
trol signal, execute the Request for Start of Continuous Program Operation control signal instead of exe-
cuting the Program Reset and Alarm Reset Request control signal.

Control signal: Request for Start of
Program Operation

Status flag: Program Executing

Axis operation: Pulse distribution

Control signal: Request for Start of
Program Operation

Status flag: Program Executing

Axis operation: Pulse distribution

Control signal: Request for Pause
of Program

Status flag: Program Paused

1 scan*

Control signal: Request for Start of Program
Operation

Status flag: Program Executing

Axis operation: Pulse distribution for
Positioning instruction

Control signal: Request for Stop of Program

Axis operation: Pulse distribution for Zero
Point Return instruction

Axis operation: Pulse distribution for
Interpolation instruction

Status flag: Program Stopped for Stop
Request

Status flag: Program Alarm

Control signal: Program Reset and Alarm
Reset Request

1 scan*

1 scan

1.7 Executing Motion Programs

 Work Registers

1-29

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

• If a Motion Program Alarm Occurs

* Status flags related to control signal input are updated after one scan.

Refer to the following section for programming examples for motion program control.
B.1 Motion Program Control Program (page B-2)

Interpolation Override

An interpolation override allows you to change the output ratio of the axis movement speed reference for
interpolation motion language instructions.

Set the override value to use when executing interpolation instructions (MVS, MCW, MCC, or SKP).

The interpolation override is valid only when bit E (Interpolation Override Setting) in the control signals is
ON.

The setting range of the interpolation override is 0 to 32,767.

Unit: 1 = 0.01%

System Work Number

When you call a motion program from a ladder program with the MSEE instruction, set the system work
number to use to call the motion program. This system work number is valid only when bit D (System
Work Number Setting) of the control signals is ON.

Setting range: 1 to 32

1. If the Request for Stop of Program control signal is turned ON while the axis is being controlled for
a motion language instruction, an alarm will occur.

2. If the Request for Stop of Program control signal is turned ON while the axis is being controlled for
an interpolation motion language instruction, the axes will stop immediately.
To perform a deceleration stop, use the Request for Pause of Operation control signal.

3. The Request for Pause of Program control signal is not acknowledged while a Zero Point Return
(ZRN) instruction is being executed.
To stop the operation, use the Request for Stop of Program control signal.

4. If a motion program alarm occurs while an axis is in motion, the axis stops immediately.

Control signal: Request for Start of
Program Operation

Status flag: Program Alarm

Status flag: Program Executing

Axis operation: Pulse distribution for
Interpolation instruction

Control signal: Program Reset and Alarm
Reset Request

Axis operation: Pulse distribution for
Positioning instruction

Axis operation: Pulse distribution for
Zero Point Return instruction

1 scan*

Important

1.7 Executing Motion Programs

Work Registers

1-30

When using MSEE instructions in ladder programs along with the M-EXECUTOR, do not specify the
system work numbers that are for the M-EXECUTOR in the MSEE instructions in the ladder programs.
If you specify one, a No System Work Available Error will occur.
System work numbers for the M-EXECUTOR: 0 to the set value of the number of program definitions

You cannot set the system work numbers when you use the M-EXECUTOR. The system will use
system work numbers that are the same as the definition numbers.

Important

Information

1.8 Advanced Programming

Indirect Designation of a Program Number Using a Register

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

1-31

1.8 Advanced Programming

This section describes practical methods of executing motion programs.

Indirect Designation of a Program Number Using a Register

You can use a register to call a motion program with value stored in that register.

There are two methods of calling a motion program in this way.

When a Motion Program Is Called from a Ladder Program with an
MSEE Instruction

Specify the register (M, G, or D register) to use for the indirect designation in the Program No. parameter
of the MSEE instruction.

If a value of 3 is stored in MW00200, the MPM003 program is called.

Calling Motion Program with the M-EXECUTOR Program Execu-
tion Definitions

Select the indirect designation method in the Setting Column. The register used for indirect designation
is assigned automatically by the system.

If a value of 3 is stored in OW0C00, the MPM003 program is called.

ABS;

IOW MB0001

...

MOV[X] _ [Y] _

MOV[X] _ [Y] _

MVS[X] _ [Y] _ F

MPM003

Call Motion Program Instruction

Register address

Ladder Program Motion Program

ABS;

IOW MB0001

...

MOV[X] _ [Y] _

MOV[X] _ [Y] _

MVS[X] _ [Y] _ F

MPM003

M-EXECUTOR Program Execution Definitions

Motion Program

1.8 Advanced Programming

Controlling Motion Programs Directly from an External Device

1-32

Controlling Motion Programs Directly from an External Device

The M-EXECUTOR allows you to assign M-EXECUTOR control registers.

This can be used to automatically exchange data between an M-EXECUTOR control register and the I/O
register connected to an external device.

The following are sample settings to directly control a motion program from an external device.

The assigned interlock contacts are used to interlock motion program operation. If you assign registers,
always assign interlock contacts.

The following processes are performed according to the ON/OFF status of the assigned interlock contacts.

• When the assigned interlock contact is ON, the assigned register exchanges data with the M-EXECU-
TOR control register in the high-speed scan cycle. Motion program execution is enabled during this data
exchange.

• When the assigned interlock contact is OFF, the assigned register does not exchange data with the M-
EXECUTOR control register, and motion program execution is disabled.

• If the assigned interlock contact changes from ON to OFF while the motion program is running, the
motion program stops and the axes stop moving. At this moment, the 1B hex motion program alarm
(Emergency Stop in Progress) occurs, and bit 8 (Program Alarm) in the status flags turns ON.

Use the following procedure to restart the motion program.

1. Turn ON the assigned interlock contact.

2. Turn ON bit 5 (Program Reset and Alarm Reset Request) in the control signals.

3. Confirm that bit 8 (Program Alarm) in the status flags turns OFF.

4. Turn OFF bit 5 (Program Reset and Alarm Reset Request) in the control signals.

5. Turn ON bit 0 (Request for Start of Program Operation) in the control signals.

M-EXECUTOR Register Assignment Dialog Box

Assign the desired registers
and the interlock contacts.

External Devices Allocated Registers

Assigned
Interlock
Contacts

Data will be
exchanged in

high-speed scan cycle.

Program Number
Status

Control Signals
Interpolation Override

Execution Control
by the System

Motion Program

MPM001

END

VEL [a1] 5000 [b1]..
FMX T10000000;
IAC T25;

IDC T30;
MOV [a1] 300. [b1]..
MVS [a1] 200. [b1]...

.

.

.

Signals from External Devices• Host PLC
• Program number
• Start operation
• Hold
• Stop, etc.

• Touch Panel
• Switch
• LED, etc.

The M-EXECUTOR
control register is read.

1.8 Advanced Programming

 Monitoring Motion Program Execution Information

1-33

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

Monitoring Motion Program Execution Information

The execution information for motion programs can be monitored using the S registers (SW03200 to
SW05119 and SL08192 to SL09214).

The execution information is monitored differently, depending on whether the motion program is called
from a ladder program with an MSEE instruction, or the motion program is registered in the M-EXECU-
TOR program execution definitions.
This section describes these two monitoring methods.

When a Motion Program Is Called from a Ladder Program with an
MSEE Instruction

When a motion program is called from a ladder program with an MSEE instruction, the effects of the set-
ting of bit D (System Work Number Setting) in the motion program control signal are as follows:

• When bit D (System Work Number Setting) in the Motion Program Control Signal is ON, the
execution information is reported in the Work n Program Information registers (SW03264 to
SW05119 and SL08192 to SL09214).

For example, if the system work number is 1, you can monitor the execution information of the motion
program with the Work 1 Program Information registers (SW03264 to SW03321 and SL08192 to
SL08222).

• When bit D (System Work Number Setting) in the Motion Program Control Signal is OFF, the
system work number that is used is determined automatically by the system.
You can check the work numbers that are in use in the Active Program Numbers registers (SW03200 to
SW03231).

For example, if MPM001 is the motion program to be monitored and SW03202 contains a 1, the system
work number is 3. You can therefore monitor the execution information of the motion program with the
Work 3 Program Information registers (SW03380 to SW03437 and SL08256 to SL08286).

When Execution the Motion Program Is Registered in the M-EXEC-
UTOR Program Execution Definitions

When the motion program is registered in the M-EXECUTOR program execution definitions, the system
work number used will be the same as the program execution registration number in the M-EXECUTOR.

For example, if the motion program is registered for execution as number 3, system work number 3 is
used. You can therefore monitor the execution information of the motion program with the Work 3 Pro-
gram Information registers (SW03380 to SW03437 and SL08256 to SL08286).

1.8 Advanced Programming

Monitoring Motion Program Execution Information

1-34

 Register Ranges for Motion Program Execution Information

Note: The in MP for registers SW03232 to SW03263 is either an M or an S.

SW03200

32W

SW03232

32W

SW03264
SW03322
SW03380
SW03438
SW03496
SW03554
SW03612
SW03670
SW03728
SW03786
SW03844
SW03902
SW03960
SW04018
SW04076
SW04134
SW04192
SW04250
SW04308
SW04366
SW04424
SW04482
SW04540
SW04598
SW04656
SW04714
SW04772
SW04830
SW04888
SW04946
SW05004 58W

58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W
58W

SW05062

SW03200
SW03201
SW03202
SW03203
SW03204
SW03205
SW03206
SW03207
SW03208
SW03209
SW03210
SW03211
SW03212
SW03213
SW03214
SW03215
SW03216
SW03217
SW03218
SW03219
SW03220
SW03221
SW03222
SW03223
SW03224
SW03225
SW03226
SW03227
SW03228
SW03229
SW03230
SW03231

SW03232 MP 016(Bit F) to MP 001(Bit 0)
SW03233 MP 032(Bit F) to MP 017(Bit 0)
SW03234 MP 048(Bit F) to MP 033(Bit 0)
SW03235 MP 064(Bit F) to MP 049(Bit 0)
SW03236 MP 080(Bit F) to MP 065(Bit 0)
SW03237 MP 096(Bit F) to MP 081(Bit 0)
SW03238 MP 112(Bit F) to MP 097(Bit 0)
SW03239 MP 128(Bit F) to MP 113(Bit 0)
SW03240 MP 144(Bit F) to MP 129(Bit 0)
SW03241 MP 160(Bit F) to MP 145(Bit 0)
SW03242 MP 176(Bit F) to MP 161(Bit 0)
SW03243 MP 192(Bit F) to MP 177(Bit 0)
SW03244 MP 208(Bit F) to MP 193(Bit 0)
SW03245 MP 224(Bit F) to MP 209(Bit 0)
SW03246 MP 240(Bit F) to MP 225(Bit 0)
SW03247 MP 256(Bit F) to MP 241(Bit 0)
SW03248 MP 272(Bit F) to MP 257(Bit 0)
SW03249 MP 288(Bit F) to MP 273(Bit 0)
SW03250 MP 304(Bit F) to MP 289(Bit 0)
SW03251 MP 320(Bit F) to MP 305(Bit 0)
SW03252 MP 336(Bit F) to MP 321(Bit 0)
SW03253 MP 352(Bit F) to MP 337(Bit 0)
SW03254 MP 368(Bit F) to MP 353(Bit 0)
SW03255 MP 384(Bit F) to MP 369(Bit 0)
SW03256 MP 400(Bit F) to MP 385(Bit 0)
SW03257 MP 416(Bit F) to MP 401(Bit 0)
SW03258 MP 432(Bit F) to MP 417(Bit 0)
SW03259 MP 448(Bit F) to MP 433(Bit 0)
SW03260 MP 464(Bit F) to MP 449(Bit 0)
SW03261 MP 480(Bit F) to MP 465(Bit 0)
SW03262 MP 496(Bit F) to MP 481(Bit 0)
SW03263 MP 512(Bit F) to MP 497(Bit 0)

58W

Numbers of Currently
Executing Main Programs

Active Program Numbers

Number of Program Using Work Number 2
Number of Program Using Work Number 1

Number of Program Using Work Number 3
Number of Program Using Work Number 4

Number of Program Using Work Number 5
Number of Program Using Work Number 6
Number of Program Using Work Number 7

Number of Program Using Work Number 8
Number of Program Using Work Number 9
Number of Program Using Work Number 10

Number of Program Using Work Number 11
Number of Program Using Work Number 12
Number of Program Using Work Number 13
Number of Program Using Work Number 14
Number of Program Using Work Number 15
Number of Program Using Work Number 16
Number of Program Using Work Number 17
Number of Program Using Work Number 18
Number of Program Using Work Number 19
Number of Program Using Work Number 20
Number of Program Using Work Number 21
Number of Program Using Work Number 22
Number of Program Using Work Number 23
Number of Program Using Work Number 24
Number of Program Using Work Number 25
Number of Program Using Work Number 26
Number of Program Using Work Number 27
Number of Program Using Work Number 28
Number of Program Using Work Number 29
Number of Program Using Work Number 30
Number of Program Using Work Number 31
Number of Program Using Work Number 32

Program Execution Bits

Program Execution Bits
Executing while the
corresponding bit is ON.
Work 1 Program Information
Work 2 Program Information
Work 3 Program Information
Work 4 Program Information
Work 5 Program Information
Work 6 Program Information
Work 7 Program Information
Work 8 Program Information
Work 9 Program Information

Work 10 Program Information
Work 11 Program Information
Work 12 Program Information
Work 13 Program Information
Work 14 Program Information

Work 15 Program Information
Work 16 Program Information
Work 17 Program Information

Work 18 Program Information
Work 19 Program Information
Work 20 Program Information
Work 21 Program Information
Work 22 Program Information
Work 23 Program Information
Work 24 Program Information
Work 25 Program Information
Work 26 Program Information
Work 27 Program Information
Work 28 Program Information
Work 29 Program Information
Work 30 Program Information
Work 31 Program Information
Work 32 Program Information

1.8 Advanced Programming

 Monitoring Motion Program Execution Information

1-35

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

 Registers Used for System Work Numbers 1 to 32

The registers that are used for system work numbers 1 to 32 are given in the following table. Two system
registers are given in the register table for the alarm code, but we recommend that you use system registers
SL26. You can use the system registers that are given in parentheses to check for alarms in most
cases, but they do not report all alarms.
Refer to the following manual for details on alarm codes.

MP3000 Series MP3200/MP3300 Troubleshooting Manual (Manual No.: SIEP C880725 01)

• System Work Numbers 1 to 8

System Work Number Work 1 Work 2 Work 3 Work 4 Work 5 Work 6 Work 7 Work 8
Executing Main Program No. SW03200 SW03201 SW03202 SW03203 SW03204 SW03205 SW03206 SW03207

Status SW03264 SW03322 SW03380 SW03438 SW03496 SW03554 SW03612 SW03670

Control Signals SW03265 SW03323 SW03381 SW03439 SW03497 SW03555 SW03613 SW03671

F
or

k
0

Program Number SW03266 SW03324 SW03382 SW03440 SW03498 SW03556 SW03614 SW03672

Block Number SW03267 SW03325 SW03383 SW03441 SW03499 SW03557 SW03615 SW03673

Alarm Code
SL26000

(SW03268)
SL26016

(SW03326)
SL26032

(SW03384)
SL26048

(SW03442)
SL26064

(SW03500)
SL26080

(SW03558)
SL26096

(SW03616)
SL26112

(SW03674)

Fo
rk

 1

Program Number SW03269 SW03327 SW03385 SW03443 SW03501 SW03559 SW03617 SW03675

Block Number SW03270 SW03328 SW03386 SW03444 SW03502 SW03560 SW03618 SW03676

Alarm Code
SL26002

(SW03271)
SL26018

(SW03329)
SL26034

(SW03387)
SL26050

(SW03445)
SL26066

(SW03503)
SL26082

(SW03561)
SL26098

(SW03619)
SL26114

(SW03677)

F
or

k
2

Program Number SW03272 SW03330 SW03388 SW03446 SW03504 SW03562 SW03620 SW03678

Block Number SW03273 SW03331 SW03388 SW03447 SW03505 SW03563 SW03621 SW03679

Alarm Code
SL26004

(SW03274)
SL26020

(SW03332)
SL26036

(SW03390)
SL26052

(SW03448)
SL26068

(SW03506)
SL26084

(SW03564)
SL26100

(SW03622)
SL26116

(SW03680)

F
or

k
3

Program Number SW03275 SW03333 SW03391 SW03449 SW03507 SW03565 SW03623 SW03681

Block Number SW03276 SW03334 SW03392 SW03450 SW03508 SW03566 SW03624 SW03682

Alarm Code
SL26006

(SW03277)
SL26022

(SW03335)
SL26038

(SW03393)
SL26054

(SW03451)
SL26070

(SW03509)
SL26086

(SW03567)
SL26102

(SW03625)
SL26118

(SW03683)

Fo
rk

 4

Program Number SW03278 SW03336 SW03394 SW03452 SW03510 SW03568 SW03626 SW03684

Block Number SW03279 SW03337 SW03395 SW03453 SW03511 SW03569 SW03627 SW03685

Alarm Code
SL26008

(SW03280)
SL26024

(SW03338)
SL26040

(SW03396)
SL26056

(SW03454)
SL26072

(SW03512)
SL26088

(SW03570)
SL26104

(SW03628)
SL26120

(SW03686)

F
or

k
5

Program Number SW03281 SW03339 SW03397 SW03455 SW03513 SW03571 SW03629 SW03687

Block Number SW03282 SW03340 SW03398 SW03456 SW03514 SW03572 SW03630 SW03688

Alarm Code
SL26010

(SW03283)
SL26026

(SW03341)
SL26042

(SW03399)
SL26058

(SW03457)
SL26074

(SW03515)
SL26090

(SW03573)
SL26106

(SW03631)
SL26122

(SW03689)

F
or

k
6

Program Number SW03284 SW03342 SW03400 SW03458 SW03516 SW03574 SW03632 SW03690

Block Number SW03285 SW03343 SW03401 SW03459 SW03517 SW03575 SW03633 SW03691

Alarm Code
SL26012

(SW03286)
SL26028

(SW03344)
SL26044

(SW03402)
SL26060

(SW03460)
SL26076

(SW03518)
SL26092

(SW03576)
SL26108

(SW03634)
SL26124

(SW03692)

Fo
rk

 7

Program Number SW03287 SW03345 SW03403 SW03461 SW03519 SW03577 SW03635 SW03693

Block Number SW03288 SW03346 SW03404 SW03462 SW03520 SW03578 SW03636 SW03694

Alarm Code
SL260014

(SW03289)
SL26030

(SW03347)
SL26046

(SW03405)
SL26062

(SW03463)
SL26078

(SW03521)
SL26094

(SW03579)
SL26110

(SW03637)
SL26126

(SW03695)

Logical Axis 1 Program Current
Position

SL03290 SL03348 SL03406 SL03464 SL03522 SL03580 SL03638 SL03696

Logical Axis 2 Program Current
Position

SL03292 SL03350 SL03408 SL03466 SL03524 SL03582 SL03640 SL03698

Logical Axis 3 Program Current
Position

SL03294 SL03352 SL03410 SL03468 SL03526 SL03584 SL03642 SL03700

Logical Axis 4 Program Current
Position

SL03296 SL03354 SL03412 SL03470 SL03528 SL03586 SL03644 SL03702

Logical Axis 5 Program Current
Position

SL03298 SL03356 SL03414 SL03472 SL03530 SL03588 SL03646 SL03704

Logical Axis 6 Program Current
Position

SL03300 SL03358 SL03416 SL03474 SL03532 SL03590 SL03648 SL03706

Logical Axis 7 Program Current
Position

SL03302 SL03360 SL03418 SL03476 SL03534 SL03592 SL03650 SL03708

Logical Axis 8 Program Current
Position

SL03304 SL03362 SL03420 SL03478 SL03536 SL03594 SL03652 SL03710

Logical Axis 9 Program Current
Position

SL03306 SL03364 SL03422 SL03480 SL03538 SL03596 SL03654 SL03712

Continued on next page.

1.8 Advanced Programming

Monitoring Motion Program Execution Information

1-36

Logical Axis 10 Program Current
Position

SL03308 SL03366 SL03424 SL03482 SL03540 SL03598 SL03656 SL03714

Logical Axis 11 Program Current
Position

SL03310 SL03368 SL03426 SL03484 SL03542 SL03600 SL03658 SL03716

Logical Axis 12 Program Current
Position

SL03312 SL03370 SL03428 SL03486 SL03544 SL03602 SL03660 SL03718

Logical Axis 13 Program Current
Position

SL03314 SL03372 SL03430 SL03488 SL03546 SL03604 SL03662 SL03720

Logical Axis 14 Program Current
Position

SL03316 SL03374 SL03432 SL03490 SL03548 SL03606 SL03664 SL03722

Logical Axis 15 Program Current
Position

SL03318 SL03376 SL03434 SL03492 SL03550 SL03608 SL03666 SL03724

Logical Axis 16 Program Current
Position

SL03320 SL03378 SL03436 SL03494 SL03552 SL03610 SL03668 SL03726

Logical Axis 17 Program Current
Position

SL08192 SL08224 SL08256 SL08288 SL08320 SL08352 SL08384 SL08416

Logical Axis 18 Program Current
Position

SL08194 SL08226 SL08258 SL08290 SL08322 SL08354 SL08386 SL08418

Logical Axis 19 Program Current
Position

SL08196 SL08228 SL08260 SL08292 SL08324 SL08356 SL08388 SL08420

Logical Axis 20 Program Current
Position

SL08198 SL08230 SL08262 SL08294 SL08326 SL08358 SL08390 SL08422

Logical Axis 21 Program Current
Position

SL08200 SL08232 SL08264 SL08296 SL08328 SL08360 SL08392 SL08424

Logical Axis 22 Program Current
Position

SL08202 SL08234 SL08266 SL08298 SL08330 SL08362 SL08394 SL08426

Logical Axis 23 Program Current
Position

SL08204 SL08236 SL08268 SL08300 SL08332 SL08364 SL08396 SL08428

Logical Axis 24 Program Current
Position

SL08206 SL08238 SL08270 SL08302 SL08334 SL08366 SL08398 SL08430

Logical Axis 25 Program Current
Position

SL08208 SL08240 SL08272 SL08304 SL08336 SL08368 SL08400 SL08432

Logical Axis 26 Program Current
Position

SL08210 SL08242 SL08274 SL08306 SL08338 SL08370 SL08402 SL08434

Logical Axis 27 Program Current
Position

SL08212 SL08244 SL08276 SL08308 SL08340 SL08372 SL08404 SL08436

Logical Axis 28 Program Current
Position

SL08214 SL08246 SL08278 SL08310 SL08342 SL08374 SL08406 SL08438

Logical Axis 29 Program Current
Position

SL08216 SL08248 SL08280 SL08312 SL08344 SL08376 SL08408 SL08440

Logical Axis 30 Program Current
Position

SL08218 SL08250 SL08282 SL08314 SL08346 SL08378 SL08410 SL08442

Logical Axis 31 Program Current
Position

SL08220 SL08252 SL08284 SL08316 SL08348 SL08380 SL08412 SL08444

Logical Axis 32 Program Current
Position

SL08222 SL08254 SL08286 SL08318 SL08350 SL08382 SL08414 SL08446

Continued from previous page.

System Work Number Work 1 Work 2 Work 3 Work 4 Work 5 Work 6 Work 7 Work 8

1.8 Advanced Programming

 Monitoring Motion Program Execution Information

1-37

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

• System Work Numbers 9 to 16

System Work Number Work 9 Work 10 Work 11 Work 12 Work 13 Work 14 Work 15 Work 16
Executing Main Program No. SW03208 SW03209 SW03210 SW03211 SW03212 SW03213 SW03214 SW03215

Status SW03728 SW03786 SW03844 SW03902 SW03960 SW04018 SW04076 SW04134

Control Signals SW03729 SW03787 SW03845 SW03903 SW03961 SW04019 SW04077 SW04135

F
or

k
0

Program Number SW03730 SW03788 SW03846 SW03904 SW03962 SW04020 SW04078 SW04136

Block Number SW03731 SW03789 SW03847 SW03905 SW03963 SW04021 SW04079 SW04137

Alarm Code
SL26128

(SW03732)
SL26144

(SW03790)
SL26160

(SW03848)
SL26176

(SW03906)
SL26192

(SW03964)
SL26208

(SW04022)
SL26224

(SW04080)
SL26240

(SW04138)

F
or

k
1

Program Number SW03733 SW03791 SW03849 SW03907 SW03965 SW04023 SW04081 SW04139

Block Number SW03734 SW03792 SW03850 SW03908 SW03966 SW04024 SW04082 SW04140

Alarm Code
SL26130

(SW03735)
SL26146

(SW03793)
SL26162

(SW03851)
SL26178

(SW03909)
SL26194

(SW03967)
SL26210

(SW04025)
SL26226

(SW04083)
SL26242

(SW04141)

F
or

k
2

Program Number SW03736 SW03794 SW03852 SW03910 SW03968 SW04026 SW04084 SW04142

Block Number SW03737 SW03795 SW03853 SW03911 SW03969 SW04027 SW04085 SW04143

Alarm Code
SL26132

(SW03738)
SL26148

(SW03796)
SL26164

(SW03854)
SL26180

(SW03912)
SL26196

(SW03970)
SL26212

(SW04028)
SL26228

(SW04086)
SL26244

(SW04144)

Fo
rk

 3

Program Number SW03739 SW03797 SW03855 SW03913 SW03971 SW04029 SW04087 SW04145

Block Number SW03740 SW03798 SW03856 SW03914 SW03972 SW04030 SW04088 SW04146

Alarm Code
SL26134

(SW03741)
SL26150

(SW03799)
SL26166

(SW03857)
SL26182

(SW03915)
SL26198

(SW03973)
SL26214

(SW04031)
SL26230

(SW04089)
SL26246

(SW04147)

F
or

k
4

Program Number SW03742 SW03800 SW03858 SW03916 SW03974 SW04032 SW04090 SW04148

Block Number SW03743 SW03801 SW03859 SW03917 SW03975 SW04033 SW04091 SW04149

Alarm Code
SL26136

(SW03744)
SL26152

(SW03802)
SL26168

(SW03860)
SL26184

(SW03918)
SL26200

(SW03976)
SL26216

(SW04034)
SL26232

(SW04092)
SL26248

(SW04150)

F
or

k
5

Program Number SW03745 SW03803 SW03861 SW03919 SW03977 SW04035 SW04093 SW04151

Block Number SW03746 SW03804 SW03862 SW03920 SW03978 SW04036 SW04094 SW04152

Alarm Code
SL26138

(SW03747)
SL26154

(SW03805)
SL26170

(SW03863)
SL26186

(SW03921)
SL26202

(SW03979)
SL26218

(SW04037)
SL26234

(SW04095)
SL26250

(SW04153)

Fo
rk

 6

Program Number SW03748 SW03806 SW03864 SW03922 SW03980 SW04038 SW04096 SW04154

Block Number SW03749 SW03807 SW03865 SW03923 SW03981 SW04039 SW04097 SW04155

Alarm Code
SL26140

(SW03750)
SL26156

(SW03808)
SL26172

(SW03866)
SL26188

(SW03924)
SL26204

(SW03982)
SL26220

(SW04040)
SL26236

(SW04098)
SL26252

(SW04156)

F
or

k
7

Program Number SW03751 SW03809 SW03867 SW03925 SW03983 SW04041 SW04099 SW04157

Block Number SW03752 SW03810 SW03868 SW03926 SW03984 SW04042 SW04100 SW04158

Alarm Code
SL26142

(SW03753)
SL26158

(SW03811)
SL26174

(SW03869)
SL26190

(SW03927)
SL26206

(SW03985)
SL26222

(SW04043)
SL26238

(SW04101)
SL26254

(SW04159)

Logical Axis 1 Program Current
Position

SL03754 SL03812 SL03870 SL03928 SL03986 SL04044 SL04102 SL04160

Logical Axis 2 Program Current
Position

SL03756 SL03814 SL03872 SL03930 SL03988 SL04046 SL04104 SL04162

Logical Axis 3 Program Current
Position

SL03758 SL03816 SL03874 SL03932 SL03990 SL04048 SL04106 SL04164

Logical Axis 4 Program Current
Position

SL03760 SL03818 SL03876 SL03934 SL03992 SL04050 SL04108 SL04166

Logical Axis 5 Program Current
Position

SL03762 SL03820 SL03878 SL03936 SL03994 SL04052 SL04110 SL04168

Logical Axis 6 Program Current
Position

SL03764 SL03822 SL03880 SL03938 SL03996 SL04054 SL04112 SL04170

Logical Axis 7 Program Current
Position

SL03766 SL03824 SL03882 SL03940 SL03998 SL04056 SL04114 SL04172

Logical Axis 8 Program Current
Position

SL03768 SL03826 SL03884 SL03942 SL04000 SL04058 SL04116 SL04174

Logical Axis 9 Program Current
Position

SL03770 SL03828 SL03886 SL03944 SL04002 SL04060 SL04118 SL04176

Logical Axis 10 Program Current
Position

SL03772 SL03830 SL03888 SL03946 SL04004 SL04062 SL04120 SL04178

Logical Axis 11 Program Current
Position

SL03774 SL03832 SL03890 SL03948 SL04006 SL04064 SL04122 SL04180

Logical Axis 12 Program Current
Position

SL03776 SL03834 SL03892 SL03950 SL04008 SL04066 SL04124 SL04182

Logical Axis 13 Program Current
Position

SL03778 SL03836 SL03894 SL03952 SL04010 SL04068 SL04126 SL04184

Logical Axis 14 Program Current
Position

SL03780 SL03838 SL03896 SL03954 SL04012 SL04070 SL04128 SL04186

Logical Axis 15 Program Current
Position

SL03782 SL03840 SL03898 SL03956 SL04014 SL04072 SL04130 SL04188

Continued on next page.

1.8 Advanced Programming

Monitoring Motion Program Execution Information

1-38

Logical Axis 16 Program Current
Position

SL03784 SL03842 SL03900 SL03958 SL04016 SL04074 SL04132 SL04190

Logical Axis 17 Program Current
Position

SL08448 SL08480 SL08512 SL08544 SL08576 SL08608 SL08640 SL08672

Logical Axis 18 Program Current
Position

SL08450 SL08482 SL08514 SL08546 SL08578 SL08610 SL08642 SL08674

Logical Axis 19 Program Current
Position

SL08452 SL08484 SL08516 SL08548 SL08580 SL08612 SL08644 SL08676

Logical Axis 20 Program Current
Position

SL08454 SL08486 SL08518 SL08550 SL08582 SL08614 SL08646 SL08678

Logical Axis 21 Program Current
Position

SL08456 SL08488 SL08520 SL08552 SL08584 SL08616 SL08648 SL08680

Logical Axis 22 Program Current
Position

SL08458 SL08490 SL08522 SL08554 SL08586 SL08618 SL08650 SL08682

Logical Axis 23 Program Current
Position

SL08460 SL08492 SL08524 SL08556 SL08588 SL08620 SL08652 SL08684

Logical Axis 24 Program Current
Position

SL08462 SL08494 SL08526 SL08558 SL08590 SL08622 SL08654 SL08686

Logical Axis 25 Program Current
Position

SL08464 SL08496 SL08528 SL08560 SL08592 SL08624 SL08656 SL08688

Logical Axis 26 Program Current
Position

SL08466 SL08498 SL08530 SL08562 SL08594 SL08626 SL08658 SL08690

Logical Axis 27 Program Current
Position

SL08468 SL08500 SL08532 SL08564 SL08596 SL08628 SL08660 SL08692

Logical Axis 28 Program Current
Position

SL08470 SL08502 SL08534 SL08566 SL08598 SL08630 SL08662 SL08694

Logical Axis 29 Program Current
Position

SL08472 SL08504 SL08536 SL08568 SL08600 SL08632 SL08664 SL08696

Logical Axis 30 Program Current
Position

SL08474 SL08506 SL08538 SL08570 SL08602 SL08634 SL08666 SL08698

Logical Axis 31 Program Current
Position

SL08476 SL08508 SL08540 SL08572 SL08604 SL08636 SL08668 SL08700

Logical Axis 32 Program Current
Position

SL08478 SL08510 SL08542 SL08574 SL08606 SL08638 SL08670 SL08702

Continued from previous page.

System Work Number Work 9 Work 10 Work 11 Work 12 Work 13 Work 14 Work 15 Work 16

1.8 Advanced Programming

 Monitoring Motion Program Execution Information

1-39

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

• System Work Numbers 17 to 24

System Work Number Work 17 Work 18 Work 19 Work 20 Work 21 Work 22 Work 23 Work 24
Executing Main Program No. SW03216 SW03217 SW03218 SW03219 SW03220 SW03221 SW03222 SW03223

Status SW04192 SW04250 SW04308 SW04366 SW04424 SW04482 SW04540 SW04598

Control Signals SW04193 SW04251 SW04309 SW04367 SW04425 SW04483 SW04541 SW04599

F
or

k
0

Program Number SW04194 SW04252 SW04310 SW04368 SW04426 SW04484 SW04542 SW04600

Block Number SW04195 SW04253 SW04311 SW04369 SW04427 SW04485 SW04543 SW04601

Alarm Code
SL26256

(SW04196)
SL26272

(SW04254)
SL26288

(SW04312)
SL26304

(SW04370)
SL26320

(SW04428)
SL26336

(SW04486)
SL26352

(SW04544)
SL26368

(SW04602)

F
or

k
1

Program Number SW04197 SW04255 SW04313 SW04371 SW04429 SW04487 SW04545 SW04603

Block Number SW04198 SW04256 SW04314 SW04372 SW04430 SW04488 SW04546 SW04604

Alarm Code
SL26258

(SW04199)
SL26274

(SW04257)
SL26290

(SW04315)
SL26306

(SW04373)
SL26322

(SW04431)
SL26338

(SW04489)
SL26354

(SW04547)
SL26370

(SW04605)

F
or

k
2

Program Number SW04200 SW04258 SW04316 SW04374 SW04432 SW04490 SW04548 SW04606

Block Number SW04201 SW04259 SW04317 SW04375 SW04433 SW04491 SW04549 SW04607

Alarm Code
SL26260

(SW04202)
SL26276

(SW04260)
SL26292

(SW04318)
SL26308

(SW04376)
SL26324

(SW04434)
SL26340

(SW04492)
SL26356

(SW04550)
SL26372

(SW04608)

Fo
rk

 3

Program Number SW04203 SW04261 SW04319 SW04377 SW04435 SW04493 SW04551 SW04609

Block Number SW04204 SW04262 SW04320 SW04378 SW04436 SW04494 SW04552 SW04610

Alarm Code
SL26262

(SW04205)
SL26278

(SW04263)
SL26294

(SW04321)
SL26310

(SW04379)
SL26326

(SW04437)
SL26342

(SW04495)
SL26358

(SW04553)
SL26374

(SW04611)

F
or

k
4

Program Number SW04206 SW04264 SW04322 SW04380 SW04438 SW04496 SW04554 SW04612

Block Number SW04207 SW04265 SW04323 SW04381 SW04439 SW04497 SW04555 SW04613

Alarm Code
SL26264

(SW04208)
SL26280

(SW04266)
SL26296

(SW04324)
SL26312

(SW04382)
SL26328

(SW04440)
SL26344

(SW04498)
SL26360

(SW04556)
SL26376

(SW04614)

F
or

k
5

Program Number SW04209 SW04267 SW04325 SW04383 SW04441 SW04499 SW04557 SW04615

Block Number SW04210 SW04268 SW04326 SW04384 SW04442 SW04500 SW04558 SW04616

Alarm Code
SL26266

(SW04211)
SL26282

(SW04269)
SL26298

(SW04327)
SL26314

(SW04385)
SL26330

(SW04443)
SL26346

(SW04501)
SL26362

(SW04559)
SL26378

(SW04617)

Fo
rk

 6

Program Number SW04212 SW04270 SW04328 SW04386 SW04444 SW04502 SW04560 SW04618

Block Number SW04213 SW04271 SW04329 SW04387 SW04445 SW04503 SW04561 SW04619

Alarm Code
SL26268

(SW04214)
SL26284

(SW04272)
SL26300

(SW04330)
SL26316

(SW04388)
SL26332

(SW04446)
SL26348

(SW04504)
SL26364

(SW04562)
SL26380

(SW04620)

F
or

k
7

Program Number SW04215 SW04273 SW04331 SW04389 SW04447 SW04505 SW04563 SW04621

Block Number SW04216 SW04274 SW04332 SW04390 SW04448 SW04506 SW04564 SW04622

Alarm Code
SL26270

(SW04217)
SL26286

(SW04275)
SL26302

(SW04333)
SL26318

(SW04391)
SL26334

(SW04449)
SL26350

(SW04507)
SL26366

(SW04565)
SL26382

(SW04623)

Logical Axis 1 Program Current
Position

SL04218 SL04276 SL04334 SL04392 SL04450 SL04508 SL04566 SL04624

Logical Axis 2 Program Current
Position

SL04220 SL04278 SL04336 SL04394 SL04452 SL04510 SL04568 SL04626

Logical Axis 3 Program Current
Position

SL04222 SL04280 SL04338 SL04396 SL04454 SL04512 SL04570 SL04628

Logical Axis 4 Program Current
Position

SL04224 SL04282 SL04340 SL04398 SL04456 SL04514 SL04572 SL04630

Logical Axis 5 Program Current
Position

SL04226 SL04284 SL04342 SL04400 SL04458 SL04516 SL04574 SL04632

Logical Axis 6 Program Current
Position

SL04228 SL04286 SL04344 SL04402 SL04460 SL04518 SL04576 SL04634

Logical Axis 7 Program Current
Position

SL04230 SL04288 SL04346 SL04404 SL04462 SL04520 SL04578 SL04636

Logical Axis 8 Program Current
Position

SL04232 SL04290 SL04348 SL04406 SL04464 SL04522 SL04580 SL04638

Logical Axis 9 Program Current
Position

SL04234 SL04292 SL04350 SL04408 SL04466 SL04524 SL04582 SL04640

Logical Axis 10 Program Current
Position

SL04236 SL04294 SL04352 SL04410 SL04468 SL04526 SL04584 SL04642

Logical Axis 11 Program Current
Position

SL04238 SL04296 SL04354 SL04412 SL04470 SL04528 SL04586 SL04644

Logical Axis 12 Program Current
Position

SL04240 SL04298 SL04356 SL04414 SL04472 SL04530 SL04588 SL04646

Logical Axis 13 Program Current
Position

SL04242 SL04300 SL04358 SL04416 SL04474 SL04532 SL04590 SL04648

Logical Axis 14 Program Current
Position

SL04244 SL04302 SL04360 SL04418 SL04476 SL04534 SL04592 SL04650

Logical Axis 15 Program Current
Position

SL04246 SL04304 SL04362 SL04420 SL04478 SL04536 SL04594 SL04652

Continued on next page.

1.8 Advanced Programming

Monitoring Motion Program Execution Information

1-40

Logical Axis 16 Program Current
Position

SL04248 SL04306 SL04364 SL04422 SL04480 SL04538 SL04596 SL04654

Logical Axis 17 Program Current
Position

SL08704 SL08736 SL08768 SL08800 SL08832 SL08864 SL08896 SL08928

Logical Axis 18 Program Current
Position

SL08706 SL08738 SL08770 SL08802 SL08834 SL08866 SL08898 SL08930

Logical Axis 19 Program Current
Position

SL08708 SL08740 SL08772 SL08804 SL08836 SL08868 SL08900 SL08932

Logical Axis 20 Program Current
Position

SL08710 SL08742 SL08774 SL08806 SL08838 SL08870 SL08902 SL08934

Logical Axis 21 Program Current
Position

SL08712 SL08744 SL08776 SL08808 SL08840 SL08872 SL08904 SL08936

Logical Axis 22 Program Current
Position

SL08714 SL08746 SL08778 SL08810 SL08842 SL08874 SL08906 SL08938

Logical Axis 23 Program Current
Position

SL08716 SL08748 SL08780 SL08812 SL08844 SL08876 SL08908 SL08940

Logical Axis 24 Program Current
Position

SL08718 SL08750 SL08782 SL08814 SL08846 SL08878 SL08910 SL08942

Logical Axis 25 Program Current
Position

SL08720 SL08752 SL08784 SL08816 SL08848 SL08880 SL08912 SL08944

Logical Axis 26 Program Current
Position

SL08722 SL08754 SL08786 SL08818 SL08850 SL08882 SL08914 SL08946

Logical Axis 27 Program Current
Position

SL08724 SL08756 SL08788 SL08820 SL08852 SL08884 SL08916 SL08948

Logical Axis 28 Program Current
Position

SL08726 SL08758 SL08790 SL08822 SL08854 SL08886 SL08918 SL08950

Logical Axis 29 Program Current
Position

SL08728 SL08760 SL08792 SL08824 SL08856 SL08888 SL08920 SL08952

Logical Axis 30 Program Current
Position

SL08730 SL08762 SL08794 SL08826 SL08858 SL08890 SL08922 SL08954

Logical Axis 31 Program Current
Position

SL08732 SL08764 SL08796 SL08828 SL08860 SL08892 SL08924 SL08956

Logical Axis 32 Program Current
Position

SL08734 SL08766 SL08798 SL08830 SL08862 SL08894 SL08926 SL08958

Continued from previous page.

System Work Number Work 17 Work 18 Work 19 Work 20 Work 21 Work 22 Work 23 Work 24

1.8 Advanced Programming

 Monitoring Motion Program Execution Information

1-41

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

• System Work Numbers 25 to 32

System Work Number Work 25 Work 26 Work 27 Work 28 Work 29 Work 30 Work 31 Work 32
Executing Main Program No. SW03224 SW03225 SW03226 SW03227 SW03228 SW03229 SW03230 SW03231

Status SW04656 SW04714 SW04772 SW04830 SW04888 SW04946 SW05004 SW05062

Control Signals SW04657 SW04715 SW04773 SW04831 SW04889 SW04947 SW05005 SW05063

F
or

k
0

Program Number SW04658 SW04716 SW04774 SW04832 SW04890 SW04948 SW05006 SW05064

Block Number SW04659 SW04717 SW04775 SW04833 SW04891 SW04949 SW05007 SW05065

Alarm Code
SL26384

(SW04660)
SL26400

(SW04718)
SL26416

(SW04776)
SL26432

(SW04834)
SL26448

(SW04892)
SL26464

(SW04950)
SL26480

(SW05008)
SL26496

(SW05066)

F
or

k
1

Program Number SW04661 SW04719 SW04777 SW04835 SW04893 SW04951 SW05009 SW05067

Block Number SW04662 SW04720 SW04778 SW04836 SW04894 SW04952 SW05010 SW05068

Alarm Code
SL26386

(SW04663)
SL26402

(SW04721)
SL26418

(SW04779)
SL26434

(SW04837)
SL26450

(SW04895)
SL26466

(SW04953)
SL26482

(SW05011)
SL26498

(SW05069)

F
or

k
2

Program Number SW04664 SW04722 SW04780 SW04838 SW04896 SW04954 SW05012 SW05070

Block Number SW04665 SW04723 SW04781 SW04839 SW04897 SW04955 SW05013 SW05071

Alarm Code
SL26388

(SW04666)
SL26404

(SW04724)
SL26420

(SW04782)
SL26436

(SW04840)
SL26452

(SW04898)
SL26468

(SW04956)
SL26484

(SW05014)
SL26500

(SW05072)

Fo
rk

 3

Program Number SW04667 SW04725 SW04783 SW04841 SW04899 SW04957 SW05015 SW05073

Block Number SW04668 SW04726 SW04784 SW04842 SW04900 SW04958 SW05016 SW05074

Alarm Code
SL26390

(SW04669)
SL26406

(SW04727)
SL26422

(SW04785)
SL26438

(SW04843)
SL26454

(SW04901)
SL26470

(SW04959)
SL26486

(SW05017)
SL26502

(SW05075)

F
or

k
4

Program Number SW04670 SW04728 SW04786 SW04844 SW04902 SW04960 SW05018 SW05076

Block Number SW04671 SW04729 SW04787 SW04845 SW04903 SW04961 SW05019 SW05077

Alarm Code
SL26392

(SW04672)
SL26408

(SW04730)
SL26424

(SW04788)
SL26440

(SW04846)
SL26456

(SW04904)
SL26472

(SW04962)
SL26488

(SW05020)
SL26504

(SW05078)

F
or

k
5

Program Number SW04673 SW04731 SW04789 SW04847 SW04905 SW04963 SW05021 SW05079

Block Number SW04674 SW04732 SW04790 SW04848 SW04906 SW04964 SW05022 SW05080

Alarm Code
SL26394

(SW04675)
SL26410

(SW04733)
SL26426

(SW04791)
SL26442

(SW04849)
SL26458

(SW04907)
SL26474

(SW04965)
SL26490

(SW05023)
SL26506

(SW05081)

Fo
rk

 6

Program Number SW04676 SW04734 SW04792 SW04850 SW04908 SW04966 SW05024 SW05082

Block Number SW04677 SW04735 SW04793 SW04851 SW04909 SW04967 SW05025 SW05083

Alarm Code
SL26396

(SW04678)
SL26412

(SW04736)
SL26428

(SW04794)
SL26444

(SW04852)
SL26460

(SW04910)
SL26476

(SW04968)
SL26492

(SW05026)
SL26508

(SW05084)

F
or

k
7

Program Number SW04679 SW04737 SW04795 SW04853 SW04911 SW04969 SW05027 SW05085

Block Number SW04680 SW04738 SW04796 SW04854 SW04912 SW04970 SW05028 SW05086

Alarm Code
SL26398

(SW04681)
SL26414

(SW04739)
SL26430

(SW04797)
SL26446

(SW04855)
SL26462

(SW04913)
SL26478

(SW04971)
SL26494

(SW05029)
SL26510

(SW05087)

Logical Axis 1 Program Current
Position

SL04682 SL04740 SL04798 SL04856 SL04914 SL04972 SL05030 SL05088

Logical Axis 2 Program Current
Position

SL04684 SL04742 SL04800 SL04858 SL04916 SL04974 SL05032 SL05090

Logical Axis 3 Program Current
Position

SL04686 SL04744 SL04802 SL04860 SL04918 SL04976 SL05034 SL05092

Logical Axis 4 Program Current
Position

SL04688 SL04746 SL04804 SL04862 SL04920 SL04978 SL05036 SL05094

Logical Axis 5 Program Current
Position

SL04690 SL04748 SL04806 SL04864 SL04922 SL04980 SL05038 SL05096

Logical Axis 6 Program Current
Position

SL04692 SL04750 SL04808 SL04866 SL04924 SL04982 SL05040 SL05098

Logical Axis 7 Program Current
Position

SL04694 SL04752 SL04810 SL04868 SL04926 SL04984 SL05042 SL05100

Logical Axis 8 Program Current
Position

SL04696 SL04754 SL04812 SL04870 SL04928 SL04986 SL05044 SL05102

Logical Axis 9 Program Current
Position

SL04698 SL04756 SL04814 SL04872 SL04930 SL04988 SL05046 SL05104

Logical Axis 10 Program Current
Position

SL04700 SL04758 SL04816 SL04874 SL04932 SL04990 SL05048 SL05106

Logical Axis 11 Program Current
Position

SL04702 SL04760 SL04818 SL04876 SL04934 SL04992 SL05050 SL05108

Logical Axis 12 Program Current
Position

SL04704 SL04762 SL04820 SL04878 SL04936 SL04994 SL05052 SL05110

Logical Axis 13 Program Current
Position

SL04706 SL04764 SL04822 SL04880 SL04938 SL04996 SL05054 SL05112

Logical Axis 14 Program Current
Position

SL04708 SL04766 SL04824 SL04882 SL04940 SL04998 SL05056 SL05114

Logical Axis 15 Program Current
Position

SL04710 SL04768 SL04826 SL04884 SL04942 SL05000 SL05058 SL05116

Continued on next page.

1.8 Advanced Programming

Monitoring Motion Program Execution Information

1-42

Logical Axis 16 Program Current
Position

SL04712 SL04770 SL04828 SL04886 SL04944 SL05002 SL05060 SL05118

Logical Axis 17 Program Current
Position

SL08960 SL08992 SL09024 SL09056 SL09088 SL09120 SL09152 SL09184

Logical Axis 18 Program Current
Position

SL08962 SL08994 SL09026 SL09058 SL09090 SL09122 SL09154 SL09186

Logical Axis 19 Program Current
Position

SL08964 SL08996 SL09028 SL09060 SL09092 SL09124 SL09156 SL09188

Logical Axis 20 Program Current
Position

SL08966 SL08998 SL09030 SL09062 SL09094 SL09126 SL09158 SL09190

Logical Axis 21 Program Current
Position

SL08968 SL09000 SL09032 SL09064 SL09096 SL09128 SL09160 SL09192

Logical Axis 22 Program Current
Position

SL08970 SL09002 SL09034 SL09066 SL09098 SL09130 SL09162 SL09194

Logical Axis 23 Program Current
Position

SL08972 SL09004 SL09036 SL09068 SL09100 SL09132 SL09164 SL09196

Logical Axis 24 Program Current
Position

SL08974 SL09006 SL09038 SL09070 SL09102 SL09134 SL09166 SL09198

Logical Axis 25 Program Current
Position

SL08976 SL09008 SL09040 SL09072 SL09104 SL09136 SL09168 SL09200

Logical Axis 26 Program Current
Position

SL08978 SL09010 SL09042 SL09074 SL09106 SL09138 SL09170 SL09202

Logical Axis 27 Program Current
Position

SL08980 SL09012 SL09044 SL09076 SL09108 SL09140 SL09172 SL09204

Logical Axis 28 Program Current
Position

SL08982 SL09014 SL09046 SL09078 SL09110 SL09142 SL09174 SL09206

Logical Axis 29 Program Current
Position

SL08984 SL09016 SL09048 SL09080 SL09112 SL09144 SL09176 SL09208

Logical Axis 30 Program Current
Position

SL08986 SL09018 SL09050 SL09082 SL09114 SL09146 SL09178 SL09210

Logical Axis 31 Program Current
Position

SL08988 SL09020 SL09052 SL09084 SL09116 SL09148 SL09180 SL09212

Logical Axis 32 Program Current
Position

SL08990 SL09022 SL09054 SL09086 SL09118 SL09150 SL09182 SL09214

Continued from previous page.

System Work Number Work 25 Work 26 Work 27 Work 28 Work 29 Work 30 Work 31 Work 32

1.9 Application Examples

Conveyance Device

1

In
tro

du
ct

io
n

to
 M

ot
io

n
P

ro
gr

am
s

1-43

1.9 Application Examples

Motion programs can be used for a variety of different devices and systems.
This section gives some application examples.

Conveyance Device

In this example, a device stacks a specified number of cardboard boxes on a pallet and transports them to
the next process.

Three axes are controlled with motion control for the palletizing process and an automatic pallet feeding
sequence is performed.

Part Inserter

In this example, a device inserts parts, such as connectors, into a printed circuit board.

The transport robot takes out the parts and brings them to the stand. The inserting robot inserts the parts at
the specified positions and angles on the circuit board.

Control Points
• Axes X1 and X2 are moved in synchronized

operation using a virtual axis.
• Interpolation is used to enable smooth move-

ment.
• Palletizing is performed by calculating the

position data with a motion program according
to predefined conditions (box dimensions, the
number of boxes in a horizontal row, the num-
ber of boxes in a vertical row, and the number
of boxes in a stack).

X2
Y

Z

X1

Pallet
Pallet

Control Points
• Two groups of axes are created and a program is

created for each group so that each robot is
independently controlled.

• The tact time is shortened by using two-axis or
three-axis linear interpolation.

+
-

+
-

+ -

+-

+

--

Y2
R

Y1

X2
Z2

X1

Z1+

Robot 2

Stand

Parts tray

Robot 1

Printed board

1.9 Application Examples

Panel Processing Machine

1-44

Panel Processing Machine

In this example, a device draws patterns on flat panels for construction materials.

More than ten cutters are mounted in series on the X axis so that the width of the pattern can be easily
changed.

Metal Sheet Pressing Equipment

In this example, a device is used to bend metal sheets.

A metal sheet is bent into various shapes by changing the adjustable axis while feeding a sheet using the
rolling axis.

Control Points
• The X and Y axes are moved with circular

interpolation to draw waveform patterns.
• Movement of the X1 and X2 axes is syn-

chronized by using a virtual axis.

z
Y

z
Y2x

Y1

Panel

Wave pattern

Cutter

Control Points
• Two axes, a linear axis and rotational axis,

are controlled by using linear interpolation.
• The motion program to call is changed

based on the processing that needs to be
performed.

Motor for
adjusting roller

Workpiece
platform Adjustable roller

Motor for roller

Reduction
gears

Feeding roller
(urethane)

Motor for
workpiece insertion

Workpiece
(metal sheet)

Introduction to
Sequence Programs 2

This chapter introduces sequence programs, their features, and
how to use them for first-time users of sequence programs.

2.1 What Is a Sequence Program? 2-2

2.2 Features of a Sequence Program 2-3

Sequence Program Execution Methods 2-3
Same Language as Motion Programs 2-3
Data Transfer to and from Motion Programs 2-3
Memory Usage Reduced by Use of Subprograms 2-4
Easy Programming Functions . 2-4

2.3 Types of Sequence Programs 2-5

2.4 Executing Sequence Programs 2-6

Execution Processing Method . 2-6
Registering Program Execution . 2-8
Work Registers . 2-9

2.1 What Is a Sequence Program?

2-2
2.1 What Is a Sequence Program?

A sequence program is executed in a scan and it is written in the same language as a motion program.
An application to cyclically check status, such as interlock status, can be created by using a sequence pro-
gram.

Sequence programs can be executed by calling them from the M-EXECUTOR program execution defini-
tions.

You can create up to 512 sequence programs. However, you must also include motion programs in this
total.
An example of a sequence program is shown below.

2.2 Features of a Sequence Program

Sequence Program Execution Methods

2

In
tro

du
ct

io
n

to
 S

eq
ue

nc
e

P
ro

gr
am

s

2.2 Features of a Sequence Program

Sequence Program Execution Methods

Sequence programs are executed in the same way as ladder programs.

A sequence program is executed cyclically in a fixed scan. Processing from the start of the program to the
END instruction is completed in one scan. Sequence programs can be executed by calling them from the
M-EXECUTOR program execution definitions.

Same Language as Motion Programs

Sequence programs use the motion language, just like motion programs.

The motion language instructions that can be used in sequence programs, however, are limited to sequence
instructions, such as math instructions. Instructions for motion control, such as axis movement instruc-
tions, cannot be used.

You can use sequence programs to create applications for sequence control without using ladder programs.

Data Transfer to and from Motion Programs

You can transfer data between sequence and motion programs.
Data registers (M registers) are used to transfer data.

For example, this allows a value that is updated in a sequence program to be used in a motion program,
and vice-versa.

IB00000 IB00001 OB00000

IB00002

IB00003

DB000005

IB00004 DB000006 OB00001

END

OB00000 = IB00000 & IB00001;

DB000005 = IB00002 | IB00003;

OB00001 = PON(IB00004 DB000006);

END;

Ladder Program
(Scan Execution)

Sequence Program
(Scan Execution)

Instructions
are executed
in a fixed
period.

Instructions
are executed
in a fixed
period.

MOV [A1] ML00000;

ML00000 = ML00002 + ML00004;

ML00000 = ML00000 * ML00006;

END;

Sequence Program

Data registers
(M registers)

Motion Program

Read ReadRefreshed Refreshed
2-3

2.2 Features of a Sequence Program

Memory Usage Reduced by Use of Subprograms

2-4
Memory Usage Reduced by Use of Subprograms

You can create sequence programs as subprograms.

Subprograms are created to perform common operations. They help minimizing the number of program
steps and allow the efficient use of memory.

Easy Programming Functions

The following easy programming functions can also be used for sequence programs.

SPM001 SPM002 SPM003

SPS010

(SSEE) (SSEE) (SSEE)

Main program Main program Main program

Called. Called. Called.

The common
process is
written as a
subprogram.

Subprogram

● Instruction Entry Assistance ● Debugging
Simply select an instruction and set the data in the
Instruction Input Assistance Dialog Box shown
below to insert the instruction into the editor.

Inserts the instruction.

This mode allows you to debug sequence programs.
Common debugging commands, such as step-by-step
execution and setting breakpoints, are provided.

2.3 Types of Sequence Programs

2

In
tro

du
ct

io
n

to
 S

eq
ue

nc
e

P
ro

gr
am

s

2.3 Types of Sequence Programs

There are two types of sequence programs.

Type
Designation

Method
Features Number of Programs

Main programs
SPM
(= 1 to
512)

Main programs are called from
the M-EXECUTOR program exe-
cution definitions.

You can create up to 512 motion pro-
grams, including the following programs:
Motion main programs
Motion subprograms
Sequence main programs
Sequence subprograms

Subprograms
SPS
(= 1 to
512)

Subprograms are called from a
main program.

The same numbers are used to manage the sequence programs and motion programs.
Use a unique number for each program.
• Motion program numbers are given in the form MPM or MPS.
• Sequence program numbers are given in the form SPM or SPS.Important
2-5

2.4 Executing Sequence Programs

Execution Processing Method

2-6
2.4 Executing Sequence Programs

This section describes how to execute sequence programs.

Execution Processing Method

A sequence program is executed by calling it from the M-EXECUTOR execution definitions.

Sequence programs are executed in ascending order.

The following figure shows an execution example.

If the execution type is set to a high-speed scan sequence program or low-speed scan sequence program,
then the program will be executed as soon as the definition is saved. If the execution type is set to a startup
sequence program, then the program will be executed the next time when the power supply is turned ON.

END

END

RETEND

SPM003
SPS101

SPM001

SPM002

SSEE
SPS101

IF MW000<32767;
MW000=MW000+1;
ELSE;
MW000;
IEND;

M-EXECUTOR Program Execution Definitions

Sequence Programs

Sequence
Subprogram

2.4 Executing Sequence Programs

 Execution Processing Method

2

In
tro

du
ct

io
n

to
 S

eq
ue

nc
e

P
ro

gr
am

s

M-EXECUTOR Program Execution Definitions

Execution Timing

This section describes the execution timing of programs in the above example.
The following figure shows program and drawing execution that is based on the order of registration in the
M-EXECUTOR program definitions.

Sequence Program Execution Example
The following figure shows an example of the sequence programs registered in the M-EXECU-
TOR.

Example

SPM003 MPM004 SPM005 DWG.H

SPM001 DWG.A

DWG.L

SPM003 MPM004

SPM002

SPM005 DWG.H

DWG.X

SPM002

Startup

High-speed scan

High-speed scan cycle High-speed scan cycle

Low-speed scan

Low-speed scan cycle

This shows that the higher
priority processing is interrupting
lower priority processing.

Ladder program
processing
2-7

2.4 Executing Sequence Programs

Registering Program Execution

2-8
Registering Program Execution

Register the programs to execute as shown below. The following screen capture shows an example of reg-
istering the SPM001 sequence program for execution in a high-speed scan cycle.

Sequence programs must be directly designated. Indirect designations cannot be used.

Register the program to execute.

Information

2.4 Executing Sequence Programs

 Work Registers

2

In
tro

du
ct

io
n

to
 S

eq
ue

nc
e

P
ro

gr
am

s

Work Registers

When a sequence program is registered for execution, that program is assigned status flags to monitor its
status. The address of the status flags for a sequence program can be obtained with the following equation.

Status Flags

The Sequence Program Status Flags give the execution conditions of the sequence program.

The following table describes the meanings of the Status Flags.

Bit No Name Description

0 to 3

Bit 0 Program Executing
This bit is set to 1 when the sequence program is running.

0: Sequence program is stopped.
1: Sequence program is running.

Bit 1 (Reserved for system.) −
Bit 2 (Reserved for system.) −
Bit 3 (Reserved for system.) −

4 to 7

Bit 4 (Reserved for system.) −
Bit 5 (Reserved for system.) −
Bit 6 (Reserved for system.) −
Bit 7 (Reserved for system.) −

Continued on next page.

First I/O register
address

IW + 4 × (Program execution registration No. 1)

First M-EXECUTOR I/O register address∗

∗You can check the first I/O register address on the Module Configuration Definition Tab Page.
2-9

2.4 Executing Sequence Programs

Work Registers

2-1
8 to B

Bit 8 Program Alarm

This bit changes to 1 when any of the following errors occur after calling
a sequence subprogram using an SSEE instruction. This bit changes
back to 0 when the error is cleared.
• The called program is not registered.
• The called program is not a sequence program.
• The called program is not a subprogram (a main program was called).
• Called Program Number Limit Exceeded Error
• Too Many Nesting Levels Error

0: There is no program alarm.
1: A program alarm occurred.

Bit 9
Program Stopped at
Breakpoint

This bit is set to 1 when execution of a program stops at a breakpoint in
Debug Operation Mode.

0: Not stopped at a breakpoint.
1: Stopped at a breakpoint.

Bit A (Reserved for system.) −

Bit B
Debug Operation
Mode

This bit is set to 1 when a program is running in Debug Operation Mode.
0: Not in Debug Operation Mode (Normal Execution Mode).
1: In Debug Operation Mode.

C to F

Bit C Program Type

This bit reports whether the program that is being executed is a motion
program or a sequence program.

0: Motion program
1: Sequence program

Bit D Start Request History
This bit is set to 1 when the sequence program is running.

0: Sequence program is stopped.
1: Sequence program is running.

Bit E (Reserved for system.) −
Bit F (Reserved for system.) −

Sequence Program Alarms
Bit 8 (Program Alarm) in the Status Flags changes to 1 if an error is detected after calling a sequence
subprogram with an SSEE instruction. This bit changes back to 0 when the error is cleared.
The following errors can occur.
• The called program is not registered.
• The called program is not a sequence program.
• The called program is not a subprogram (a main program was called).
• Called Program Number Limit Exceeded Error
• Too Many Nesting Levels Error

Continued from previous page.

Bit No Name Description

Note
0

Program Development
Flow 3

This chapter describes the procedures from system setup to actual
operation using MPE720 Engineering Tool version 7.

3.1 Program Development Flow 3-2

3.2 Program Development Procedures 3-3

Preparation for Devices to be Connected 3-3
Creating a Project . 3-4
Self Configuration . 3-6
Going Online . 3-6
Group Definition Settings . 3-6
Creating Programs . 3-8
Registering Program Execution . 3-10
Transferring the Programs . 3-13
Debugging Programs . 3-16
Saving the Programs to Flash Memory 3-17
Executing the Programs . 3-18

3.1 Program Development Flow

3-2
3.1 Program Development Flow

In this chapter, motion program development procedures are described according to the following flow-
chart.

Note: 1. The development procedure for sequence programs is basically the same as that for motion programs.
This section describes the development flow for motion programs.

2. The above flowchart is an example of the program development process. External devices must be set up to use programs
on the actual system.

Preparation for Devices to be Connected Registering Program Execution

Install the MPE720 on a PC.
Assemble and wire all devices to be connected.

 System Configuration (page 3-3)
 Installing MPE720 Version 7 (page 3-3)

Register the programs in the system to execute
them in high-speed scan.

 Registering Program Execution (page 3-10)

Creating a Project Transferring the Programs

Create a new project before starting program
development.
Create a project.

 Creating a Project (page 3-4)

Transfer the programs that you created to the
MP3000-series Machine Controller.

 Transferring the Programs (page 3-13)

Self Configuration Debugging Programs

Perform self configuration and start the system.
 Self Configuration (page 3-6)

Debug the programs that you created.
 Debugging Programs (page 3-16)

Going Online Saving the Programs to Flash Memory

Set up communications between the Machine
Controller and the PC.

 Going Online (page 3-6)

Save the debugged programs to flash memory.
 Saving the Programs to Flash Memory (page 3-
17)

Group Definition Settings Executing the Programs

Group axes together in axes groups based on the
machine configuration.

 Group Definition Settings (page 3-6)

Use the register list to execute the programs that
you created.

 Executing the Programs (page 3-18)

Creating Programs

Write the programs in the Motion Editor.
 Creating Programs (page 3-8)

11

3.2 Program Development Procedures

Preparation for Devices to be Connected

3
P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

3.2 Program Development Procedures

This section describes the procedures to develop programs based on an example system.

Preparation for Devices to be Connected

This section describes an example system configuration for the devices connected to the Machine Control-
ler and the setup procedures that are required before starting the system.

System Configuration

The following figure shows a typical system configuration.

Note: In the system configuration example that is given above, the SERVOPACK station numbers are set to 1 and 2.

Installing MPE720 Version 7

Install MPE720 version 7 on a PC.

Refer to the following manual for the installation procedure.
MP2000/MP3000 Series Machine Controller System Setup Manual (Manual No.: SIEP C880725 00)

Power
supply MECHATROLINK Cable

SERVOPACK

MECHATROLINK Cable

SERVOPACK

Machine Controller

Power
supply

PP cable Motor cable Encoder cable

PC running the MPE720 Servomotor Servomotor
3-3

3.2 Program Development Procedures

Creating a Project

3-4
Creating a Project

A project file is the application file for MPE720 version 7. It includes the following information.

The project file includes files for all of the above information but allows you to handle them as a single file
in Windows. The project file extension is .YMW7.

Opening a project file enables editing all of these files.

Only one project file can be opened in a single window with MPE720 version 7. The same project file can-
not be opened in more than one window with MPE720 version 7. If you try to open a project file that is
already open, the window that contains the open project file will move to the front.

Use the following procedure to create a new project.

System Configuration

• System definitions
• Scan time definitions
• Module configuration definition
• Data tracing information

Program

• Ladder programs (high-speed, low-speed, start, interrupt, and function programs)
• Motion programs (main programs, subprograms, and group definitions)
• Table data
• Variables (axis, I/O, global, constant, and user-defined structure variables)
• Comments (I/O, global, and constant comments)

Registers

• M (data registers)
• D (internal registers)
• C (constant registers)
• S (system registers)
• I (input registers)
• O (output registers)
• G (data registers)

You can also use project files created in MPE720 version 6.0 (extension .YMV). In this case, the
extended features of the MP3000-series Machine Controllers cannot be used.

Important

3.2 Program Development Procedures

 Creating a Project

3
P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

1. Double-click the icon shown below on the computer desktop to start MPE720 version 7.

2. Select New on the Start Tab Page.

3. Specify the file name, file storage location, Machine Controller series, and model.

Specify the destination location in the Save in Box.

Enter the file name in the File name Box.

Select the applicable series in the Series Box.

Select the applicable model in the Controller Box.

4. Click the Create Button.

3-5

3.2 Program Development Procedures

Self Configuration

3-6
Self Configuration

Set up the system by performing self configuration. Self configuration is used to automatically detect all
the Modules that are installed in the MP3000-series Machine Controller and all the slave devices that are
connected via the MECHATROLINK connector (such as Servo Drives), and then create the module con-
figuration definition files based on that information. This allows you to quickly and easily set up the sys-
tem. You can perform self configuration either when the power supply to the Machine Controller is turned
ON or by using the MPE720.

Refer to the following manual for details on self configuration.
MP3000-series Basic Units User’s Manual (Manual No.: SIEP C880725 10)

MP3000 Series MP3300 Product Manual (Manual No.: SIEP C880725 21)

Going Online

Set the conditions for communications between the PC on which MPE720 version 7 is installed and the
Machine Controller.
Refer to the following manual for the procedure to set up communications.

MP2000/MP3000 Series Machine Controller System Setup Manual (Manual No.: SIEP C880725 00)

Group Definition Settings

Before creating a motion program, group the axes together as required by the machine configuration.

1. Click the Motion Tab in the pane.
Motion Program is displayed in the tree hierarchy in the pane.

Motion program is
displayed.

3.2 Program Development Procedures

 Group Definition Settings

3
P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

2. Right-click Motion Program in the pane, and then select Group Definition from the menu.

3. Set the detailed settings for the axes to use on the Axis Specification Tab Page and click the OK
Button.

Note: Refer to the following section for details on group definitions.

5.2 Group Definition Details (page 5-9)

The Group Definition Dialog Box also has a Vision Specification Tab Page.

Right-click.

Information
3-7

3.2 Program Development Procedures

Creating Programs

3-8
Creating Programs

This section describes creating an example motion program under the following conditions in the Motion
Editor.

Conditions: Move the Servomotor 150,000 pulses and then stop.

1. Right-click Main Program in the pane, and then select New from the menu.

2. Click the OK Button.

3. Enter the motion program.

If you perform this task with an actual motor, be sure to set the speed, acceleration time, and travel
distance to appropriate values.

Note

Right-click.

3.2 Program Development Procedures

 Creating Programs

3
P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

4. Select Compile − Compile from the menu bar to compile the program.

When the compilation is finished, the motion program will be saved automatically.

If an error was displayed in the Error List Dialog Box during compilation, the motion program will not
be saved.

Important
3-9

3.2 Program Development Procedures

Registering Program Execution

3-1
Registering Program Execution

You can call the motion programs that you have created either by using MSEE instructions in ladder pro-
grams or by registering the motion programs in the M-EXECUTOR program execution definitions. Refer
to the following section for details on how to register a program for execution.

Program Execution Registration Methods (page 1-22)

Calling Motion Programs from a Ladder Program

1. Click the Ladder Tab in the pane.
Ladder Program is displayed in the pane.

2. Right-click High-speed in the pane, and then select New from the menu.

Ladder program is
displayed.

Right-click.
0

3.2 Program Development Procedures

 Registering Program Execution

3
P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

3. Click the OK Button.

4. Create the following ladder program. After you finish entering the ladder program, compile it by

pressing the F4 key on the keyboard or clicking the [] Icon on the toolbar.

• Make sure that bit 0 (Machine Controller Operation Ready) in the IW00 monitor parame-
ter is ON before turning ON the MB000000 (Servo ON command).

• If the Machine Controller Operation Ready bit is OFF, the Servo ON command cannot be
accepted.

Information
3-11

3.2 Program Development Procedures

Registering Program Execution

3-1
Calling a Motion Program with the M-EXECUTOR

Use the following procedure to register a program in the M-EXECUTOR program execution definitions.
However, be sure to transfer the program before performing this procedure.

1. Click the Assign Task () Icon in the Motion Editor Pane of the completed program.

The Task Allocation Dialog Box will be displayed.

2. Click the Set Button to register the program.
2

3.2 Program Development Procedures

 Transferring the Programs

3
P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

Transferring the Programs

Use the following procedure to transfer motion programs to the MP3000-series Machine Controller.
This procedure is not necessary if you created the motion program online.

1. Click Communications Setting on the Start Tab Page.

2. Select the desired communications port in the Communication Port Box on the Communications
Setting Dialog Box. Click the Connection Button.
3-13

3.2 Program Development Procedures

Transferring the Programs

3-1
3. Select Transfer − Write to Machine Controller from the Launcher.

4. Click the Individual Button, then select only the Program Check Box. Then, click the Start But-
ton.

Note: 1. When an individual transfer is selected, the same file in the Machine Controller will be overwritten with the
selected project file data.

2. When a batch transfer is selected, the Machine Controller’s RAM will be cleared before the transfer, and all
project file data will be written in the RAM.

5. Click the CPU STOP Button.

The transfer will start.
4

3.2 Program Development Procedures

 Transferring the Programs

3
P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

6. Click the Yes Button in the MPE720 Ver. 7 Dialog Box.

The Machine Controller switches to RUN Mode.
3-15

3.2 Program Development Procedures

Debugging Programs

3-1
Debugging Programs

Debug the programs that you created.

1. Click the Register List 1 Tab.
The register list is displayed.
Specify MB000000 for the register. Turn ON MB000000 as shown below to turn ON the power to the Ser-
vomotor.

Note: When using the M-EXECUTOR to register the programs for execution, use the setting parameter to turn ON the
power to the Servomotor.

2. Click the Icon.

3. Operation changes to Debug Mode.

4. Click the Icon to execute the program line by line, and check the operation of the program.

5. Step through the program until the END instruction. When debugging is completed, turn OFF the
power to the Servomotor.
6

3.2 Program Development Procedures

 Saving the Programs to Flash Memory

3
P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

Saving the Programs to Flash Memory

You can save the Machine Controller RAM data to the flash memory of the Machine Controller.

1. Select Transfer − Save to Flash Memory.

2. Click the Start Button.

3. Click the No Button.

The MPE270 begins saving the data to flash memory.

4. Click the Yes Button.

The Machine Controller will switch to RUN Mode.
3-17

3.2 Program Development Procedures

Executing the Programs

3-1
Executing the Programs

Use the following procedure to execute the programs that you created on the actual system. Turn ON the
Request for Start of Program Operation Control Signal to execute the motion program.

1. Click the Register List 1 Tab.
The register list is displayed.
Specify MB000000 for the register. Turn ON MB000000 as shown below to turn ON the power to the Ser-
vomotor.

2. Turn ON MB000001 in the register list to execute the MPM001 motion program.

MPM001 starts execution when
DB000010 turns ON.

First MSEE Work Register

Status Flags

Control Signals

System Work NumberDW00003

DW00001

DW00000

Interpolation OverrideDW00002

Turn ON MB000000 to turn ON
the power to the Servomotor.
8

Registers 4

This chapter describes in detail the registers that you can use in
both motion programs and in sequence programs.

4.1 Registers . 4-2

Types of Registers . 4-2
Global Registers . 4-5
Local Registers . 4-6
Data Types . 4-8

4.2 Using Registers . 4-11

System Registers (S Registers) . 4-11
Data Registers (M Registers) . 4-12
Data Registers (G Registers) . 4-13
Input Registers (I Registers) . 4-14
Output Registers (O Registers) . 4-15
C Registers . 4-16
D Registers . 4-17

4.3 Using Indices i and j . 4-18

4.4 Using Array Registers . 4-20

4.1 Registers

Types of Registers

4-2
4.1 Registers

This section describes registers.

In motion programs and sequence programs, registers are used in place of numeric values. When registers
are used in actual operations, the numeric values that are stored in the register area are retrieved.

Types of Registers

There are 11 different types of registers. The types of registers that can be used depend on the program.

The seven types of registers shown in the following table (S, M, G, I, O, C, and D) can be used in motion
programs and sequence programs.

S, M, G, I, O, and C registers are global registers that can be used in any program. D registers are local reg-
isters that are retained on an individual program basis. D registers are local registers that are retained on an
individual drawing basis. They are unique within each drawing, and therefore the value of a D register in
one drawing cannot be accessed from another drawing.

Types of Registers

Type Name
Designation

Method
Usable Range Contents Features

S
System registers
(S registers)

SBnnnnnh,
SWnnnnn,
SLnnnnn,
SQnnnnn,
SFnnnnn,
SDnnnnn,
SAnnnnn

SW00000 to
SW65534

These registers are prepared by the
system. They report the status of the
Machine Controller and other informa-
tion.
The system clears the registers from
SW00000 to SW00049 to 0 at startup.
They have a battery backup.

Shared by
all

programs.

M
Data registers
(M registers)

MBnnnnnnnh,
MWnnnnnnn,
MLnnnnnnn,
MQnnnnnnn,
MFnnnnnnn,
MDnnnnnnn,
MAnnnnnnn

MW0000000
to
MW1048575

These registers are used as interfaces
between programs.
They have a battery backup.

G G registers

GBnnnnnnnh,
GWnnnnnnn,
GLnnnnnnn,
GQnnnnnnn,
GFnnnnnnn,
GDnnnnnnn,
GAnnnnnnn,

GW0000000 to
GW2097151

These registers are used as interfaces
between programs.
They do not have a battery backup.

I
Input registers
 (I registers)

IBhhhhhh,
IWhhhhh,
ILhhhhh,
IQhhhhh,
IFhhhhh,
IDhhhhh,
IAhhhhh,

IW00000 to
IW07FFF,
IW10000 to
IW17FFF

These registers are used for input data.

IW08000 to
IW0FFFF

These registers store the motion moni-
tor parameters.
These registers are used for motion
control.

IW20000 to
IW23FFF

These registers are used for CPU inter-
face input data.

Continued on next page.

4.1 Registers

 Types of Registers

4
R

eg
is

te
rs
O
Output registers
(O registers)

OBhhhhhh,
OWhhhhh,
OLhhhhh,
OQhhhhh,
OFhhhhh,
ODhhhhh,
OAhhhhh,

OW00000 to
OW07FFF,
OW10000 to
OW17FFF

These registers are used for output
data.

Shared by
all

programs.

OW08000 to
OW0FFFF

These registers store the motion setting
parameters.
These registers are used for motion
control.

OW20000 to
OW23FFF

These registers are used for CPU inter-
face output data.

C
Constant regis-
ters (C registers)

CBnnnnnh,
CWnnnnn,
CLnnnnn,
CQnnnnn,
CFnnnnn,
CDnnnnn,
CAnnnnn

CW00000 to
CW16383

These registers can be read in pro-
grams but they cannot be written.
The values are set from the MPE720.

D D registers

DBnnnnnh,
DWnnnnn,
DLnnnnn,
DQnnnnn,
DFnnnnn,
DDnnnnn,
DAnnnnn

DW00000 to
DW16383

These registers can be used for general
purposes within a program.
By default, 32 words are reserved for
each drawing.

Program-
specific

Continued on next page.

Types of Registers
Continued from previous page.

Type Name
Designation

Method
Usable Range Contents Features
4-3

4.1 Registers

Types of Registers

4-4
Note: n: decimal digit, h: hexadecimal digit

registers

#Bnnnnnh,
#Wnnnnn,
#Lnnnnn,
#Qnnnnn,
#Fnnnnn,
#Dnnnnn,
#Annnnn

#W00000 to
#W16383

These registers can only be referenced.
They can be referenced only within the
local drawing.

Function-
specific

X
Function input
registers

XBnnnnnh,
XWnnnnn,
XLnnnnn,
XQnnnnn,
XFnnnnn,
XDnnnnn

XW00000 to
XW00016

These registers are used for inputs to
functions.
• Bit inputs: XB000000 to XB00000F
• Integer inputs: XW00001 to

XW00016
• Double-length integers: XL00001 to

XL00015
• Quadruple-length integers: XQ00001

to XQ00013
• Real numbers: XF00001 to XF00015
• Double-length real numbers:

XD00001 to XD00013

Y
Function output
registers

YBnnnnnh,
YWnnnnn,
YLnnnnn,
YQnnnnn,
YFnnnnn,
YDnnnnn

YW00000 to
YW000016

These registers are used for outputs to
functions.
• Bit outputs: YB000000 to

YB00000F
• Integer outputs: YW00001 to

YW00016
• Double-length integers: YL00001 to

YL00015
• Quadruple-length integers: YQ00001

to YQ00013
• Real numbers: YF00001 to YF00015
• Double-length real numbers:

YD00001 to YD00013

Z
Function inter-
nal registers

ZBnnnnnh,
ZWnnnnn,
ZLnnnnn,
ZQnnnnn,
ZFnnnnn,
ZDnnnnn

ZW00000 to
ZW00016

These are internal registers that are
unique within each function.
These registers are used for internal
processing in functions.

registers cannot be used in motion programs or sequence programs. If you attempt to use a # register
in either of these types of programs, a syntax error will occur when the program is saved.

Types of Registers
Continued from previous page.

Type Name
Designation

Method
Usable Range Contents Features

Important

4.1 Registers

 Global Registers

4
R

eg
is

te
rs
Global Registers

Global registers are shared by ladder programs, user functions, motion programs, and sequence programs.

This allows the operation results of a ladder program to be used by other user functions, motion programs,
or sequence programs. Memory space for global registers is reserved by the system for each register type.

Ladder
programs

User
functions

Global Registers

S registers

65,535 words

M registers

1,048,576 words

G registers

2,097,152 words

I registers

65,536 words
Input data +

Monitor
parameters +
CPU interface

inputs

O registers

65,536 words
Output data +

Setting
parameters +
CPU interface

outputs

C registers

16,384 words

Motion
programs/sequence
programs
4-5

4.1 Registers

Local Registers

4-6
Local Registers

Local registers can be used within each specific drawing. These registers cannot be shared with other
drawings. Local registers are stored in the program memory for each drawing.

Note: With the default settings, 32 words of D registers are provided for each drawing.

The scope of registers that is used in each drawing is specified in the Program Property Dialog Box.
Up to 16,384 words of local registers can be used for one drawing.
Use the following procedure to extend the range of D registers.

1. Right-click MPM001 in the Motion Pane, and then select Property from the menu.

2. Change the range for D registers from 32 to 100 in the Program Property Dialog Box.

D registers
(DW00000 to DW00031)

D registers
(DW00000 to DW00031)

Subprogram
(MPS002)

Motion
program

(MPM001)

MSEE MPS002;

These drawings are different, so the D registers
cannot be shared between them.

Right-click.

4.1 Registers

 Local Registers

4
R

eg
is

te
rs
3. Click the OK Button.

This concludes the procedure to extend the range of D registers.
4-7

4.1 Registers

Data Types

4-8
Data Types

There are various data types that you can use depending on the purpose of the application: bit, integer,
double-length integer, quadruple-length integer, real number, and double-length real number.

*1. These data types cannot be used for indirect designation of motion programs.
*2. Conforms to IEEE754 standards.

Symbol Data Type Range of Values Data Size Description

B Bit 1 (ON) or 0 (OFF) − Used in relay circuits and to deter-
mine ON/OFF status.

W Integer
-32,768 to 32,767
(8000 to 7FFF hex)

1 word
Used for numeric operations. The
values in parentheses on the left are
for logical operations.

L
Double-length
integer

-2,147,483,648 to 2,147,483,647
(80000000 to 7FFFFFFF hex)

2 words
Used for numeric operations. The
values in parentheses on the left are
for logical operations.

Q
Quadruple-
length inte-

ger*1

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
(8000000000000000 to
7FFFFFFFFFFFFFFF hex)

4 words
Used for numeric operations. The
values in parentheses on the left are
for logical operations.

F Real number ± (1.175E-38 to 3.402E38) or 0 2 words
Used for advanced numeric opera-

tions.*2

D
Double-length

real number*1 ± (2.225E-308 to 1.798E+308) or 0 4 words
Used for advanced numeric opera-

tions.*2

A Address 0 to 2,097,152 − Used only as pointers for address-
ing.

The MP3000-series Machine Controller does not have separate registers for each data type. As shown
in the following figure, the same address will access the same register even if the data type is different.
For example, MB00001003, a bit address, and the MW0000100, an integer address, have different data
types, but they both access the same register, MW0000100.Important

4.1 Registers

 Data Types

4
R

eg
is

te
rs
Pointer Designation
When an address is passed to a function as a parameter, this is referred to as pointer designation. When
pointer designation is used, the continuous data area starting from the address of the specified register
number can be used in internal processing for functions with all data types.

[MW0000100]

[MW0000101]

[MW0000102]

[MW0000103]

[ML0000100]
[MF0000100]

[ML0000102]
[MF0000102]

0123456789ABCDEF

[MA0000101]

…
…

[MB00001003]

[MB0000103B]

Data Types and Register Designations

Integer data
Bit data

Address data

An extra digit that specifies the bit (3) is appended
to the end of the register address (0000100).One word is allocated for each register address.

Double-length integer or
real number data type

Bit data

If MA0000101 is specified as a pointer, it addresses a
continuous data area with the specified register
address (0000101) as the starting address. This data
area can be used with all data types in internal
processing for functions.

The addressed register (0000102) and the following
register (0000103) are combined as a 2-word area.
Therefore, the register addresses are specified at
intervals of 2.

Terms
4-9

4.1 Registers

Data Types

4-1
Precautions to Consider when Performing Register Operations
The following examples show what occurs if data is stored in a register of a different data type.
• Format

Substitute (=) is used for numeric operation instructions.
The destination register is written on the left, and the operation is written on the right.
 MW00100 = MW00101 + MW00102;

• Register Operations
Storing Real Number Data in an Integer Register
 MW00100 = MF00200; The real number data is converted to integer data and stored in the destination register.
 (00001)(1.234)
There may be rounding error due to storing a real number in an integer register.
Whether numbers are rounded or truncated when converting a real number to an integer can be set in
the Program Properties Dialog Box.
 MW00100 = MF00200 + MF00202;
 (0124)(123.48) (0.02) The result of the operation may depend on the value of the register.
 (0123)(123.49) (0.01)
Storing Real Number Data in a Double-length Integer Register
 ML00100 = MF00200; The real number data is converted to integer data and stored in the destination register.
 (65432)(65432.1)
Storing Double-length Integer Data in an Integer Register
 MW00100 = ML00200; The lower 16 bits of double-length integer data are stored in the destination register as
they are.
 (-00001)(65535)
Storing Integer Data in a Double-length Integer Register
 ML00100 = MW00200; The integer data is converted to double-length integer data and stored in the destination

register.
 (0001234)(1234)

• Examples of Syntax Errors
Storing Integer Data in a Bit Register
 MB000100 = 123; Syntax error
 MB000100 = MW00100; Syntax error

Important
0

4.2 Using Registers

System Registers (S Registers)

4
R

eg
is

te
rs
4.2 Using Registers

This section describes how to use the different types of registers.

System Registers (S Registers)

System registers (S registers) are provided by the MP3000-series Machine Controller system. They can be
used to read system error information, the current operating status, and other information.

These registers can be used in any motion program or sequence program.

Details

S registers are specified as follows:

SB000000 to SB65534F
SW00000 to SW65534
SL00000 to SL65532
SQ00000 to SQ65528
SF00000 to SF65532
SD00000 to SD65528

The register number is specified as a decimal number. However, when specifying a bit, the lowest digit of
the register number is specified in hexadecimal.

Programming Examples

• Bit Designation
OB00010 = SB000402 | SB000403;

• Integer Designation
MW00100 = SW00041;

• Double-length Integer Designation
ML00100 = SL00062;

The system registers (S) are read-only. If they are written to, system operations will be unpredictable.

Note
4-11

4.2 Using Registers

Data Registers (M Registers)

4-1
Data Registers (M Registers)

M registers are general-purpose registers that can be used in ladder programs, user functions, motion pro-
grams, and sequence programs.

They are global registers that can be used to interface between motion programs, sequence programs, and
ladder programs.

Details

M registers are specified as follows:
MB00000000 to MB1048575F
MW0000000 to MW1048575
ML0000000 to ML1048574
MQ0000000 to MQ1048572
MF0000000 to MF1048574
MD0000000 to MD1048572

M registers can be used in operations to store the operation results, or specified to give positioning coordi-
nate values or speeds. The register number is specified as a decimal number.

Programming Examples

 Specifying the Position and Speed in Axis Movement Instructions with Reg-
isters

In the following programming example, the reference unit is mm and the number of digits below the decimal point is set to 3.

ML0000100 = 100000; → 100.000 mm
ML0000102 = 200000; → 200.000 mm
ML0000104 = 300000; → 300.000 mm
ML0000106 = 500000; → 500.000 mm/min
MVS [X]ML0000100 [Y]ML0000102 [Z]ML0000104 FML0000106;

 Using Registers in Operations

• Bit Designation
MB00001001 = IB0000100 & IB0000201;

• Integer Designation
MW0000101 = (MW0000101 | MW0000102) & FF0CH;

• Double-length Integer Designation
ML0000200 = ((ML0000202 ∗ ML0000204) / ML0000206) ∗ 3;

• Real Number Designation
MF0000200 = ((MF0000202 ∗ MF0000204) / MF0000206) ∗ 3.14;

When the travel distance coordinate values or speeds are specified in registers in the following motion
language instructions, double-length integer data must be used.

MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, DCC, SCC, IAC, IDC, IFP, FMX,
INP, IDHImportant
2

4.2 Using Registers

 Data Registers (G Registers)

4
R

eg
is

te
rs
Data Registers (G Registers)

Data registers (G registers) are general-purpose registers that can be used in ladder programs, user func-
tions, motion programs, and sequence programs.

They are global registers that can be used in any motion program or sequence program, but are not backed
up by battery.

Details

G registers are specified as follows:

GB00000000 to GB2097151F
GW0000000 to GW2097151
GL0000000 to GL2097150
GQ0000000 to GQ2097148
GF0000000 to GF2097150
GD0000000 to GD2097148

The register number is specified as a decimal number. However, when specifying a bit, the lowest digit of
the register number is specified in hexadecimal.

Programming Examples

The following example shows how to use these registers in operations.

• Bit Designation
GB00001001 = IB0000100 & IB0000201;

• Integer Designation
GW0000101 = (GW0000101 | GW0000102) & FF0CH;

• Double-length Integer Designation
GL0000200 = ((GL0000202 ∗ GL0000204) / GL0000206) ∗ 3;

• Real Number Designation
GF0000200 = ((GF0000202 ∗ GF0000204) / GF0000206) ∗ 3.14;

When the travel distance coordinate values or speeds are specified in registers in the following motion
language instructions, double-length integer data must be used.

MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, DCC, SCC, IAC, IDC, IFP, FMX,
INP, IDHImportant
4-13

4.2 Using Registers

Input Registers (I Registers)

4-1
Input Registers (I Registers)

These registers are used for input data and for monitor parameters. Monitor parameters are read-only. If
they are written to, operations will be unpredictable.

Details

I registers are specified as follows:

IB000000 to IB23FFFF
IW00000 to IW07FFF, IW10000 to IW17FFF ··· Input data
IW08000 to IW0FFFF ··· Monitor parameter
IW20000 to IW23FFF ··· CPU interface input data
IL00000 to IL23FFF
IQ00000 to IQ23FFC
IF00000 to IF23FFE
ID00000 to ID23FFC

The register addresses of input data depend on the addresses set in the Module configuration definition.

The register number is specified as a hexadecimal number.

Programming Examples

This example shows how to read input data and monitor parameters.

• Bit Designation
MB00001000 = IB0000010 & IB0000105;

• Integer Designation
MW0000100 = IW08008;

• Double-length Integer Designation
ML0000100 = IL08004;
4

4.2 Using Registers

 Output Registers (O Registers)

4
R

eg
is

te
rs
Output Registers (O Registers)

These registers are used for output data and for setting parameters.

Details

O registers are specified as follows:

OB000000 to OB23FFFF
OW00000 to OW07FFF, OW10000 to OW17FFF ··· Output data
OW08000 to OW0FFFF ··· Setting parameters
OW20000 to OW23FFF ··· CPU interface output data
OL00000 to OL23FFF
OQ00000 to OQ23FFC
OF00000 to OF23FFE
OD00000 to OD23FFC

The register addresses of output data depend on the addresses set in the Module configuration definition.

The register number is specified as a hexadecimal number.

Programming Example

This example writes output data and setting parameters.

• Bit Designation
OB01000 = MB00001000 & IB0000100;

• Integer Designation
OW08008 = MW0000100;

• Double-length Integer Designation
OL08010 = ML0000100+ML0000200;
4-15

4.2 Using Registers

C Registers

4-1
C Registers

C registers can be referenced only from a program. They are read-only.

Details

C registers are specified as follows:

CB000000 to CB16383F
CW00000 to CW16383
CL00000 to CL16382
CQ00000 to CQ16380
CF00000 to CF16382
CD00000 to CF16380

C registers cannot be written to from a program.

The register number is specified as a decimal number.

Programming Example

The following example shows how to use these registers in operations.

• Bit Designation
MB00001000 = CB001001;

• Integer Designation
MW0000100 = CW00100;

• Double-length Integer Designation
ML0000100 = CL00100;

• Quadruple-length Integer Designation
MQ0000100 = CQ00100;

• Real Number Designation
MF0000100 = CF00100;

• Double-length Real Number Designation
MD0000100 = CD00100;
6

4.2 Using Registers

 D Registers

4
R

eg
is

te
rs
D Registers

These registers are unique, internal registers for motion programs and sequence programs. They are
unique within each program.

Details

D registers are specified as follows:

DB000000 to DB16383F
DW00000 to DW16383 (maximum value)
DL00000 to DL16382
DQ00000 to DQ16380
DF00000 to DF16382
DD00000 to DD16380

The above registers can be used in operations to store operation results, or specified to give positioning
coordinate values or speeds. The register number is specified as a decimal number. However, when speci-
fying a bit, the lowest digit of the register number is specified in hexadecimal. Specify the size in the pro-
gram configuration definitions (i.e., the Program Properties Dialog Box). The default size is 32 words.

Programming Example

 Specifying the Position and Speed in Axis Movement Instructions with Reg-
isters

In the following example, the reference unit is mm and the number of digits below the decimal point is set
to 3.

DL00100 = 100000; → 100.000 mm
DL00102 = 200000; → 200.000 mm
DL00104 = 300000; → 300.000 mm
DL00106 = 500000; → 500.000 mm/min
MVS [A1]DL00100 [B1]DL00102 [C1]DL00104 FDL00106;

 Using Registers in Operations

• Bit Designation
DB001000 = IB0001001 & MB00000101;

• Integer Designation
DW00102 = (CW00103 | DW00104) & DW00105;

• Double-length Integer Designation
DL00106 = (DL00108 ∗ ML0000011) / ML0000200;

• Real Number Designation
DF00200 = (MF0000202 ∗ DF00202) ∗ 3.14;

When the travel distance coordinate values or speeds are specified in registers in the following motion
language instructions, double-length integer data must be used.

MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, DCC, SCC, IAC, IDC, IFP, FMX,
INP, IDHImportant
4-17

4.3 Using Indices i and j

4-1
4.3 Using Indices i and j

There are two special registers, i and j, that are used to modify relay and register addresses. The functions
of i and j are identical. They are used to handle register addresses like variables.

We will describe this with examples for each register data type.

 Attaching an Index to a Bit Register

Using an index is the same as adding the value of i or j to the register address.

For example, if i = 2, MB00000000i is the same as MB00000002.

 Attaching an Index to an Integer Register

Using an index is the same as adding the value of i or j to the register address.

For example, if j = 30, MW0000001j is the same as MW0000031.

 Attaching an Index to a Double-length Integer or a Real Number Register

Using an index is the same as adding the value of i or j to the register address.

For example, if j = 1, ML0000000j is the same as ML0000001. Similarly, if j = 1, MF0000000j is the same
as MF0000001.

• Double-length integers and real numbers use a region that is 2 words in size. For example, when
using ML0000000j with both j = 0 and j = 1, the one-word area of MW0000001 will overlap. Be
careful of overlapping areas when indexing double-length integer or real number register addresses.

• The setting range for indices i and j is - 2,147,483,648 to 2,147,483,647.

i = 2;

DB000000 = MB00000000i; DB000000 = MB00000002;

Equivalent

DW00000 = MW0000031;DW00000 = MW0000001j;

j = 30; Equivalent

If j = 0, ML0000000j is ML0000000.

If j = 1, ML0000000j is ML0000001.

Double-length Integer Upper Word
MW0000001

Lower Word
MW0000000

If j = 0, MF0000000j is MF0000000.

If j = 1, MF0000000j is MF0000001.

Real Number Upper Word
MW0000001

Lower Word
MW0000000

MW0000002 MW0000001

MW0000002 MW0000001

Note
8

4.3 Using Indices i and j

4
R

eg
is

te
rs
 Attaching an Index to a Quadruple-length Integer or a Double-length Real Number Regis-
ter

Using an index is the same as adding the value of i or j to the register address.

For example, if j = 2, MQ0000000j is the same as MQ0000002. Similarly, if j = 2, MD0000000j is the
same as MD0000002.

 Programming Examples

The following programming example uses indices.

Subscript j is used to calculate the total amount of 50 registers from ML0000100 to ML0000198.
That amount is then stored in ML0000200.

Quadruple-length integers and double-precision real numbers use a region that is 4 words in size. For
example, when using MQ0000000j with both j = 0 and j = 2, the two-word area of MW0000002 and
MW0000003 will overlap. Be careful of overlapping areas when indexing quadruple-length integer or
double-length real number register addresses.

 :
 :
ML0000200 = 0 ;
J = 0 ;
WHILE J < 100 ;
 ML0000200 = ML0000200 + ML0000100J ;
 J = J + 2 ;
WEND ;
 :
 :

Indices i and j can be specified in either lowercase or uppercase letters.
j = 0;
J = 0;
DW00000 = MW0000000j ;
DW00000 = MW0000000J ;

If j = 0, MQ0000000j is MQ0000000.

If j = 2, MQ0000000j is MQ0000002.

Quadruple-length Integer Upper 2 words Lower 2 words

Upper 2 words Lower 2 words

If j = 0, MD0000000j is MD0000000.

If j = 2, MD0000000j is MD0000002.

Double-precision Real Number Upper 2 words Lower 2 words

Upper 2 words Lower 2 words

MW0000003 MW0000002

MW0000005 MW0000004

MW0000001 MW0000000

MW0000003 MW0000002

MW0000003 MW0000002

MW0000005 MW0000004

MW0000001 MW0000000

MW0000003 MW0000002

Note

Information
4-19

4.4 Using Array Registers

4-2
4.4 Using Array Registers

Array registers are used to modify register addresses.

They are used to handle register addresses like variables.

As with indices, an offset can be added to the register address.

 Attaching an Array Register to a Bit Register

Using an array register is the same as adding the value of the array register to the register address.

For example, if DW00000 = 2, MB00000000[DW00000] is the same as MB00000002.

 Attaching an Array Register to a Register Other Than a Bit Register

Using an array register is the same as adding the word size of the data type of the array register times the
value of the array register to the register address.

For example, if DW00000 = 30, ML0000002[DW00000] is the same as ML0000062.

DL00002 = ML00000 (30 × 2 + 2) = ML0000062

 Format

This section describes the formats of array registers.

 Programming Examples

In the following example, an array register is used to calculate the total amount of 50 registers from
ML0000100 to ML0000198. That amount is then stored in ML0000200.

DW00000 = 2;

DB000020 = MB00000000[DW00000]; DB000020 = MB00000002;

Equivalent

DW00000 = 30;

DL00002 = ML0000002[DW00000]; DL00002 = ML0000062;

Equivalent

MOV[A1]ML00000[MW00100];

�

�

� �

Description Use

Array name

Array elements

• All registers with any data type (excluding # and C registers)

• All registers with integer and double-length integer data types (excluding # and C registers)
• Constant
• Subscript registers

Usable Registers

ML0000200 = 0;
DW00000 = 0;
WHILE DW00000 < 50;
 ML0000200 = ML0000200 + ML0000100[DW00000];
 DW00000 = DW00000 + 1;
WEND;

END;
0

Programming Rules 5

This chapter describes rules that must be followed when creating
motion programs and sequence programs.

5.1 Entering Programs . 5-2

Motion Program Structure . 5-2
Block Format . 5-2
Notation for Constants and Registers 5-8

5.2 Group Definition Details . 5-9

5.3 Operation Priority Levels 5-11

5.4 Instruction Types and Execution Scans 5-13

Instruction Types . 5-13
Instruction Type Table . 5-15

5.5 Programming with Variables 5-17

Declaring Variables . 5-17
Variable Format . 5-18
Strings That Cannot Be Used in Variable Names 5-20
Programming Examples . 5-21

5.1 Entering Programs

Motion Program Structure

5-2
5.1 Entering Programs

This section describes how to enter motion programs and sequence programs.
Motion programs and sequence programs are entered in the same way.

Motion Program Structure

A motion program consists of a program number, comment, the body of the program, and an END instruc-
tion. The processes executed by a motion program are written in the program body. The following figure
shows the structure of a motion program.

Block Format

One block is one unit of process execution. The program body consists of one or more blocks. Motion pro-
gram blocks are written in the following format:

The line with the program number and comment can be omitted.

Program number and comment

Program body

Information

No. Item Meaning

 Label
Indicates the target for a branching instruction, such as PFORK
and SFORK.

Motion language
instruction

Specifies a motion program instruction.

 Logical axis name Specifies a logical axis name set in the group definition.

 Coordinate word
Specifies the axis coordinate value or the incremental travel dis-
tance for the axis.

 Specific character Specifies additional data for the motion language instruction.

 End of block Specifies the end of the block.

 Comment Gives a program comment.

LABEL: MVS [A1] 20.0 [B1]30.0 [C1]40.0 F300000 ;

�Label
�Motion language instruction

�Logical axis name

�Specific character

�End of block

�Comment	Coordinate word

“Comment”

5.1 Entering Programs

 Block Format

5

P
ro

gr
am

m
in

g
R

ul
es
Labels

A label consists of a character string of one to eight alphanumeric characters or symbols, a colon (:), and a
space or TAB.

Labels are required when using the PFORK (parallel execution) or SFORK (selective execution) instruc-
tions. You do not need to use labels if the PFORK or SFORK instructions are not used.

Motion Language Instructions

This is where the motion language instruction is given.
Refer to the following chapter for details on the motion language instructions.

Chapter 6 Motion Language Instructions

Logical Axis Names

Give the logical axis name that is set in the group definition in square brackets ([]).

Label Notation Examples
PFORK LAB1, LAB2;
LAB1: ZRN [A1]0 [B1]0 [C1]0;
JOINTO LAB3;
LAB2: MVS [D1]100.0 [E1]200.0 [F1]300.0;
JOINTO LAB3;
LAB3: PJOINT;

LABEL : ;

Character string containing
one to eight characters

Colon

Space or tab

∗Labels cannot start with a number.

Type
Valid Label Characters

and Symbols

Letters A to Z , a to z

Numbers∗ 0 to 9

Symbol − (Hyphen)

Example

MVS[A1]20.0 ;

Logical axis name
character string containing
one to eight characters

Type
Valid Logical Axis Name

Characters

Letters A to Z, a to z

Numbers 0 to 9
5-3

5.1 Entering Programs

Block Format

5-4
Coordinate Words

A coordinate word is a numerical value or a variable that is placed after an axis name. A coordinate word
specifies the reference position, speed, acceleration/deceleration, and other information.

 Using a Numeric Value for the Coordinate Word

Write a numerical value after the axis name to directly specify the coordinate word.
Both integers and real numbers can be used for the numerical value. However, special care must be taken
when using integers.
For example, when the reference unit is set to 0.001 mm and a reference position of 1,000 is entered for
the coordinate word, the Machine Controller interprets this as 1.000 mm. When you enter 1.000 as a real
number, the Machine Controller interprets it as 1.000 mm.

MVS [A1]1000;→ 1.000 mm
Or
MVS [A1]1.000;→ 1.000 mm
Or
MVS [A1]1.;→ 1.000 mm

 Using a Register for the Coordinate Word

Write a double-length integer register address after the axis name to indirectly specify the coordinate
word.

When the reference unit is set to 0.001 mm with indirect designation using a register, and the register value
is set to 1000, the Machine Controller interprets the coordinate word as 1.000 mm in the same way as in
the previous example.

ML00000 = 1000;
MVS [A1]ML00000;→ 1.000 mm

The coordinate word unit depends on the motion language instruction and the motion parameter
settings.

Information

5.1 Entering Programs

 Block Format

5

P
ro

gr
am

m
in

g
R

ul
es
 Specific Characters

The meaning of each special character is given in the following table along with some usage examples.

Character Meaning Usage Example Reference

M
Acceleration/
deceleration mode

ACCOMDE M2;
Set Interpolation Accelera-
tion/Deceleration Mode
(ACCMODE)

F
Interpolation feed
speed

MVS [A1]1000 [B1]2000 F3000000;
MVS [A1]1000 [B1]2000 FML00000;

Linear Interpolation
(MVS)

FW
Continuous pro-
cess control signal

MVS [A1]1000 FWMB00000000;
Linear Interpolation
(MVS)

T

Maximum inter-
polation feed
speed

FMX T30000000;
FMX TML00000;

Set Maximum Interpola-
tion Feed Speed (FMX)

Time setting

TIM T100;
TIM TML00000;
TIM1MS T100;
TIM1MS TMW0000000;
MVT [A1]1000 [B1]2000 T100;
MVT [A1]1000 [B1]2000 TML00000;
IAC T100;
IAC TML00000;
IDC T100;
IDC TML00000;
IDH T100;
IDH TML00000;

Dwell Time (TIM)
Dwell Time (TIM1MS)
Set-time Positioning
(MVT)
Change Interpolation
Acceleration Time (IAC)
Change Interpolation
Deceleration Time (IDC)
Interpolation Deceleration
Time for Temporary Stop
(IDH)

Number of turns
for circular inter-
polation

MCW [A1]1000 [B1]2000 U500 V500 T2
F3000000;
MCW [A1]1000 [B1]2000 U500 V500 TML00000
F3000000;

Circular Interpolation with
Specified Center Point
(MCW and MCC)
Circular Interpolation with
Specified Radius (MCW
and MCC)

TW
Continuous pro-
cess control signal

MVS [A1]1000 TWMB00000000;
Linear Interpolation
(MVS)

R Radius of circle
MCW [A1]1000 [B1]2000 R500 F3000000;
MCW [A1]1000 [B1]2000 RML00000 F3000000;

Circular Interpolation with
Specified Center Point
(MCW and MCC)
Circular Interpolation with
Specified Radius (MCW
and MCC)

U
Circle center point
coordinate 1 (hor-
izontal axis)

MCW [A1]1000 [B1]2000 U500 V500 T2
F3000000;
MCW [A1]1000 [B1]2000 UML00000 V500 T2
F3000000;

Circular Interpolation with
Specified Center Point
(MCW and MCC)
Circular Interpolation with
Specified Radius (MCW
and MCC)

V
Circle center point
coordinate 2 (ver-
tical axis)

MCW [A1]1000 [B1]2000 U500 V500 T2
F3000000;
MCW [A1]1000 [B1]2000 U500 VML00000 T2
F3000000;

Circular Interpolation with
Specified Center Point
(MCW and MCC)
Circular Interpolation with
Specified Radius (MCW
and MCC)

P
Interpolation feed
speed specified by
percentage

IFP P50;
IFP PML00000;

Set Interpolation Feed
Speed Ratio (IFP)

Continued on next page.
5-5

5.1 Entering Programs

Block Format

5-6
End of Block

The end of a block is designated by a semicolon (;). There is no limitation on the number of lines in a
block. Always place a semicolon to specify the end of the block.

Always insert Line Feed after the end of a block.

SS
Skip signal selec-
tion

SKP [A1]1000 [B1]2000 F3000000 SS1;
SKP [A1]1000 [B1]2000 F3000000 SS2;

Linear Interpolation with
Skip Function (SKP)

D

Interpolation
overlap distance

MVS [A1]1000 D1000;
MVS [A1]1000 DML0000000;

Linear Interpolation
(MVS)

External position-
ing travel distance

EXM [A1]1000 D1000;
EXM [A1]1000 DML00000;

External Positioning
(EXM)

N Number of shifts
SFR MB001000 N5 W10;
SFR MB001000 NMW00000 W10;

Bit Shift Right (SFR)
Bit Shift Left (SFL)

W Bit width
BLK MW00100 DW00100 W10;
BLK MW00100 DW00100 WMW00000;

Bit Shift Right (SFR)
Bit Shift Left (SFL)
Move Block (BLK)
Clear (CLR)

MPS
Motion subpro-
gram number

MSEE MPS002; Call Subprogram (MSEE)

SPS
Sequence subpro-
gram number

SSEE SPS002;
Call Sequence Subprogram
(SSEE)

End of Block Notation Example

Continued from previous page.

Character Meaning Usage Example Reference

Example

MOV [A1]1000;

MOV [A1]1000

 [B1]2000
 [C1]3000;

“Move axis A1.”
Line feed

Line feed
Block end code

Block end code

“Move axis A1.”
“Move axis B1.”
“Move axis C1.”

5.1 Entering Programs

 Block Format

5

P
ro

gr
am

m
in

g
R

ul
es
Comments

There are two symbols that can be used to enter comments: quotation marks (“”) and double forward
slashes (//).

 Using Double Forward Slashes for Comments

All characters from the double forward slash to the next line feed are interpreted as a comment.

 Using Double Quotation Marks for Comments

• Enclosing a Text String in Double Quotation Marks

A character string enclosed in double quotation marks is interpreted as a comment.

“Text string”

• Placing a Text String after One Double Quotation Mark

All characters from the double quotation mark to the next line feed are interpreted as a comment.

 Line feed

// Text string

Comment Notation Example 2
// Perform a zero point return for all axes.
ZRN [A1]0 [B1]0 [C1]0;

// Linear interpolation of three axes.
MVS [A1]100.0 [B1]200.0 [C1]300.0;

Comments can include double-byte characters as well as single-byte alphanumeric characters.

Comment Notation Example 1
ZRN [A1]0 [B1]0 [C1]0; “Perform a zero point return for all axes.”
MVS [A1]100.0 [B1]200.0 [C1]300.0; “Linear interpolation of three axes.”

 Line feed

“Text string

Comment Notation Example 2
“Perform a zero point return for all axes.
ZRN [A1]0 [B1]0 [C1]0;

“Linear interpolation of three axes.
MVS [A1]100.0 [B1]200.0 [C1]300.0;

Comments can include double-byte characters as well as single-byte alphanumeric characters.

Example

Information

Example

Example

Information
5-7

5.1 Entering Programs

Notation for Constants and Registers

5-8
Notation for Constants and Registers

This section describes how to use constants and registers.

Constants

The constants that you can use in motion programs are listed in the following table.

Register Notation

The registers that you can use in motion programs are listed in the following table.

Zeroes cannot be omitted in some constants and registers.

Type Range Notation Examples

Decimal integer
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

823, -2493, 123k, 123K

Hexadecimal integer 0000000000000000 hex to FFFFFFFFFFFFFFFF hex FFFABCDE hex, 2345 hex, F hex

Real number

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
Changes according to the setting of the number of dig-
its below the decimal point.

763.0, 824.2, 234.56, -321.12345

1. The - (minus) sign cannot be omitted, but the + (plus) sign can be omitted.
[A1]+123 [A1]123
[A1]-123 [A1]-123

2. A decimal integer is multiplied by 1,000 by adding K to the value. For a value such as position
reference where there are many zeroes, using a K can make it easier to read.
[A1]123k [A1]123000
[A1]123K [A1]123000

Type Register Type
Data Type

BIT WORD LONG FLOAT QUAD DOUBLE

Global Registers

S registers SB SW SL SF SQ SD

M registers MB MW ML MF MQ MD

G registers GB GW GL GF GQ GD

I registers IB IW IL IF IQ ID

O registers OB OW OL OF OQ OD

C registers CB CW CL CF CQ CD

Local Registers D registers DB DW DL DF DQ DD

Register Notation Example

Examples Where Zeroes Can Be Omitted
[A1]00123 [A1]123
[A1]MW00010 [A1]MW10
[A1]100.000 [A1]100.

Examples Where Zeroes Cannot Be Omitted
MPM001; (Program number at the beginning of a program)
MSEE MPS002;

Information

Example
1 2 3 4 5 FM B

Register type: S, M, G, I, O, C, or D

Data type: B, W, L, F, Q, or D

Register number

Bit position: Valid for bit addresses only.

Example

Example

5.2 Group Definition Details

5

P
ro

gr
am

m
in

g
R

ul
es
5.2 Group Definition Details

A group definition allows you to treat more than one axis as a single group.

This section describes the Group Definition Dialog Box.

 Number of Groups
Set the number of groups for group operation.
Set this number to 1 for operation with one group.
For operation with more than one groups, set the number of groups for group operation.

 Group Name
Give the name of the group.

 Number of Controlled Axes
Set the number of axes to control as a group.

 Circuit
Set the circuit number for the Motion Control Function Module to use.
The circuit number can be checked in the Module configuration definition.

Circuit Number
5-9

5.2 Group Definition Details

5-1
 Axis Number
Select the axis numbers of the axes to use.
You can check the axis numbers by clicking the + Button next to SVC32 in the Module Configuration.

 Logical Axis Name
Give the name of the specified axis.
The name that is defined here is used when writing a motion program.
MVS [A1]1000 [B1]2000 [C1]3000 F1000;

Logical axis names
0

5.3 Operation Priority Levels

5

P
ro

gr
am

m
in

g
R

ul
es
5.3 Operation Priority Levels

A priority level is assigned to each operator used in an operation that uses motion language instructions.
Use parentheses () to specify the priority level for an operation involving three or more items.
The priority levels of operators are shown in the following table.

Operator
Priority Level

1 2 3 4 5

Parentheses ()

NOT !

AND &

OR |

XOR ^

Numeric
operations

∗
/

+
-

Numeric Operation Examples
• Operation Example

MW00100 = 1 + 2;
With this operation, 1 + 2 is calculated, and the result (3) is stored in MW00100.

• Example of Operation Involving Three or More Items
MW00100 = 1 + (2 ∗ 3);
With this operation, 2 × 3 is calculated first, and 1 is added to the result (6). The final result (7)
is then stored in MW00100.
Therefore, MW00100 = 7.

Precautions for Operations Involving Three or More Items
Consider the following expression:
MW00100 = 1 + 2 ∗ 3;
In this operation, first 2 × 3 is calculated. Then, 1 is added to the result of 6 for a final result of 7.
The final result of 7 is then stored in MW00100. Therefore, MW00100 = 7.

Logic Operation Examples
• Operation Example

MW00100 = 0001 hex | 0002 hex;
Here, ORs of the bits in 0001 hex and 0002 hex are taken, and the results are stored in MW00100.

• Example of Operation Involving Three or More Items
MW00100 = (1111 hex | 2222 hex) & 00FF hex;
Here, the OR of the bits in 1111 hex and 2222 hex is performed first, and then ANDs of the bits of
the OR results and 00FF hex are taken. The final results are then stored in MW00100.
Therefore, MW00100 = 0033 hex.

Precautions for Operations Involving Three or More Items
Consider the following expression:
MW00100 = 1111 hex | 2222 hex & 00FF hex;
Here, ANDs of the bits in 2222 hex and 00FF hex are taken. Then, ORs of the AND results and the bits
in 1111 hex are taken. The final results are then stored in MW00100.
Therefore, MW00100 = 1133 hex.

High Low

Example

Note

Example

Note
5-11

5.3 Operation Priority Levels

5-1
Precautions for the Version 6 Compatible Compiler Version
The priority levels for operations performed under the version 6 compatible compiler version are
shown in the following table.

Consider the following expression:
 MW00100 = 1 + 2 ∗ 3;
In this operation, first 1 + 2 is calculated. Then, the result of 3 is multiplied by 3 for a final result of 9.
The final result of 9 is then stored in MW00100. Therefore, MW00100 = 9.

Note

Operator
Priority Level

1 2 3 4

Parentheses ()

NOT !

AND &

OR |

XOR ^

Arithmetic
operations

+
-
∗
/

2

5.4 Instruction Types and Execution Scans

Instruction Types

5

P
ro

gr
am

m
in

g
R

ul
es
5.4 Instruction Types and Execution Scans

This section describes instruction types and execution scans.

Instruction Types

There are four types of motion language instructions. The number of scans required to execute an instruc-
tion depends on the instruction type. The following table shows the number of scans required to execute
each type of instruction.

The following diagram shows the number of scans required to execute each instruction type.

Instruction Type Instruction Number of Scans Required

S type Operation instructions 1 scan

M type Axis movement instructions

Multiple scans
T type Timer instructions

F type
Transfer command instruc-
tions

S-type instruction

S-type instruction
S-type instruction
S-type instruction

Executed in one scan.

T-type instruction

Executed over
multiple scans.

S-type instruction
S-type instruction

Executed in one scan.

Wait for next scan.

M-type instruction

M-type instruction Executed over
multiple scans.

END;

When the command before an S-type instruction
is an M-type instruction, the S-type instruction is
executed in the last scan of the M-type instruction.

S-type instruction
S-type instruction
S-type instruction

Executed in one scan.

Wait for next scan.

Executed over
multiple scans.

F-type instruction

F-type instruction
5-13

5.4 Instruction Types and Execution Scans

Instruction Types

5-1
 S-type Instructions

S-type instructions, including operation instructions, are executed in one scan.
A program in which S-type instructions are continuously written is executed within one scan.

M-type Instructions

M-type instructions include axis movement instructions and other instructions that require multiple scans
to execute.
One scan is required to change from an S-type instruction to an M-type instruction.

 T-type Instructions

T-type instructions include timer instructions, which require multiple scans to execute.

 F-type Instructions

Multiple scans are required to transfer commands from the CPU Unit/CPU Module to an Option Unit.
One scan is required to change from an S-type instruction to an F-type instruction.
4

5.4 Instruction Types and Execution Scans

 Instruction Type Table

5

P
ro

gr
am

m
in

g
R

ul
es
Instruction Type Table

The following table gives the instruction types.

Category Instruction S Type M Type T Type F Type

Axis Setting Instructions

ABS

INC

ACC

DCC

SCC

VEL

FMX

IFMX

IFP

FUT

IAC

IDC

IDH

IUT

+ or -

ACCMODE

Axis Movement Instructions

MOV

MVS

MCW

MCC

ZRN

DEN

SKP

MVT

EXM

Control Instructions

POS

MVM

PLD

PFN

INP

PFP

PLN

Program Control Instructions

IF
ELSE
IEND

WHILE
WEND

WHILE WENDX

PFORK
JOINTO
PJOINT

SFORK
JOINTO
SJOINT

MSEE

SSEE

UFC

FUNC

END

Continued on next page.
5-15

5.4 Instruction Types and Execution Scans

Instruction Type Table

5-1
Program Control Instructions

RET

TIM

TIM1MS

IOW

EOX

SNGD/SNGE

Numeric Operations

=

+

-

+ +

- -

∗

/

MOD

Logic Operations

|

&

^

!

Numeric Comparison
Instructions

= =

<>

>

<

>=

<=

Data Manipulations

SFR

SFL

BLK

CLR

SETW

ASCII

Basic Functions

SIN

COS

TAN

ASN

ACS

ATN

SQT

BIN

BCD

S{ }

R{ }

PON

NON

TON

TON1MS

TOF

TOF1MS

Vision Instructions

VCAPI

VCAPS

VFIL

VANA

VRES

Continued from previous page.

Category Instruction S Type M Type T Type F Type
6

5.5 Programming with Variables

Declaring Variables

5

P
ro

gr
am

m
in

g
R

ul
es
5.5 Programming with Variables

When programming with variables, the user declares and uses text strings that are called variables to per-
form operations.

This allows for programming with variables that are independent of any registers, which increases pro-
gram reusability and extendability.

Variables can be used only within the program (within a single drawing) where they were declared.

Declaring Variables

Give the variable that you want to declare inside a block that starts with VAR and ends with END_VAR.

You can declare up to 1,000 variables in one program.

After END_VAR, you can use the declared variable in the same ways as a register.

VAR;
 The variable you want to declare goes here.
END_VAR;

You can program with variables only with compiler version 7.00.
A compiling error will occur for the version 6 compatible compiler.

Note
5-17

5.5 Programming with Variables

Variable Format

5-1
Variable Format

A variable consists of a data type, a text string containing alphanumeric characters or symbols that is
between 1 and 255 characters in length, and a semicolon (;).

The size of all variables that are declared cannot be more than 16,384 words per program.

VAR;
 LONG Data ;
 Data type Variable name End of block
END_VAR;

The following table lists the valid data types for variables.

Note: Arrays cannot be used for ADDRESS data.

The following table lists the characters that can be used in a variable name.

Note: Variable names cannot start with a number.

Specifying a Default Value

The format to specify a default value for a variable is as follows:

VAR;
 Data type Variable name Default value
END_VAR;

Data Type Contents

BOOL Bit

WORD/SINT A signed integer that is one word in size.

LONG/DINT A signed integer that is two words in size.

QUAD/LONGLONG/LINT A signed integer that is four words in size.

FLOAT/REAL A single-precision floating point number.

DOUBLE/LREAL A double-precision floating point number.

ADDRESS An address.

Structure_name A structure.

Type of Variable Name Usable Characters

Letters A to Z, a to z

Numbers 0 to 9

Symbols _ (underbar)

You cannot specify a register as a default value.

Examples of Specifying Default Values

VAR;
 BOOL Complete = 1;
 LONG Vel = 1000 ;
 LONG Position[3] = {1000, 2000, 3000} ;
END_VAR;

Information

Example
8

5.5 Programming with Variables

 Variable Format

5

P
ro

gr
am

m
in

g
R

ul
es
Associating Variables with Registers

You can specify that a declared variable should match the value of a specified register.

The format to specify a default value for a variable is as follows:

VAR;
 Data type Variable name % register = Default value ;
END_VAR;

Specifying Constants

Use the following format to specify constants.

VAR;
 CONST Data type Variable name = Constant value ;
END_VAR;

The strings in the following table cannot be used in variable names

1. You can also omit the default value from a variable declaration.
2. All registers except for # and C registers can be used in this way.

Examples of Associating a Declared Variable with a Specified Register

VAR;
 BOOL Complete %OB00010;
 LONG Vel %ML00200 = 1000 ;
 LONG Position[3] %ML00300 = {1000, 2000, 3000} ;
END_VAR;

Constants cannot be associated with a register.

Examples of Specifying Constants

VAR;
 CONST WORD MotionCMD_NOP = 0 ;
 CONST WORD MotionCMD_HOME = 9 ;
 CONST LONG MaxSpeed = 6000 ;
END_VAR;

Information

Example

Information

Example
5-19

5.5 Programming with Variables

Strings That Cannot Be Used in Variable Names

5-2
Strings That Cannot Be Used in Variable Names

The strings in the following table cannot be used in variable names

Strings

ABS FEND NON SWITCH

ACC FLOAT OFF TAN

ACCMODE FMX ON TCN

ACOS FOR PFN TCR

ACS GOTO PFORK TCS

ARCTAN I PJOINT TIM

ASIN IAC PLD TOF

ASN IDC PLN TON

ATAN IEND PON TPS

ATN IF POS TRUE

AUTO IFP R{ TYPEDEF

BCD INC REGISTER UFC

BIN INP RET UNION

BLK INT RETURN UNSIGNED

BREAK IOW S{ VCR

CASE J SCC VCS

CHAR JOINTO SFL VEL

CLR KCC SFORK VOID

CONST KCW SFR VOLATILE

CONTINUE LCC SHORT WAX

COS LCW SIGNED WCD

DCC LOG SIN WCE

DEFAULT LOG10 SIZEOF WCT

DO LONG SJOINT WDA

DOUBLE MCC SKP WDB

ELSE MCW SNGD WDC

END MOD SNGE WDD

ENUM MOV SPH WEND

EOX MSEE SPL WHILE

EXM MUFC SQRT WPM

EXP MVM SQT WSA

EXTERN MVS STATIC ZRN

FALSE MVT STRUCT
0

5.5 Programming with Variables

 Programming Examples

5

P
ro

gr
am

m
in

g
R

ul
es
Programming Examples

The following is a programming example that uses variables.

This programming example moves the X and Y axes 50 reference units each to draw a circle with a radius
of 50 reference units 10 times.
VAR;

 WORD Count; "Counter"

 CONST WORD CountNum = 10; "Number of loops"

 LONG X_radius %ML00100; "Radius of axis A1"

 LONG Y_radius %ML00102; "Radius of axis B1"

 LONG Speed = 8000; "Interpolation feed speed"

END_VAR;

ZRN [A1]0 [B1]0;

Count = 1; "Preset counter"

INC;

PLN [A1][B1];

FMX T80000;

WHILE Count <= CountNum; "Loop for the specified number of times"

 MCW [A1]0 [B1]0 U X_radius V Y_radius F Speed; "Circular interpolation"

 MOV [A1]X_radius [B1]Y_radius; "Positioning"

 Count = Count+1; "Increment counter"

WEND;

END;

50

50

B1

A1

Circle 10

Circle 9

Circle 3

Circle 2

Circle 1
5-21

Motion Language
Instructions 6

This chapter describes the motion language instructions.

6.1 Axis Setting Instructions . 6-4

Absolute Mode (ABS) . 6-7
Incremental Mode (INC) . 6-11
Change Acceleration Time (ACC) . 6-15
Change Deceleration Time (DCC) . 6-21
Change S-curve Time Constant (SCC) 6-27
Set Speed (VEL) . 6-33
Set Maximum Interpolation Feed Speed (FMX) 6-39
Set Maximum Individual Axis Speeds
for Interpolation (IFMX) . 6-42
Change Interpolation Feed Speed Unit (FUT) 6-45
Set Interpolation Feed Speed Ratio (IFP) 6-47
Change Interpolation Acceleration Time (IAC) 6-50
Change Interpolation Deceleration Time (IDC) 6-52
Change Interpolation Deceleration Time
for Temporary Stop (IDH) . 6-54
Change Interpolation Acceleration/Deceleration Unit (IUT) . 6-58
Set Interpolation Feed Speed Axes (+ and -) 6-60
Set Interpolation Acceleration/Deceleration Mode
(ACCMODE) . 6-63

6.2 Axis Movement Instructions 6-77

Positioning (MOV) . 6-81
Linear Interpolation (MVS) . 6-85
Circular Interpolation with Specified Center Point
(MCW and MCC) . 6-90
Circular Interpolation with Specified Radius
(MCW and MCC) . 6-95
Helical Interpolation with Specified Center Point
(MCW and MCC) . 6-99

Helical Interpolation with Specified Radius
(MCW and MCC) . 6-102
Zero Point Return (ZRN) . 6-104
Position after Distribution (DEN) . 6-107
Linear Interpolation with Skip Function (SKP) 6-109
Set-time Positioning (MVT) . 6-111
External Positioning (EXM) . 6-113

6.3 Axis Control Instructions 6-115

Current Position Set (POS) . 6-117
Move on Machine Coordinates (MVM) 6-119
Update Program Current Position (PLD) 6-120
In-position Check (PFN) . 6-122
In-Position Range (INP) . 6-124
Positioning Completed Check (PFP) 6-126
Coordinate Plane Setting (PLN) . 6-128

6.4 Program Control Instructions 6-129

Branching Instructions (IF, ELSE, and IEND) 6-131
Repetition Instructions (WHILE, WEND) 6-134
Repetition with One Scan Wait (WHILE and WENDX) . . . 6-137
Parallel Execution Instructions
(PFORK, JOINTO, and PJOINT) . 6-140
Selective Execution Instructions
(SFORK, JOINTO, SJOINT) . 6-143
Call Motion Subprogram (MSEE) . 6-148
Call Sequence Subprogram (SSEE) 6-149
Call User Function from Motion Program (UFC) 6-150
Call User Function from Sequence Program (FUNC) 6-158
Program End (END) . 6-159
Subprogram Return (RET) . 6-160
Dwell Time (TIM) . 6-161
Dwell Time (TIM1MS) . 6-162
I/O Variable Wait (IOW) . 6-163
One Scan Wait (EOX) . 6-166
Disable Single-block Signal (SNGD) and Enable
Single-block Signal (SNGE) . 6-167

6.5 Numeric Operation Instructions 6-168

Substitute (=) . 6-169
Add (+) . 6-170
Subtract (-) . 6-171
Extended Add (++) . 6-172
Extended Subtract (--) . 6-174
Multiply (*) . 6-176
Divide (/) . 6-177
Modulo (MOD) . 6-178

6.6 Logic Operation Instructions 6-179

Inclusive OR (|) . 6-180
AND (&) . 6-181

Exclusive OR (^) . 6-182
NOT (!) . 6-183

6.7 Numeric Comparison Instructions 6-184

Numeric Comparison Instructions (==, <>, >, <, >=, <=) . . 6-186

6.8 Data Manipulations . 6-189

Bit Shift Right (SFR) . 6-189
Bit Shift Left (SFL) . 6-191
Move Block (BLK) . 6-192
Clear (CLR) . 6-193
Table Initialization (SETW) . 6-194
ASCII Conversion 1 (ASCII) . 6-196

6.9 Basic Functions . 6-198

Sine (SIN) . 6-200
Cosine (COS) . 6-201
Tangent (TAN) . 6-202
Arc Sine (ASN) . 6-203
Arc Cosine (ACS) . 6-204
Arc Tangent (ATN) . 6-205
Square Root (SQT) . 6-206
BCD to Binary (BIN) . 6-208
Binary to BCD (BCD) . 6-209
Set Bit (S{ }) . 6-210
Reset Bit (R{ }) . 6-211
Rising-edge Pulse (PON) . 6-212
Falling-edge Pulse (NON) . 6-214
On-delay Timer: Measurement unit = 10 ms (TON) 6-216
1-ms ON-Delay Timer (TON1MS) 6-217
Off-delay Timer: Measurement unit = 10 ms (TOF) 6-218
1-ms OFF-Delay Timer (TOF1MS) 6-219

6.10 Vision Instructions . 6-220

6.1 Axis Setting Instructions

6-4
6.1 Axis Setting Instructions

Axis setting instructions set the accelerations, decelerations, speeds, and other settings that are related to
axis movement.
There are 16 axis setting instructions. You can use these instructions only in motion programs.

The following table lists the axis setting instructions.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

ABS Absolute Mode

ABS;
or
ABS MOV [Logical_axis_name_1] −
[Logical_axis_name_2] − ;

Causes all subsequent coordi-
nates to be treated as absolute val-
ues.

 ×

INC
Incremental
Mode

INC;
or
INC MOV [Logical_axis_name_1] −
[Logical_axis_name_2] − ;

Causes all subsequent coordi-
nates to be treated as incremental
values.

 ×

ACC
Change Accel-
eration Time

ACC [Logical_axis_name_1] Accelera-
tion_time

[Logical_axis_name_2] Acceler-
ation_time

[Logical_axis_name_3] Acceler-
ation_time ... ;

Sets the acceleration times for
positioning instructions.
A maximum of 32 axes can be
designated in one instruction
block.

 ×

DCC
Change Decel-
eration Time

DCC [Logical_axis_name_1] Decelera-
tion_time

[Logical_axis_name_2] Decel-
eration_time

[Logical_axis_name_3] Decel-
eration_time ... ;

Sets the deceleration times for
positioning instructions.
A maximum of 32 axes can be
designated in one instruction
block.

 ×

SCC
Change S-curve
Time Constant

SCC [Logical_axis_name_1] S-curve_-
time_constant

[Logical_axis_name_2] S-cur-
ve_time_constant ... ;

Sets the time constants for the
moving average filters.
A maximum of 32 axes can be
designated in one instruction
block.
The filters are valid for both posi-
tioning instructions and interpola-
tion instructions.

 ×

VEL Set Speed

VEL [Logical_axis_name_1] Feed_-
speed

[Logical_axis_name_2] Feed_-
speed

[Logical_axis_name_3] Feed_-
speed ... ;

Sets the speeds for positioning
instructions.
A maximum of 32 axes can be
designated in one instruction
block.

 ×

Continued on next page.

6.1 Axis Setting Instructions

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
FMX
Set Maximum
Interpolation
Feed Speed

FMX Tmaximum_interpolation_feed_-
speed;

Sets the maximum speed for inter-
polation instructions.
The interpolation acceleration
time is the time from a speed of
zero to this speed. The interpola-
tion deceleration time is the time
from this speed to a speed of zero.

 ×

IFMX

Set Maximum
Individual Axis
Speeds for
Interpolation

IFMX
[Logical_axis_name_1]Maximum_indi-
vidual_axis_speed_for_interpolation
[Logical_axis_name_2]Maximum_indi-
vidual_axis_speed_for_interpolation

Sets the maximum speeds for the
individual axes that are specified
for interpolation instructions.
You can set a different speed limit
for each axis.

 ×

FUT
Change Interpo-
lation Feed
Speed Unit

FUT Uinterpolation_feed_-
speed_unit_number;

Changes the speed unit for inter-
polation instructions.

 ×

IFP
Set Interpola-
tion Feed Speed
Ratio

IFP Pinterpolation_feeding_speed_ra-
tio;

Sets the speed for interpolation
instructions.
Specify the speed as a percentage
of the maximum speed.

 ×

IAC
Change Inter-
polation Accel-
eration Time

IAC Tinterpolation_acceleration_time;

Sets the acceleration time for
interpolation instructions.
Specify the time required to reach
the maximum speed from a speed
of 0.

 ×

IDC
Change Inter-
polation Decel-
eration Time

IDC Tinterpolation_deceleration_time;

Sets the deceleration time for
interpolation instructions.
Specify the time required to decel-
erate to a speed of 0 from the
maximum speed.

 ×

IDH

Change Inter-
polation Decel-
eration Time for
Temporary Stop

IDH Tinterpolation_deceleration_-
time_for_temporary_stop;

Sets the deceleration time for
interpolation instructions when
the axis is temporarily stopped.
Specify the time required to decel-
erate to a speed of 0 from the
maximum speed.

 ×

IUT

Change Inter-
polation Accel-
eration/
Deceleration
Unit

IUT Uinterpolation_acceleration/
deceleration_unit_number;

Changes the acceleration/deceler-
ation unit for interpolation
instructions (MVS, SKP, MCW,
and MCC).

 ×

Continued on next page.

Continued from previous page.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

6-5

6.1 Axis Setting Instructions

6-6
(+ or -)
Set Interpola-
tion Feed Speed
Axes

MVS
[+ Logical_axis_name_1] Refer-
ence_position
[+ Logical_axis_name_2] Refer-
ence_position
[- Logical_axis_name_3] Reference_po-
sition ...;

Specifies the axes to use as com-
ponent axes for the interpolation
feed speed.
If “+” or nothing is given before
the logical axis name, the axis is
used as one of the component axes
for the interpolation feed speed.
If “-” is given before the logical
axis name, the axis operates at a
speed that is synchronized with
the interpolation feed speed.

 ×

ACCMODE

Set Interpola-
tion Accelera-
tion/
Deceleration
Mode

ACCMODE Mmode_number;

Sets the acceleration/deceleration
mode for interpolation instruc-
tions.
This allows you to specify pro-
cessing multiple interpolation
instructions in succession.

 ×

Continued from previous page.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

6.1 Axis Setting Instructions

 Absolute Mode (ABS)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Absolute Mode (ABS)

The ABS instruction causes the coordinate words that control axis movement to be treated as final target
positions.
After the ABS instruction is executed, it remains in effect until the INC instruction is executed. Absolute
Mode is the default mode when program operation is started.

Fig. 6.1 Movement Mode for ABS Instruction

In this manual, a coordinate word that follows a logical axis name in an axis movement instruction is
called the reference position or the position reference value.

• The same coordinate word will create a completely different travel operation in Absolute
Mode and in Incremental Mode. Make sure that the ABS and INC instructions are used cor-
rectly before you start operation.
There is a risk of injury or device damage.

Program Current Position
This is the position in the work coordinate system when an axis is moved by an axis movement instruc-
tion.

ABS;

Reference
position 2

Coordinate words

Logical axis 2

Program
current position

Final target position

Reference position 1
Logical axis 1

MOV [Logical_axis_name_1] Reference_position_1 [Logical_axis_name_2] Reference_position_2;

CAUTION

Terms
6-7

6.1 Axis Setting Instructions

Absolute Mode (ABS)

6-8
Format

The format of the ABS instruction is as follows:

• When Specified Independently
ABS;

• When Specified in the Same Block as an Axis Movement Instruction
ABS MOV [Logical_axis_name_1] - [Logical_axis_name_2] - ;

Programming Example

A programming example that uses the ABS instruction is given below.

Fig. 6.2 Programming Example for the ABS Instruction

Additional Information on the ABS Instruction

 Related Motion Parameters

The ABS instruction is not related to any setting parameters.
The movement mode (Absolute Mode or Incremental Mode) for axis movement instructions is treated as
control data that is reserved exclusively for motion programs. There is no setting parameter that you can
use to specify these modes.

ABS; "Absolute Mode
MOV [A1]10000 [B1]40000;"Positioning
MOV [A1]50000 [B1]20000;"Positioning
END;

The movement mode (Absolute Mode or Incremental Mode) for axis movement instructions is not the
same as the position reference type that is specified in bit 5 of the OW09 setting parameter.

(50000, 20000)

B1

A1
0

(10000, 40000)

10000 50000

20000

40000

Program current position

Note

6.1 Axis Setting Instructions

 Absolute Mode (ABS)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Finite-length Axes and Infinite-length Axes

The position reference value of a coordinate word for a finite-length axis must be handled differently from
one for an infinite-length axis.
The following table tells how to specify position reference values for finite-length and infinite-length
axes.

The operation of a finite-length axis and an infinite-length axis in Absolute Mode is described below.
Refer to the following section for details on operation in Incremental Mode.

Incremental Mode (INC) (page 6-11)

 Using Absolute Mode for a Finite-length Axis

Specify the final target position for the position reference value.
For example, the following operation occurs from a current position of 1,000 when the final target position
is set to 2,000 or -2,000.

Axis Type
Movement Mode
for Axis Move-

ment Instruction
Specification Method for Position Reference Values

Finite-length
axis

Absolute Mode Specify the final target position for the position reference value.

Incremental Mode Specify the relative travel distance for the position reference value.

Infinite-
length axis

Absolute Mode

Specify the final target position to a value between 0 and POSMAX for the
position reference value.
The sign of the position reference value indicates the travel direction. You
specify a positive direction with a positive value, and a negative direction
with a negative value.

Incremental Mode Specify the relative travel distance for the position reference value.

1. Use bit 0 (Axis Selection) of fixed parameter No. 1 (Function Selection Flags 1) to select either
a finite-length axis or an infinite-length axis.
Use finite-length axes or infinite-length axes as required according to the machine configura-
tion. Refer to the following manual for information on setting motion parameters for the
machine you are using.

MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

2. Use fixed parameter No. 10 (Infinite-length Axis Reset Position (POSMAX)) to set POSMAX.

Information

ABS;
MOV [A1]2000;

ABS;
MOV [A1]-2000;

20000-2000 1000

A1

20000-2000 1000

A1

Current
position

End
position

End
position

Current
position
6-9

6.1 Axis Setting Instructions

Absolute Mode (ABS)

6-1
Using Absolute Mode for an Infinite-length Axis

Specify the final target position to a value between 0 and POSMAX for the position reference value.
The sign of the position reference value indicates the travel direction. You specify a positive direction with
a positive value, and a negative direction with a negative value.
For example, the following operation occurs from a current position of 450 for an infinite-length axis with
a POSMAX of 3,600 when the final target position is set at 2,700 or -2,700.

1. When a position reference value of +0 is specified for an infinite-length axis in Absolute Mode, the
axis moves in the negative direction.
Specify the POSMAX value to move the axis in the positive direction.

2. If the final target position (the absolute value of the position reference value) exceeds the POSMAX
value for an infinite-length axis in Absolute Mode, an alarm will occur for the motion program.

ABS;
MOV [A1]2700;

ABS;
MOV [A1]-2700;

0

1800

9002700
1800

 900

 0

3600
(POSMAX)
2700

A1

450

0

1800

9002700

A1

450

1800

 900

 0

3600
(POSMAX)
2700

End
position

Current
position

End position

Current position
The axis moves in the positive
direction for positioning to 2,700.

End
position

Current
position

End position

The axis moves in the negative
direction for positioning to 2,700.

Current position

Note
0

6.1 Axis Setting Instructions

 Incremental Mode (INC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Incremental Mode (INC)

The INC instruction causes the coordinate words that control axis movement to be treated as relative travel
distances.
After the INC instruction is executed, it remains in effect until the ABS instruction is executed. Absolute
Mode is the default mode when program operation is started.

Fig. 6.3 Movement Mode for INC Instruction

In this manual, a coordinate word that follows a logical axis name in an axis movement instruction is
called the reference position or the position reference value.

• The same coordinate word will create a completely different travel operation in Absolute
Mode and in Incremental Mode. Make sure that the ABS and INC instructions are used cor-
rectly before you start operation.
There is a risk of injury or device damage.

Program Current Position
This is the position in the work coordinate system when an axis is moved by an axis movement
instruction.

INC;
Coordinate words

MOV [Logical_axis_name_1] Reference_position_1 [Logical_axis_name_2] Reference_position_2;

Logical axis 2

Reference position 2

Program current position
Reference position 1

Final target position

Logical axis 1

CAUTION

Terms
6-11

6.1 Axis Setting Instructions

Incremental Mode (INC)

6-1
Format

The format of the INC instruction is as follows:

• When Specified Independently
INC;

• When Specified in the Same Block as an Axis Movement Instruction
INC MOV [Logical_axis_name_1] - [Logical_axis_name_2] - ;

Programming Example

A programming example that uses the INC instruction is given below.

Fig. 6.4 Programming Example for the INC Instruction

Additional Information on the INC Instruction

 Related Motion Parameters

The INC instruction is not related to any setting parameters.
The movement mode (Absolute Mode or Incremental Mode) for axis movement instructions is treated as
control data that is reserved exclusively for motion programs. There is no setting parameter that you can
use to specify these modes.

INC; "Incremental Mode
MOV [A1]20000 [B1]30000;"Positioning
MOV [A1]20000 [B1]10000;"Positioning
END;

B1

A1
0

20000

30000

20000

10000

Program current position
2

6.1 Axis Setting Instructions

 Incremental Mode (INC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Finite-length Axes and Infinite-length Axes

The position reference value of a coordinate word for a finite-length axis must be handled differently from
one for an infinite-length axis.
The following table tells how to specify position reference values for finite-length and infinite-length
axes.

The operation of a finite-length axis and an infinite-length axis in Incremental Mode is described below.
Refer to the following section for details on operation in Absolute Mode.

Absolute Mode (ABS) (page 6-7)

 Using Incremental Mode for a Finite-length Axis

Specify the relative travel distance for the position reference value.
For example, the following operation occurs from a current position of 1,000 when the final target position is set to
2,000 or -2,000.

Axis Type
Movement Mode
for Axis Move-

ment Instruction
Specification Method for Position Reference Values

Finite-length
axis

Absolute Mode Specify the final target position for the position reference value.

Incremental Mode Specify the relative travel distance for the position reference value.

Infinite-
length axis

Absolute Mode

Specify the final target position to a value between 0 and POSMAX for the
position reference value.
The sign of the position reference value indicates the travel direction. You
specify a positive direction with a positive value, and a negative direction
with a negative value.

Incremental Mode Specify the relative travel distance for the position reference value.

1. Use bit 0 (Axis Selection) of fixed parameter No. 1 (Function Selection Flags 1) to select either
a finite-length axis or an infinite-length axis.
Use finite-length axes or infinite-length axes as required according to the machine configura-
tion. Refer to the following manual for information on setting motion parameters for the
machine you are using.

MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

2. Use fixed parameter No. 10 (Infinite-length Axis Reset Position (POSMAX)) to set POSMAX.

Information

INC;
MOV [A1]2000;

INC;
MOV [A1]-2000;

20000-2000 1000

A1

3000

300020000-1000 1000

A1

Current position End position

End position Current position
6-13

6.1 Axis Setting Instructions

Incremental Mode (INC)

6-1
Using Incremental Mode for an Infinite-length Axis

Specify the relative travel distance for the position reference value.
For example, the following operation occurs from a current position of 450 for an infinite-length axis with
a POSMAX of 3,600 when the final target position is set at 2,700 or -2,700.

If the absolute value of the position reference value (coordinate word) exceeds the POSMAX
value, the position reference value (coordinate word) is used for the relative movement amount to
move the axis in Incremental Mode.

INC;
MOV [A1]2700;

INC;
MOV [A1]-2700;

0

1800

9002700
1800

 900

 0

3600
(POSMAX)
2700

A1

4503150

0

1800

9002700

A1

450

1350

1800

 900

 0

3600
(POSMAX)
2700

End
position

Current
position

Current
position

End
position

End position

Current position

End position

Current position

Information

INC;
MOV [A1]6300; "¦6300¦>3600(POSMAX)

0

1800

9002700
1800

 900

 0

3600
(POSMAX)
2700

A1

4503150

End
position

Current
position

Current position

End position
4

6.1 Axis Setting Instructions

 Change Acceleration Time (ACC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Change Acceleration Time (ACC)

The ACC instruction changes the acceleration times or acceleration rates of the specified axes for all of the
following axis movement instructions.

• MOV (Positioning)

• MVT (Set-time Positioning)

• EXM (External Positioning)

The values can be changed for up to 32 axes with one instruction. The acceleration time for any unspeci-
fied axis is not changed.
The acceleration times that are set by the ACC instruction remain in effect until they are changed by
another ACC instruction.

Fig. 6.5 Change Acceleration Time

Format

The format of the ACC instruction is as follows:

Note: The unit is set in bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of the OW03 setting parameter.

1. The ACC instruction changes the acceleration time for the MOV, EXM, and MVT positioning
instructions. Use the IAC instruction to set the acceleration time for the MVS, MCW, MCC,
and SKP interpolation instructions.

2. The ACC, DCC, and SCC instructions are supported by all Motion Control Function Modules.

ACC [Logical_axis_name_1] Acceleration_time [Logical_axis_name_2] Acceleration_time [Logi-
cal_axis_name_3] Acceleration_time. . . ;

Item Unit Applicable Data

Acceleration time or
acceleration rate ms or reference units/s2 • Directly designated value

• Indirect designation with a double-length integer register

Speed (V)

Speed

After acceleration time is changed

Before acceleration time is changed
Time

Time (t)

Information
6-15

6.1 Axis Setting Instructions

Change Acceleration Time (ACC)

6-1
Settings for the ACC Instruction

This section describes the settings for the ACC instruction.
Either acceleration times (ms) or acceleration rates (reference units/s2) can be selected for the setting unit
of the ACC instruction.

The unit to use is set in bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of the OW03 set-
ting parameter.
1

• When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OW03 Setting
Parameter Are Set to 1 (ms)

 Acceleration Time
The settings in the ACC instruction are used as the acceleration times (the time required to reach the rated
speed from a speed of 0). The valid range is 1 to 32,767 ms.

 Rated Speed
The rated speed for each axis is set in fixed parameter No. 34 (Rated Motor Speed).

 Positioning Speed
This speed is used by the MOV, MVT, and EXM positioning instructions.
The positioning speed for each axis is set with the VEL instruction.

Parameter Name Acceleration/Deceleration Rate Unit

Function Settings 1
Acceleration/Deceleration Rate Unit Selection

0: Reference units/s2

1: ms (default)

For the MVT instruction, the positioning speed is not the reference value of the VEL
instruction.
The MVT instruction changes the positioning speed according to the set positioning time and
the amount of movement.

Speed (V)

Rated speed

Positioning speed
(VEL)

Linear acceleration time constant (ACC)

Time (t)

�

�

�

Information
6

6.1 Axis Setting Instructions

 Change Acceleration Time (ACC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
• When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OW03 Setting

Parameter Are Set to 0 (Reference Units/s2)

 Linear Acceleration Rate
The settings in the ACC instruction are used as the linear acceleration rates.

The valid range is 1 to 231- 1 (reference units/s2).

 Positioning Speed
This speed is used by the MOV, MVT, and EXM positioning instructions.
The positioning speed for each axis is set with the VEL instruction.

For the MVT instruction, the positioning speed is not the reference value of the VEL
instruction.
The MVT instruction changes the positioning speed according to the set positioning time and
the amount of movement.

Speed (V)

Time (t)

Positioning speed
(VEL)

Linear acceleration rate (ACC)

�

�

Information
6-17

6.1 Axis Setting Instructions

Change Acceleration Time (ACC)

6-1
Programming Examples

Programming examples that use the ACC instruction are given below.

• When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OW03 Setting
Parameter Are Set to 1 (ms)
The following example executes the MOV instruction to accelerate axis A1 from 0 to the rated speed in
4 seconds, and then executes the MOV instruction to accelerate axis A1 in 8 seconds.

* The unit used for the rated speed (min-1) must be converted to the same unit as the unit that is used for posi-

tioning speed (10n reference units/min).

Fig. 6.6 Programming Example 1 for the ACC Instruction

INC; "Incremental Mode

VEL [A1]10000; "Set feed speed (10n reference units/min).
DCC [A1]8000; "Change deceleration time (ms).
ACC [A1]4000; "Change acceleration time (ms).
MOV [A1]5000000; "Positioning
DL00000 = 8000; "Acceleration time (ms)
ACC [A1]DL00000; "Change acceleration time (ms).
MOV [A1]5000000; "Positioning
END;

(s)8 s4 s
ACC ACC

20000

10000

Speed (V)
(10n reference units/min)

Positioning speed

Time (t)

Rated speed*
8

6.1 Axis Setting Instructions

 Change Acceleration Time (ACC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
• When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OW03 Setting

Parameter Are Set to 0 (Reference Units/s2)

The following example executes the MOV instruction to accelerate axis A1 at a rate of 60.000 (mm/s2)

and then executes the MOV instruction to accelerate axis A1 at a rate of 100.000 (mm/s2). In this exam-
ple, 1 reference unit is 0.001 mm.

Fig. 6.7 Programming Example 2 for the ACC Instruction

INC; "Incremental Mode

VEL [A1]18000; "Set feed speed (10n reference units/min).

DCC [A1]100000; "Change deceleration time (reference units/s2).

ACC [A1]60000; "Set acceleration rate (reference units/s2).
MOV [A1]5000000; "Positioning

DL00000 = 100000; "Acceleration rate (reference units/s2)

ACC [A1]DL00000; "Set acceleration rate (reference units/s2).
MOV [A1]5000000; "Positioning
END;

(0.001 mm/s)

(s)

300000
18000 (mm/min)
 = 300000 (0.001mm/s)

VEL

ACC
60.000 mm/s2

ACC
100.000 mm/s2

Speed (V)

Time (t)
6-19

6.1 Axis Setting Instructions

Change Acceleration Time (ACC)

6-2
Additional Information on the ACC Instruction

 Related Motion Parameters

The ACC instruction changes the acceleration times in the setting parameters.

The acceleration times can be changed by directly changing the settings of the OL36 (Linear Accel-
eration Rate/Acceleration Time Constant) setting parameters instead of by using the ACC instruction.
Refer to the following table for details on how to directly change the acceleration time settings.

Note: The SVC, SVC32, SVC-01, and SVB-01 Function Modules can automatically set the acceleration rates in the
SERVOPACK parameters to the values of the OL36 (Linear Acceleration Rate/Acceleration Time Constant)
setting parameters. If this automatic writing function is enabled, you do not need to set the OW08 (Motion
Commands) setting parameters to 10 (Change Acceleration Time).
Refer to the following manual for details on how to use the automatic writing function.

MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

 Acceleration Times and Deceleration Times

With the following combinations of the Motion Control Function Module and SERVOPACK models, the
acceleration time and deceleration time for an axis cannot be set separately. If you set the acceleration
time, the deceleration time will be automatically set. The acceleration time and deceleration time for an
axis can be set separately using the ACC and DCC instructions for any SERVOPACK model other than
the SGD-N or SGDB-N.

Parameter Name
Register
Address

Description

Linear Acceleration Rate/
Acceleration Time Constant

OL36 Sets the linear acceleration rate or linear acceleration time constant.

Motion Control
Function Modules

Specification Setting Procedure

SVR,
SVR32,
SVA-01,
PO-01

The axes move according to the
acceleration times that are set in
the OL36 (Linear Accelera-
tion Rate/Acceleration Time Con-
stant) setting parameters.

Set the acceleration times in the OL36 (Linear
Acceleration Rate/Acceleration Time Constant) set-
ting parameters.

SVC,
SVC32,
SVC-01,
SVB-01

The axis moves at the acceleration
rate that is set in the SERVOPACK
parameters.

Set the acceleration times in the OL36 (Linear
Acceleration Rate/Acceleration Time Constant) set-
ting parameters. Then, set the OW08 (Motion
Commands) setting parameters to 10 (Change Accel-
eration Time) to write the new acceleration times to
the SERVOPACK.

Motion Control
Function Module

SERVOPACK Remarks

SVB-01
SGD-N • With the SVB-01 Function Module, an axis moves at the acceleration/

deceleration rate that is set in the SERVOPACK parameters.
• The SGD-N and SGDB-N SERVOPACKs use the same parameter to set

both the acceleration time and deceleration time.
SGDB-N
0

6.1 Axis Setting Instructions

 Change Deceleration Time (DCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Change Deceleration Time (DCC)

The DCC instruction changes the deceleration times or deceleration rates of the specified axes for all of
the following axis movement instructions.

• MOV (Positioning)

• MVT (Set-time Positioning)

• EXM (External Positioning)

The values can be changed for up to 32 axes with one instruction. The deceleration time for any unspeci-
fied axis is not changed.
The deceleration times that are set by the DCC instruction remain in effect until they are changed by
another DCC instruction.

Fig. 6.8 Change Deceleration Time

Format

The format of the DCC instruction is as follows:

Note: The unit is set in bits 4 to 7 of the OW03 setting parameter.

1. The DCC instruction changes the deceleration time for the MOV, EXM, and MVT positioning
instructions. Use the IDC instruction to set the deceleration time for the MVS, MCW, MCC,
and SKP interpolation instructions.

2. The ACC, DCC, and SCC instructions are supported by all Motion Control Function Modules.

DCC [Logical_axis_name_1] Deceleration_time [Logical_axis_name_2] Deceleration_time [Logi-
cal_axis_name_3] Deceleration_time. . . ;

Item Unit Applicable Data

Deceleration time or
deceleration rate

ms or reference units/s2 • Directly designated value
• Indirect designation with a double-length integer register

Speed (V)

Time (t)
Before deceleration time is changed

Speed (V)

Time (t)
After deceleration time is changed

Information
6-21

6.1 Axis Setting Instructions

Change Deceleration Time (DCC)

6-2
Settings for the DCC Instruction

This section describes the settings for the DCC instruction.
Either deceleration times (ms) or deceleration rates (reference units/s2) can be selected for the setting unit
of the DCC instruction.

The unit to use is set in bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of the OW03 set-
ting parameter.

• When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OW03 Setting
Parameter Are Set to 1 (ms)

 Linear Deceleration Time Constant
The settings in the DCC instruction are used as linear deceleration times (the time required to reach a speed
of 0 from the rated speed).
The valid range is 1 to 32,767 ms.

 Rated Speed
The rated speed for each axis is set in fixed parameter No. 34 (Rated Motor Speed).

 Positioning Speed
This speed is used by the MOV, MVT, and EXM positioning instructions.
The positioning speed for each axis is set with the VEL instruction.

Parameter Name Acceleration/Deceleration Unit

Function Settings 1
Acceleration/Deceleration Rate Unit Selection

0: Reference units/s2

1: ms (default)

For the MVT instruction, the positioning speed is not the reference value of the VEL
instruction.
The MVT instruction changes the positioning speed according to the set positioning time and
the amount of movement.

Speed (V)

Rated speed

Positioning speed
(VEL)

Linear deceleration
time constant (DCC)

Time (t)

�

�

�

Information
2

6.1 Axis Setting Instructions

 Change Deceleration Time (DCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
• When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OW03 Setting

Parameter Are Set to 0 (Reference Units/s2)

 Linear Deceleration Rate
The settings in the DCC instruction are used as linear deceleration rates.

The valid range is 1 to 231- 1 (reference units/s2).

 Positioning Speed
This speed is used by the MOV, MVT, and EXM positioning instructions.
The positioning speed for each axis is set with the VEL instruction.

For the MVT instruction, the positioning speed is not the reference value of the VEL
instruction.
The MVT instruction changes the positioning speed according to the set positioning time and
the amount of movement.

Speed (V)

Positioning speed
(VEL)

Linear deceleration rate (DCC)

Time (t)

�

�

Information
6-23

6.1 Axis Setting Instructions

Change Deceleration Time (DCC)

6-2
Programming Examples

Programming examples that use the DCC instruction are given below.

• When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OW03 Setting
Parameter Are Set to 1 (ms)
The following example executes the MOV instruction to decelerate axis A1 from the rated speed to a
speed of 0 in 4 seconds, and then executes the MOV instruction to decelerate axis A1 from the rated
speed to a speed of 0 in 8 seconds.

* The unit used for the rated speed (min-1) must be converted to the same unit as the unit that is used for posi-

tioning speed (10n reference units/min).

Fig. 6.9 Programming Example 1 for the DCC Instruction

INC; "Incremental Mode

VEL [A1]10000; "Set feed speed (10n reference units/min).
ACC [A1]8000; "Change acceleration time (ms).
DCC [A1]4000; "Change deceleration time (ms).
MOV [A1]5000000; "Positioning
DL00000 = 8000; "Deceleration time (ms)
DCC [A1]DL00000; "Change deceleration time (ms).
MOV [A1]5000000; "Positioning
END;

(s)8 s4 s
DCC DCC

10000

20000

Speed (V)
(10n reference units/min)

Positioning speed

Time (t)

Rated speed∗
4

6.1 Axis Setting Instructions

 Change Deceleration Time (DCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
• When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OW03 Setting

Parameter Are Set to 0 (Reference Units/s2)

The following example executes the MOV instruction to decelerate axis A1 at a rate of 60.000 (mm/s2),

and then executes the MOV instruction to decelerate axis A1 at a rate of 100.000 (mm/s2). In this exam-
ple, 1 reference unit is 0.001 mm.

Fig. 6.10 Programming Example 2 for the DCC Instruction

INC; "Incremental Mode

VEL [A1]18000; "Set feed speed (10n reference units/min).

ACC [A1]100000; "Set acceleration rate (reference units/s2).

DCC [A1]60000; "Set deceleration rate (reference units/s2).
MOV [A1]5000000; "Positioning

DL00000 = 100000; "Deceleration rate (reference units/s2)

DCC [A1] DL00000; "Set deceleration rate (reference units/s2).
MOV [A1]5000000; "Positioning
END;

(0.001 mm/s)

(s)

300000 VEL
18000(mm/min)

 = 300000(0.001 mm/s)
DCC
60.000 mm/s2

DCC
100.000 mm/s2

Speed (V)

Time (t)
6-25

6.1 Axis Setting Instructions

Change Deceleration Time (DCC)

6-2
Additional Information on the DCC Instruction

 Related Motion Parameters

The DCC instruction changes the deceleration times in the setting parameters.

The deceleration times can be changed by directly changing the settings of the OL38 (Linear Decel-
eration Rate/Deceleration Time Constant) setting parameters instead of by using the DCC instruction.
Refer to the following table for details on how to directly change the deceleration time settings.

Note: The SVC, SVC32, SVC-01, and SVB-01 Function Modules can automatically set the deceleration rates in the
SERVOPACK parameters to the values of the OL38 (Linear Deceleration Rate/Deceleration Time Constant)
setting parameters. If this automatic writing function is enabled, you do not need to set the OW08 (Motion
Commands) setting parameters to 11 (Change Deceleration Time).
Refer to the following manual for details on how to use the automatic writing function.

MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

 Acceleration Times and Deceleration Times

With the following combinations of the Motion Control Function Module and SERVOPACK models, the
acceleration time and deceleration time for an axis cannot be set separately. If you set the acceleration
time, the deceleration time will be automatically set. The acceleration time and deceleration time for an
axis can be set separately using the ACC and DCC instructions for any SERVOPACK model other than
the SGD-N or SGDB-N.

Parameter Name
Register
Address

Description

Linear Deceleration Rate/
Deceleration Time Constant

OL38 Sets the linear deceleration rate or linear deceleration time constant.

Motion Control
Function Modules

Specification Setting Procedure

SVR,
SVR32,
SVA-01,
PO-01

The axes move according to the
deceleration times that are set in the
OL38 (Linear Deceleration
Rate/Deceleration Time Constant)
setting parameters.

Set the deceleration times in the OL38 (Linear
Deceleration Rate/Deceleration Time Constant) set-
ting parameters.

SVC,
SVC32,
SVC-01,
SVB-01

The axis moves at the deceleration
rate that is set in the SERVOPACK
parameters.

Set the deceleration times in the OL38 (Linear
Deceleration Rate/Deceleration Time Constant) set-
ting parameters. Then, set the OW08 (Motion
Commands) setting parameters to 11 (Change Decel-
eration Time) to write the new deceleration times to
the SERVOPACK.

Motion Control
Function Module

SERVOPACK Remarks

SVB-01
SGD-N • With the SVB-01 Function Module, an axis moves at the acceleration/

deceleration rate that is set in the SERVOPACK parameters.
• The SGD-N and SGDB-N SERVOPACKs use the same parameter to set

both the acceleration time and deceleration time.
SGDB-N
6

6.1 Axis Setting Instructions

 Change S-curve Time Constant (SCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Change S-curve Time Constant (SCC)

The SCC instruction changes the S-curve time constants for axis movement instructions.
The S-curve time constant parameter for the S-curve acceleration/deceleration function suppresses
mechanical vibration during acceleration and deceleration.
The values can be changed for up to 32 axes with one instruction. The S-curve time constant for any
unspecified axis is not changed.
The S-curve time constants that are set by the SCC instruction remain in effect until they are changed by
another SCC instruction.

Fig. 6.11 Change S-curve Time Constant

Format

The format of the SCC instruction is as follows:

SCC [Logical_axis_name_1] S-curve_time_constant [Logical_axis_name_2] S-curve_time_constant
... ;

Item Unit Applicable Data

S-curve time constant ms
• Directly designated value
• Indirect designation with a double-length integer register

Speed (V)

Time (t)

Before S-curve time constant is changed

Speed (V)

Time (t)

After S-curve time constant is changed
6-27

6.1 Axis Setting Instructions

Change S-curve Time Constant (SCC)

6-2
Settings for the SCC Instruction

This section describes the settings for the SCC instruction.

Specify a numerical value or register for the S-curve time constant for each axis by using the SCC instruc-
tion.
The setting range of the S-curve time constants depends on the Motion Control Function Module that is
used, as shown below.

• For the SVR, SVR32, PO-01, and SVA-01 Motion Control Function Modules, the setting range is the
same as the setting range for the OW3A (Filter Time Constant) setting parameter.

• For the SVC, SVC32, SVC-01, and SVB-01 Motion Control Function Modules, the setting range is the
same as the setting range for the moving average time in the SERVOPACK parameters.

Refer to the following table for details on the setting range of the S-curve time constant.

Motion Control
Function Modules

SCC Instruction
Setting Range (ms)

Remarks

SVA-01 0 to 6,553 −

SVC,
SVC32,
SVC-01,
SVB-01

0 to 510
For SGD-N, SGDB-N, SGDH+NS110/NS115, SGDS, SGDX,
and SGDV SERVOPACKs

−
The S-curve acceleration/deceleration cannot be used with the
SGDJ SERVOPACK because it does not have a parameter for the
average movement time.

PO-01 0 to 6,553 −
SVR or SVR32 0 to 6,553 −

1. If a reference value of more than 6,553 ms is input, a motion program alarm will occur regardless of
which Motion Control Function Module is used.

2. If a reference value exceeds the upper limit (511 to 6,553 ms) when the SVC, SVC32, SVC-01, or
SVB-01 Motion Control Function Module is used, bit 1 of the IL02 (Setting Parameter Error)
monitor parameter is set to 1, and the upper limit (510 ms) is set for the moving average time in the
SERVOPACK parameters.

Speed (V)
(When the acceleration/deceleration filter is disabled)

S-curve time constant (SCC)

Time (t)

Note
8

6.1 Axis Setting Instructions

 Change S-curve Time Constant (SCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Example

A programming example that uses the SCC instruction is given below.
The following example executes a MOV instruction with an S-curve time constant of 250 ms and a MOV
instruction with an S-curve time constant of 500 ms.
For this example, the setting parameters are set as follows:

• Bits 0 to 3 (Speed Unit Selection) of the OW03 setting parameter are set to 0 (reference units/s).

• Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of the OW03 setting parameter are

set to 0 (reference units/s2).

Fig. 6.12 Programming Example for the SCC Instruction

INC; "Incremental Mode
VEL [A1]10000; "Set feed speed (reference units/s).

ACC [A1]20000; "Set acceleration rate (reference units/s2).

DCC [A1]20000; "Set deceleration rate (reference units/s2).
SCC [A1]250; "Change S-curve time constant (ms).
MOV [A1]20000; "Positioning
DL00000 = 500; "S-curve time constant (ms)
SCC [A1]DL00000; "Change S-curve time constant (ms).
MOV [A1]20000; "Positioning
END;

(ms)250 ms
(SCC)

250 ms
(SCC)

500 ms
(SCC)

500 ms
(SCC)

Speed (V)

Time (t)
6-29

6.1 Axis Setting Instructions

Change S-curve Time Constant (SCC)

6-3
Additional Information on the SCC Instruction

 Related Motion Parameters

The SCC instruction changes the S-curve time constants in the setting parameters.

The S-filter time constants can be changed by directly changing the settings of the OW3A (Filter
Time Constant) setting parameters instead of by using the SCC instruction. Refer to the following table for
details on how to directly change the S-curve time constants.

* The SVC, SVC32, SVC-01, and SVB-01 Function Modules can automatically set the moving average filter time con-
stants in the SERVOPACK parameters to the values of the OW3A (Filter Time Constant) setting parameters.
If this automatic writing function is enabled, you do not need to set the OW08 (Motion Commands) setting
parameters to 12 (Change Filter Time Constant).
Refer to the following manual for details on how to use the automatic writing function.

MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

Parameter Name
Register
Address

Description

Filter Time Con-
stant

OW3A

Sets the acceleration/deceleration filter time constants (1 = 0.1 ms).
• Make sure that reference pulse distribution has been completed (i.e., that

bit 0 of IW0C is 1) before you change the filter time constant.
• Change the time constant only after you select the filter type to use in

bits 8 to B (Filter Type Selection) of the OW03 setting parameter.

Motion Control
Function Modules

Specification Setting Procedure

SVR,
SVR32,
SVA-01,
PO-01

If S-curve acceleration/deceleration is
enabled, the axes move according to
the S-curve time constants that are set
in the OW3A (Filter Time Con-
stant) setting parameters.

Set the S-curve time constants in the
OW3A (Filter Time Constant) setting
parameters.

SVC,
SVC32,
SVC-01,
SVB-01

If S-curve acceleration/deceleration is
enabled, the axes move according to
the moving average filter time con-
stants in the SERVOPACK parameters.

Set the S-curve time constants in the
OW3A (Filter Time Constant) setting
parameters. Then, set the OW08 (Motion
Commands) setting parameters to 12 (Change Fil-
ter Time Constant) to write the new S-curve time
constants to the SERVOPACK.(∗)
0

6.1 Axis Setting Instructions

 Change S-curve Time Constant (SCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Movement Paths for Interpolation Instructions and S-curve Acceleration/
Deceleration

The S-curve acceleration/deceleration rate affects the movement path for the MVS, MCW, MCC, and SKP
interpolation instructions.

• To achieve the same movement path as when the S-curve acceleration/deceleration is disabled for linear
interpolation, set the same S-curve time constant for all of the axes that are involved in the interpolation.

• When S-curve acceleration/deceleration is enabled for circular interpolation, the movement path will not
be the same as when S-curve acceleration/deceleration is disabled.

 Linear Interpolation Movement Paths

Circular Interpolation Movement Paths

Y1

X1

Y1

X1

Y1

X1

Acceleration/deceleration
filter disabled.

S-curve acceleration/deceleration enabled.
S-curve time constants match.

S-curve acceleration/deceleration enabled.
S-curve time constants do not match.

End position End position End position

Start position

In this figure, X1 is
greater than Y1.

Start positionStart position

Y1

X1

Y1

X1

Y1

X1

Acceleration/deceleration
filter disabled.

S-curve acceleration/deceleration enabled. S-curve acceleration/deceleration enabled.
S-curve time constants do not match.S-curve time constants match.

End position End position End position

In this figure, X1 is
greater than Y1.

Start positionStart positionStart position
6-31

6.1 Axis Setting Instructions

Change S-curve Time Constant (SCC)

6-3
 Filter Type Selection

Before you enable S-curve acceleration/deceleration, set the filter type for each axis by setting bits 8 to B
(Filter Type Selection) if OW03 to 2 (Moving Average Filter).

If you are using the SVC, SVC32, SVC-01, or SVB-01 Motion Control Function Modules and have the
automatic writing function disabled, set the OW08 (Motion Commands) setting parameter to 13
(Change Filter Type) to write the settings to the SERVOPACK parameters.
The following programming example shows how to change the filter type from the motion program.

Parameter Name
Register
Address

Filter Type

Function Settings 1
Filter Type Selection

OW03
Bits 8 to B

0: No filter (default)
1: Exponential acceleration/deceleration filter
2: Moving average filter

:
:

"See if changing the filter type is OK.
IOW IW8008 = = 0; "Wait for there to be no motion command in progress.
IOW IB800C0 = = 1; "Wait for reference pulse distribution to be completed.

"Select the Moving Average Filter for the filter type.
DW00000 = OW8003 & F0FFH; "Retain all information other than the Filter Type Selection.
OW8003 = DW00000 | 0200H; "Filter type = Moving average filter

"Write the filter type from the built-in SVB/SVB-01 Module to the SERVOPACK.
OW8008 = 13; Request changing the filter type.
IOW IW8008 = = 13; "Wait for the Change Filter Type operation to become active.
IOW IB80098 = = 1; "Wait for execution of the motion command to be completed.
OW8008 = 0; "Clear the request.
IOW IW8008 = = 0; "Wait for there to be no motion command in progress.

:
:

When using the SVR, SVR32, PO-01, or SVA-01 Motion Control Function Module, the above
programming is not required.
The above programming is also not required even when using the SVC, SVC32, SVC-01, or SVB-
01 Motion Control Function Modules if automatic writing to the SERVOPACK parameters is
enabled.

Refer to the following manuals for details on how to automatically write settings to the
SERVOPACK parameters for the SVC, SVC32, SVC-01, or SVB-01 Motion Control Function
Module.

MP2000 Series Built-in SVB/SVB-01 Motion Module User’s Manual (Manual No.: SIEP C880700 33)

MP2000 Series Built-in SVC/SVC-01 Motion Module User’s Manual (Manual No.: SIEP C880700 41)

MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

Information

Information
2

6.1 Axis Setting Instructions

 Set Speed (VEL)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Set Speed (VEL)

The VEL instruction changes the feed speeds of the specified axes for all of the following axis movement
instructions.

• MOV (Positioning)

• EXM (External Positioning)

In this manual, the above axis movement instructions and the MVT (Set-time Positioning) instruction are
referred to as positioning instructions, and the term positioning speed refers to a feed speed for those
instructions.
The values can be changed for up to 32 axes with one instruction. The positioning speed for any unspeci-
fied axis is not changed.
The positioning speeds that are set by the VEL instruction remain in effect until they are changed by
another VEL instruction.

Fig. 6.13 Set Speed

Format

The format of the VEL instruction is as follows:

Note: The unit is set in bits 0 to 3 (Speed Unit Selection) of the OW03 setting parameter.

The VEL instruction changes the positioning speed for the MOV and EXM positioning
instructions. Use an F reference or the IFP instruction to set the feed speed for the MVS, MCW,
MCC, or SKP interpolation instruction.

VEL [Logical_axis_name_1] Positioning_speed [Logical_axis_name_2] Positioning_speed ... ;

Item Unit Applicable Data

Positioning
speed

10n reference units/min,
reference units/s,
0.01% (percentage of rated speed), or
0.0001% (percentage of rated speed)

• Directly designated value
• Indirect designation with a double-

length integer register

Speed (V)

Before the feed speed is changed

After the feed speed is changed Time (t)

Speed (V)

Time (t)

Information
6-33

6.1 Axis Setting Instructions

Set Speed (VEL)

6-3
Settings for the VEL Instruction

This section describes the settings for the VEL instruction.

 Rated Speed
The rated speed for each axis is set in fixed parameter No. 34 (Rated Motor Speed).

 Acceleration Times and Deceleration Times
Use the ACC and DCC instructions to set the acceleration/deceleration times for each axis.
The times that are set with the ACC instruction designate the amount of time required to accelerate to or
decelerate from the rated speed.

 Speed Unit
The speed unit for each axis is set in bits 0 to 3 (Speed Unit Selection) of the OW03 setting parameter.

The default setting for this parameter is 1 (10n reference units/min).

 Positioning Speed
The positioning speed for each axis is set by specifying a numerical value or register in the VEL instruction.

Parameter Name
Register
Address

Speed Unit Reference Range

Function Settings 1
Speed Unit Selection

OW03
Bits 0 to 3

0: Reference units/s 0 to 231- 1 (reference units/s)

1: 10n reference units/min 0 to 231- 1 (10n reference units/min)

2: 0.01% 0 to 32,767 (0.01%)

3: 0.0001% 0 to 3,276,700 (0.0001%)

The setting unit for the VEL instruction when bit 1 (10n reference units/min) is selected for the
OW03 setting parameter is determined by fixed parameter No. 4 (Reference Unit Selec-
tion).

Fixed Parameter No. 4
(Reference Unit Selection)

Speed Unit
(10n reference units/min)

Remarks

pulse 1 = 1,000 pulse/min • When the Reference Unit Selec-
tion is set to Pulses, n = 3.

• When the Reference Unit Selec-
tion is set to any setting other than
Pulses, n = fixed parameter No. 5
(Number of Digits Below Deci-
mal Point).

mm 1 = 1 mm/min

deg 1 = 1 deg/min

inch 1 = 1 inch/min

μm 1 = 1 μm/min

Speed (V)

(� Acceleration unit)

� Rated speed

	 Positioning speed
(VEL)

� Acceleration time (ACC) � Deceleration time (DCC)

Time (t)

Information
4

6.1 Axis Setting Instructions

 Set Speed (VEL)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Example

A programming example that uses the VEL instruction is given below.
The following example executes the MOV instruction with a positioning speed that is 40% of the rated
speed, and then executes the MOV instruction with a positioning speed that is 20% of the rated speed.

Fig. 6.14 Programming Example for the VEL Instruction

Additional Information on the VEL Instruction

This section describes three additional items about the VEL instruction.

 Related Motion Parameters

The VEL instruction changes the positioning speeds in the setting parameters.

The positioning speeds can be changed by changing the settings of the OL10 (Speed Reference Set-
ting) setting parameters instead of by using the VEL instruction.

INC; "Incremental Mode
ACC [A1]5000; "Change acceleration time (ms).
DCC [A1]5000; "Change deceleration time (ms).
VEL [A1]4000; "Change the feed speed (0.01%).
MOV [A1]3000000; "Positioning
VEL [A1]2000; "Change the feed speed (0.01%).
MOV [A1]3000000; "Positioning
END;

Parameter Name Register Address Description

Speed Reference Setting OL10 Sets the speed reference.

(0.01%)

4000

2000

10000

[A1] Speed (V)

Rated speed

VEL, 40% of rated speed

VEL, 20% of rated speed

Time (t)
6-35

6.1 Axis Setting Instructions

Set Speed (VEL)

6-3
 Overrides

You can use the OW18 (Override) setting parameters to specify what percentage of the positioning
speed specified by a VEL instruction to actually execute (i.e., the output ratio). The unit for the Override
parameters is 0.01%.
The default value for the OW18 (Override) setting parameters is 10,000 (100.00%).

The OW18 (Override) setting parameters can be changed during axis movement.

Fig. 6.15 OW18 (Override) and Positioning Instructions

Refer to the following section for how to calculate the rated speed according to the speed unit of
the VEL instruction.

Motor Speed Specifications (page 6-37)

Overrides
An override allows you to change the output ratio of the axis movement speed reference for interpola-
tion motion language instructions.

1. The SVR and SVR32 Function Modules do not support the OW18 (Override) setting
parameters.

2. For the MVT instruction, the positioning speed used as the base for the override is not the VEL
instruction reference value. The positioning speed changed by executing the MVT instruction is
used as the base speed for the override.

3. If you use an override for the MVT instruction, positioning will not be completed within the
specified time. The positioning speed during execution of the MVT instruction is calculated
with an override value of 100%.

4. The speed unit of the rated speed that is specified in the motion fixed parameters is different
from the speed unit that is used for VEL instruction in a motion program.

Speed Speed Unit

Fixed Parameter No. 34 (Rated Motor Speed) Revolutions/min

Positioning speed (VEL) Reference units/s, 10n reference units/min,
0.01%, or 0.0001%

×
0 to 327.67%

=VEL instruction
reference value

Override Positioning speed

VEL instruction
reference value Override (OW���18) Positioning speed

Terms

100.00%
50.00%

150.00%

Speed (V)

VEL instruction
reference value

100% of VEL

50% of VEL

150% of VEL

One positioning instruction block

Time (t)

Time (t)

OW���18
(Override)

Information
6

6.1 Axis Setting Instructions

 Set Speed (VEL)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Motor Speed Specifications

In addition to the VEL instruction reference range, the rated motor speed and maximum speed must be
taken into consideration to determine the set value for the VEL instruction. To avoid causing an over-
speed, check the speed specifications of your motor before you set a value for the VEL instruction.

• Parameter Setting Example: When Electronic Gear Is Enabled
The electronic gear is enabled if fixed parameter No. 4 (Reference Unit Selection) is set to any unit other
than pulses.

When the electronic gear is enabled, n in the speed unit reference (10n reference units/min) is the number
of digits below the decimal point. Therefore, the speed unit is as follows:

(10n reference units/min) = (103 × 0.001 mm/min) = (mm/min)

The machine shaft rotation speed when the motor rotates at the rated speed is as follows:

Rated motor speed (revolutions/min) × Gear ratio

= 3,000 × (2/3) = 2,000 (revolutions/min)

If the number of rotations of the machine shaft is converted into reference units (0.001 mm),

Travel distance per machine rotation (0.001 mm/revolution) × 2,000 (revolutions/min)

= 10,000 × 2,000 = 20,000,000 (0.001 mm/min)

If the speed unit is (mm/min),

20,000,000 (0.001 mm/min) = 20,000 (mm/min)

For rotational motors, the speed specification is expressed in rotations per specified time period.

The rated speed when the speed unit is 10n reference units/min is calculated according to the fixed
parameter settings, as shown below.

Fixed Parameters
• No. 4: Reference Unit Selection = mm
• No. 5: Number of Digits Below Decimal Point = 3
• No. 6: Travel Distance per Machine Rotation = 10,000 reference units
• No. 8: Servomotor Gear Ratio Term = 3
• No. 9: Machine Gear Ratio Term = 2
• No. 34: Rated Motor Speed = 3,000 revolutions/min

Information

Workpiece

Motor The machine shaft rotates two times when
the motor rotates three times (gear ratio).

Ball screw

The table moves 10 mm per revolution.
(travel distance per machine rotation)
6-37

6.1 Axis Setting Instructions

Set Speed (VEL)

6-3
• Parameter Setting Example: Electronic Gear Disabled, SVA-01 Function Module
The electronic gear is disabled if fixed parameter No. 4 (Reference Unit Selection) is set to Pulses.

When the electronic gear is disabled, n in the speed unit reference (10n reference units/min) is 3.
Therefore, the speed unit is as follows:

(10n reference units/min) = (103 pulses/min) = (1,000 pulses/min)

If the rated motor speed is converted into pulses,

Rated motor speed (revolutions/min) × (Number of pulses per motor rotation (pulses/revolution) × multi-
plier)

= 3,000 × (16,384 × 4) = 196,608,000 (pulses/min)

With a speed unit of 1,000 pulses/min,

196,608,000 (pulses/min) = 196,608 (1,000 pulses/min)

• Parameter Setting Example: Electronic Gear Disabled, SVC, SVC32, SVR, SVR32, SVC-01,
SVB-01, or PO-01 Function Module
The electronic gear is disabled if fixed parameter No. 4 (Reference Unit Selection) is set to Pulses.

When the electronic gear is disabled, n in the speed unit reference (10n reference units/min) is 3.
Therefore, the speed unit is as follows:

(10n reference units/min) = (103 pulses/min) = (1,000 pulses/min)

If the rated motor speed is converted into pulses,

Rated motor speed (revolutions/min) × Number of pulses per motor rotation (pulses/revolution)

= 3,000 × 65,536 = 196,608,000 (pulses/min)

With a speed unit of 1,000 pulses/min,

196,608,000 (pulses/min) = 196,608 (1,000 pulses/min)

Fixed parameters other than those given in the above examples may also need to be set correctly in order
to ensure proper axis operation.

Refer to the following manual for details on motion parameters.
MP3000 Series Motion Control User’s Manual (Manual No.: SIEPSIEP C880725 11)

Fixed Parameters
• No. 4: Reference Unit Selection = Pulses
• No. 22: Pulse Counting Mode Selection = A/B × 4 (× 4)
• No. 34: Rated Motor Speed = 3,000 revolutions/min
• No. 36: Number of Pulses per Motor Rotation (before multiplication) = 16,384 pulses/revolution

Fixed Parameters
• No. 4: Reference Unit Selection = Pulses
• No. 34: Rated Motor Speed = 3,000 revolutions/min
• No. 36: Number of Pulses per Motor Rotation = 65,536 pulses/revolution
8

6.1 Axis Setting Instructions

 Set Maximum Interpolation Feed Speed (FMX)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Set Maximum Interpolation Feed Speed (FMX)

The FMX instruction sets the maximum speed for the MVS, MCW, MCC, and SKP interpolation instruc-
tions.
The maximum interpolation feed speed that is set by the FMX instruction remains in effect until it is
changed by another FMX instruction.
The maximum interpolation feed speed is not set when program operation starts.
The FMX instruction must be executed before any of the following interpolation instructions are executed.

• MVS (Linear Interpolation)

• MCC or MCW (Circular Interpolation)

• MCC or MCW (Helical Interpolation)

• SKP (Skip Function)

• IFP (Set Interpolation Feed Speed Ratio)

• IAC (Change Interpolation Acceleration Time)

• IDC (Change Interpolation Deceleration Time)

• IDH (Change Interpolation Deceleration Time for Temporary Stop)

Fig. 6.16 Set Maximum Interpolation Feed Speed

A motion program alarm will occur if any interpolation instruction (MVS, MCW, MCC, SKP, IFP,
IAC, IDC, or IDH) is executed before the FMX instruction is executed.

1. Interpolation instructions are processed with the assumption that the maximum interpolation
feed speed is set in advance. For example, the IAC, IDC, and IDH instructions all designate the
time required to reach the maximum interpolation feed speed from a speed of 0. Therefore, the
maximum interpolation feed speed must be set before any of these instructions can be executed.

2. The FMX instruction is not related to any setting parameters.
The maximum interpolation feed speed that is specified by the FMX instruction is treated as
control data that is reserved exclusively for motion programs. There is no setting parameter that
you can use to specify the maximum interpolation feed speed.

Speed (V)

Specified
maximum

interpolation
feed speed

Interpolation
feed speed

Interpolation
acceleration time

Interpolation
deceleration time

Time (t)

Note

Information
6-39

6.1 Axis Setting Instructions

Set Maximum Interpolation Feed Speed (FMX)

6-4
Format

The format of the FMX instruction is as follows:

Settings for the FMX Instruction

This section describes the settings for the FMX instruction.

 Specified Maximum Interpolation Feed Speed
The maximum interpolation feed speed is set by specifying a register or a numerical value after the character

“T” in the FMX instruction. The valid range for the maximum interpolation feed speed is 1 to 231 - 1 (refer-
ence units/min).
The maximum interpolation feed speed that is set is used for all interpolation instructions.
Therefore, the FMX instruction must be executed at the beginning of the motion program before the MVS,
MCW, MCC, or SKP interpolation instruction can be used.

Programming Example

A programming example that uses the FMX instruction is given below.

FMX Tmaximum_interpolation_feed_speed;

Item Unit Applicable Data

Maximum interpolation
feed speed

Reference units/min
or reference units/s
(specified with FUT
instruction)

• Directly designated value
• Indirect designation with a double-length integer register

INC; "Incremental Mode
FMX T300000; "Set maximum interpolation feed speed.
IAC T4000; "Change interpolation acceleration time (ms).
IDC T4000; "Change interpolation deceleration time (ms).
IFP P75; "Set interpolation feed speed ratio (%).
MVS [A1]30000 [B1]30000; "Linear interpolation
MVS [A1]30000 [B1]30000 F150000; "Linear interpolation (F reference)
END;

Speed (V)

Specified maximum
interpolation feed
speed (FMX)
(composite speed)

Interpolation feed speed
(F reference or IFP)
(composite speed)

Interpolation
acceleration time (IAC)

Interpolation
deceleration time (IDC)

Time (t)

�

0

6.1 Axis Setting Instructions

 Set Maximum Interpolation Feed Speed (FMX)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Fig. 6.17 Programming Example for the FMX Instruction

(s)

(100%)

150000

225000

4 s
IDC

IFP

FMX

4 s
IAC

(50%)

(75%)

300000

Composite speed (V)
(reference units/min)

F reference of MVS

Time (t)
6-41

6.1 Axis Setting Instructions

Set Maximum Individual Axis Speeds for Interpolation (IFMX)

6-4
Set Maximum Individual Axis Speeds for Interpolation (IFMX)

The IFMX instruction sets the maximum feed speeds for individual axes that are used in the MVS, SKP,
MCW, and MCC interpolation instructions.

The maximum individual axis feed speeds that are set by the IFMX instruction remain in effect until they
are changed by another IFMX instruction.

If an actual axis feed speed exceeds a value that was set with the IFMX instruction, a motion program
alarm will occur and all axes will stop immediately.

The maximum individual axis feed speeds for interpolation are not set when program operation starts. The
individual axes will operate without any speed limits.

A timing chart for linear interpolation of two axes (A1 and B1) when the IFMX instruction has been exe-
cuted to set the maximum feed speed only for the A1 axis is given below.

Fig. 6.18 Maximum Individual Axis Speed Settings for Interpolation

Speed of Axis A1

Interpolation feed speed (F)

Specified maximum
interpolation feed speed

(FMX)

Speed (V)
(reference units/min)

Time (t)

Specified maximum individual
axis speed for interpolation

(IFMX)

Speed (V)
(reference units/min)

Speed (V)
(reference units/min)

Composite Speed (A1 and B1 Axes)

Speed of Axis B1

Specified maximum
interpolation feed speed

(FMX)

Specified maximum
interpolation feed speed

(FMX)

Time (t)

Time (t)

The A1 axis exceeded the speed that
was set with the IFMX instruction, so
all axes are stopped immediately.

The A1 axis exceeded the speed that
was set with the IFMX instruction, so
the B1 axis is stopped.

The A1 axis exceeded the speed that
was set with the IFMX instruction, so
linear interpolation is stopped.

Expansion to Individual Axes
2

6.1 Axis Setting Instructions

 Set Maximum Individual Axis Speeds for Interpolation (IFMX)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Format

The format of the IFMX instruction is as follows:
IFMX
[Logical_axis_name_1]Maximum_Individual_axis_speed_for_interpolation [Logical_ax-
is_name_2]Maximum_Individual_axis_speed_for_interpolation ...;

Settings for the IFMX Instruction

This section describes the settings for the IFMX instruction.

Maximum Individual Axis Speed for Interpolation
The maximum individual axis feed speeds during interpolation are set by specifying registers or numerical
values in the IFMX instruction.

The setting range for the IFMX instruction is 0 to 231 - 1 (reference units/min).
If you set 0 for the IFMX instruction, the maximum individual axis feed speeds for interpolation will not be
set and the individual axes will operate without any speed limits.

1. If the IFMX instruction is not executed or if a maximum speed of 0 is set, the individual axes
will operate without any speed limits.

2. The unit of the set value of the IFMX instruction is converted in the motion program from ref-
erence units/min to reference units/scan. When the unit is converted, the resulting value is
rounded down to the nearest integer to determine if the axis speed has exceeded the maximum
speed. This is different from processing for the interpolation feed speed (F).
Therefore, depending on the high-speed scan time and interpolation feed speed, axis operation
may occur even if the axis exceeds the speed limit that was set with the IFMX instruction but
does not exceed the interpolation feed speed (F). The interpolation feed speed will never be
exceeded.
The following formula is used to convert the interpolation feed speed and the set values of the
IFMX instruction (reference units/min).
Interpolation feed speed (or speed limit) [reference units/scan] = F value (or set value in IFMX
instruction)/60 (s)/1,000 (ms) × Ts, where Ts = high-speed scan time

Item Unit Applicable Data

Maximum individual axis speed
for interpolation

Reference units/min
or reference units/s
(specified with FUT
instruction)

• Directly designated value
• Indirect designation with a double-length integer

register

Information

Interpolation acceleration time
(IAC)

Interpolation deceleration time
(IDC)

Speed (V)

Time (t)

Specified maximum
interpolation

feed speed (FMX)
(composite speed)

Interpolation feed speed
(F designation or IFP)

(composite speed)

� Specified maximum
individual axis speed for
interpolation (IFMX)
6-43

6.1 Axis Setting Instructions

Set Maximum Individual Axis Speeds for Interpolation (IFMX)

6-4
Programming Example

A programming example that uses the IFMX instruction is given below.

FMX T600000; "Set maximum interpolation feed speed."
IFMX [A1]500000 [B1]550000; "Set maximum individual axis feed speeds for interpolation."
INC; "Incremental Mode"
IAC T500; "Interpolation acceleration time = 500 ms"
IDC T500; "Interpolation deceleration time = 500 ms"
MVS [A1]30000 [B1]40000 F600000; "Linear interpolation instruction"

END;

Composite Speed (A1 and B1 Axes)

600,000
(FMX)

Speed (V)
(reference units/min)

Time (t)

500,000
(IFMX)

Speed (V)
(reference units/min)

Time (t)

550,000
(IFMX)

Speed (V)
(reference units/min)

Time (t)

Speed of Axis B1

Speed of Axis A1

Expansion to Individual Axes
4

6.1 Axis Setting Instructions

 Change Interpolation Feed Speed Unit (FUT)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Change Interpolation Feed Speed Unit (FUT)

The FUT instruction can be used to change the speed unit for the following interpolation instructions.

• Set Maximum Interpolation Feed Speed (FMX)

• Set Maximum Individual Axis Speeds for Interpolation (IFMX)

• Linear Interpolation (MVS)

• Circular Interpolation (MCW/MCC)

• Helical Interpolation (MCW/MCC)

• Linear Interpolation with Skip Function (SKP)

The interpolation feed speed unit that is selected is retained until it is set again with the FUT instruction.

The interpolation feed speed unit is reference units/min when program operation starts.

1. If the FUT instruction has not been executed, the interpolation feed speed unit is reference
units/min.

2. If the FUT instruction is set out of range, a compiler error will occur.
3. You can use the FUT instruction with the following versions.

Speed (V)

Time (t)
Before the Interpolation Feed Speed Unit Is Changed

Speed (V)

Time (t)

After the Interpolation Feed Speed Unit Is Changed

Interpolation feed speed
(reference units/min)

Maximum interpolation feed speed
(reference units/min)

Interpolation feed speed
(reference units/s)

Maximum interpolation feed speed
(reference units/s)

Information

Machine Controller or MPE720 Applicable Versions

MP3000-series Machine Controller Ver. 1.08 or later

MPE720 Version 7 Version 7.23 or later
6-45

6.1 Axis Setting Instructions

Change Interpolation Feed Speed Unit (FUT)

6-4
Format

The format of the FUT instruction is as follows:

Programming Example

A programming example that uses the FUT instruction is given below.

FUT Uinterpolation_feed_speed_unit_number;

Item Unit Applicable Data

Interpolation
feed speed
unit number

−
Directly designated value
0: Reference units/min
1: Reference units/s

When the FUT instruction is executed to change the unit, the values for FMX, IFMX, F, and IFP are
initialized to 0. After you change the unit, set the interpolation feed speeds according to the new unit.

FUT U1; "Change interpolation feed speed from reference units/min to reference units/s."
INC; "Incremental Mode’
FMX T600000; "Maximum interpolation feed speed (reference units/s)"
IAC T100; "Acceleration time = 100 ms"
IDC T100; "Deceleration time = 100 ms"
MVS [A1]10000 F600000; "Linear interpolation feed speed = 600,000 reference units/s"
FUT U0; "Change interpolation feed speed from reference units/s to reference units/min."
FMX T600000; "Maximum interpolation feed speed (reference units/min)"
MVS [A1]10000 F600000; "Linear interpolation feed speed = 600,000 reference units/min"
END;

Note

Speed (V)

600,000
(reference units/min)

600,000
(reference units/s)

Time (t)
Acceleration time

= 100 ms
Acceleration time

= 100 ms
Deceleration time

= 100 ms
Deceleration time

= 100 ms
6

6.1 Axis Setting Instructions

 Set Interpolation Feed Speed Ratio (IFP)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Set Interpolation Feed Speed Ratio (IFP)

The IFP instruction sets the feed speed for the following axis movement instructions. The feed speed is
specified as a percentage of the maximum interpolation feed speed.

• MVS (Linear Interpolation)

• MCC or MCW (Circular Interpolation)

• MCC or MCW (Helical Interpolation)

• SKP (Linear Interpolation with Skip Function)

In this manual, the above axis movement instructions are referred to as interpolation instructions, and the
term interpolation feed speed refers to the feed speed for those instructions. The interpolation feed speed
that is set by the IFP instruction remains in effect until it is changed by another IFP instruction or until an
F reference is made in an interpolation instruction.
The interpolation feed speed is not set when program operation starts. Set the interpolation feed speed by
executing the Set Interpolation Feed Speed Ratio (IFP) instruction or by specifying an F reference before
executing any interpolation instructions.

Fig. 6.19 Set Interpolation Feed Speed Ratio

1. You must execute the Set Maximum Interpolation Feed Speed (FMX) instruction before you exe-
cute the IFP instruction. A motion program alarm will occur if the IFP instruction is executed with-
out first executing the FMX instruction.

2. A motion program alarm will occur if an interpolation instruction is executed without setting the
interpolation feed speed even once.

1. F references can be used to specify the interpolation feed speed by writing a numerical value or
register following the character F in interpolation instructions. The interpolation feed speed is
specified in reference units/min.

2. If an IFP instruction is executed after an F reference, the interpolation feed speed specified by
the F reference will be canceled. If an F reference is made after an IFP instruction is executed,
the interpolation feed speed specified by the IFP instruction will be canceled.

3. The IFP instruction sets the feed speed for the MVS, MCW, MCC, and SKP interpolation
instructions. Use the VEL instruction to set the feed speed for the MOV and EXM positioning
instructions.

4. The IFP instruction is not related to any setting parameters.
The interpolation feed speed ratio that is specified by the IFP instruction is treated as control
data that is reserved exclusively for motion programs. There is no setting parameter that you
can use to specify the interpolation feed speed ratio.

100%

Speed (V)

Interpolation
feed speed ratio

100% = Maximum interpolation feed speed

Time (t)

Important

Information
6-47

6.1 Axis Setting Instructions

Set Interpolation Feed Speed Ratio (IFP)

6-4
Format

The format of the IFP instruction is as follows:

Settings for the IFP Instruction

This section describes the settings for the IFP instruction.

 Interpolation Feed Speed Ratio
The interpolation feed speed ratio is set by specifying a register or a numerical value following the character
“P” in the IFP instruction.
The time set with the IFP instruction designates the ratio of the interpolation feed speed to the maximum
interpolation feed speed.
The interpolation feed speed is the composite speed of all axes specified by the MVS, MCW, MCC, and SKP
interpolation instructions.
The valid range for the interpolation feed speed ratio is 1% to 100%.
You can select whether to apply an interpolation override to the interpolation feed speed.
Refer to the following section for how to use interpolation overrides.

Work Registers (page 1-23)

IFP Pinterpolation_feeding_speed_ratio;

Item Unit Applicable Data

Interpolation feed speed ratio %
• Directly designated value
• Indirect designation with a double-length integer register

You cannot place an IFP instruction in the same block as any interpolation instruction (MVS,
MCW, MCC, or SKP).

Information

100%

Speed (V)

Interpolation feed
speed ratio (IFP)

Interpolation acceleration
time (IAC)

Interpolation deceleration
time (IDC)

Maximum
interpolation feed
speed (FMX)
(composite speed)

Time (t)

�

8

6.1 Axis Setting Instructions

 Set Interpolation Feed Speed Ratio (IFP)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Example

A programming example that uses the IFP instruction is given below.

Fig. 6.20 Programming Example for IFP Instruction

When Not Specifying an Interpolation Override

When Specifying an Interpolation Override

A motion program alarm will occur if a value that exceeds 100% is specified for the IFP reference
value (%).

1. The interpolation feed speed can be specified by using either an IFP instruction or an F refer-
ence.
Refer to the following section for details on the interpolation feed speed.

Linear Interpolation (MVS)−Settings for the MVS Instruction (page 6-86)

2. If the interpolation feed speed with interpolation override applied exceeds the FMX refer-
ence value, the output value of the interpolation feed speed will be reset to the FMX refer-
ence value.

INC; "Incremental Mode
FMX T300000; "Set maximum interpolation feed speed (reference units/min).
IAC T4000; "Change interpolation acceleration time (ms).
IDC T4000; "Change interpolation deceleration time (ms).
IFP P75; "Set interpolation feed speed ratio (%).
MVS [A1]30000 [B1]30000; "Linear interpolation
DL00000 = 50; "Interpolation feed speed ratio (%)
IFP PDL00000; "Set interpolation feed speed ratio (%).
MVS [A1]30000 [B1]30000; "Linear interpolation
END;

Example

× =FMX reference
value

IFP reference value
(1% to 100%)

Interpolation
feed speed

FMX reference
value IFP reference value Interpolation

feed speed

Example

× =×FMX reference
value

FMX reference
value

IFP reference
value

Interpolation
override

Interpolation
feed speed

IFP reference value
(1% to 100%)

Interpolation override
0 to 327.67%

Interpolation
feed speed

Important

Information

100%

50%

75%

Composite speed (V)
100% = Maximum interpolation feed speed

300,000 (reference units/min)

225,000 (reference units/min)

150,000 (reference units/min)

Time (t)
6-49

6.1 Axis Setting Instructions

Change Interpolation Acceleration Time (IAC)

6-5
Change Interpolation Acceleration Time (IAC)

The IAC instruction changes the interpolation acceleration times for the following axis movement instruc-
tions.

• MVS (Linear Interpolation)

• MCC or MCW (Circular Interpolation)

• MCC or MCW (Helical Interpolation)

• SKP (Linear Interpolation with Skip Function)

The FMX instruction must be executed first before an IAC instruction is executed.
The acceleration time that is set by the IAC instruction remains in effect until it is changed by another IAC
instruction.
The interpolation acceleration time is set to 0 ms when program operation starts.

Fig. 6.21 Change Interpolation Acceleration Time

Format

The format of the IAC instruction is as follows:

1. The IAC instruction changes the acceleration time for the MVS, MCW, MCC, and SKP inter-
polation instructions.
Use the ACC instruction to set the acceleration time for the MOV, EXM, and MVT positioning
instructions.

2. The IAC instruction is not related to any setting parameters.
The interpolation acceleration time specified by the IAC instruction is treated as control data
that is reserved exclusively for motion programs. There is no setting parameter that you can use
to specify the interpolation acceleration time.

IAC Tinterpolation_acceleration_time;

Item Unit Applicable Data

Interpolation acceleration time ms or reference units/s2
(specified with IUT instruction)

• Directly designated value
• Indirect designation with a double-length

integer register

IAC

IAC

Speed (V)
Specified maximum
interpolation feed
speed

Interpolation
feed speed

Before acceleration time is changed

Speed (V)

Interpolation
feed speed

Time (t)

After acceleration time is changed

Time (t)

Specified maximum
interpolation feed
speed

Information
0

6.1 Axis Setting Instructions

 Change Interpolation Acceleration Time (IAC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Settings for the IAC Instruction

This section describes the settings for the IAC instruction.

 Interpolation acceleration time
The interpolation acceleration time is set by specifying a register or a numerical value following the charac-
ter “T” in the IAC instruction.
The time set with the IAC instruction designates the amount of time required to accelerate from a speed of 0
to the maximum interpolation feed speed.
The valid range for the interpolation acceleration time is 0 to 32,767 ms.

Programming Example

A programming example that uses the IAC instruction is given below.

Fig. 6.22 Programming Example for IAC Instruction

INC; "Incremental Mode
FMX T300000; "Set maximum interpolation feed speed (reference units/min).
IDC T4000; "Change interpolation deceleration time (ms).
IAC T2000; "Change interpolation acceleration time (ms).
MVS [A1]30000 [B1]30000 F150000; "Linear interpolation
DL00000 = 4000; "Interpolation acceleration time (ms)
IAC TDL00000; "Change interpolation acceleration time (ms).
MVS [A1]30000 [B1]30000; "Linear interpolation
END;

Speed (V)

Specified maximum
interpolation feed

speed (FMX)
(composite speed)

Interpolation feed
speed

(F reference or IFP)
(composite speed)

Interpolation acceleration
time (IAC)

Time (t)

�

(s)

300,000

2 s

150,000

4 s

FMX

IAC IAC

Composite speed (V)
(reference units/min)

F reference of MVS

Time (t)
6-51

6.1 Axis Setting Instructions

Change Interpolation Deceleration Time (IDC)

6-5
Change Interpolation Deceleration Time (IDC)

The IDC instruction changes the interpolation deceleration time for the following axis movement instruc-
tions.

• MVS (Linear Interpolation)

• MCC or MCW (Circular Interpolation)

• MCC or MCW (Helical Interpolation)

• SKP (Linear Interpolation with Skip Function)

The FMX instruction must be executed first before an IDC instruction is executed. The deceleration time
that is set by the IDC instruction remains in effect until it is changed by another IDC instruction.
The interpolation deceleration time is set to 0 ms when program operation starts.

Fig. 6.23 Change Interpolation Deceleration Time

Format

The format of the IDC instruction is as follows:

1. The IDC instruction changes the deceleration time for the MVS, MCW, MCC, and SKP inter-
polation instructions.
Use the DCC instruction to set the deceleration time for the MOV, EXM, and MVT positioning
instructions.

2. The IDC instruction is not related to any setting parameters.
The interpolation deceleration time specified by the IDC instruction is treated as control data
that is reserved exclusively for motion programs. There is no setting parameter that you can use
to specify the interpolation deceleration time.

IDC Tinterpolation_deceleration_time;

Item Unit Applicable Data

Interpolation deceleration time ms or reference units/s2
(specified with IUT instruction)

• Directly designated value
• Indirect designation with a double-length

integer register

IDC

IDC

Speed (V)

Speed (V)

Interpolation
feed speed

Specified maximum
interpolation feed
speed

Interpolation
feed speed

Time (t)

Time (t)

After deceleration time is changed

Before deceleration time is changed

Specified maximum
interpolation feed
speed

Information
2

6.1 Axis Setting Instructions

 Change Interpolation Deceleration Time (IDC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Settings for the IDC Instruction

This section describes the settings for the IDC instruction.

 Interpolation Deceleration Time
The interpolation deceleration time is set by specifying a register or a numerical value following the charac-
ter “T” in the IDC instruction.
The time set with the IDC instruction designates the amount of time required to decelerate from the maxi-
mum interpolation feed speed to a speed of 0.
The valid range for the interpolation deceleration time is 0 to 32,767 ms.

Programming Example

A programming example that uses the IDC instruction is given below.

Fig. 6.24 Programming Example for IDC Instruction

INC; "Incremental Mode
FMX T300000; "Set maximum interpolation feed speed (reference units/min).
IAC T4000; "Change interpolation acceleration time (ms).
IDC T2000; "Change interpolation deceleration time (ms).
MVS [A1]30000 [B1]30000 F150000; "Linear interpolation
DL00000 = 4000; "Interpolation deceleration time (ms)
IDC TDL00000; "Change interpolation deceleration time (ms).
MVS [A1]30000 [B1]30000; "Linear interpolation
END;

Speed (V)

Specified maximum
interpolation feed

speed (FMX)
(composite speed)

Interpolation feed
speed
(F reference or IFP)
(composite speed)

Time (t)

Interpolation deceleration
time (IDC)

�

(s)

300,000

2 s

150,000

4 s

FMX

IDC IDC

Composite speed (V)
(reference units/min)

F reference of MVS

Time (t)
6-53

6.1 Axis Setting Instructions

Change Interpolation Deceleration Time for Temporary Stop (IDH)

6-5
Change Interpolation Deceleration Time for Temporary Stop
(IDH)

The IDH instruction changes the interpolation deceleration time for temporary stop for the following axis
movement instructions.

• MVS (Linear Interpolation)

• MCC or MCW (Circular Interpolation)

• MCC or MCW (Helical Interpolation)

• SKP (Linear Interpolation with Skip Function)

Use the IDH instruction when you want the axes to rapidly decelerate to a stop faster than the deceleration
time specified by the IDC instruction.

The FMX instruction must be used first to set the maximum interpolation feed speed before an IDH
instruction is executed.

The deceleration time that is set by the IDH instruction remains in effect until it is changed by another
IDH instruction.

If the IDH instruction is not used, the deceleration time set by the IDC instruction is used.

Fig. 6.25 Change Interpolation Deceleration Time for Temporary Stop

IDC

IDC

IDH

Speed (V)
Specified maximum
interpolation feed
speed

Interpolation
feed speed

Speed (V)

Interpolation
feed speed

Time (t)

Control signal bit 1
(Request Temporary Stop)

After interpolation deceleration time for temporary stop is set

Time (t)

Control signal bit 1
(Request Temporary Stop)

Before interpolation deceleration time for temporary stop is set

Specified maximum
interpolation feed
speed
4

6.1 Axis Setting Instructions

 Change Interpolation Deceleration Time for Temporary Stop (IDH)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Format

The format of the IDH instruction is as follows:

Settings for the IDH Instruction

This section describes the settings for the IDH instruction.

 Interpolation Deceleration Time for Temporary Stop
The interpolation deceleration time for temporary stop is set by specifying a register or a numerical value fol-
lowing the character “T” in the IDH instruction.
The time set with the IDH instruction designates the amount of time required to decelerate from the maxi-
mum interpolation feed speed to a speed of 0.
The valid range for the interpolation deceleration time for temporary stop is 0 to 32,767 ms.

Programming Example

A programming example that uses the IDH instruction is given below.

IDH Tinterpolation_deceleration_time_for_temporary_stop;

Item Unit Applicable Data

Interpolation deceleration time for
temporary stop

ms or reference units/s2
(specified with IUT instruction)

• Directly designated value
• Indirect designation with a double-

length integer register

INC; "Incremental Mode
FMX T300000; "Set maximum interpolation feed speed (reference units/min).
IAC T2000; "Change interpolation acceleration time (ms).
IDC T4000; "Change interpolation deceleration time (ms).
IDH T100; "Set the interpolation deceleration time for temporary stop (ms).
MVS [A1]30000 [B1]30000 F150000; "Linear interpolation (request temporary stop during axis operation)
END;

Speed (V)
Specified maximum
interpolation feed speed
(FMX)
(composite speed)

Interpolation feed speed
(F reference or IFP)

Interpolation deceleration
time for temporary stop (IDH)

(composite speed)

Time (t)

Interpolation deceleration time (IDC)

Control signal bit 1
(Request Temporary Stop)

�

6-55

6.1 Axis Setting Instructions

Change Interpolation Deceleration Time for Temporary Stop (IDH)

6-5
Fig. 6.26 Programming Example for IDH Instruction

(s)

300,000

150,000

4s

FMX

0.1s

Composite speed (V)
(reference units/min)

F reference of MVS

Time (t)

Control signal bit 1
(Request Temporary Stop)
6

6.1 Axis Setting Instructions

 Change Interpolation Deceleration Time for Temporary Stop (IDH)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Additional Information on the IDH Instruction

 Operation When the Deceleration Time Specified by the IDH Instruction Is
Greater than the Deceleration Time Specified by the IDC Instruction

If the deceleration time specified by the IDH instruction is greater than the deceleration time specified by
the IDC instruction, the remaining travel distance for the interpolation instructions may be less than the
travel distance required to decelerate to a stop in the specified deceleration time.

If the remaining travel distance is less than the distance required to decelerate to a stop, the axis will stop
immediately when the remaining distance equals 0.

 Operation When a Skip Signal Is Input

If a skip signal is input after the deceleration time is set by an IDH instruction while execution of an SKP
instruction is in progress, the deceleration time set by the IDH instruction is used.

 Operation When the Acceleration/Deceleration Mode Is Set

The operation when a temporary stop request is made while execution of an interpolation instruction is in
progress after the acceleration/deceleration mode was set with the ACCMODE instruction described
below.

 Temporary Stop Request before the Interpolation Distribution for the Next Block Begins

The axis decelerates to a stop in the deceleration time specified by the IDH instruction.

Even if the remaining travel distance for the previous block reaches 0, the distribution for the interpolation
instructions in the next block has not started yet and therefore no interpolation between the blocks occurs.

 Temporary Stop Request after the Interpolation Distribution for the Next Block Begins

Both the previous block and the next block will use the deceleration time set with the IDH instruction.

After the temporary stop request is removed, distribution of the remaining distance is performed for both
the previous block and the next block.

IDH

IDC

Speed (V)
Specified maximum
interpolation feed
speed

Interpolation
feed speed

Control signal bit 1
(Request Temporary Stop)

Stops immediately when
the remaining distance is 0.

Time (t)
6-57

6.1 Axis Setting Instructions

Change Interpolation Acceleration/Deceleration Unit (IUT)

6-5
Change Interpolation Acceleration/Deceleration Unit (IUT)

The IUT instruction can be used to change the acceleration/deceleration unit for interpolation instructions
(MVS, SKP, MCW, and MCC).

The unit set with the IUT instruction is used for the following instructions.

• Change Interpolation Acceleration Time (IAC)

• Change Interpolation Deceleration Time (IDC)

• Change Interpolation Deceleration Time for Temporary Stop (IDH)

The interpolation acceleration/deceleration unit that is selected is retained until it is set again with the IUT
instruction.

The interpolation acceleration/deceleration time unit is set to milliseconds when program operation starts.

1. If the IUT instruction has not been executed, the interpolation acceleration/deceleration unit is
milliseconds.

2. If the IUT instruction is set out of range, a compiler error will occur.
3. You can use the IUT instruction with the following versions.

Speed (V)

Time (t)

Before the Interpolation Acceleration/Deceleration Unit Is Changed

Speed (V)

Time (t)

After the Interpolation Acceleration/Deceleration Unit Is Changed

Interpolation feed speed

Maximum interpolation feed speed

IAC

IAC

Maximum interpolation feed speed

Interpolation feed speed

IDC

IDC

Information

Machine Controller or MPE720 Applicable Versions

MP3000-series Machine Controller Ver. 1.08 or later

MPE720 Version 7 Version 7.23 or later
8

6.1 Axis Setting Instructions

 Change Interpolation Acceleration/Deceleration Unit (IUT)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Format

The format of the IUT instruction is as follows:

Programming Example

A programming example that uses the IUT instruction is given below.

IUT Uinterpolation_acceleration/deceleration_unit_number;

Item Unit Applicable Data

Interpolation accel-
eration/deceleration
unit number

−
Directly designated value
0: ms (default)

1: Reference units/s2

1. When the IUT instruction is executed to change the interpolation acceleration/deceleration unit, the
most gradual acceleration/deceleration is set to ensure safety. After you change the unit, set the
interpolation acceleration/deceleration rates according to the new unit.

2. The setting ranges of the IAC, IDC, and IDH instructions depend on the acceleration/deceleration
unit.

INC; "Incremental Mode"
FMX T600000; "Maximum interpolation feed speed"

IUT U1; "Change interpolation acceleration/deceleration unit from ms to reference units/s2."

IAC T1000; "Acceleration rate = 1,000 reference units/s2"

IDC T1000; "Deceleration rate = 1,000 reference units/s2"
MVS [A1]1000000 F600000; "MVS ’

IUT U0; "Change interpolation acceleration/deceleration unit from reference units/s2 to ms."
IAC T1000; "Acceleration time = 1,000 ms"
IDC T1000; "Deceleration time = 1,000 ms"
MVS [A1]1000000 F600000; "MVS "
END;

Important
IUT Set Value Set Value for IAC, IDC, or IDH

Changed from U0 to U1 1 (reference units/s2)

Changed from U1 to U0 32,767 (ms)

IUT Set Value Set Value for IAC, IDC, or IDH

U0 0 to 32,767 (ms)

U1 1 to 2,147,483,647 (reference units/s2)

Time (t)

600,000

Speed (V)
(reference units/min)

1,000 (reference units/s2)

1,000 ms 1,000 ms
6-59

6.1 Axis Setting Instructions

Set Interpolation Feed Speed Axes (+ and -)

6-6
Set Interpolation Feed Speed Axes (+ and -)

The Set Interpolation Feed Speed Axes (+ and -) instructions allow you to arbitrarily set the axes to use as
component axes for the interpolation feed speed.

These instructions can be used for the MVS, SKP, MCW Helical, and MCC Helical interpolation instruc-
tions.

If “+” is given or nothing is given before the logical axis name, the axis is one of the component axes for
the interpolation feed speed.

If “-” is given before the logical axis name, the axis operates at a speed that is synchronized with the inter-
polation feed speed.

The following figure shows the linear operation for three axes when logical axes 1 and 2 are set as interpo-
lation feed speed axes (i.e., with “+”) and logical axis 3 is not set as an interpolation feed speed axis (i.e.,
with “-”).

Normally when you need to maintain a constant speed for a specific axis when performing an
interpolated movement for more than one axis, you must calculate the composite interpolation
feed speed.
However, you can use these instructions to perform synchronized control for a constant speed of a
specific axis without calculating the composite speed.
The master axes (+) operate at the specified interpolation feed speed and the slave axes (-) operate
in synchronization with the master axes and at a speed that corresponds to the travel distances of
the slave axes.

Logical axis 1

Logical axis 2

Logical axis 3

Movement of axes

Program current
position

End position

Interpolation feed speed
(composite speed)

Synchronized
with interpolation
feed speed

Information
0

6.1 Axis Setting Instructions

 Set Interpolation Feed Speed Axes (+ and -)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Format

The format of the Set Interpolation Feed Speed Axes instructions is as follows:

• Format in the MVS Instruction
MVS [(+)Logical_axis_name_1] Reference_position [(+)Logical_axis_name_2] Reference_position
[-Logical_axis_name_3] Reference_position . . . Finterpolation_feed_speed;

• Format in the SKP Instruction
SKP [(+)Logical_axis_name_1] Reference_position [(+)Logical_axis_name_2] Reference_position
[-Logical_axis_name_3] Reference_position . . . Finterpolation_feed_speed SSskip_input_signal_se-
lection;

• Format in the MCW or MCC Helical Interpolation with Specified Center Point Instruction
MCW (or MCC) [Logical_axis_name_1] End_position [Logical_axis_name_2] End_position Ucen-
ter_point_position Vcenter_point_position
[-Logical_axis_name_3] End_position_for_linear_interpolation Tnumber_of_turns Finterpolation_-
feed_speed;

• Format in the MCW or MCC Helical Interpolation with Specified Radius Instruction
MCW (or MCC) [Logical_axis_name_1] End_position [Logical_axis_name_2] End_position Rradius
[-Logical_axis_name_3] End_position_for_linear_interpolation Finterpolation_feed_speed;

Item Unit Applicable Data

Reference position Reference units

• Directly designated value
• Indirect designation with a double-length integer

register

Interpolation feed speed Reference units/min

Skip input signal selection −
End position Reference units

Center point position Reference units

Linear interpolation end position Reference units

Number of turns Number of turns

Radius Reference units

Precautions for the MVS and SKP Instructions
• If you add “+” before all of the logical axis names, the normal interpolation operation will be per-

formed.
• If you add “-” before all of the logical axis names, a compiler error will occur.
• Depending on the settings, the speed of an axis that is not set as an interpolation feed speed axis may

exceed the set value of the FMX instruction. To ensure safety, set the maximum speed for such an
axis with the IFMX instruction before you use the axis.

• If the composite travel distance for the axes that are set as interpolation feed speed axes is 0, a
motion program alarm will occur and the axes will not operate.

Precautions for the MCW and MCC Helical Interpolation Instructions
• If you add “+” before all of the logical axis names of the linear interpolation axes for an MCW or

MCC Helical Interpolation instruction, the normal helical interpolation operation will be performed.
• If you add “+” or “-” before the logical axis names of the circular interpolation axes, a compiler error

will occur.
• The MCW and MCC Circular Interpolation instructions (with specified center points or specified

radii) do not support this function.
• Depending on the settings, the speed of an axis that is not set as an interpolation feed speed axis may

exceed the set value of the FMX instruction. To ensure safety, set the maximum speed for such an
axis with the IFMX instruction before you use the axis.

• If the composite travel distance for the axes that are set as interpolation feed speed axes is 0, a
motion program alarm will occur and the axes will not operate.

Important

Important
6-61

6.1 Axis Setting Instructions

Set Interpolation Feed Speed Axes (+ and -)

6-6
Programming Example

Programming examples that use the Set Interpolation Feed Speed Axes instructions are given below.

 Specification with the MVS Instruction

Fig. 6.27 Programming Example of MVS Instruction with Specification of Interpolation Feed Speed Axes

 Specification with the MCW and MCC Helical Interpolation Instructions

Fig. 6.28 Programming Example of MCW or MCC Helical Interpolation Instruction with Specification of
Interpolation Feed Speed Axes

INC; "Incremental Mode"
FMX T1000000; "Set maximum interpolation feed speed."
IAC T100; "Interpolation acceleration time = 100 ms"
IDC T100; "Interpolation deceleration time = 100 ms"
MVS [+A1]10000 [-B1]20000 [-C1]30000 F1000000; "Linear interpolation with specification of

interpolation feed speed axes"
END;

ABS; "Absolute Mode"
FMX T30000000; "Set maximum interpolation feed speed."
PLN [A1][B1]; "Coordinate plane setting"
MCC [A1]1000 [B1]0 R1000 [-C1]500 F2000; "Helical interpolation with specification of inter-

polation feed speed axes"
END;

1,000,000
(F = FMX)

Speed (V)
(reference units/min)

Time (t)

A1 axis with “+”

B1 axis with “-”

C1 axis with “-”

2,000,000
(F × 2)

3,000,000
(F×3)

A1

C1

B1

F

500

1000

Radius 1,000

Circular interpolation end position

End position

Linear interpolation
(Axis operates in synchronization with composite
speed (F) for circular interpolation.)

Circular interpolation

Program
current position
2

6.1 Axis Setting Instructions

 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

The ACCMODE instruction sets the acceleration/deceleration mode for the following interpolation
instructions. You can use the ACCMODE instruction to connect the speeds between continuous interpola-
tion instructions.

• MVS (Linear Interpolation)

• MCC or MCW (Circular Interpolation)

• MCC or MCW (Helical Interpolation)

• SKP (Linear Interpolation with Skip Function)

The interpolation acceleration/deceleration mode set by the ACCMODE instruction remains in effect until
it is changed by another ACCMODE instruction.

The interpolation acceleration/deceleration mode is set to the default mode (interpolation acceleration/
deceleration mode 0) when program operation starts.

1. The interpolation acceleration/deceleration mode cannot be changed between continuous inter-
polation blocks.
Change the interpolation acceleration/deceleration mode only after the axes decelerate to a stop.

2. If the interpolation acceleration/deceleration mode is set out of range, the operation depends on
the version of the CPU Unit/CPU Module.

3. When the PFORK instruction is used, the interpolation acceleration/deceleration mode setting
before branching to the forks is inherited by all of the forks. After branching, you can set the
interpolation acceleration/deceleration mode for each fork independently.

Information

Software Version MPE720 Version 7.24 or Later MPE720 Version 7.23 or Earlier

CPU Unit/Mod-
ule Version 1.09

or Later

A motion program alarm (31 hex:
Address M out of range) will occur
when an interpolation instruction is
executed.

A motion program alarm (31 hex:
Not registered) will occur when an
interpolation instruction is exe-
cuted.

CPU Unit/Mod-
ule Version 1.08

or Earlier

An alarm will not occur even when an interpolation instruction is executed.
The current interpolation acceleration/deceleration mode will be retained.
6-63

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6-6
Fig. 6.29 Set Interpolation Acceleration/Deceleration Mode

Format

The format of the ACCMODE instruction is as follows:

ACCMODE Minterpolation_acceleration_deceleration_mode;

Settings for the ACCMODE Instruction

This section describes the settings for the ACCMODE instruction.

The interpolation acceleration/deceleration mode is set by specifying a numerical value following the
character “M” in the ACCMODE instruction.

There are five interpolation acceleration/deceleration modes.

• Interpolation acceleration/deceleration mode 0 (default mode)

• Interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with continuous process
control signal monitoring)

• Interpolation acceleration/deceleration mode 2 (acceleration/deceleration mode with interpolation over-
lapping)

• Interpolation acceleration/deceleration mode 3 with continuous deceleration for minute blocks (acceler-
ation/deceleration mode with continuous process control signal monitoring)

• Interpolation acceleration/deceleration mode 4 (acceleration/deceleration mode with next block speed
specification)

ACCMODE Details

This section describes the five interpolation acceleration/deceleration modes of the ACCMODE instruc-
tion.

Item Unit Applicable Data

Interpolation acceleration/deceleration mode − Directly designated number (0 to 4)

Speed (V)

Time (t)Before the Interpolation Acceleration/Deceleration Mode Is Set

Speed (V)

Time (t)After the Interpolation Acceleration/Deceleration Mode Is Set
4

6.1 Axis Setting Instructions

 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Interpolation Acceleration/Deceleration Mode 0 (Default Mode) Details

In this mode, acceleration and deceleration are performed according to the acceleration/deceleration times
set with the IAC and IDC instructions.

This is the default mode when program operation starts.

 Format

Use the following code format to select interpolation acceleration/deceleration mode 0.
ACCMODE M0;

 Interpolation Acceleration/Deceleration Mode 1 (Acceleration/Deceleration
Mode with Continuous Process Control Signal Monitoring) Details

This mode monitors a continuous process control signal and performs continuous processing between con-
tinuous interpolation blocks when the specified conditions are satisfied.

This mode can be used only when the same axes are used for all continuous interpolation blocks.

 Format

Use the following format to select interpolation acceleration/deceleration mode 1.
ACCMODE M1;
MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed TWcontinuous_pro-
cess_control_signal;

Or
ACCMODE M1;
MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed FWcontinuous_pro-
cess_control_signal;

Note: The format is the same for the MCC, MCW, and SKP instructions.

If the characters “TW” or “FW” are added to the interpolation instruction, continuous process control sig-
nal monitoring is performed. The bit data register specified with the characters “TW” or “FW” is used as
the continuous process control signal.

If the characters “TW” or “FW” are not added to the interpolation instruction, or if the conditions are not
satisfied, the continuous process control signal is not monitored and acceleration/deceleration is per-
formed according to the acceleration/deceleration times set with the IAC and IDC instructions.

Item Unit Applicable Data

Continuous process control signal − All bit data registers (excluding #, C, and D registers)

IAC = IDC = 0
Speed (V)

Acceleration and deceleration according
to the IAC and IDC instructions

Time (t)

Speed (V)
Acceleration and deceleration according
to the IAC and IDC instructions

Speed maintained.

Continuous process
control signal

Condition satisfied. Condition not satisfied
Time (t)
6-65

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6-6
The characters “TW” designate monitoring the continuous process control signal with positive logic.

The characters “FW” designate monitoring the continuous process control signal with negative logic.

 Programming Examples

The following example programming uses interpolation acceleration/deceleration mode 1 (acceleration/
deceleration mode with continuous process control signal monitoring).
FMX T30000000;

ABS;

IAC T1000;

IDC T1000;

ACCMODE M1;

MVS [A1] 4000 F50000 TWMB000001; ""

IOW MB000001=1; ""

MVS [A1] 8000; ""

END;

The characters "TW" and "FW" are valid only for interpolation acceleration/deceleration modes 1
and 3 (acceleration/deceleration modes with continuous process control signal monitoring). In
other modes, the operation depends on the software version of the CPU Unit/CPU Module.

Continuous process
control signal

Operation Summary

ON
The deceleration time specified with the IDC instruction is ignored. The current speed is
maintained and pulse distribution is completed with a deceleration time of 0 ms.

OFF
The axis decelerates to a stop according to the deceleration time specified with the IDC
instruction.

Continuous process
control signal

Operation Summary

ON
The axis decelerates to a stop according to the deceleration time specified with the IDC
instruction.

OFF
The deceleration time specified with the IDC instruction is ignored. The current speed is
maintained and pulse distribution is completed with a deceleration time of 0 ms.

If you specify a travel distance that is insufficient to perform continuous processing with the set decel-
eration time, unexpected operation may occur. Also specify a sufficient travel distance.

Information

Software Version MPE720 Version 7.24 or Later MPE720 Version 7.23 or Earlier

CPU Unit/Module
Version 1.09 or

Later

A motion program alarm (32 hex:
Specified address error) will occur
when an interpolation instruction is
executed.

A motion program alarm (32 hex:
Not registered) will occur when an
interpolation instruction is executed.

CPU Unit/Module
Version 1.08 or

Earlier

An alarm will not occur even when an interpolation instruction is executed.
The TW or FW address is ignored and the interpolation instruction is exe-
cuted.

Important
6

6.1 Axis Setting Instructions

 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
The following examples show how to combine the MVS instruction and interpolation acceleration/decel-
eration mode 1.

• When the Continuous Process Control Signal Turns ON after Distribution for MVS Instruction
 Is Completed
The next block is executed after the axis decelerates to a stop for the MVS instruction .
For the MVS instruction , acceleration begins when the speed is 0 (reference units/min).

• When the Continuous Process Control Signal Turns ON during Distribution for MVS (before
Deceleration)
MVS is executed at the same speed from MVS without decelerating.

• When the Continuous Process Control Signal Turns ON during Distribution for MVS (during
Deceleration)
MVS is executed with the same speed as when the continuous process control signal turned ON.

1. If the reference speed for MVS is higher than for MVS , the end speed of is used for the
start speed of . The axis then accelerates to the specified speed.

2. If the reference speed for MVS is lower than for MVS , the end speed of is used for the
start speed of . The axis then decelerates to the specified speed.

3. If the travel distance for MVS is shorter than the deceleration distance, distribution is fin-
ished during the deceleration of .

�
IOW �

MB000001

�

Speed (V)

Time (t)

� �

MB000001

Speed (V)
IOW �
(Do not wait if the conditions are already satisfied.)

Time (t)

�

MB000001

�

Speed (V)
IOW �
(Do not wait if the conditions are already satisfied.)

Time (t)

Information
6-67

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6-6
 Additional Information

Refer to the additional information below for details on operation in the acceleration/deceleration mode
with continuous process control signal monitoring.

• Request Temporary Stop Operation
Temporary Stop Request before the Interpolation Distribution for the Next Block Begins
The axis decelerates according to the interpolation deceleration time specified with the IDH instruction.
No continuous processing to the next interpolation block is performed.

Temporary Stop Request after the Interpolation Distribution for the Next Block Begins
The axis decelerates according to interpolation deceleration time specified with the IDH instruction for
both the previous block and the next block.
After the temporary stop request is removed, distribution of the remaining distance is performed for both
the previous block and the next block.

• Request Stop Operation
The interpolation block for the axis in motion stops immediately.

• Program Single-block Mode Operation
No continuous processing to the next interpolation block is performed.

• Debug Mode Operation
No continuous processing to the next interpolation block is performed.

• Operation When the Next Block Is Not an Interpolation Instruction Block
No continuous processing to the next block is performed.
Acceleration begins from a stopped state for the next block.

• Operation When the Interpolation Deceleration Time (IDC) Is Set to 0 ms
Continuous processing to the next interpolation block is performed, regardless of the status of the con-
tinuous process control signal.

• Continuous Operation during Parallel Execution (PFORK)
Continuous processing is not performed across a PFORK instruction.
Set the instructions so that processing for this mode ends during each fork.
8

6.1 Axis Setting Instructions

 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Interpolation Acceleration/Deceleration Mode 2 (Acceleration/Deceleration
Mode With Interpolation Overlapping) Details

In this mode, pulse distribution for each interpolation block is made to overlap by starting acceleration for
the next interpolation block to perform continuous processing between consecutive interpolation blocks.

Each block accelerates and decelerates according to the acceleration times and deceleration times that are
set with the IAC and IDC instructions.

This mode is valid for the MVS, MCW, and MCC instructions.

 Format
ACCMODE M2;
MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed Dinterpolation_over-
lap_distance;

Note: The interpolation overlap distance can be omitted.
The format is the same for the MCC and MCW instructions.

In this mode, you can add the character "D" to an interpolation instruction to specify the maximum dis-
tance for the interpolation distribution to overlap.

When the character "D" is added to an interpolation instruction in this mode, distribution for the next inter-
polation block begins when the remaining travel distance for the current interpolation block falls below
the interpolation overlap distance. If 0 (reference units) is specified for the interpolation overlap distance,
distribution for the next interpolation block begins when the current interpolation block begins decelera-
tion.

If the character “D” is not specified for the interpolation instruction, the last interpolation overlap distance
that was specified in the motion program is used.

The interpolation overlap distance is set to 0 (reference units) when program operation starts.

Item Unit Applicable Data

Interpolation overlap distance Reference units
• Directly designated value
• Indirect designation with a double-length integer register

1. The character “D” is valid only for this mode.
In other interpolation acceleration/deceleration modes, the operation depends on the version of
the CPU Unit/CPU Module.

2. The valid range for the interpolation overlap distance is 0 to 2,147,483,647 (reference units).
If a negative value is specified, the absolute value is used.

IAC = IDC IAC > IDC IAC < IDC
Speed (V)

Time (t)

Information

Software Version MPE720 Version 7.24 or Later MPE720 Version 7.23 or Earlier

CPU Unit/Module
Version 1.09 or

Later

A motion program alarm (32 hex:
Specified address error) will occur
when an interpolation instruction
is executed.

A motion program alarm (32 hex:
Not registered) will occur when an
interpolation instruction is exe-
cuted.

CPU Unit/Module
Version 1.08 or

Earlier

An alarm will not occur even when an interpolation instruction is exe-
cuted.
The D address is ignored and the interpolation instruction is executed.
6-69

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6-7
Conditions to Begin Distribution for the Next Interpolation Block

Distribution for the next interpolation block begins when all of the following conditions are satisfied.

 Programming Example

A programming example for the acceleration/deceleration mode with interpolation overlapping is given
below.
FMX T300000;

INC;

IAC T1000;

IDC T2000;

ACCMODE M2;

MW00010 = 30;

MVS [A1] 20000 [B1] 10000 F200000; "Linear interpolation "

MW00010 = 20;

MVS [A1] 10000 [B1] -20000 D100; "Linear interpolation "

MW00010 = 10;

MVS [A1] 20000 [B1] 10000; "Linear interpolation "

MW00010 = 0;

END;

No. Condition

1 Not in Program Single-block Mode.

2 Control signal bit 1 (Request Temporary Stop) is OFF.

3 No PFN or PFP instructions have been added to the interpolation instructions.

4 The interpolation block must have started deceleration. (Refer to the timing of in the figure below.)

5
The remaining distance for the interpolation block is less than the interpolation overlap distance specified
after the character “D”. (Refer to the timing of in the figure below.)

6
The remaining deceleration time of the current interpolation block is less than the acceleration time of the
next interpolation block. (Refer to the timing of in the figure below.)

�

� �

Current Interpolation
Block Speed
Waveform

Speed The distance specified after the character “D”.

Next Interpolation
Block Speed
Waveform

Distribution started for the next block.

Acceleration time for the next block

Next block

Time

Time

Composite Speed
Waveform

Speed

Time

Speed
0

6.1 Axis Setting Instructions

 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
In processing for interpolation acceleration/deceleration mode 2, execution moves to the next execution
block in the program when deceleration occurs for the interpolation block or when the interpolation over-
lap distance becomes equal to or less than the specified interpolation overlap distance.
S-type instructions (e.g., operation instructions) that occur during continuous processing for interpolation
blocks are executed when program execution moves to the next block.

The speed waveform for the programming example is given below.

The interpolated path for the above programming example is given below.

As shown in the figure below, some interpolation block end points (i.e., the start point for the next interpo-
lation block) do not pass through the movement path because the distribution for the next interpolation
block starts during deceleration of the current interpolation block.

200,000

[s]

300,000

Composite speed (V)
(reference units/min) Region where the

interpolation distribution
overlaps

Region where the
interpolation distribution
overlaps

Linear interpolation (1) Linear interpolation (2) Linear interpolation (3)

Interpolation distribution for linear interpolation
(2) starts during the deceleration of linear
interpolation (1).

Interpolation distribution for linear interpolation (3)
starts when the remaining distance for linear
interpolation (2) falls below the interpolation overlap
distance.

Time (t)

Axis B1
Linear interpolation � Linear interpolation �

Linear interpolation �

Interpolation overlap distance

Axis A1
6-71

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6-7
 Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration
mode with interpolation overlapping.

• Request Temporary Stop Operation
Before distribution for the next interpolation block begins, the interpolation block for axes currently in
motion decelerates in the deceleration time specified with the IDH instruction.
However, no continuous processing to the next interpolation block is performed.
After distribution for the next interpolation block begins, each interpolation block decelerates in the
deceleration time specified with the IDH instruction.

• Request Stop Operation
Each interpolation block stops immediately.

• Program Single-block Mode Operation
No continuous processing to the next interpolation block is performed.

• Debug Mode Operation
No continuous processing to the next interpolation block is performed.

• Operation When the Next Block Is Not an Interpolation Instruction Block
No continuous processing to the next block is performed.
Acceleration begins from a speed of 0 for the next block.

• Continuous Operation during Parallel Execution (PFORK)
This mode cannot be used across a PFORK instruction.
Adjust the timing of pulse distribution for the interpolation block with the PFN or PFP instruction so
that processing (i.e., pulse distribution) for this mode is completed within each fork.

• Operation for Execution of T-type Instructions
If a T-type instruction (e.g., a timer instruction) is executed in continuous processing for an interpolation
block, the distribution timing in the next interpolation block will be changed.
2

6.1 Axis Setting Instructions

 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Interpolation Acceleration/Deceleration Mode 3 (Acceleration/Deceleration
Mode with Continuous Process Control Signal Monitoring) Details

In the same way as in interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with
continuous process control signal monitoring), interpolation acceleration/deceleration mode 3 (accelera-
tion/deceleration mode with continuous process control signal monitoring) monitors a continuous process
control signal and performs continuous processing between consecutive interpolation blocks when the
specified conditions are satisfied.

However, opposed to interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with
continuous process control signal monitoring), when continuous processing is performed for a minute
block with a minute travel distance, deceleration is performed as much as possible to the specified speed
in continuous processing between consecutive interpolation blocks.

 Format

Use the following format to select interpolation acceleration/deceleration mode 3 (acceleration/decelera-
tion mode with continuous process control signal monitoring). Refer to the following section for details on
continuous processing control signals.

 Interpolation Acceleration/Deceleration Mode 1 (Acceleration/Deceleration Mode with Continuous Process Control Sig-
nal Monitoring) Details (page 6-65)

Note: The format is the same for the MCC, MCW, and SKP instructions.

A minute block is an interpolation bock with a travel distance that is too small for the distance
required to decelerate to a stop at the specified deceleration rate from the speed for continuous pro-
cessing operation.

ACCMODE 3;
MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed TWcontinuous_pro-
cess_control_signal;

Or

ACCMODE 3;
MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed FWcontinuous_pro-
cess_control_signal;

The characters "TW" and "FW" are valid only for this mode and for interpolation acceleration/
deceleration mode 1 (acceleration/deceleration mode with continuous process control signal moni-
toring). In other modes, the operation when the characters "TW" or "FW" are specified depends on
the software version of the CPU Unit/CPU Module.

Software Version MPE720 Version 7.24 or Later MPE720 Version 7.23 or Earlier

CPU Unit/CPU Module Version
1.09 or Later

An alarm (32 hex: Specified address
error) will occur when an interpola-
tion instruction is executed.

An alarm (32 hex: No registered) will
occur when an interpolation instruc-
tion is executed.

CPU Unit/CPU Module Version
1.08 or Earlier

An alarm will not occur even when an interpolation instruction is executed.
The TW or FW address is ignored and the interpolation instruction is exe-
cuted.

Information

Information
6-73

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6-7
 Programming Example

The difference between interpolation acceleration/deceleration modes 1 and 2 for the MVS instruction is
described below.

The speed waveform for the programming is given below.

• Operation in Interpolation Acceleration/Deceleration Mode 1

• Operation in Interpolation Acceleration/Deceleration Mode 3

 Additional Information

Refer to the following section for additional information on interpolation acceleration/deceleration mode 3
(acceleration/deceleration mode with continuous process control signal monitoring).

 Additional Information (page 6-68)

INC;
FMX T1000000;
IAC T5000;
IDC T5000;
MB1000=1; // Continuous control signal bit
//Interpolation acceleration/deceleration mode (ACCMODE M1 or ACCMODE M3 executed.)
ACCMODE M1; // ACCMODE M1 or ACCMODE M3
MVS [A1]100000 F600000 TWMB1000; // Linear interpolation
MVS [A1]5000 F300000 TWMB1000; // Linear interpolation (minute block)
MVS [A1]100000 F300000 FWMB1000; // Linear interpolation

END;

600,000

Time t (s)

Speed V
(reference units/min)

300,000

Linear
interpolation�

Linear Interpolation (Minute Block)�

Linear interpolation�

When it is determined that deceleration to the specified speed,
300,000 reference units/min, is not possible for the minute block, the
current speed is maintained and continuous processing is performed.

600,000

300,000

Time t (s)

Speed V
(reference units/min)

Linear
interpolation�

Linear Interpolation (Minute Block)�

Linear interpolation�

Even in the minute block, deceleration is performed as
close as possible to the specified speed, 300,000 reference
units/min, and continuous processing is performed.
4

6.1 Axis Setting Instructions

 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Interpolation Acceleration/Deceleration Mode 4 (Acceleration/Deceleration
Mode with Next Block Speed Specification) Details

Interpolation Acceleration/Deceleration Mode 4 (Acceleration/Deceleration Mode with Next Block Speed
Specification) Details

This mode can be used only when the same axes are used for all consecutive interpolation blocks.

 Format

Use the following format to select interpolation acceleration/deceleration mode 4.

Note: The final interpolation feed speed can be omitted. The format is the same for the MCC, MCW, and SKP instruc-
tions.

In this mode, you can add the characters "FE" to an interpolation instruction to specify the final speed for
the interpolation block.

If you add the characters "FE" to an interpolation instruction, pulse distribution is adjusted so that the
interpolation block ends at the specified final interpolation feed speed.

If the specified final interpolation feed speed is 0 (speed units), continuous processing is not performed
and the axes decelerate to a stop.

If the characters "FE" are not specified for the interpolation instruction, the final interpolation feed speed
that was last specified in the motion program is used.

The final interpolation feed speed is 0 (speed units) when program operation starts.

ACCMODE 4;
MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed FEfinal_interpolation_-
feed_speed;

Item Unit Applicable Data

Final interpolation
feed speed

Reference units/min or reference
units/s (specified with FUT instruc-
tion)

• Indirect designation with a double-
length integer register

• Directly designated value

1. The characters "FE" are valid only for this mode. In other interpolation acceleration/deceleration
modes, a motion program alarm will occur.

2. The valid range for the final interpolation feed speed is 0 to 2,147,483,647 (speed units). A com-
piler error will occur if a negative number is specified.

This mode can be used with the following or later versions.
• CPU Unit/CPU Module: Version 1.09
• MPE720 version: 7.24

Speed

Time

FE

FE’

Important

Information
6-75

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

6-7
 Programming Example

The speed waveform for the programming is given below.

 Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration
mode with next block speed specification.

• Request Temporary Stop Operation
If a temporary stop is requested, the axes decelerate to a stop at the set deceleration rates. If the travel
distance is insufficient, a quick stop is performed at the target position.

• Request Stop Operation
The interpolation block stops immediately.

• Operation When Final Interpolation Feed Speed Is Not Reached
Acceleration or deceleration to the final interpolation feed speed is continued and an immediate stop is
performed when the travel distance is reached.
If the next block is an interpolation instruction, continuous processing is performed when the immediate
stop occurs.

• Program Single-block Mode Operation
No continuous processing to the next interpolation block is performed.

• Debug Mode Operation
No continuous processing to the next interpolation block is performed.

• Operation When the Next Block Is Not an Interpolation Instruction Block
No continuous processing to the next block is performed.
Acceleration begins from a speed of 0 for the next block.

• Continuous Operation during Parallel Execution (PFORK)
Continuous processing is not performed across a PFORK instruction.
Set the instructions so that processing for this mode ends during each fork.

FMX T6000000;
IAC T1000;
IDC T1000;
INC;
ACCMODE M4;
MVS [A1]300000 F6000000 FE4000000; "Linear interpolation "
MVS [A1]300000 F3000000 FE6000000; "Linear interpolation "
MVS [A1]300000 F6000000 FE0; "Linear interpolation "

END;

Linear Interpolation�

Linear
interpolation�

4,000,000
3,000,000

Linear
interpolation�

Linear
interpolation�

Speed V
(reference units/min)

Time t (s)

6,000,000

Linear Interpolation�

Linear Interpolation�
The block is ended at a final
interpolation feed speed of 0
(reference units/min).

The block is ended at a final interpolation
feed speed of 6,000,000 (reference units/min)
and continuous processing is performed.

The block is ended at a final interpolation feed speed of 4,000,000
(reference units/min) and continuous processing is performed.
6

6.2 Axis Movement Instructions

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
6.2 Axis Movement Instructions

Axis movement instructions are used to move axes that are connected to a Motion Control Function Mod-
ule.
There are 11 axis movement instructions. You can use these instructions only in motion programs.

The following table lists the axis movement instructions.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

MOV Positioning

MOV [Logical_axis_name_1] Refer-
ence_position

[Logical_axis_name_2] Refer-
ence_position

[Logical_axis_name_3] Refer-
ence_position ...;

Performs positioning at the
positioning speed for up to 32
axes.

 ×

MVS
Linear Interpo-
lation

MVS [Logical_axis_name_1] Refer-
ence_position

[Logical_axis_name_2] Refer-
ence_position

[Logical_axis_name_3] Refer-
ence_position ...

Finterpolation_feed_speed;

Performs linear movement at
interpolation feed speed F for up
to 32 axes.

 ×

Continued on next page.
6-77

6.2 Axis Movement Instructions

6-7
MCW
Clockwise Cir-
cular Interpola-
tion C

en
te

r
P

os
it

io
n

D
es

ig
na

ti
on MCW [Logical_axis_name_1]

End_position
[Logical_axis_name_2]

End_position
Ucenter_point_position Vcen-

ter_point_position
Tnumber_of_turns Finterpola-

tion_feed_speed;

Executes circular interpolation
at tangential speed F for two
axes simultaneously following
radius R or designated center
point coordinates.
Multiple circles can be specified
after “T” if the center point
coordinate is specified.
(“T” can be omitted.)

 ×

R
ad

iu
s

D
es

ig
na

ti
on MCW [Logical_axis_name_1]

End_position
[Logical_axis_name_2]

End_position
Rradius Finterpolation_feed_-

speed;

MCC
Counterclock-
wise Circular
Interpolation C

en
te

r
P

os
it

io
n

D
es

ig
na

ti
on MCC [Logical_axis_name_1]

End_position
[Logical_axis_name_2]

End_position
Ucenter_point_position Vcen-

ter_point_position
Tnumber_of_turns Finterpola-

tion_feed_speed;

R
ad

iu
s

D
es

ig
na

ti
on MCC [Logical_axis_name_1]

End_position
[Logical_axis_name_2]

End_position
Rradius Finterpolation_feed_-

speed;

Continued on next page.

Continued from previous page.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

8

6.2 Axis Movement Instructions

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
MCW
Clockwise
Helical Inter-
polation

C
en

te
r

P
os

it
io

n
D

es
ig

na
ti

on

MCW [Logical_axis_name_1]
End_position
[Logical_axis_name_2]
End_position
Ucenter_point_position Vcen-
ter_point_position
[Logical_axis_name_3]
End_position_for_linear_in-
terpolation
Tnumber_of_turns Finterpola-
tion_feed_speed;

Moves three axes simultane-
ously with a combination of cir-
cular interpolation and linear
interpolation outside the circu-
lar interpolation plane. Speed F
is the circular interpolation tan-
gential speed.
The number of turns can be
specified after “T” if the center
point coordinate is specified.
(“T” can be omitted.)

 ×

R
ad

iu
s

D
es

ig
na

ti
on

MCW [Logical_axis_name_1]
End_position
[Logical_axis_name_2]
End_position
Rradius
[Logical_axis_name_3]
End_position_for_linear_in-
terpolation
Finterpolation_feed_speed;

MCC
Counterclock-
wise Helical
Interpolation

C
en

te
r

P
os

it
io

n
D

es
ig

na
ti

on

MCC [Logical_axis_name_1]
End_position
[Logical_axis_name_2]
End_position
Ucenter_point_position Vcen-
ter_point_position
[Logical_axis_name_3]
End_position_for_linear_in-
terpolation
Tnumber_of_turns Finterpola-
tion_feed_speed;

R
ad

iu
s

D
es

ig
na

ti
on

MCC [Logical_axis_name_1]
End_position
[Logical_axis_name_2]
End_position
Rradius
[Logical_axis_name_3]
End_position_for_linear_in-
terpolation
Finterpolation_feed_speed;

ZRN
Zero Point
Return

ZRN [Logical_axis_name_1]0
[Logical_axis_name_2]0
[Logical_axis_name_3]0 ...;

Returns each axis to its zero
point.

 ×

Continued on next page.

Continued from previous page.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

6-79

6.2 Axis Movement Instructions

6-8
DEN
Position after
Distribution

MOV [Logical_axis_name_1] Refer-
ence_position
[Logical_axis_name_2] Refer-
ence_position
[Logical_axis_name_3] Refer-
ence_position ... DEN;

Performs positioning to the next
block after distribution is com-
pleted without waiting for a
Positioning Completed signal.

 ×

SKP Skip Function

SKP [Logical_axis_name_1] Refer-
ence_position
[Logical_axis_name_2] Refer-
ence_position
[Logical_axis_name_3] Refer-
ence_position ...
Finterpolation_feed_speed
SSskip_input_signal_selection;

If the SKIP signal turns ON
during a linear interpolation
operation, the remaining move-
ment is skipped and operation
proceeds to the next block.

 ×

MVT
Set-time Posi-
tioning

MVT [Logical_axis_name_1] Refer-
ence_position
[Logical_axis_name_2] Refer-
ence_position
[Logical_axis_name_3] Refer-
ence_position ...
Tpositioning_time(ms);

Executes positioning by adjust-
ing the feed speed so that travel
can be completed at the desig-
nated time.

 ×

EXM
External Posi-
tioning

EXM [Logical_axis_name_1] Refer-
ence_position
Dtravel_distance_from_external_position-
ing_signal_input;

If an external positioning signal
is input during external posi-
tioning, the axis is moved only
by the travel distance desig-
nated after "D" as an incremen-
tal value, and then the next
instruction is executed.

 ×

Continued from previous page.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

0

6.2 Axis Movement Instructions

 Positioning (MOV)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Positioning (MOV)

The MOV instruction independently moves each axis from the program current position to the end posi-
tion at the positioning speed.
Up to 32 axes can be moved with one instruction. Any axis that is not specified in the instruction will not
be moved.
The movement path for the MOV instruction will not necessarily be linear like the one that occurs for lin-
ear interpolation.

Fig. 6.30 Movement Path for the MOV Instruction

Format

The format of the MOV instruction is as follows:

• The travel path for the Positioning (MOV) instructions will not necessarily be a straight line.
Check to confirm the paths of the axis when this instruction is used in programs to ensure
that the system operates safely.
There is a risk of injury or device damage.

If an alarm occurs for any axis that is specified in an MOV instruction, a motion program alarm will
occur and the axis will stop.

MOV [Logical_axis_name_1] Reference_position [Logical_axis_name_2] Reference_position [Logi-
cal_axis_name_3] Reference_position. . . ;

Item Unit Applicable Data

Reference position Reference units
• Directly designated value
• Indirect designation with a double-length integer register

Logical axis 2

Logical axis 3

Each axis is moved
independently at the
positioning speed.

Program
current position

Positioning

End position

Logical axis 1

CAUTION

Important
6-81

6.2 Axis Movement Instructions

Positioning (MOV)

6-8
Settings for the MOV Instruction

This section describes the settings for the MOV instruction.

 Travel distance
The travel amount of each axis depends on the movement mode (Absolute or Incremental Mode).

•Absolute Mode Travel Distance
In Absolute Mode, the difference between the program current position and the reference position is
the travel position.

•Incremental Mode Travel Distance
In Incremental Mode, the reference position is the travel distance.

 Rated Speed
The rated speed for each axis is set in fixed parameter No. 34 (Rated Motor Speed).

 Acceleration/Deceleration Type
There are three acceleration/deceleration types for the MOV instruction.
The acceleration/deceleration type is set by a combination of the ACC, DCC, and SCC instructions and bits
4 to 7 (Acceleration/Deceleration Rate Unit Selection) or bits 8 to B (Filter Type Selection) in the
OW03 setting parameter.

• No Acceleration/Deceleration
This method moves the axes with an acceleration time and deceleration time of 0.

• 1Single-step Linear Acceleration/Deceleration
This method moves the axes with fixed acceleration and deceleration rates.

Setting Method Operation Example

• Set bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of
OW03 to 1 (ms).

• Set bits 8 to B (Filter Type Selection) of OW03 to 0 (No filter).
• Set 0 for the ACC instruction.
• Set 0 for the DCC instruction.

Setting Method Operation Example

• Set bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of
OW03 to 1 (ms).

• Set bits 8 to B (Filter Type Selection) of OW03 to 0 (No filter).
• Set any value other than 0 for the ACC instruction.
• Set any value other than 0 for the DCC instruction.

Positioning speed
(VEL)

� Rated speed

Speed (V)

Acceleration time
(ACC)

� Travel distance

� Acceleration/
deceleration type

Deceleration time
(DCC)

Time (t)
2

6.2 Axis Movement Instructions

 Positioning (MOV)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
• S-curve Acceleration/Deceleration
This method moves the axes with the S-curve acceleration and deceleration rates.

Fig. 6.31 In-Position Check Operation

Setting Method Operation Example

• Set bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of
OW03 to 1 (ms).

• Set bits 8 to B (Filter Type Selection) of OW03 to 2 (Moving aver-
age filter).

• Set any value other than 0 for the ACC instruction.
• Set any value other than 0 for the DCC instruction.
• Set any value other than 0 for the SCC instruction.

A PFN (in-position check) is performed to check if an axis that was moved with a MOV instruc-
tion is in the positioning completed range. After the in-position check, the next movement instruc-
tion block is executed.
The following figure shows the operation of the PFN instruction.

Information

Speed (V)

Monitor parameter
Bit 1 (Positioning Completed) in IW���0C

Positioning instruction block

Distribution completed. The feedback position
reaches the positioning
completion width.

Next instruction block

Time (t)

The value set in the OL���1E
(Positioning Completion Width)

in-position check setting parameter
6-83

6.2 Axis Movement Instructions

Positioning (MOV)

6-8
Programming Example

A programming example that uses the MOV instruction in Absolute Mode is given below.

Fig. 6.32 Programming Example for the MOV Instruction

ABS;
ACC [A1]1000 [B1]1000 [C1]1000;
DCC [A1]1000 [B1]1000 [C1]1000;
VEL [A1]2000 [B1]2000 [C1]2000;
MOV [A1]4000 [B1]3000 [C1]2000;
END;

C1

A1

B1

2,000

3,000

4,000

Program
current
position

End
position
4

6.2 Axis Movement Instructions

 Linear Interpolation (MVS)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Linear Interpolation (MVS)

The MVS instruction moves each axis linearly at the interpolation feed speed from the program current
position to the end position.
Up to 32 axes can be moved with one instruction. Any logical axis that is not specified in the instruction
will not be moved.

Fig. 6.33 Movement Path for the MVS Instruction

Format

The format of the MVS instruction is as follows:

Note: You can omit the interpolation feed speed.

• The Linear Interpolation (MVS) instruction can be used on both linear axes and rotary axes.
However, if a rotary axis is included, the linear interpolation path will not necessarily be a
straight line. Check to confirm the paths of the axis when this instruction is used in pro-
grams to ensure that the system operates safely.
There is a risk of injury or device damage.

If an alarm occurs for any axis that is specified in an MVS instruction, a motion program alarm will
occur and the axis will stop.

A PFN (in-position check) is not performed to check if an axis that was moved with an MVS
instruction is in the positioning completed range. Use the PFN instruction when it is necessary to
check if the axis is in the positioning completed range.

MVS [Logical_axis_name_1] Reference_position [Logical_axis_name_2] Reference_position [Logi-
cal_axis_name_3] Reference_position . . . Finterpolation_feed_speed;

Item Unit Applicable Data

Reference position Reference units
• Indirect designation with a double-length integer register
• Directly designated valueInterpolation feed speed

Reference units/min or ref-
erence units/s (specified
with FUT instruction)

Logical axis 2

Logical axis 3

Interpolation feed speed
(composite speed)

Program
current position

[Logical_axis_1]
[Logical_axis_3]

[Logical_axis_2]

Logical axis 1

End position

CAUTION

Important

Information
6-85

6.2 Axis Movement Instructions

Linear Interpolation (MVS)

6-8
Settings for the MVS Instruction

This section describes the settings for the MVS instruction.

 Composite travel distance
The composite travel distance depends on the movement mode: Absolute Mode or Incremental Mode.

•Absolute Mode Composite Travel Distance
In Absolute Mode, the difference between the program current position and the reference position is
the composite travel position.

•Incremental Mode Composite Travel Distance
In Incremental Mode, the reference position is the composite travel distance.

INC MVS[A1]1200 [B1]900;
For the above instruction block, the composite travel distance is calculated as follows:

The composite travel distance

Speed (V)

Specified maximum
interpolation feed

speed (FMX)

� Interpolation feed speed
(F reference or IFP)

Acceleration time
(IAC)

� Composite travel
distance

� Acceleration/
deceleration type

Deceleration time
(IDC)

Time (t)

Example

1200
2

900
2

+ 1500=

B1

A1

1,500 reference units

1,200 reference units

900 reference units
6

6.2 Axis Movement Instructions

 Linear Interpolation (MVS)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Interpolation feed speed (F reference or IFP)
You can set the interpolation feed speed by specifying a register or a numerical value after the character “F”
in the MVS instruction (F reference). The interpolation feed speed is the composite speed of all of the speci-
fied axes.
The valid range is 1 to the maximum interpolation feed speed (FMX) (reference units/min).

You can select whether to apply an interpolation override with an F reference.
Refer to the following section for how to use interpolation overrides.

Work Registers (page 1-23)

• When Not Specifying an Interpolation Override

• When Specifying an Interpolation Override

The interpolation feed speed can also be specified as a percentage of the maximum interpolation feed
speed (FMX).
Refer to the IFP instruction for how to specify the interpolation feed speed as a percentage.

INC MVS[A1]1200 [B1]900 F500;

The feed speed of each axis is calculated using the following formula.
The feed speed of each axis [reference units/min]

 = × interpolation feed speed [reference units/min]

For example, the feed speed of each axis in above condition is calculated as following.
Interpolation feed speed (the value of F) = 500 [reference units/min]

Composite moving amount = = 1500 [reference units]

• The feed speed of A1 axis = × 500 = 400 [reference units/min]

• The feed speed of B1 axis = × 500 = 300 [reference units/min]

A motion program alarm occurs if a value is specified with an F reference (reference units/min) that
exceeds the FMX reference value (reference units/min).

Example
B1

A1

Interpolation feed speed
500 reference units/min

1200 reference units

900
reference units

composite moving amount [reference units]
moving amount of each axis [reference units]

12002+9002

1200
1500

900
1500

=F reference Interpolation feed speed

F reference
Interpolation
feed speed

=×F reference Interpolation override
0% to 327.67%

Interpolation feed speed

F reference
Interpolation

override
Interpolation
feed speed

Important
6-87

6.2 Axis Movement Instructions

Linear Interpolation (MVS)

6-8
The interpolation override can be changed during axis movement.

Fig. 6.34 Interpolation Override and Interpolation Instructions

 Acceleration/Deceleration Type
The acceleration/deceleration type is set by a combination of the IAC, IDC, and SCC instructions and bits 8
to B (Filter Type Selection) in the OW03 setting parameter.
There are three acceleration/deceleration types for the MVS instruction.

• No Acceleration/Deceleration
This method moves the axes with an acceleration time and deceleration time of 0.

• Single-step Linear Acceleration/Deceleration
This method moves the axes with fixed acceleration and deceleration rates.

• S-curve Acceleration/Deceleration
This method moves the axes with the S-curve acceleration and deceleration rates.

1. If the interpolation feed speed with the interpolation override applied exceeds the FMX refer-
ence value, the output value of the interpolation feed speed will be reset to the FMX refer-
ence value.

2. When the interpolation feed speed is not specified in the instruction block, the interpolation
feed speed that was specified in the previous instruction block is applied.

Setting Method Operation

• Set bits 8 to B (Filter Type Selection) of OW03 to 0 (No filter).
• Set 0 for the IAC instruction.
• Set 0 for the IDC instruction.

Setting Method Operation

• Set bits 8 to B (Filter Type Selection) of OW03 to 0 (No filter).
• Set any value other than 0 for the IAC instruction.
• Set any value other than 0 for the IDC instruction.

Setting Method Operation

• Set bits 8 to B (Filter Type Selection) of OW03 to 2 (Moving aver-
age filter).

• Set any value other than 0 for the IAC instruction.
• Set any value other than 0 for the IDC instruction.
• Set any value other than 0 for the SCC instruction.

Information

100.00%
50.00%

150.00%

Speed (V)

Interpolation feed speed
(F reference or IFP)

100% of the interpolation
feed speed

50% of the interpolation
feed speed

150% of the interpolation
feed speed

1 interpolation instruction block

Time (t)

Interpolation
override

Time (t)
8

6.2 Axis Movement Instructions

 Linear Interpolation (MVS)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Example

A programming example that uses the MVS instruction in Absolute Mode is given below.

Fig. 6.35 Programming Example for MVS Instruction

You must specify the maximum interpolation feed speed (FMX) at the beginning of the motion pro-
gram.
Otherwise, a motion program alarm will occur when the MVS instruction is executed.

1. If the acceleration/deceleration time is not specified, the default time of 0 ms is applied.
2. An in-position check is not performed to check if an axis that was moved with an MVS instruc-

tion is in the positioning completed range. Use the PFN instruction when it is necessary to
check if the axis is in the positioning completed range.

FMX T30000000;
ABS;
IAC T1000;
IDC T1000;
MVS [A1]4000 [B1]3000 [C1]2000 F50000;
END;

Important

Information

C1

A1

B1

2,000

3,000

4,000

Program
current
position

End
position
6-89

6.2 Axis Movement Instructions

Circular Interpolation with Specified Center Point (MCW and MCC)

6-9
Circular Interpolation with Specified Center Point (MCW and
MCC)

When used with specified center points, the MCW and MCC instructions move two axes simultaneously
from the program current position to the end position on the specified plane at the interpolation feed speed
along the circle determined by the center point position.

• MCW: Clockwise

• MCC: Counterclockwise

Format

The format of the MCW instruction is as follows:

Note: You can omit the number of turns and the interpolation feed speed.

1. Always specify the plane for circular interpolation with the PLN instruction before you execute a
circular interpolation instruction (MCW or MCC) for specified center points.
A motion program alarm will occur if an MCW or MCC Circular Interpolation instruction with a
specified center point is executed before the PLN instruction.

2. Specify the axes for the end position and center point position in the same order as the axes were
specified in the PLN instruction.

3. You must specify the maximum interpolation feed speed (FMX) at the beginning of the program.
A motion program alarm will occur if an MCW or MCC Circular Interpolation instruction with a
specified center point is executed before the FMX instruction.

4. If an alarm occurs for any axis that is specified in an MCW or MCC Circular Interpolation instruc-
tion with a specified center point, a motion program alarm will occur and the axes will stop.

1. If the acceleration/deceleration time is not specified, the default time of 0 ms is applied.
2. An in-position check is not performed to check if an axis that was moved with an MCW or

MCC instruction is in the positioning completed range. Use the PFN instruction when it is nec-
essary to check if the axis is in the positioning completed range.

MCW [Logical_axis_name_1] End_position [Logical_axis_name_2] End_position Ucenter_point_posi-
tion Vcenter_point_position Tnumber_of_turns Finterpolation_feed_speed;

Item Unit Applicable Data

End position Reference units

• Directly designated value
• Indirect designation with a double-length integer register

Center point position Reference units

Number of turns Number of turns

Interpolation feed speed
Reference units/min or
reference units/s (speci-
fied with FUT instruction)

MCW

Logical axis 2

End position

Center point

Interpolation feed speed
(tangential speed)

Number of turns

Logical axis 1

Important

Information
0

6.2 Axis Movement Instructions

 Circular Interpolation with Specified Center Point (MCW and MCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Settings for the MCW and MCC Instructions with Specified Center
Points

This section describes the settings for the MCW and MCC instructions with specified center points.

 End position or center point position
The end point is specified as a numerical value or register after the logical axis name.
The center point position is set by specifying a register or a numerical value after the characters “U” and “V”
to an MCW or MCC Circular Interpolation instruction with a specified center point.
The actual end position and center point position for the reference positions are different in Absolute and
Incremental Modes.

Absolute Mode
In Absolute Mode, the center point position and end position are treated as absolute positions.

MCW

Logical axis 2

End position

Center point
position

Interpolation feed speed
(tangential speed)

Number of turns

Logical axis 1

�

�

�

�

Example

B1

A1

1,000

MCC [A1]1500 [B1]4000 U2500 V1000 F50000;

PLN[A1][B1];

ABS;

1,500 2,500 5,500

2,000

4,000

FMX T30000000;

End position
Center point position

End
position Circular interpolation with MCC

Center point
position

Program
current position
6-91

6.2 Axis Movement Instructions

Circular Interpolation with Specified Center Point (MCW and MCC)

6-9
Incremental Mode
In Incremental Mode, the center point position and end position are treated as relative positions
from the program current position.

Set the start point radius and end point radius carefully. The circular interpolation path will become as
shown below if the start point radius is not equal to the end point radius.

Example

B1

A1

1,000

MCC [A1]-4000 [B1]2000 U-3000 V-1000 F50000;

PLN[A1][B1];

INC;

1,500 2,500 5,500

2,000

4,000

-4,000

-3,000

2,000

-1,000

FMX T30000000;

End position
(relative position)

End
position

Center point
position

Circular interpolation
with MCC

Program
current position

Center point position
(relative position)

Note

Program
current position

End position

En
d p

oin
t ra

diu
s

Center point

Start point radius
2

6.2 Axis Movement Instructions

 Circular Interpolation with Specified Center Point (MCW and MCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Number of turns
The number of turns is set by specifying a register or a numerical value after the character “T” to the MCW
or MCC Circular Interpolation instruction with a specified center point.
You can specify the number of turns to implement multiple circular operations. A motion program alarm
occurs if a negative value is set for the number of turns. The number of circular movements that will be per-
formed for the specified number of turns depends on the relationship between the program current position
and end position as shown below.

 Interpolation feed speed
The interpolation feed speed for an MCW or MCC Circular Interpolation instruction with a specified center
point is the speed in the tangential direction.
The valid range is 1 to the maximum interpolation feed speed (reference units/min).

When the Number of Turns Is Set to 2
• If program current position ≠ end position, the circular path consists of 2 circles + 1/4 circle.

• If program current position = end position, the circular path consists of 3 circles.

For MCC[A1]- [B1]- F200;
The interpolation feed speed for the above instruction block is calculated as follows:

= 200 (reference units/min).

Example

B1

A1

End position

Program current position

B1

A1

Program current position
or end position

Example

Vx
2

Vy
2

+

B1

A1

End position
200 (reference units/min)

Vy (reference units/min)

Vx (reference units/min)

Program
current position
6-93

6.2 Axis Movement Instructions

Circular Interpolation with Specified Center Point (MCW and MCC)

6-9
Programming Examples

Programming examples that use the MCW and MCC Circular Interpolation instructions with specified
center points in Absolute Mode are given below.
The MCW instruction turns axes clockwise, while the MCC instruction turns axes counterclockwise.

Rotational Direction Programming Example

Clockwise (MCW)

ABS;
FMX T30000000;
PLN [A1][B1];
MCW [A1]0 [B1]0 U1000 V0 F2000; "MCW (Clockwise)"
END;

Fig. 6.36 Programming Example for the MCW Instruction with a Specified
Center Point

Counterclockwise
(MCC)

ABS;
FMX T30000000;
PLN [A1][B1];
MCC [A1]0 [B1]0 U1000 V0 F2000; "MCC (Counterclockwise)"
END;

Fig. 6.37 Programming Example for MCC Instruction with Specified Center
Point

A1

(10,00,0)

(0,0)

B1

End position

Circular interpolation
with MCW

Center point

Program current
position

A1

(1,000,0)

(0,0)

B1

End position
Center point

Circular
interpolation
with MCC

Program current position
4

6.2 Axis Movement Instructions

 Circular Interpolation with Specified Radius (MCW and MCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Circular Interpolation with Specified Radius (MCW and MCC)

When used with a specified radius, the MCW or MCC instruction moves two axes simultaneously from
the program current position to the end position on the specified plane at the interpolation feed speed
along the circle determined by the radius.

• MCW: Clockwise

• MCC: Counterclockwise

Format

The format of the MCW instruction with a specified radius is as follows:

Note: 1. You cannot specify the number of turns if you specify a radius.
2. You can omit the interpolation feed speed.

1. Always specify the plane for circular interpolation with the PLN instruction before you execute the
circular interpolation instruction.
A motion program alarm will occur if an MCW or MCC Circular Interpolation instruction with a
specified radius is executed before the PLN instruction.

2. Specify the axes for the end position and center point position in the same order as the axes were
specified in the PLN instruction.

3. You must specify the maximum interpolation feed speed (FMX) at the beginning of the program.
A motion program alarm will occur if an MCW or MCC Circular Interpolation instruction with a
specified radius is executed before the FMX instruction.

4. If an alarm occurs for any axis that is specified in an MCW or MCC Circular Interpolation instruc-
tion with a specified radius, a motion program alarm will occur and the axes will stop.

1. If the acceleration/deceleration time is not specified, the default time of 0 ms is applied.
2. A PFN (in-position check) is not performed to check if an axis that was moved with an MCW

or MCC Circular Interpolation instruction with a specified radius is in the positioning com-
pleted range. Use the PFN instruction when it is necessary to check if the axis is in the position-
ing completed range.

MCW [Logical_axis_name_1] End_position [Logical_axis_name_2] End_position Rradius Finterpola-
tion_feed_speed;

Item Unit Applicable Data

End position Reference units

• Directly designated value
• Indirect designation with a double-length integer register

Radius Reference units

Interpolation feed speed
Reference units/min or
reference units/s (speci-
fied with FUT instruction)

MCW

Logical axis 2

End position

Radius

Interpolation feed speed
(tangential speed)

Logical axis 1

Important

Information
6-95

6.2 Axis Movement Instructions

Circular Interpolation with Specified Radius (MCW and MCC)

6-9
Settings for the MCW and MCC Instructions with Specified Radii

This section describes the settings for the MCW and MCC instructions with specified radii.

 Radius
The radius is set by specifying a register or a numerical value after the character “R” to the MCW or MCC
Circular Interpolation instruction with a specified radius.
The circular interpolation path depends on the sign of the radius reference value as shown below.

Interpolation Path for the MCW and MCC Instructions with a Specified Radius
For the instruction block: MCW [A1] - [B1] - R - ;
If R > 0: Circular interpolation with an arc angle of 180° or less
If R < 0: Circular interpolation with an arc angle of greater than 180°
If R = 0: A motion program alarm occurs.

If you specify a radius for circular interpolation, you cannot specify the number of turns.

MCW

Logical axis 2

End position

Radius

Logical axis 1

�

Example

End positionGreater than 180°

Center point
if negative

180° or less

Center point
if positive

Program current position

Information
6

6.2 Axis Movement Instructions

 Circular Interpolation with Specified Radius (MCW and MCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Examples

Programming examples that use the MCW and MCC Circular Interpolation instructions with specified
radii in Absolute Mode are given below.
The MCW instruction turns axes clockwise, while the MCC instruction turns axes counterclockwise.
The sign of the arc angle radius reference value also determines the rotational direction.

Rotational
Direction

Arc Angle Programming Example

Clockwise
(MCW)

180° or less (Radius
reference value > 0)

ABS;
FMX T30000000;
PLN [A1][B1];
MCW [A1]1000 [B1]1000 R1000 F2000; "MCW (Clockwise)"
END;

Fig. 6.38 Programming Example for the MCW Instruction with a Spec-
ified Radius

Greater than 180°
(Radius reference

value < 0)

ABS;
FMX T30000000;
PLN [A1][B1];
MCW [A1]1000 [B1]1000 R-1000 F2000; "MCW (Clockwise)"
END;

Fig. 6.39 Programming Example for the MCW Instruction with a Spec-
ified Radius

Continued on next page.

A1

B1

(0,0)

(1,000,1,000)

(1,000,0)
Program

current position

Circular interpolation with MCW

Arc angle of
180° or less

End position

Center point
Radius = 1,000

(1,000, 1,000)

A1

B1

(0, 1,000)

(0,0)

Arc angle
greater than

180°

Center point

Circular interpolation with MCW

End position

Radius = 1,000

Program current position
6-97

6.2 Axis Movement Instructions

Circular Interpolation with Specified Radius (MCW and MCC)

6-9
Counter-
clockwise

(MCC)

180° or less (Radius
reference value > 0)

ABS;
FMX T30000000;
PLN [A1][B1];
MCC [A1]1000 [B1]1000 R1000 F2000; "MCC (Counterclock-
wise)"
END;

Fig. 6.40 Programming Example for the MCC Instruction with a Spec-
ified Radius

Greater than 180°
(Radius reference

value < 0)

ABS;
FMX T30000000;
PLN [A1][B1];
MCC [A1]1000 [B1]1000 R-1000 F2000; "MCC (Counterclock-
wise)"
END;

Fig. 6.41 Programming Example for the MCC Instruction with a Spec-
ified Radius

Continued from previous page.

Rotational
Direction

Arc Angle Programming Example

(1,000, 1,000)

A1

B1

(0, 1,000)

(0, 0)

Center point

Radius = 1,000

Program
current position

Arc angle
less than

180°

End position

Circular interpolation
with MCC

A1

B1

(1,000,1,000)

(1,000,0)

(0,0)

Program
current position Radius = 1,000

Center point

End position

Circular interpolation
with MCC

Arc angle
greater

than 180°
8

6.2 Axis Movement Instructions

 Helical Interpolation with Specified Center Point (MCW and MCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Helical Interpolation with Specified Center Point (MCW and
MCC)

When used with a specified center point, the MCW and MCC instructions simultaneously perform a linear
interpolation movement while moving along the circle that is determined by circular interpolation around
the specified center point position.
The interpolation feed speed is the composite of the circular interpolation tangential speed and linear inter-
polation.

• MCW: Clockwise

• MCC: Counterclockwise

• The linear interpolation for the Helical Interpolation (MCW and MCC) instructions can be
used for both linear axes and rotary axes. However, depending on how the linear axis is
taken, the path of helical interpolation will not be a helix. Check to confirm the paths of the
axis when this instruction is used in programs to ensure that the system operates safely.
There is a risk of injury or device damage.

1. Always specify the plane for circular interpolation with the PLN instruction before you execute the
helical interpolation instruction.
 Use logical axis 1 and logical axis 2 to specify the end positions and center points of circle of the
horizontal and vertical axes of the designated plane.

2. Specify the axes for the end position and center point position in the same order as the axes were
specified in the PLN instruction.

3. Any axis that has not been specified in the plane designation can be specified as a linear interpola-
tion axis. The axis does not need to be at right angles to the interpolation plane.

4. If an alarm occurs for any axis that is specified in an MCW or MCC Helical Interpolation instruc-
tion with a specified center point, a motion program alarm will occur and the axes will stop.

An in-position check (PFN) is not performed to check if an axis that was moved with an MCW or
MCC Helical Interpolation instruction with a specified center point is in the positioning completed
range.
Use the PFN instruction when it is necessary to check if the axis is in the positioning completed
range.

CAUTION

Important

Information
6-99

6.2 Axis Movement Instructions

Helical Interpolation with Specified Center Point (MCW and MCC)

6-1
Format

The format of the MCW instruction with a specified center point is as follows:

Note: 1. You cannot specify the number of turns if you specify a radius.
2. You can omit the interpolation feed speed.

Settings for the MCW and MCC Instructions with Specified Center
Points

This section describes the settings for an MCW or MCC Helical Interpolation instruction with a specified
center point.

 Interpolation feed speed
The interpolation feed speed for the MCW or MCC instruction is the composite of the speed of the linear
interpolation axis and the speed in the tangential direction of the circular interpolation.

MCW [Logical_axis_name_1 End_position] [Logical_axis_name_2] End_position Ucenter_point_posi-
tion Vcenter_point_position

[Logical_axis_name_3] End_position_for_linear_interpolation Tnumber_of_turns Finterpola-
tion_feed_speed;

Item Unit Applicable Data

End position Reference units

• Directly designated value
• Indirect designation with a double-length integer

register

Center point position Reference units

Number of turns Number of turns

Interpolation feed speed
Reference units/min or refer-
ence units/s (specified with
FUT instruction)

For MCC[X]- [Y]- U- V- [Z]- F300;
The interpolation feed speed for the above instruction block is calculated as follows:

 = 300 (reference units/min).

Logical axis 2

Logical axis 3

Logical axis 1

Program
current position

Center point position
(same as for circular

interpolation)

Linear
interpolation

End position (same as
for circular interpolation)

Interpolation feed speed
(tangential speed)

Circular interpolation

�

Example

Vx
2

Vy
2

Vz
2

+ +

Z

X

Y

Interpolation feed speed
(composite speed of all 3 axes)

Vz (reference units/min)

Vy (reference units/min)

Vx (reference units/min)
00

6.2 Axis Movement Instructions

 Helical Interpolation with Specified Center Point (MCW and MCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Example

A programming example that uses the MCC instruction in Absolute Mode is given below.

Fig. 6.42 Programming Example for the MCC Instruction with a Specified Center Point

ABS;
FMX T30000000;
PLN [A1][B1];
MCC [A1]1000 [B1]0 U0 V0 [C1]500 F2000;
END;

(0,0,0)

500

1,000

F

B1

A1

C1

Current
position

Circle center point

End position

Linear interpolation

Circular interpolation
end position
6-101

6.2 Axis Movement Instructions

Helical Interpolation with Specified Radius (MCW and MCC)

6-1
Helical Interpolation with Specified Radius (MCW and MCC)

When used with a specified radius, the MCW and MCC instructions simultaneously perform a linear inter-
polation movement while moving along the circle that is determined by circular interpolation for the spec-
ified radius.
The interpolation feed speed is the composite of the circular interpolation tangential speed and linear inter-
polation.

• MCW: Clockwise

• MCC: Counterclockwise

Format

The format of the MCW instruction with a specified radius is as follows:

Note: 1. You cannot specify the number of turns if you specify a radius.
2. You can omit the interpolation feed speed.

• The linear interpolation for the Helical Interpolation (MCW and MCC) instructions can be
used for both linear axes and rotary axes. However, depending on how the linear axis is
taken, the path of helical interpolation will not be a helix. Check to confirm the paths of the
axis when this instruction is used in programs to ensure that the system operates safely.
There is a risk of injury or device damage.

1. Always specify the plane for circular interpolation with the PLN instruction before you execute the
helical interpolation instruction.
 Use logical axis 1 and logical axis 2 to specify the end positions and center points of circle of the
horizontal and vertical axes of the designated plane.

2. Specify the axes for the end position and center point position in the same order as the axes were
specified in the PLN instruction.

3. Any axis that has not been specified in the plane designation can be specified as a linear interpola-
tion axis. The axis does not need to be at right angles to the interpolation plane.

4. If an alarm occurs for any axis that is specified in an MCW or MCC Helical Interpolation instruc-
tion with a specified radius, a motion program alarm will occur and the axes will stop.

An in-position check is not performed to check if an axis that was moved with an MCW or MCC
Helical Interpolation instruction with a specified radius is in the positioning completed range.
Use the PFN instruction when it is necessary to check if the axis is in the positioning completed
range.

MCW [Logical_axis_name_1] End_position [Logical_axis_name_2] End_position Rradius
[Logical_axis_name_3] End_position_for_linear_interpolation Finterpolation_feed_speed;

Item Unit Applicable Data

End position Reference units

• Directly designated value
• Indirect designation with a double-length integer

register

Center point position Reference units

Radius Reference units

Interpolation feed speed
Reference units/min or refer-
ence units/s (specified with
FUT instruction)

CAUTION

Important

Information
02

6.2 Axis Movement Instructions

 Helical Interpolation with Specified Radius (MCW and MCC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Settings for the MCW or MCC Instruction with a Specified Radius

This section describes the settings for the MCW or MCC instruction with a specified radius.

The method used to specify the radius and the end position for the helical interpolation with specified
radius instructions are the same as for the circular interpolation with specified radius instructions.

Additionally, the method used to specify the interpolation feed speed is the same as for the helical interpo-
lation with specified center point instructions.

Programming Example

A programming example that uses the MCC Helical Interpolation instruction with specified radius in
Absolute Mode is given below.

Fig. 6.43 Programming Example for the MCC Instruction with a Specified Radius

ABS;
FMX T30000000;
PLN [A1][B1];
MCC [A1]1000 [B1]0 R1000 [C1]500 F2000;
END;

Logical axis 2

Logical axis 3

Logical axis 1

Program
current position

Radius
(same as for circular interpolation)

Linear
interpolation

End position
(same as for circular interpolation)

Interpolation feed speed
(same as for the center

point instructions)

Circular interpolation

500

1,000

F

B1

A1

C1

Program
current position

Radius 1,000

Circular interpolation

Circular interpolation
end position

Linear
interpolation

End position
6-103

6.2 Axis Movement Instructions

Zero Point Return (ZRN)

6-1
Zero Point Return (ZRN)

The ZRN instruction performs a zero point return.
Up to 32 axes can be moved with one instruction. Any axis that is not specified in the instruction will not
be moved. Execution moves to the next block only after the zero point return operation has been com-
pleted for all specified axes.

Fig. 6.44 Movement Path for the ZRN Instruction

When the ZRN instruction is executed, the position that the axis returns to is set as the machine coordinate
origin. The working coordinate system previously set by the POS instruction is canceled at this time.
After the ZRN instruction is executed, the machine coordinate system will be the same as the working
coordinate system. The MVM instruction is then invalid until the POS instruction is executed again.
Refer to the following section for details on the machine coordinate system and the working coordinate
system.

Current Position Set (POS) (page 6-117)

Format

The format of the ZRN instruction is as follows:

Note: Never omit the 0’s after the logical axis names.

If an alarm occurs for any axis that is specified in an ZRN instruction, a motion program alarm will
occur and the axis will stop.

The Request for Pause of Program control signal is invalid while execution of a ZRN instruction is in
progress.
To stop an operation, use a Request for Stop of Program control signal instead.
Refer to the following section for details on Request for Pause of Program and Request for Stop of Pro-
gram control signals.

Work Registers (page 1-23)

ZRN [Logical_axis_name_1] 0 [Logical_axis_name_2] 0 [Logical_axis_name_3] 0 ...;

Logical axis 2

Machine coordinate
system origin

Logical axis 3

Program current position

Logical axis 1

Important

Note
04

6.2 Axis Movement Instructions

 Zero Point Return (ZRN)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Settings for the ZRN Instruction

This section describes the settings for the ZRN instruction.

 Zero Point Return Method

The zero point return method for each axis is set in the OW3C (Zero Point Return Method) setting
parameter. The following table lists the usable zero point return methods.
Refer to the following manual for details on each method.

MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

Yes: Usable, No: Not usable

 Zero Point Return Speed

The zero point return speed depends on the zero point return method that is used.

Name
Zero Point Return Method

Setting (OW3C)
SVA-01

SVB-01,
SVC-01,
SVC, or
SVC32

PO-01

DEC1 + phase-C pulse 0 Yes Yes No

ZERO signal 1 Yes Yes No

DEC1 + ZERO signal 2 Yes Yes Yes

Phase-C pulse 3 Yes Yes No

DEC2 + ZERO signal 4 Yes No Yes

DEC1 + LMT + ZERO signal 5 Yes No Yes

DEC2 + phase-C signal 6 Yes No No

DEC1 + LMT + phase-C signal 7 Yes No No

C pulse only 11 Yes Yes No

P-OT + phase-C pulse 12 Yes Yes No

P-OT 13 Yes Yes No

HOME LS & phase-C pulse 14 Yes Yes No

HOME LS 15 Yes Yes No

N-OT & phase-C pulse 16 Yes Yes No

N-OT 17 Yes Yes No

INPUT + phase-C pulse 18 Yes Yes No

INPUT 19 Yes Yes No
6-105

6.2 Axis Movement Instructions

Zero Point Return (ZRN)

6-1
Programming Example

A programming example that uses the ZRN instruction in Absolute Mode is given below.

The stop position is set at the machine coordinate system origin of (0, 0).

Fig. 6.45 Programming Example for the ZRN Instruction

ZRN [A1]0 [B1]0;
END;

B1

A1Stop position

Zero point return operation

Program
current position
06

6.2 Axis Movement Instructions

 Position after Distribution (DEN)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Position after Distribution (DEN)

The DEN instruction is an extended version of the MOV instruction.

Up to 32 axes can be moved with one instruction. Any axis that is not specified in the instruction will not
be moved.

The DEN instruction is executed in the next instruction block immediately after bit 1 (Distribution Com-
pleted) in IW0C turns ON without waiting for bit 0 (Positioning Completed) in IW0C.

The operation of the DEN instruction is not the same as a normal positioning operation.

The following figure shows a normal positioning operation.

The following figure shows the positioning operation for the DEN instruction.

Fig. 6.46 Position after Distribution

Speed (V)

Positioning instruction block

Distribution completed. Positioning Completed signal
turns ON.

Next instruction block

Bit 0 in the IW���0C monitor
parameter (Distribution Completed)

Bit 1 in the IW���0C monitor
parameter (Positioning Completed)

This interval is not constant.

Normal Positioning

Time (t)

Speed (V)

Positioning instruction block

Distribution completed.

Next instruction block

Bit 0 in the IW���0C monitor
parameter (Distribution Completed)

Bit 1 in the IW���0C monitor
parameter (Positioning Completed)

Position after Distribution

Time (t)
6-107

6.2 Axis Movement Instructions

Position after Distribution (DEN)

6-1
Format

The format of the DEN instruction is as follows:

Programming Example

A programming example that uses the DEN instruction and its positioning path are given below.

Fig. 6.47 Programming Example for the DEN Instruction

MOV [Logical_axis_name_1] - [Logical_axis_name_2] - [Logical_axis_name_3] DEN;

Item Unit Applicable Data

Reference position Reference units
• Directly designated value
• Indirect designation with a double-length integer register

ABS;
MOV [A1]10000 DEN;
MOV [B1]10000 DEN;
MOV [A1]20000 DEN;
END;

B1

A1

10,000

10,000 20,000

Current position
08

6.2 Axis Movement Instructions

 Linear Interpolation with Skip Function (SKP)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Linear Interpolation with Skip Function (SKP)

The SKP instruction is an extended version of the MVS instruction. If the skip input signal is turned ON during
axis movement for a SKP instruction, the axis decelerates to a stop and the remaining travel distance is can-
celed.
You can use the SKP instruction to program motion control operations that respond to external status changes.
The skip signal is input to the control signal for the MSEE instruction or the control register of M-EXECUTOR.

Fig. 6.48 Operation Example for SKP Instruction

Format

The format of the SKP instruction is as follows:

Note: You can omit the interpolation feed speed.

If an alarm occurs for any axis that is specified in an SKP instruction, a motion program alarm will
occur and the axis will stop.

The moving axis decelerates to a stop when the skip input signal turns ON. However, the SKP instruc-
tion remains active until the Positioning Completed signal turns ON.

SKP [Logical_axis_name_1] Reference_position [Logical_axis_name_2] Reference_position [Logi-
cal_axis_name_3] Reference_position ... ;

Finterpolation_feed_speed SSskip_input_signal_selection;

Item Unit Applicable Data

Reference position Reference units
• Directly designated value
• Indirect designation with a double-length integer registerInterpolation feed speed

Reference units/min or
reference units/s (speci-
fied with FUT instruction)

Skip Input Signal Selec-
tion

−
• Directly designated number (1 or 2)
• Indirect designation with a double-length integer register

Speed (V)

Linear interpolation operation

Canceled travel distance

SKP instruction
reference position

Skip input signal
(control signal bit 8 or 9)

Skip Input Signal Selection

Skip Input Signal 1 (SS1)

Skip Input Signal 2 (SS2) Control signal bit 9

Control signal bit 8

Skip Input Signal

OFF ON

Time (t)

Position where the axis stops after
the skip input signal turns ON

Important

Note
6-109

6.2 Axis Movement Instructions

Linear Interpolation with Skip Function (SKP)

6-11
Programming Example

A programming example that uses the SKP instruction in Absolute Mode is given below.

Fig. 6.49 Programming Example for SKP Instruction

FMX T30000000;
ABS;
IAC T1000;
IDC T1000;
SKP [A1]4000 [B1]3000 [C1]2000 F50000 SS1;
END;

C1

A1

B1

2,000

3,000

4,000

Program
current position

Position where the axis decelerates to a
stop after the skip input signal turns ON

Final target position
0

6.2 Axis Movement Instructions

 Set-time Positioning (MVT)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Set-time Positioning (MVT)

The MVT instruction is an extended version of the MOV instruction.
Up to 32 axes can be moved with one instruction. Any axis that is not specified in the instruction will not
be moved.
When the MVT instruction is used, the feed speed of each axis is adjusted to complete positioning in the
specified time. The MVT instruction does not use an interpolation operation, and there is no restriction on
completing the positioning for all the specified axes simultaneously.
There is a time lag for the acceleration/deceleration time setting.

Fig. 6.50 Operation Example for MVT Instruction

Positioning cannot be completed in the specified time if an interpolation override is used.
If a filter is used, the positioning time will be delayed by the filter time constant.

Fig. 6.51 Positioning Time Delay When a Filter Is used

Format

The format of the MVT instruction is as follows:

1. The values set by the VEL instruction are overwritten for all axes specified in the MVT instruction.
Be sure to set the feed speeds again with the VEL instruction after the MVT instruction is executed.

2. A motion program alarm occurs if 0 is set for the positioning time.
3. A motion program alarm occurs if 0 is set for the travel distance of any axis.
4. If an alarm occurs for any axis that is specified in an MVT instruction, a motion program alarm will

occur and the axis will stop.

MVT [Logical_axis_name_1] Reference_position [Logical_axis_name_2] Reference_position [Logi-
cal_axis_name_3] Reference_position ... ;

Tpositioning_time;

Item Unit Applicable Data

Reference position Reference units • Directly designated value
• Indirect designation with a double-length integer registerPositioning time ms

Speed (V)

Feed Speed

Clamped feed speed

Time (t)

Positioning time

Filter Time Constant

Important
6-111

6.2 Axis Movement Instructions

Set-time Positioning (MVT)

6-11
The valid range for the positioning time is 1 to 2,147,483,647 ms.
The feed speed while execution of the MVT instruction is in progress is calculated internally by the
Machine Controller based on the positioning time and the travel distance.
This calculation is performed with an acceleration rate of 0, as shown below.

The actual operation when the acceleration time T1 is less than the deceleration time T2 is as shown
below.

The values set for the VEL instruction are overwritten for all axes specified in the MVT instruction.
Be sure to set the feed speeds again with the VEL instruction after the MVT instruction is executed.

Programming Example

A programming example that uses the MVT instruction in Absolute Mode is given below.

Fig. 6.52 Programming Example for MVT Instruction

A PFN (in-position check) is performed to check if an axis that was moved with an MVT instruc-
tion is in the positioning completed range, just like for the MOV instruction.

ABS;
ACC [A1]1000;
DCC [A1]1000;
MVT [A1]4000 T1000;
END;

Speed (V)

Calculated
feed speed V

Travel distance L

Time (t)

Positioning time T

Speed (V)

Calculated
feed speed V Travel distance L

Time (t)

Positioning time T

Acceleration time T1 Deceleration time T2

Information

A1

4,000
Program

current position

Positioning in one second

End position
2

6.2 Axis Movement Instructions

 External Positioning (EXM)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
External Positioning (EXM)

The EXM instruction is an extended version of the MOV instruction.
The EXM instruction incrementally moves the axis by the specified travel distance to perform positioning
when the external positioning signal is turned ON. If the external positioning signal did not turn ON, posi-
tioning is performed to the reference position of the EXM instruction.
Only one axis can be specified for the EXM instruction.

Fig. 6.53 Operation Example for EXM Instruction

If a negative value is specified for the travel distance, the axis decelerates to a stop and then moves in the
negative direction.

Format

The format of the EXM instruction is as follows:

1. The EXM instruction cannot be used with the PO-01 Function Module.
A motion program alarm will occur if the EMX instruction is executed for a PO-01 Module.

2. Be careful if you use the external latch input signal, because it is also used for the zero point return
operation.

3. If an alarm occurs for any axis that is specified in an EXM instruction, a motion program alarm will
occur and the axis will stop.

EXM [Logical_axis_name_1] Reference_position Dtravel_distance_from_external_positioning_sig-
nal_input;

Item Unit Applicable Data

Reference position Reference units • Directly designated value
• Indirect designation with a double-length integer reg-

ister
Travel distance from when the
external positioning signal is input

Reference units

Speed (V)
Travel distance from
when the external
positioning signal is input

External
positioning signal

Time (t)

Important
6-113

6.2 Axis Movement Instructions

External Positioning (EXM)

6-11
Settings for the EXM Instruction

This section describes the settings for the EXM instruction.

 Travel distance from when the external positioning signal is input
The travel distance after the external positioning signal is input is set as an incremental value.
The valid range is -2,147,483,648 to 2,147,483,647 reference units.

 External positioning signal
The external positioning signal is set in bits 4 to 7 (Function Settings 2) of the OW04 setting parame-
ter.

Programming Example

A programming example that uses the EXM instruction in Absolute Mode is given below.

ABS;
ACC [A1]1000;
DCC [A1]1000;
VEL [A1]2000;
DL00000 = 1000;
EXM [A1]4000 DDL00000;
END;

Speed (V)

Rated speed

Positioning speed
(VEL)

Travel distance
(same as for the MOV instruction)

Travel distance from when the
external positioning signal is input

Acceleration/deceleration type
(same as for the MOV instruction)

Time (t)

Acceleration time
(ACC)

Deceleration time
(DCC)

External positioning signal

�

�

4

6.3 Axis Control Instructions

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
6.3 Axis Control Instructions

Axis control instructions control details such as the positions or coordinates of assigned axes.
There are seven axis control instructions. You can use these instructions only in motion programs.

The following table lists the axis control instructions.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

POS
Set Current
Position

POS [Logical_axis_name_1] New_coordi-
nate_values

[Logical_axis_name_2] New_coordi-
nate_values

...;

Changes the current values to
the desired coordinate values
for up to 32 axes. Subsequent
movement instructions use
this new coordinate system.

 ×

MVM
Move on
Machine
Coordinates

MVM MOV [Logical_axis_name_1] Refer-
ence_position

[Logical_axis_name_2] Refer-
ence_position

[Logical_axis_name_3] Refer-
ence_position

...;

Moves to the target position
in the machine coordinate
system. The coordinate sys-
tem that is set automatically
on completion of the zero
point return is called the
machine coordinate system.
This coordinate system is not
affected by the POS instruc-
tion.

 ×

PLD

Update Pro-
gram Cur-
rent
Position

PLD [Logical_axis_name_1]
[Logical_axis_name_2] ... ;

Updates the program current
position for axes that were
moved manually.
Up to 32 axes can be speci-
fied with one instruction.

 ×

PFN
In-Position
Check

MVS [Logical_axis_name_1] -
[Logical_axis_name_2] - ... PFN;

Or
MVS [Logical_axis_name_1] -

[Logical_axis_name_2] - ...;
PFN [Logical_axis_name_1]

[Logical_axis_name_2]
MVS [Logical_axis_name_1] -

[Logical_axis_name_2] - ...;

Causes interpolation move-
ment instructions in the same
block or in the previous
block to proceed to the next
block only after the in-posi-
tion range has been entered.

 ×

INP
In-Position
Range

INP [Logical_axis_name_1] NEAR_signal_out-
put_width

[Logical_axis_name_2] NEAR_sig-
nal_output_width

...;

Sets the NEAR signal output
widths (i.e., the in-position
ranges). The execution of
subsequent interpolation
movement instructions that
are used with a PFN instruc-
tion proceed to the next block
only after the NEAR signal
output width is entered.

 ×

Continued on next page.
6-115

6.3 Axis Control Instructions

6-11
PFP
Positioning
Completed
Check

MVS [Logical_axis_name_1] -
[Logical_axis_name_2] - ... PFP;

Or
MVS [Logical_axis_name_1] -

[Logical_axis_name_2] - ...;
PFP [Logical_axis_name_1]

[Logical_axis_name_2]
MVS [Logical_axis_name_1] -

[Logical_axis_name_2] - ...;

Causes interpolation move-
ment instructions in the same
block or in the previous
block to proceed to the next
block only after positioning
has been completed.

 ×

PLN
Coordinate
Plane Set-
ting

PLN [Logical_axis_name_1 (vertical axis)]
[Logical_axis_name_2 (horizontal axis)];

Designates the coordinate
plane to be used for an
instruction that requires a
plane designation.

 ×

Continued from previous page.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

6

6.3 Axis Control Instructions

 Current Position Set (POS)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Current Position Set (POS)

The POS instruction changes the current positions of the specified axes to the desired coordinate values
and creates new coordinate systems for those axes.
In this manual, the newly set coordinate system is called the working coordinate system, while the original
coordinate system of the machine is called the machine coordinate system.
Movement instructions executed after a POS instruction operate in the working coordinate system.

Fig. 6.54 Working Coordinate System Set with POS Instruction

The working coordinate system can be changed as often as desired by using the POS instruction.
Always set the machine coordinate system first.
The machine coordinate system is not affected by the POS instruction.
Up to 32 axes can be specified in one POS instruction. The working coordinate system for any unspecified
axis is not changed.
Movement instructions in a working coordinate system cannot exceed the maximum programmable value
when converted to coordinates in the machine coordinate system.

Coordinate System Description Remarks

Machine coordinate
system

The original coordinate system of the
machine

The position for a zero point return is the
origin (0).

Working coordinate
system

A coordinate system that is constructed with
user-defined positions

Create a new coordinate system with the
POS instruction.

• The Set Current Position (POS) Instruction creates a new working coordinate system.
Therefore, unexpected operation may occur if the POS instruction is specified incorrectly.
When you use the POS instruction, always confirm that the working coordinate system is in
the correct position before you begin operation.
There is a risk of injury or device damage.

Machine coordinate system

(0,0)

(0,0)

Origin set by the POS instruction
(Origin of the working coordinate system)

Zero point return position
(Machine origin)

Logical axis 2
Logical axis 2 (Logical axis 1)

Current position

(Logical axis 2)

Logical axis 1

Logical axis 1

Working
coordinate system

CAUTION
6-117

6.3 Axis Control Instructions

Current Position Set (POS)

6-11
The following table shows the setting status of the machine coordinate system and the working coordinate
system.

*1. Temporary: The origin of the machine coordinate system is set as the current position when the power supply is
turned ON.
If a zero point return operation is not performed afterwards, software limit switches cannot be used.

*2. Defined: The origin of the machine coordinate system is created based on the position information from the abso-
lute encoder.

*3. Canceled: The previously set working coordinate system is canceled, and the working coordinate system is set to
equal the machine coordinate system.

Format

The format of the POS instruction is as follows:

Programming Example

A programming example that uses the POS instruction is given below.

Table 6.1 Coordinate System Setting Timing

Coordinate System
Setting Timing

Fixed Parameter No. 30 (Encoder Selection)

Incremental Encoder/Absolute
Encoder Used as Incremental Encoder

Absolute Encoder

After the power supply is
turned ON

Machine coordinate system: Temporary∗1

Working coordinate system: Canceled.∗3

Machine coordinate system:

Defined.∗2

Working coordinate system:
Canceled.

After a ZRN instruction is
executed

Machine coordinate system: Set.
Working coordinate system: Canceled.

Working coordinate system:
Canceled.

After a POS instruction is
executed

Working coordinate system: Set. Working coordinate system: Set.

After the zero point is set Machine coordinate system: Set. Machine coordinate system: Set.

1. For an infinite-length axis, set a value that is between 0 and POSMAX.
A motion program alarm occurs if a value is set that is outside of this range.

2. When the zero point return operation is executed without using a ZRN instruction, such as a zero
point return operation that is executed from a ladder program, the working coordinate system will
not be canceled.

POS [Logical_axis_name_1] Coordinate_axis [Logical_axis_name_2] Coordinate_axis ...;

Item Unit Applicable Data

Coordinate axis Reference units
• Directly designated value
• Indirect designation with a double-length integer register

ABS; "Absolute Mode

MOV [A1]1000 [B1]2000;"Positioning

POS [A1]0 [B1]0;"Update the working coordinate system.
MOV [A1]3000 [B1]4000;"Positioning

DL00000 = IL8010;"Obtain the CPOS (Machine Coordinate System Calculated Position) for axis A1.
DL00002 = IL8090;"Obtain the CPOS (Machine Coordinate System Calculated Position) for axis B1.
POS [A1]DL00000 [B1]DL00002;"Cancel the working coordinate system.

END;

Important
8

6.3 Axis Control Instructions

 Move on Machine Coordinates (MVM)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Move on Machine Coordinates (MVM)

The MVM instruction is used to temporarily move axes in the machine coordinate system after a working
coordinate system that is different from the machine coordinate system has been set with the POS instruc-
tion.
Specify MVM for an axis movement instruction to temporarily move the axis to the absolute coordinate
position in the machine coordinate system. During execution of an MVM instruction, the axis moves in
Absolute Mode regardless of the setting of the movement mode.
The result of the MVM instruction is valid only in the block that contains the MVM instruction. For exam-
ple, the axes will move in the working coordinate system for the linear interpolation starting from the next
block after the MVM instruction.

Format

The format of the MVM instruction is as follows:

Programming Example

A programming example that uses the MVM instruction is given below.

Fig. 6.55 Programming Example for MVM Instruction

• The Move on Machine Coordinates (MVM) instruction temporarily performs positioning to a
coordinate position in the machine coordinate system. Therefore, unexpected operation
may occur if the instruction is executed without confirming the zero point position in the
machine coordinate system first. When you use the MVM instruction, always confirm that
the machine zero point is in the correct position before you begin operation.
There is a risk of injury or device damage.

MVM MOV;
Or
MVM MVS;

CAUTION

MVS [A1]50 [B1]50 F1000;MVM MVS [A1]50 [B1]150 F1000;

250

150

B1
B1

100

150

(0,0)

(0,0) 10050

A1

A1

When the MVM
Instruction Is Specified When the MVM Instruction Is

Not Specified

Program current position
Working coordinate system

Machine coordinate system
6-119

6.3 Axis Control Instructions

Update Program Current Position (PLD)

6-1
Update Program Current Position (PLD)

The PLD instruction updates program current positions that have been changed manually (i.e., manual
intervention) or for some other cause. Up to 32 axes can be specified in one instruction.
If an axis is moved from another program (i.e., a ladder program or another motion program) while the
motion program is running, the program current position for that axis will not be updated. If the motion
program is executed in this status, the axis will move to a position that is offset by the travel distance that
occurred for manual intervention.
To solve this problem, the PLD instruction is used to update the program current positions.

Format

The format of the PLD instruction is as follows:

Programming Example

A programming example that uses the PLD instruction is given below.

 Manual Intervention during Motion Program Operation

 Axis Is Moved in a Motion Program User Function

 Precautions

If you execute a PLD instruction immediately after an interpolation instruction (a MVS, SKP, MCW, or
MCC instruction) for an axis specified by a Motion Module (SVA-01, SVB-01, SVC-01, or PO-01),
always execute the EOX instruction (One Scan Wait) before the PLD instruction.

If you do not execute the EOX instruction, a delay in updating the data in the scan may prevent updating
the current position of the program correctly.

1. The PLD instruction is executed by the user when necessary. The PLD instruction is not used in
some applications where manual intervention is required while the motion program is running.

2. The program current positions will not be updated for axes that are not specified in the PLD
instruction.

3. Use the PLD instruction while the axis is stopped.

PLD [Logical_axis_name_1] [Logical_axis_name_2] [Logical_axis_name_3] ...;

MOV [A1]1000;
"Axis A1 was jogged during execution of this instruction block.

PLD [A1];"Update the program current position.
MOV [A1]2000;

MOV [A1]1000;
UFC FNC10 MB000000 IW0100 MB000020;"Axis A1 was moved by a user function.
PLD [A1];"Update the program current position.
MOV [A1]2000;

Example of Executing the EOX Instruction before the PLD Instruction

Information

Example
20

6.3 Axis Control Instructions

 Update Program Current Position (PLD)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
MVS [A1]1000; "Execute interpolation instruction for axis allocated to Optional Module.
EOX; "One Scan Wait
PLD [A1]; "Update the program current position.
MOV [A1]1000;
6-121

6.3 Axis Control Instructions

In-position Check (PFN)

6-1
In-position Check (PFN)

The PFN instruction checks to see whether the axes have entered the positioning proximity during an
interpolation operation.
An in-position check is not normally performed to check if an axis that was moved with an MVS, MCW,
MCC, or SKP interpolation instruction is in the positioning completed range. Use the PFN instruction
when it is necessary to check if an axis is in the positioning completed range.

Fig. 6.56 Operation of PFN Instruction

Bit 3 (Near Position Signal) in the IW0C monitor parameter turns ON when | MPOS - APOS | ≤
NEAR Signal Output Width.
Set the NEAR signal output width with the INP instruction.

Format

The format of the PFN instruction is as follows:

If the NEAR signal output width is set to 0, bit 3 in the IW0C monitor parameter turns ON
when reference pulse distribution, including the filter, is completed.

• When Specified in the Same Block as an Interpolation Instruction
MVS [Logical_axis_name_1] - [Logical_axis_name_2] - [Logical_axis_name_3] ... PFN;

• When Specified Independently
PFN [Logical_axis_name_1] [Logical_axis_name_2] [Logical_axis_name_3] ...;

Speed (V)
Interpolation instruction block

Distribution completed. Near position signal turns ON.

Next instruction block

Monitor parameter
Bit 3 (Near Position) in IW���0C

Time (t)

In-position check performed
with a PFN instruction

Information
22

6.3 Axis Control Instructions

 In-position Check (PFN)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Example

A programming example that uses the PFN instruction is given below.

 When Specified in the Same Block as an Interpolation Instruction

 When Specified Independently

Fig. 6.57 Programming Example for the PFN Instruction

MVS [A1]1000 F20000 PFN;
MOV [A1]3000;
END;

MVS [A1]1000 F20000;
PFN [A1];
MOV [A1]3000;
END;

Speed (V)

MVS instruction movement

MOV instruction movement

Time (t)

Range check set with the INP instruction
6-123

6.3 Axis Control Instructions

In-Position Range (INP)

6-1
In-Position Range (INP)

The INP instruction sets the in-position range.
Up to 32 axes can be specified in one instruction. The OL20 (NEAR Signal Output Width) setting
parameter is updated for each specified axis.
The valid range is 1 to 65,535 reference units.

Fig. 6.58 How to Specify the INP Instruction

Format

The format of the INP instruction is as follows:

The SVR or SVR32 Function Module does not support the OL20 (NEAR Signal Output
Width) setting parameter.
The in-position range is always 0 for the SVR or SVR32 Function Module.

INP [Logical_axis_name_1] NEAR_signal_output_width [Logical_axis_name_2] NEAR_signal_out-
put_width ...;

Item Unit Applicable Data

NEAR Signal Output Width Reference units
• Directly designated value
• Indirect designation with a double-length integer register

Speed (V)
Monitor parameter

IL���16 (Machine Coordinate
System Feedback Position (APOS))

In-position check started.

Interpolation
distribution

Next instruction block

Monitor parameter
Bit 3 (Near Position) in IW���0C

Time (t)

In-position range specified
by the INP instruction

Information
24

6.3 Axis Control Instructions

 In-Position Range (INP)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Example

A programming example that uses the INP instruction is given below.

Fig. 6.59 Programming Example for INP Instruction

ABS;
MOV [A1]0 [B1]0;"Positioning to origin
INP [A1]100 [B1]200;"Set the in-position range
MVS [A1]1000 PFN;
MVS [B1]1000 PFN;
MVS [A1]-1000 ;
END;

B1

A1
1,000

200

100

(0, 0)-1,000

1,000
6-125

6.3 Axis Control Instructions

Positioning Completed Check (PFP)

6-1
Positioning Completed Check (PFP)

The PFP instruction checks to see whether positioning has been completed for the specified axes moved
by an interpolation instruction.

A positioning completed check is not performed for axes moved by an MVS, MCW, MCC, or SKP inter-
polation instruction and execution moves to the next instruction block.

Use the PFP instruction when it is necessary to check if positioning has been completed for an axis.

Fig. 6.60 Positioning Completed Check

Bit 1 (Positioning Completed Signal) in the IW0C monitor parameter turns ON when distribution
has been completed and the current position is in the positioning completed range.

Set the positioning completion width in OW1E.

Format

The format of the PFP instruction is as follows:

Programming Example

A programming example that uses the PFP instruction is given below.

 When Specified in the Same Block as an Interpolation Instruction

• When Specified in the Same Block as an Interpolation Instruction
MVS [Logical_axis_name_1] - [Logical_axis_name_2] - [Logical_axis_name_3] ... PFP;

• When Specified Independently
PFP [Logical_axis_name_1] [Logical_axis_name_2] [Logical_axis_name_3] ...;

MVS [A1]1000 F20000 PFP;"MVS instruction (1)
MVS [A1]3000 F50000;"MVS instruction (2)
END;

Speed (V)

Interpolation instruction block

Distribution completed.
Positioning Completed
signal turns ON.

Next instruction block

Monitor parameter
Bit 1 (Positioning Completed) in IW���0C

Time (t)

PFP instruction executed to perform
a positioning completed check
26

6.3 Axis Control Instructions

 Positioning Completed Check (PFP)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 When Specified Independently

MVS [A1]1000 F20000;"MVS instruction (1)
PFP [A1];
MVS [A1]3000 F50000;"MVS instruction (2)
END;

The ACCMODE instruction does not perform continuous interpolation processing between instruc-
tions if the PFP instruction is also used.

Note Speed

Movement for MVS
Instruction (1)

Movement for MVS
Instruction (2)

Range check set
in OL���1E

Time
6-127

6.3 Axis Control Instructions

Coordinate Plane Setting (PLN)

6-1
Coordinate Plane Setting (PLN)

The PLN instruction specifies two logical axes in the parameters to define a coordinate plane. Always exe-
cute this instruction before you execute an MCW or MCC circular or helical interpolation instruction.
The designated coordinate plane remains in effect until it is reset by another PLN instruction or until the
END instruction.

Format

The format of the PLN instruction is as follows:

Programming Example

A programming example that uses the PLN instruction is given below.

Fig. 6.61 Programming Example for PLN Instruction

 Horizontal axis name Vertical axis name
 PLN [Logical_axis_name_1] [Logical_axis_name_2];

 Specify the two axes to define the coordinate plane.

PLN[A1][B1];"Specify axis A1 and axis B1 to make up the plane.
MCW [A1]50 [B1]50 R50 F1000;

Specify the end position and center point position for circular interpolation or helical interpolation in
the same order used to specify the axes for the PLN instruction.

B1

50

50

(0,0)
A1

Program
current position

End position

Note

MCC [A1]1500 [B1]4000 U2500 V1000 F150;

PLN [Logical_axis_name_1] [Logical_axis_name_2];
28

6.4 Program Control Instructions

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
6.4 Program Control Instructions

Program control instructions control the execution sequence of a program.
There are 16 program control instructions.

The following table lists the program control instructions.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

IF
ELSE
IEND

Branching

IF (Conditional_expression);
(Process_1);

ELSE;
(Process_2);

IEND;

Executes process 1 if the con-
ditional expression is satis-
fied, or executes process 2 if
the conditional expression is
not satisfied.

WHILE
WEND

Repetition
WHILE (Conditional_expression);

...;
WEND;

Repeatedly executes the pro-
cesses between WHILE and
WEND as long as the condi-
tional expression is satisfied.

WHILE
WENDX

Repetition
with One
Scan Wait

WHILE (Conditional_expression);
...;

WENDX;

Repeatedly executes the pro-
cesses between WHILE and
WENDX as long as the condi-
tional expression is satisfied.
Executes one loop process per
scan.

PFORK
JOINTO
PJOINT

Parallel Exe-
cution

PFORK Label_1, Label_2,
Label_3...;
Label_1: Process_1;

JOINTO Label_X;
Label_2: Process_2;

JOINTO Label_X;
Label_3: Process_3;

JOINTO Label_X;
Label_X: PJOINT;

Executes the blocks (forks)
that are designated by the
labels in parallel.
The END and RET instruc-
tions cannot be used in paral-
lel execution processing.

 ×

SFORK
JOINTO
SJOINT

Selective
Execution

SFORK Conditional_expression_1?
Label_1,

Conditional_expression_2?
Label_2,

Conditional_expression_3?
Label_3,

Conditional_expression_4?
Label_4;

Label_1: Process_1;
JOINTO Label_X;

Label_2: Process_2;
JOINTO Label_X;

Label_3: Process_3;
JOINTO Label_X;

Label_4: Process_4;
JOINTO Label_X;

...;
Label_X: SJOINT;

Executes process 1 if condi-
tional expression 1 is satis-
fied, or executes process 2 if
conditional expression 2 is
satisfied.

Continued on next page.
6-129

6.4 Program Control Instructions

6-1
MSEE
Call Subpro-
gram

MSEE MPS;
Executes the MPS sub-
program.

 ×

SSEE
Call
Sequence
Subprogram

SSEE SPS;
Executes the SPS sub-
program.

×

UFC
Call User
Function

UFC User_function_name Input_data,
Input_ad-
dress, Out-
put_data;

Calls a user-created function
from the motion program.

 ×

FUNC
User
Function

FUNC User_function_name Input_data,
Input_ad-
dress, Out-
put_data;

Calls a user-created function
from the sequence program.

×

END Program End END; Ends the program.

RET
Subprogram
Return

RET; Ends the subprogram.

TIM Dwell Time TIM T − ;
Waits for the period of time
specified by T, and then pro-
ceeds to the next block.

 ×

TIM1MS
One-ms
Dwell Time

TIM1MS T − ;
Waits for the period of time
specified by T, and then pro-
ceeds to the next block.

 ×

IOW
I/O Variable
Wait

IOW MB − = =...;
Stops execution of the motion
program until the conditional
expression is satisfied.

 ×

EOX
One Scan
Wait

EOX;

Divides the execution of con-
secutive sequence instruc-
tions.
The instruction block after
EOX is executed in the next
scan.

 ×

SNGD/
SNGE

Disable Sin-
gle-block
Signal
(SNGD) and
Enable Sin-
gle-block
Signal
(SNGE)

SNGD;
...;
SNGE;

Specifies whether to enable or
disable single step operation
during debugging.

 ×

Continued from previous page.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

30

6.4 Program Control Instructions

 Branching Instructions (IF, ELSE, and IEND)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Branching Instructions (IF, ELSE, and IEND)

The IF, ELSE, and IEND instructions execute the blocks between IF and ELSE when a conditional expres-
sion is satisfied. If the conditional expression is not satisfied, the blocks between ELSE and IEND are exe-
cuted.
ELSE can be omitted. If ELSE is omitted and the conditional expression is not satisfied, execution will
continue from the block after IEND.

The IF, ELSE, and IEND instructions can be nested to up to 8 levels.

Conditional
expression

Not satisfied.

Satisfied.

Process 1 Process 2

Information
6-131

6.4 Program Control Instructions

Branching Instructions (IF, ELSE, and IEND)

6-1
Format

The format of the IF, ELSE, and IEND instructions is as follows:

The conditional expressions that can be used in branching instructions are described below.

 Bit Data Comparison

 Format

The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

Operations for Conditional Expressions

&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• If the <> (Mismatch) instruction is used for numeric comparison:

• When a numerical value is specified on the left, and a register on the right:

• When there is no numeric comparison instruction:

• When more than one numeric comparison instruction is used:

IF (Conditional_expression);
 ... (Process_1)
ELSE;
 ... (Process_2)
IEND;

IF MB000000 = = 0; "MB000000 = 0
IF MB000000 = = 1; "MB000000 = 1

IF (MB000000 & MB000001) = = 1; "MB000000 = 1 and MB000001 = 1
IF (MB000000 & !MB000001) = = 1; "MB000000 = 1 and MB000001 = 0
IF (MB000000 | MB000001) = = 1; "MB000000 = 1 or MB000001 = 1
IF (MB000000 | !MB000001) = = 1; "MB000000 = 1 or MB000001 = 0

IF MB000000 <> 0; Syntax error

IF 1 = = MB000000; Syntax error
IF MB000000 = = MB000001; Syntax error

IF MB000000; Syntax error
IF (0); Syntax error

IF (MB000000 = = 0) & (MB000001 = = 1); Syntax error
32

6.4 Program Control Instructions

 Branching Instructions (IF, ELSE, and IEND)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Integer, Double-length Integer, or Real Number Data Comparison

 Format

All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• When a constant is specified both on the left and right:

• When there is no numeric comparison instruction:

• When more than one numeric comparison instruction is used:

Programming Example

A programming example that uses the IF, ELSE, and IEND instructions is given below.

IF MW00000 = = 3; "MW00000 = 3
IF ML00000 <> ML00002; "ML00000 ≠ ML00002
IF 1.23456 >= MF00000; "1.23456 ≥ MF00000

IF MW00000 = = (MW00001/3); "MW00000 = (MW00001 ÷ 3)
IF (ML00000 & F0000000H) <> ML00002; "(ML00000 ∧ F0000000H) ≠ ML00002
IF 1.23456 >= (MF00000 ∗ MF00002); "1.23456 ≥ (MF00000 × MF00002)

IF 0 = = 3; Syntax error
IF (3.14 ∗ 2 ∗ 1000) > 9000.0; Syntax error

IF MW000000; Syntax error
IF (-1); Syntax error

IF (MW00000 < 0) & (MW000001 > 0); Syntax error

IF MB000000 = = 1;
MOV [A1] 10000; "If MB000000 is ON, A1 starts positioning.
ELSE;
MOV [B1] 10000; "If MB000000 is OFF, B1 starts positioning.
IEND;
6-133

6.4 Program Control Instructions

Repetition Instructions (WHILE, WEND)

6-1
Repetition Instructions (WHILE, WEND)

Use the WHILE and WEND instructions to repeatedly execute the instruction blocks between the WHILE
and WEND instructions as long as the conditional expression is satisfied. When the conditional expression
is no longer satisfied, execution jumps to the next block after WEND.

Format

The format for WHILE and WEND instructions is as follows:

If the repeated program section is created using only instructions for which processing is completed in
one scan, the Machine Controller may be overloaded by the scan processing, resulting in exceeding the
scan time or a watchdog timer error.
For instructions that are executed in one scan, use the WHILE and WENDX instructions instead or
insert an EOX or TIM instruction inside the repeated program section.
Refer to the following section for details on instructions that are executed in one scan.

5.4 Instruction Types and Execution Scans (page 5-13)

The WHILE and WEND instructions can be nested to up to 8 levels.

WHILE (Conditional_expression);
 ...;
 (Process);
 ...;
WEND ; ”End of repetition instructions

Not satisfied.

Satisfied.

Conditional
expression

Process

Important

Information
34

6.4 Program Control Instructions

 Repetition Instructions (WHILE, WEND)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
The conditional expressions that can be used in repetition instructions are described below.

 Bit Data Comparison

 Format

The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

Operations for Conditional Expressions

&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• If the <> (Mismatch) instruction is used for numeric comparison:

• When a numerical value is specified on the left, and a register on the right:

• When there is no numeric comparison instruction:

• When more than one numeric comparison instruction is used:

 Integer, Double-length Integer, or Real Number Data Comparison

 Format

All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

WHILE MB000000 = = 0; "MB000000 = 0
WHILE MB000000 = = 1; "MB000000 = 1

WHILE (MB000000 & MB000001) = = 1; "MB000000 = 1 and MB000001 = 1
WHILE (MB000000 & !MB000001) = = 1; "MB000000 = 1 and MB000001 = 0
WHILE (MB000000 | MB000001) = = 1; "MB000000 = 1 or MB000001 = 1
WHILE (MB000000 | !MB000001) = = 1; "MB000000 = 1 or MB000001 = 0

WHILE MB000000 <> 0; Syntax error

WHILE 1 = = MB000000; Syntax error
WHILE MB000000 = = MB000001; Syntax error

WHILE MB000000; Syntax error
WHILE (0); Syntax error

WHILE (MB000000 = = 0) & (MB000001 = = 1); Syntax error

WHILE MW00000 = = 3; "MW00000 = 3
WHILE ML00000 <> ML00002; "ML00000 ≠ ML00002
WHILE 1.23456 >= MF00000; "1.23456 ≥ MF00000
6-135

6.4 Program Control Instructions

Repetition Instructions (WHILE, WEND)

6-1
Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• When a constant is specified both on the left and right:

• When there is no numeric comparison instruction:

• When more than one numeric comparison instruction is used:

Programming Example

The following programming example uses the WHILE and WEND instruction to draw a circle ten times.

Fig. 6.62 Programming Example for the WHILE and WEND Instructions

WHILE MW00000 = = (MW00001/3); "MW00000 = (MW00001 ÷ 3)
WHILE (ML00000 & F0000000H) <> ML00002; "(ML00000 Λ F0000000H) ≠ ML00002
WHILE 1.23456 >= (MF00000 ∗ MF00002); "1.23456 ≥ (MF00000 × MF00002)

WHILE 0 = = 3; Syntax error
WHILE (3.14 ∗ 2 ∗ 1000) > 9000.0; Syntax error

WHILE MW000000; Syntax error
WHILE (-1); Syntax error

WHILE (MW00000 < 0) & (MW000001 > 0); Syntax error

MOV [A1] 0 [B1] 0;"Positioning
MW00100 = 1;"Preset counter.
INC; "Specify Incremental Mode.
PLN [A1] [B1];"Set coordinate plane.
WHILE MW00100 <= 10 ;"Repetition instructions

MCW [A1]0 [B1]0 U50. V50. F8000 ; "Circular interpolation
MOV [A1]50. [B1]50.; "Positioning
MW00100 = MW00100 + 1; "Increment counter

WEND ;"End of repetition instructions

50

B1

A1
50

(0,0)

Circle 1

Circle 2

Circle 3

Circle 9

Circle 10
36

6.4 Program Control Instructions

 Repetition with One Scan Wait (WHILE and WENDX)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Repetition with One Scan Wait (WHILE and WENDX)

The WHILE and WENDX instructions are effectively a combination of the WHILE, WEND, and EOX
instructions. Use the WHILE and WENDX instructions to repeatedly execute the instruction blocks
between the WHILE and WENDX instructions as long as the conditional expression is satisfied. When the
conditional expression is no longer satisfied, execution jumps to the next block after the WENDX instruc-
tion.

Execution waits for one scan at the block before the WENDX instruction, then the processing for one scan
and one loop is executed.

Format

The format for the WHILE and WENDX instructions is as follows:

WHILE (Conditional_expression);
 ...;
 (Process);
 ...;
WENDX; "Wait for one scan, then end the repetition instruction.

Not satisfied. Conditional
expression

Satisfied.

Process

EOX
One Scan Wait
6-137

6.4 Program Control Instructions

Repetition with One Scan Wait (WHILE and WENDX)

6-1
The conditional expressions that can be used in repetition instructions are described below.

 Bit Data Comparison

 Format

The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

Operations for Conditional Expressions

&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• If the <> (Mismatch) instruction is used for numeric comparison:

• When a numerical value is specified on the left, and a register on the right:

• When there is no numeric comparison instruction:

• When more than one numeric comparison instruction is used:

 Integer, Double-length Integer, or Real Number Data Comparison

 Format

All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

WHILE MB000000 = = 0; "MB000000 = 0
WHILE MB000000 = = 1; "MB000000 = 1

WHILE (MB000000 & MB000001) = = 1; "MB000000 = 1 and MB000001 = 1
WHILE (MB000000 & !MB000001) = = 1; "MB000000 = 1 and MB000001 = 0
WHILE (MB000000 | MB000001) = = 1; "MB000000 = 1 or MB000001 = 1
WHILE (MB000000 | !MB000001) = = 1; "MB000000 = 1 or MB000001 = 0

WHILE MB000000 <> 0; Syntax error

WHILE 1 = = MB000000; Syntax error
WHILE MB000000 = = MB000001; Syntax error

WHILE MB000000; Syntax error
WHILE (0); Syntax error

WHILE (MB000000 = = 0) & (MB000001 = = 1); Syntax error

WHILE MW00000 = = 3; "MW00000 = 3
WHILE ML00000 <> ML00002; "ML00000 ≠ ML00002
WHILE 1.23456 >= MF00000; "1.23456 ≥ MF00000
38

6.4 Program Control Instructions

 Repetition with One Scan Wait (WHILE and WENDX)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• When a constant is specified both on the left and right:

• When there is no numeric comparison instruction:

• When more than one numeric comparison instruction is used:

Programming Example

A programming example that uses the WHILE and WENDX instructions is given below.

The following programming increments register ML00000 up to 100.

WHILE MW00000 = = (MW00001/3); "MW00000 = (MW00001 ÷ 3)
WHILE (ML00000 & F0000000H) <> ML00002; "(ML00000 ∧ F0000000H) ≠ ML00002
WHILE 1.23456 >= (MF00000 ∗ MF00002); "1.23456 ≥ (MF00000 × MF00002)

WHILE 0 = = 3; Syntax error
WHILE (3.14 ∗ 2 ∗ 1000) > 9000.0; Syntax error

WHILE MW000000; Syntax error
WHILE (-1); Syntax error

WHILE (MW00000 < 0) & (MW000001 > 0); Syntax error

ML00000 = 0
WHILE ML00000 == 100; "Repetition instruction"
ML00000 = ML00000 + 1; "Increment ML00000."
WENDX; "Wait for one scan, then end the repetition instruction."
END;
6-139

6.4 Program Control Instructions

Parallel Execution Instructions (PFORK, JOINTO, and PJOINT)

6-1
Parallel Execution Instructions (PFORK, JOINTO, and
PJOINT)

The PFORK instruction performs parallel execution for blocks (i.e., forks) with the specified labels.
After each fork has been executed, execution is merged at the label designated by the JOINTO instruction.
A maximum of 8 forks (i.e., parallel processes) can be specified. Refer to the following section for details
on labels.

Block Format (page 5-2)

Fig. 6.63 Using the PFORK, JOINTO, and PJOINT Instructions

In the above figure, the labeled blocks specified by the PFORK instruction (Process 1, Process 2, Process
3, etc.) are executed in parallel. After each fork has been executed, execution is merged at the label desig-
nated by the JOINTO instruction. These instructions enable the designation of any combination of instruc-
tions for parallel execution, such as axis movement instructions and sequence instructions, or axis
movement instructions and other axis movement instructions.

 Instructions Designated before PFORK

Values set by instructions executed before a PFORK instruction such as FMX, ABS/INC, F reference, IFP,
PLN, IAC/IDC, etc., are inherited by the forks that are executed in parallel by the parallel execution
instruction. These instructions can also be executed within individual forks. After merging the forks, pro-
cessing will continue using the values that were set in the leftmost process.

 Nesting Parallel Execution Instructions in Subprograms

Do not use a parallel execution instruction in a subprogram that will be called from a parallel execution
instruction in another subprogram.

 Parallel Execution Instructions in Subprograms

The following restrictions apply to parallel execution instructions in subprograms.

• The parallel execution of up to eight processes is allowed in a subprogram.
The actual number of processes that can be executed in parallel depends on the parallel execution mode
that was set in the main program.
A motion program alarm occurs if the maximum number of processes that can be executed in parallel is
exceeded.

• The MSEE instruction can be used only in the block specified by the first label.

PJOINT

PFORK

Label 1 Label 2 Label 8

Process 1

JOINTO Label_X JOINTO Label_X JOINTO Label_X

Label X

Process 2 Process 8
40

6.4 Program Control Instructions

 Parallel Execution Instructions (PFORK, JOINTO, and PJOINT)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Fig. 6.64 Parallel Execution Instructions in Subprograms

Format

The format of the PFORK, JOINTO, and PJOINT instructions is as follows:

• An error (“Duplicate labels are defined”) will occur if the same label is used more than once in a pro-
gram.

• If the number of PFORK forks and the number of labels are different, an error will occur.

PFORK Label_1 Label_2 Label_3

Label_1: Process_1
 JOINTO Label_X;
Label_2: Process_2
 JOINTO Label_X;
Label_3: Process_3
 JOINTO Label_X;
Label_X:PJOINT

PFORK

MVS[A1]100.[C1]100. IOW MW10000= =1

 PFORK 0001 0002;
0001:MVS [A1]100.[C1]100.;
 JOINTO 0003;
0002:IOW MW10000= =1;
 JOINTO 0003;

0003:PJOINT;

0001 0002

0003

Important
6-141

6.4 Program Control Instructions

Parallel Execution Instructions (PFORK, JOINTO, and PJOINT)

6-1
Programming Example

A programming example that uses the PFORK, JOINTO, and PJOINT instructions is given below.

Fig. 6.65 Programming Example for the PFORK, JOINTO, and PJOINT Instructions

MOV [A1]100. [B1]150.;
MVS [A1]200. [B1]250. F1000;
PFORK 0001 0002 0003;

0001:MVS [A1]300. [B1]100.
JOINTO 0004;

0002:MW12345=MW10000+MW10002;
IOW MB120001= =1;
JOINTO 0004;

0003:MVS [C1]100. [D1]100. F3000;
JOINTO 0004;

0004:PJOINT;
MOV [A1]500. [B1]500. [C1]500.;
 •
 •

MOV[A1]100.[B1]150.
MVS[A1]200.[B1]250.

PFORK

0001

0004

0002 0003

JOINTO 0004

MW12345=MW10000
 +MW10002;

IOW MB120001= =1

JOINTO 0004

MVS[C1]100.[D1]100.

MOV[A1]500.[B1]500.[C1]500.

JOINTO 0004

PJOINT

MVS[A1]300.[B1]100.
42

6.4 Program Control Instructions

 Selective Execution Instructions (SFORK, JOINTO, SJOINT)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Selective Execution Instructions (SFORK, JOINTO, SJOINT)

The SFORK, JOINTO, and SJOINT instructions are used to execute a label following a “?” when the
specified conditional expression is satisfied. After each process has been executed, execution is merged at
the block with the label specified for the JOINTO instruction. Up to 16 conditional expressions including
DEFAULT can be designated.
If not all of the designated conditional expressions are satisfied, the labeled block following DEFAULT? is
executed.
DEFAULT can be specified only for the last conditional expression.
DEFAULT can be omitted in motion programs, but not in sequence programs.

Fig. 6.66 Using the SFORK, JOINTO, and SJOINT Instructions

1. The conditional expressions are examined in order from conditional expression 1. When more
than one conditional expression is satisfied, processing is executed from the label that first sat-
isfies the conditional expression.

2. Be sure to use a conditional expression that can actually be satisfied when you use SFORK in
the motion program. If a condition is not satisfied, processing will remain in wait status at the
SFORK instruction block until a condition is satisfied.

SJOINT

Conditional
expression 1

Conditional
expression 2

Conditional
expression 3

Conditional
expression 4

Label 1

Process 1

JOINTO Label_X

Label X

JOINTO Label_X JOINTO Label_X JOINTO Label_X JOINTO Label_X

Process 2 Process 3 Process 4 Process n

Label 2 Label 3 Label 4 Label n

DEFAULT

Information
6-143

6.4 Program Control Instructions

Selective Execution Instructions (SFORK, JOINTO, SJOINT)

6-1
Format

The format of the SFORK, JOINTO, and SJOINT instructions is as follows:

SFORK Conditional_expression_1 ? Label_1, Conditional_expression_2 ? Label_2, Conditional_ex-
pression_3 ? Label_3, Conditional_expression_4 ? Label_4,
..., DEFAULT ? Label_n;

Label_1: Process_1
 JOINTO Label_X
Label_2: Process_2
 JOINTO Label_X
Label_3: Process_3
 JOINTO Label_X
Label_4: Process_4
 JOINTO Label_X
 •
 •
Label_n: Process_n
 JOINTO Label_X
Label_X:SJOINT
44

6.4 Program Control Instructions

 Selective Execution Instructions (SFORK, JOINTO, SJOINT)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
The conditional expressions that can be used with the SFORK instruction are described below.

 Bit Data Comparison

 Format

The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

Operations for Conditional Expressions

&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• If the <> (Mismatch) instruction is used for numeric comparison:

• When a numerical value is specified on the left, and a register on the right:

• When there is no numeric comparison instruction:

• When more than one numeric comparison instruction is used:

 Integer, Double-length Integer, or Real Number Data Comparison

 Format

All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

MB000000 == 0? Label "MB000000 = 0
MB000000 == 1? Label "MB000000 = 1

(MB000000 & MB000001) == 1? Label "MB000000 = 1 and MB000001 = 1
(MB000000 & !MB000001) == 1? Label "MB000000 = 1 and MB000001 = 0
(MB000000 | MB000001) == 1? Label "MB000000 = 1 or MB000001 = 1
(MB000000 | !MB000001) == 1? Label "MB000000 = 1 or MB000001 = 0

MB000000 <> 0? Label Syntax error

1 == MB000000 ? Label Syntax error
MB000000 = = MB000001? Label Syntax error

MB000000? Label Syntax error
(0)? Label Syntax error

(MB000000 = = 0) & (MB000001 = = 1)? Label Syntax error

MW00000 = = 3? Label "MW00000 = 3
ML00000 <> ML00002? Label "ML00000 ≠ ML00002
1.23456 >= MF00000? Label "1.23456 ≥ MF00000
6-145

6.4 Program Control Instructions

Selective Execution Instructions (SFORK, JOINTO, SJOINT)

6-1
Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• When a constant is specified both on the left and right:

• When there is no numeric comparison instruction:

• When more than one numeric comparison instruction is used:

MW00000 = = (MW00001/3)? Label "MW00000 = (MW00001 ÷ 3)
(ML00000 & F0000000H) <> ML00002? Label "(ML00000 Λ F0000000H) ≠ ML00002
1.23456 >= (MF00000 ∗ MF00002)? Label "1.23456 ≥ (MF00000 × MF00002)

0 == 3 ? Label Syntax error
(3.14 ∗ 2 ∗1000) > 9000.0? Label Syntax error

MW000000? Label Syntax error
(-1)? Label Syntax error

(MW00000 < 0) & (MW000001 > 0)? Label Syntax error
46

6.4 Program Control Instructions

 Selective Execution Instructions (SFORK, JOINTO, SJOINT)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Example

A programming example that uses the SFORK, JOINTO, and SJOINT instructions is given below.

Fig. 6.67 Programming Example for the SFORK, JOINTO, and SJOINT Instructions

MOV [A1]100.[B1]150.;
MVS [A1]200.[B1]250.F1000;
SFORK MW00100= =1 ? 0001,MW00100= =2 ? 0002,MW00100= =3 ? 0003,DEFAULT ? 0004;

0001:MVS [A1]300.[B1]100.F3000;
JOINTO 0005

0002:MVS [A1]300.[C1]100.F3000;
JOINTO 0005

0003:MVS [C1]300.[S]100.F3000;
JOINTO 0005

0004:JOINTO 0005;
0005:SJOINT;
MOV[A1]500.[B1]500.[C1]500.

MVS[A1]300.[B1]100. F3000;

JOINTO 0005 JOINTO 0005

MVS[C1]300.[S]100. F3000;

SJOINT

MOV[A1]100.[B1]150.
MVS[A1]200.[B1]250. F1000;

SFORK

JOINTO 0005

MVS[A1]300.[C1]100. F3000;

MOV[A1]500.[B1]500.

MW00100= =2MW00100= =1 MW00100= =3

JOINTO 0006

DEFAULT
6-147

6.4 Program Control Instructions

Call Motion Subprogram (MSEE)

6-1
Call Motion Subprogram (MSEE)

The MSEE instruction is used in a motion program to call a subprogram that is stored in the motion pro-
gram memory.
Up to 8 subprogram calls can be nested.

Fig. 6.68 Calling Subprograms

The RET instruction must be executed at the end of a subprogram.

Format

The format of the MSEE instruction is as follows:

Programming Example

A programming example that uses the MSEE instruction to call motion subprogram MPS101 is given
below.

Subprogram Restrictions
If a main program is called by the MSEE instruction, the program will not be executed.

MSEE MPS Subprogram_number;

Item Applicable Data

Subprogram number Any number between 001 and 512

MSEE MPS101;

MPM001

MOV [A1]1000;

 MSEE MPS002;

 MOV [B1]1000;

MOV [C1]1000;
MSEE MPS003;

RET; MOV [B1]1000;

 MOV [C1]1000;

RET;

MPS002 (nesting level 1)

MPS003 (nesting level 2)

Important
48

6.4 Program Control Instructions

 Call Sequence Subprogram (SSEE)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Call Sequence Subprogram (SSEE)

The SSEE instruction is used in a sequence program to call a subprogram that is stored in the sequence
program memory.
Up to 8 subprogram calls can be nested.

Fig. 6.69 Calling Subprograms

The RET instruction must be executed at the end of a subprogram.

Format

The format of the SSEE instruction is as follows:

Programming Example

A programming example that uses the SSEE instruction to call sequence subprogram SPS101 is given
below.

Subprogram Restrictions
The following restrictions apply to sequence programs in subprograms.
If a main program is called by the SSEE instruction, the program will not be executed.

SSEE SPS Subprogram_number;

Item Applicable Data

Subprogram number Any number between 001 and 512

SSEE SPS101;

MW00000=1;

SSEE SPS002;

END;

SPM001

MW00000=2;

SSEE SPS003;

RET;

MW00000=3;

RET;

SPS002 (nesting level 1)

SPS003 (nesting level 2)

Note
6-149

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

6-1
Call User Function from Motion Program (UFC)

The UFC instruction is used in a motion program to call a user function.
When execution of the called user function is completed, the block after the UFC instruction block will be
executed.

Format

The format of the UFC instruction is as follows:

* You can omit the input address. The format “Input_data, ,Output_data” means that no input address is specified.
At least one input data item and one output data item are required.

Programming Example

A programming example that uses the UFC instruction is given below.

Fig. 6.70 Programming Example for the UFC Instruction

The YB000000 output bit is used to determine if execution of a user function that was called from the
motion program has been completed.
• If Execution of the User Function Is Completed When YB000000 Turns OFF

Execution of the user function is recognized as not being completed and the user function is called
again in the next scan.

• If Execution of the User Function Is Completed When YB000000 Turns ON
Execution of the user function is recognized as being completed and the UFC instruction proceeds to
the next block.

UFC Function_name Input_data, Input_address, Output_data;

Item Applicable Data

Function Name ASCII, 8 bytes

Input data Maximum: 16 data items (At least 1 data item is required.)

Input address Maximum: 1 address

Output data∗ Maximum: 16 data items (At least 1 data item is required.)

UFC KANSUU MB000000 IW0010 MB000002, MA00100 ,
 Function Name Input data Input address
MB000001 MW00200 ML00201;
 Output data

Important

INPUT-1 OUTPUT-1

INPUT-2 OUTPUT-2

INPUT-3 OUTPUT-3

 INPUT-4
 MA00100

MB000000 MB000001

MB000002

IW0010 MW00200

ML00201

Function Name
50

6.4 Program Control Instructions

 Call User Function from Motion Program (UFC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
UFC Instruction Specification Procedure

The procedure for specifying the UFC instruction is given below.

Data Types of Registers Used in User Functions

The following data types can be used.

Determine the UFC instruction specifi-
cations.

• Determine the number of I/O and data type.
• Determine the function name.

Set the following items in the Program
Properties Dialog Box:

• Configuration definition
• I/O definitions

Use the MPE720 to enter the definitions.

Create the ladder user functions.
Create the user functions in the same way as for the
drawings.
However, the registers used are different.

Create the motion program.
Use the following format to specify the instruction:
“UFC Function_name Input_data, Input_address,
Output_data”.

Confirm Operation

Data Type Type

B Bit data

W Integers

L Double-length integers

Q Quadruple-length integers

F Real numbers

D Double-length real numbers
6-151

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

6-1
Relationship between I/O Registers and Internal Function Registers

The relationship between the I/O registers specified in the UFC instruction and the function registers is
shown below.

XB000000 to XB00000F
XW0001
XW0002
XW0003
XW0004

XW00016
XW00014

YB000000 to YB00000F
YW0001
YW0002
YW0003
YW0004

YW00016
YW00014

MA00100 MW00100
MW00101
MW00102
MW00103
MW00104

AW00000
AW0001
AW0002
AW0003
AW0004

Inputs Internal Function Registers

X Registers Y Registers
Bit data output

B-VAL

I-REG,
L-REG input
(16 words max.)

Address Inputs

Z Registers # Registers D Registers

A Registers

I-REG,
L-REG output

(Output registers)(Input registers)

Outputs

Bit data input
B-VAL
(16 bits max.)
52

6.4 Program Control Instructions

 Call User Function from Motion Program (UFC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
The 12 types of registers listed in the following table can be used in functions.

Note: SA, MA, IA, OA, DA, #A, and CA can also be used inside functions.

Table 6.2 Function Registers

Type Name Designation Method Description Features

X
Function Input
Registers

XB,XW,XL,XQ,XF,
XDnnnnn

These registers are used for inputs to functions.
• Bit inputs: XB000000 to XB00000F
• Integer inputs: XW00001 to XW00016
• Double-length integers: XL00001 to XL00015
• Quadruple-length integers: XQ00001 to

XQ00013
• Real numbers: XF00001 to XF00015
• Double-length real numbers: XD00001 to

XD00013

F
un

ct
io

n-
sp

ec
if

ic

Y
Function Out-
put Registers

YB,YW,YL,YQ,YF,
Ydnnnnn

These registers are used for inputs to functions.
• Bit inputs: YB000000 to YB00000F
• Integer inputs: YW00001 to YW00016
• Double-length integers: YL00001 to YL00015
• Quadruple-length integers: YQ00001 to

YQ00013
• Real numbers: YF00001 to YF00015
• Double-length real numbers: YD00001 to

YD00013

Z
Function Inter-
nal Registers

ZB,ZW,ZL,ZQ,ZF,
ZDnnnnn

These are internal registers that are unique
within each function.
These registers are used for internal processing
in functions.

A
Function Exter-
nal Registers

AB,AW,AL,AQ,AF,
ADnnnnn

These are external registers that use the address
input value as the base address.
For linking with S, M, I, O, #, and DAnnnnn.
Register address nnnnn is a decimal number.

Registers
#B,#W,#L,#Q,#F,
#Dnnnnn

These registers are read-only in programs.
These registers can be referenced only from the
corresponding drawing.
The actual usable range is specified by the user
from the MPE720.
Register address nnnnn is a decimal number.

D D Registers
DB,DW,DL,DQ,DF,
DDnnnnn

These registers are unique to each drawing.
These registers can be referenced only from the
corresponding drawing.
The actual usable range is specified by the user
from the MPE720.
Register address nnnnn is a decimal number.

S
System Regis-
ters

SB,SW,SL,SQ,SF,
SDnnnnn

Same as DWG registers.
These registers are used for both drawings and
functions. Care must be taken when using them
to reference the same function from drawings
with different priority levels.
Register address nnnnn is a decimal number.
Register address hhhhh is a hexadecimal num-
ber. S

ha
re

d
by

 A
ll

 D
ra

w
in

gsM Data Registers
MB,MW,ML,MQ,MF,
MDnnnnnnn

G Registers
GB,GW,GL,GQ,GF,
GDnnnnnnn

I Input Registers
IB,IW,IL,IQ,IF,
IDhhhhh

O
Output Regis-
ters

OB,OW,OL,OQ,OF,
ODhhhhh

C
Constant regis-
ter

CB,CW,CL,CQ,CF,
CDnnnnn
6-153

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

6-1
The following example shows the data transfer between I/O registers.

Fig. 6.71 Motion Program Notation

UFC TESTFUNC DB000000 DB000001 MW00030 MW00032, MA00100,DB000002 MW00040

DB000000

DB000001

MW00030

MW00032

DB000002

MW00040
YW00000
YW00001
YW00002

YW00015

MW00100
MW00101
MW00102

AW00000

AW00001

AW00002

MA00100

XW00000
XW00001
XW00002

XW00016

Motion Program Notation

X Registers

Y Registers
54

6.4 Program Control Instructions

 Call User Function from Motion Program (UFC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Creating User Functions

The procedure used to create user functions is demonstrated here with the following user function specifi-
cations as an example.

Use the following procedure to create the user function.

1. Open the Ladder Pane. Right-click Function under Ladder Program and select New from the
menu.

2. Enter FUNC-T1 for the Program Number in the Create New Program Dialog Box.

The Ladder Pane is displayed.

Specification Motion Program

Specify the servo axis number and speed data and set
this information in the OL10 setting parameter.

MW00030 = Servo axis number (1 or 2)
ML00032 = Feed forward speed
UFC FUNC-T1 MW00030 ML00032,,DB000001;
6-155

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

6-1
3. Right-click FUNC-T1 and select Property from the menu.

4. In the Program Properties Dialog Box, click Function input definition and Function output
definition under I/O Definitions and set the number of function inputs and outputs and their data
types.
The code “UFC FUNC-T1 MW00030 ML00032, ,DB000001;” produces the following settings.

5. Close the DWG Configuration Definition Tab Page and edit the user function program in the Lad-
der Pane.
56

6.4 Program Control Instructions

 Call User Function from Motion Program (UFC)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
6. Select Compile − Compile from the menu bar.

7. Create a program in the Motion Editor that calls the user function.

This concludes the process to create a user function that is called from the motion program.
Execute the motion program and check the operation.
6-157

6.4 Program Control Instructions

Call User Function from Sequence Program (FUNC)

6-1
Call User Function from Sequence Program (FUNC)

The FUNC instruction calls a ladder user function from a sequence program.

Format

The format of the FUNK instruction is as follows:

Note: 1. Multiple input and output data items can be specified in one instruction.
However, at least one of each is required. The input address can be omitted.
When the input address is omitted, only the comma is required in its place.

2. The above example calls a user function. Execution proceeds to the next block after the FUNC instruction
regardless of whether execution of the user function has been completed.

Programming Example

A programming example that uses the FUNC instruction is given below.

This example uses three input data items, an input address, and three output data items.

Fig. 6.72 Programming Example for FUNC Instruction

UFC Function_name Input_data_1 Input_data_2 Input_data_3 ..., Input_address,
Output_data_1 Output_data_2 Output_data_3...;

Item Applicable Data

Function
name

ASCII, 8 bytes

Input data Maximum: 16 data items (At least 1 data item is required.)

Input address Maximum: 1 address

Output data Maximum: 16 data items (At least 1 data item is required.)

FUNC KANSUU MB000000 IW0010 MB000020, MA00100,
 Function Name Input data Input address
MB000001 MW00201 ML00202;
 Output data

INPUT-1 OUTPUT-1

INPUT-2 OUTPUT-2

INPUT-3 OUTPUT-3

 INPUT-4
 MA00100

MB000000 MB000001

MB000002

IW0010 MW00200

ML00201

Function Name
58

6.4 Program Control Instructions

 Program End (END)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Program End (END)

The END instruction ends program operation.
No other instructions can be executed in the same block as an END instruction.
The program ends operation after execution of the block containing the END instruction has been com-
pleted.
If there is a movement instruction in the previous block, the program operation ends after the in-position
check is completed.

Format

The format of the END instruction is as follows:

END;
6-159

6.4 Program Control Instructions

Subprogram Return (RET)

6-1
Subprogram Return (RET)

The RET instruction ends a subprogram.
After operation of the called subprogram is ended with the RET instruction, execution proceeds to the
block after the MSEE or SSEE instruction in the main program or subprogram that called the subprogram.

Format

The format of the RET instruction is as follows:

RET;

MPM001

MOV [A1]1000;
MPS002

 MSEE MPS002;

 MOV [B1]1000;

MOV [C1]1000;

RET;
60

6.4 Program Control Instructions

 Dwell Time (TIM)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Dwell Time (TIM)

The TIM instruction causes execution to pause for a specified period of time before the execution of the
next block begins.

Format

The format of the TIM instruction is as follows:

Programming Example

A programming example that uses the TIM instruction is given below.

The TIM instruction is executed after positioning is completed.

Fig. 6.73 Programming Example for the TIM Instruction

TIM Twait_time;

Item Unit Applicable Data Setting Range [s]

Wait time 0.01s
Directly designated value 0.00 to 600.00

Indirect designation with an integer 0.00 to 327.67

MOV [A1]100;
TIM T250 ;

v

MOV

t
2.5 s

Next block
6-161

6.4 Program Control Instructions

Dwell Time (TIM1MS)

6-1
Dwell Time (TIM1MS)

The TIM1MS instruction causes execution to pause for a specified period of time before the execution of
the next block begins.
The unit for the time is 1 ms.

Format

The format of the TIM1MS instruction is as follows:

Programming Example

A programming example that uses the TIM1MS instruction is given below.

Fig. 6.74 Programming Example for TIM1MS Instruction

TIM1MS Twait_time;

Item Unit Applicable Data Setting Range [s]

Wait time 1ms
Directly designated value 0.000 to 60.000

Integer registers (excluding # and C registers) 0.000 to 32.767

MOV [A1]1000;"Positioning
TIM1MS T5;"Wait for 5 ms after positioning is completed.
MOV [A1]1000;"Positioning

END;

5ms

MON MOV

Speed (V)

Time (t)
62

6.4 Program Control Instructions

 I/O Variable Wait (IOW)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
I/O Variable Wait (IOW)

The IOW instruction waits until the status specified by the conditional expression is satisfied, and then
execution proceeds to the next block.

Format

The format of the IOW instruction is as follows:

The conditional expressions that can be used with the IOW instruction are described below.

 Bit Data Comparison

 Format

The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

Operations for Conditional Expressions

&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• If the <> (Mismatch) instruction is used for numeric comparison:

• When a numerical value is specified on the left, and a register on the right:

• When there is no numeric comparison instruction:

IOW IB00001&IB00002 = = 1;

Description Application Applicable Data

Conditional
expression

• All integer, double-length integer, or real number registers (excluding # and C regis-
ters)

• Same as above except with a subscript.
• Subscript registers
• Constant

IOW MB000000 = = 0; "MB000000 = 0
IOW MB000000 = = 1; "MB000000 = 1

IOW (MB000000 & MB000001) = = 1; "MB000000 = 1 and MB000001 = 1
IOW (MB000000 & !MB000001) = = 1; "MB000000 = 1 and MB000001 = 0
IOW (MB000000 | MB000001) = = 1; "MB000000 = 1 or MB000001 = 1
IOW (MB000000 | !MB000001) = = 1; "MB000000 = 1 or MB000001 = 0

IOW MB000000 <> 0; Syntax error

IOW 1 = = MB000000; Syntax error
IOW MB000000 = = MB000001; Syntax error

IOW MB000000; Syntax error
IOW (0); Syntax error
6-163

6.4 Program Control Instructions

I/O Variable Wait (IOW)

6-1
• When more than one numeric comparison instruction is used:

 Integer, Double-length Integer, or Real Number Data Comparison

 Format

All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• When a constant is specified both on the left and right:

• When there is no numeric comparison instruction:

• When more than one numeric comparison instruction is used:

IOW (MB000000 = = 0) & (MB000001 = = 1); Syntax error

IOW MW00000 = = 3; "MW00000 = 3
IOW ML00000 <> ML00002; "ML00000 ≠ ML00002
IOW 1.23456 >= MF00000; "1.23456 ≥ MF00000

IOW MW00000 = = (MW00001/3); "MW00000 = (MW00001 ÷ 3)
IOW (ML00000 & F0000000H) <> ML00002; "(ML00000 Λ F0000000H) ≠ ML00002
IOW 1.23456 >= (MF00000 ∗ MF00002); "1.23456 ≥ (MF00000 × MF00002)

IOW 0 = = 3; Syntax error
IOW (3.14 ∗ 2 ∗ 1000) > 9000.0; Syntax error

IOW MW000000; Syntax error
IOW (-1); Syntax error

IOW (MW00000 < 0) & (MW000001 > 0); Syntax error
64

6.4 Program Control Instructions

 I/O Variable Wait (IOW)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Example

A programming example that uses the IOW instruction is given below.

Fig. 6.75 Programming Example for IOW Instruction

IOW (MB001001&MB001002) = = 1;
MOV [A1]1000;

MB001001

MB001002

Speed

Positioning for A1

Time
6-165

6.4 Program Control Instructions

One Scan Wait (EOX)

6-1
One Scan Wait (EOX)

The EOX instruction causes program execution to wait for one scan.
The block after the EOX instruction is executed in the next scan.

Format

The format of the EOX instruction is as follows:

Programming Example

A programming example that uses the EOX instruction is given below.

• Used with Sequence Instructions

• Used with a WHILE Instruction

EOX;

MW00000 = 100;
OB00010 = 1;
EOX;
OB00011 = 0;

1st scan

2nd scan

WHILE OB00010 = = 1;
EOX;
WEND;
66

6.4 Program Control Instructions

 Disable Single-block Signal (SNGD) and Enable Single-block Signal (SNGE)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Disable Single-block Signal (SNGD) and Enable Single-block
Signal (SNGE)

The SNGD and SNGE instructions are used to specify whether to disable or enable single-step operation
in Debug Mode.
The blocks between the SNGD and SNGE instructions are executed continuously without single-block
stops, regardless of the single-block operation mode setting.

Format

The format of the SNGD instruction is as follows:

Programming Example

A programming example that uses the SNGD and SNGE instructions is given below.
In this example, blocks 1 to 3 between the SNGD and SNGE instructions are executed continuously with-
out single-block stops, even in single-block operation mode.

Single-block Operation Mode
In single-block operation mode, a stop is executed for each block.

SNGD;
The code you want to execute continuously without stopping
SNGE;

MVS [A1]0 [B1]0;

MVS [A1]100 [B1]200; ""
MB000101 = 1; ""
MB000102 = 1; ""

MB000103 = 1;

Terms

SNGD;

SNGE;
6-167

6.5 Numeric Operation Instructions

6-1
6.5 Numeric Operation Instructions

There are eight numeric operation instructions. You can use these instructions in motion programs or in
sequence programs.

The following table lists the numeric operation instructions.

Note: The in the above formats indicates a register address.

Refer to the following section for details on the priority of numeric operations.
5.3 Operation Priority Levels (page 5-11)

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

= Substitute Result = Math_expression
Substitutes the results of an operation. Calcula-
tions are performed from left to right with no
order of priority.

+ Add MW = MW + MW;
Performs integer and real number addition. If
both integers and real numbers are included,
calculations are performed with real numbers.

- Subtract MW = MW - MW;
Performs integer and real number subtraction.
If both integers and real numbers are included,
calculations are performed with real numbers.

+ + Extended Add MW = MW + + MW; Performs extended addition of integers.

- -
Extended
Subtract

MW = MW - - MW; Performs extended subtraction of integers.

∗ Multiply MW = MW ∗ MW;

Performs integer and real number multiplica-
tion. If both integers and real numbers are
included, calculations are performed with real
numbers.

/ Divide MW = MW / MW;
Performs integer and real number division. If
both integers and real numbers are included,
calculations are performed with real numbers.

MOD Modulo
MW = MW / MW;
MW = MOD;

When programmed in the next block after a
division, MOD stores the remainder in the des-
ignated register.

68

6.5 Numeric Operation Instructions

 Substitute (=)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Substitute (=)

This instruction substitutes the operation result on the right side of the expression into the register on the
left side.

Format

The format of the = (Substitute) instruction is as follows:

Programming Examples

The = (Substitute) instruction can be used in motion programs, sequence programs, and ladder programs.

Programming examples that use the = (Substitute) instruction are given below.

Result = Math_expression;

Description Application Usable Registers

 Result

• All bit, integer, double-length integer, quadruple-length integer, real number, or
double-length real number registers (excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

Math

expression

• All bit, integer, double-length integer, quadruple-length integer, real number, or
double-length real number registers (excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

Data
Type

Motion Programs/
Sequence Programs

Ladder Programming

B MB001000 = 1;

W MW00100 = 12345;

L ML00100 = 1234567;

F MF00100 = 1.2345;

Q MQ00100 = 123456789;

D MD00100 = 1.234567;
6-169

6.5 Numeric Operation Instructions

Add (+)

6-1
Add (+)

The + (Add) instruction performs integer or real number addition on the right side and stores the result of
that operation in the register on the left side. Constants can also be used instead of registers for the addi-
tion operation on the right side. If both integers and real numbers are included, the result is stored in the
data type on the left side.

Format

The format of the + (Add) instruction is as follows:

Programming Examples

The + (Add) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the + (Add) instruction are given below.

MW00101 = MW00100 + 12345 ;

Description Application Usable Registers

 Data output

• All integer, double-length integer, quadruple-length integer, real number, or double-
length real number registers (excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

 Data input • All integer, double-length integer, quadruple-length integer, real number, or double-
length real number registers (excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

 Data to add

Data Type
Motion Programs/Sequence

Programs
Ladder Programming

B − −

W MW00101 = MW00100+12345;

L ML00106 = ML00102+ML00104;

F MF00202 = MF00200+1.23456;

If an operation is performed with registers of different data types, the result is stored according to
the data type on the left side.
Refer to the following sections for details on data types.

Global Registers (page 4-5)

Local Registers (page 4-6)

Information
70

6.5 Numeric Operation Instructions

 Subtract (-)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Subtract (-)

The - (Subtract) instruction performs integer or real number subtraction on the right side and stores the
result of that operation in the register on the left side. Constants can also be used instead of registers for
the addition operation on the right side. If both integers and real numbers are included, the result is stored
in the data type on the left side.

Format

The format of the - (Subtract) instruction is as follows:

Programming Examples

The - (Subtract) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the - (Subtract) instruction are given below.

MW00101 = MW00100 - 12345 ;

Description Application Usable Registers

 Data output

• All integer, double-length integer, quadruple-length integer, real number, or
double-length real number registers (excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

 Data input • All integer, double-length integer, quadruple-length integer, real number, or
double-length real number registers (excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

 Data to subtract

Data Type
Motion Programs/Sequence

Programs
Ladder Programming

B − −

W MW00101 = MW00100-12345;

L ML00106 = ML00102-ML00104;

F MF00202 = MF00200-1.23456;
6-171

6.5 Numeric Operation Instructions

Extended Add (++)

6-1
Extended Add (++)

The ++ (Extended Add) instruction adds integer values.
Overflows are not treated as operation errors. Instead, the calculation continues from the maximum value
in the negative direction.
Underflows are not treated as operation errors. Instead, the calculation continues from the maximum value
in the positive direction.
Otherwise, this instruction is the same as the + (Add) instruction.

 Integers

Decimal: 0 → 1 ⋅ ⋅ ⋅ 32767 → -32768 ⋅ ⋅ ⋅ -1 → 0
Hexadecimal: 0000 → 0001 ⋅ ⋅ ⋅ 7FFF → 8000 ⋅ ⋅ ⋅ FFFF → 0000

 Double-length Integers

Decimal: 0 → 1 ⋅ ⋅ ⋅ 2147483647 → -2147483648 ⋅ ⋅ ⋅ -1 → 0
Hexadecimal: 00000000 → 00000001 ⋅ ⋅ ⋅ 7FFFFFFF → 80000000 ⋅ ⋅ ⋅ FFFFFFFF → 00000000

Quadruple-length Integers

Decimal: 0 → 1 ⋅ ⋅ ⋅ 9223372036854775807 → -9223372036854775808 ⋅ ⋅ ⋅ -1 → 0
Hexadecimal: 0000000000000000 → 0000000000000001 ⋅ ⋅ ⋅ 7FFFFFFFFFFFFFFF →
 8000000000000000 ⋅ ⋅ ⋅ FFFFFFFFFFFFFFFF → 0000000000000000

Format

The format of the ++ (Extended Add) instruction is as follows:

Note: A compiler error will occur if a real number is used.

MW00101 = MW00100 + + 12345;

Description Application Usable Registers

 Data output

• All integer, double-length integer, or quadruple-length integer registers (excluding
and C registers)

• Same as above except with a subscript.
• Subscript registers

 Data input
• All integer, double-length integer, or quadruple-length integer registers (excluding

and C registers)
• Same as above except with a subscript.
• Subscript registers
• Constant

 Data to add
72

6.5 Numeric Operation Instructions

 Extended Add (++)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Examples

The ++ (Extended Add) instruction can be used in motion programs, sequence programs, and ladder pro-
grams.
Programming examples that use the ++ (Extended Add) instruction are given below.

Data Type
Motion Programs/Sequence

Programs
Ladder Programming

B − −

W MW00101 = MW00100+ +1;

L ML00106 = ML00102+ +ML00104;

F − −

Q MQ00116 = MQ00108+ +MQ00112;
6-173

6.5 Numeric Operation Instructions

Extended Subtract (--)

6-1
Extended Subtract (--)

The -- (Extended Subtract) instruction subtracts integer values.
Overflows are not treated as operation errors. Instead, the calculation continues from the maximum value
in the negative direction.
Underflows are not treated as operation errors. Instead, the calculation continues from the maximum value
in the positive direction.
Otherwise, this instruction is the same as the - (Subtract) instruction.

 Integers

Decimal: 0 → -1 ⋅ ⋅ ⋅ -32768 → 32767 ⋅ ⋅ ⋅ 1 → 0
Hexadecimal: 0000 → FFFF ⋅ ⋅ ⋅ 8000 → 7FFF ⋅ ⋅ ⋅ 0001 → 0000

 Double-length Integers

Decimal: 0 → -1 ⋅ ⋅ ⋅ -2147483648 → 2147483647 ⋅ ⋅ ⋅ 1 → 0
Hexadecimal: 00000000 → FFFFFFFF ⋅ ⋅ ⋅ 80000000 → 7FFFFFFF ⋅ ⋅ ⋅ 00000001 → 00000000

Quadruple-length Integers

Decimal: 0 → -1 ⋅ ⋅ ⋅ -9223372036854775808 → 9223372036854775807 ⋅ ⋅ ⋅ 1 → 0
Hexadecimal: 0000000000000000 → FFFFFFFFFFFFFFFF ⋅ ⋅ ⋅ 8000000000000000 →
 7FFFFFFFFFFFFFFF ⋅ ⋅ ⋅ 0000000000000001 → 0000000000000000

Format

The format of the -- (Extended Subtract) instruction is as follows:

Note: A compiler error will occur if a real number is used.

MW00101 = MW00100 - - 12345;

Description Application Usable Registers

 Data output

• All integer, double-length integer, or quadruple-length integer registers (excluding
and C registers)

• Same as above except with a subscript.
• Subscript registers

 Data input
• All integer, double-length integer, or quadruple-length integer registers (excluding

and C registers)
• Same as above except with a subscript.
• Subscript registers
• Constant

 Data to add
74

6.5 Numeric Operation Instructions

 Extended Subtract (--)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Examples

The -- (Extended Subtract) instruction can be used in motion programs, sequence programs, and ladder
programs.
Programming examples that use the -- (Extended Subtract) instruction are given below.

Data Type
Motion Programs/Sequence

Programs
Ladder Programming

B − −

W MW00101 = MW00100- -1;

L ML00106 = ML00102- -ML00104;

F − −

Q MQ00116 = MQ00108- -MQ00112
6-175

6.5 Numeric Operation Instructions

Multiply (*)

6-1
Multiply (*)

The * (Multiply) instruction performs integer or real number multiplication on the right side and stores the
result of that operation in the register on the left side. Constants can also be used instead of registers for
the multiplication operation on the right side. If both integers and real numbers are included, the result is
stored in the data type on the left side.

Format

The format of the * (Multiply) instruction is as follows:

Programming Examples

The * (Multiply) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the * (Multiply) instruction are given below.

MW00101 = MW00100 ∗ 12345 ;

Description Application Usable Registers

 Data output

• All integer, double-length integer, quadruple-length integer, real number, or double-
length real number registers (excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

 Data input
• All integer, double-length integer, quadruple-length integer, real number, or double-

length real number registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers
• Constant

Data to mul-
tiply

Data Type
Motion Programs/Sequence Pro-

grams
Ladder Programming

B − −

W MW00102 = MW00100 ∗ MW00101

L ML00106 = ML00102 ∗ ML00104;

F MF00202 = MF00200 ∗ 1.23456;
76

6.5 Numeric Operation Instructions

 Divide (/)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Divide (/)

The / (Divide) instruction performs integer or real number division on the right side and stores the result of
that operation in the register on the left side. Constants can also be used instead of registers for the division
operation on the right side. If both integers and real numbers are included, the result is stored in the data
type on the left side.

Format

The format of the / (Divide) instruction is as follows:

Programming Examples

The / (Divide) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the / (Divide) instruction are given below.

MW00101 = MW00100 / 12345 ;

Description Application Usable Registers

 Data output

• All integer, double-length integer, quadruple-length integer, real number, or double-
length real number registers (excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

 Data input
• All integer, double-length integer, quadruple-length integer, real number, or double-

length real number registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers
• Constant

Data to
divide

Data Type
Motion Programs/Sequence

Programs
Ladder Programming

B − −

W
MW00102 =
MW00100/MW00101;

L ML00106 = ML00102/ML00104;

F MF00202 = MF00200/1.23456;
6-177

6.5 Numeric Operation Instructions

Modulo (MOD)

6-1
Modulo (MOD)

When the MOD instruction is specified in the next block after a division instruction, the remainder of the
division operation is stored in the specified variable.

Format

The format of the MOD instruction is as follows:

Programming Examples

The MOD instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the MOD instruction are given below.

MW00001 = 1000 / 999;
MW00002 = MOD;

Description Application Usable Registers

 Data output

• All registers with integer and double-length integer data types (excluding # and C
registers)

• Same as above except with a subscript.
• Subscript registers

Data Type
Motion Programs/Sequence

Programs
Ladder Programming

B − −

W
MW00101 = MW00100/3;
MW00102 = MOD;

L
ML00106 = ML00102/ML00104;
ML00108 = MOD;

F − −

Programming Example for the MOD Instruction (Double-length Integers)
ML00106 = ML00100 ∗ ML00102/ML00104;
(173575) (100000) (60000) (34567)
ML00108 = MOD;
(32975)

The MOD instruction must always be executed immediately after the division instruction. If it is not
executed in the next block after the division instruction, the result will not be reliable.

Example

Important
78

6.6 Logic Operation Instructions

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
6.6 Logic Operation Instructions

Logic operation instructions are used to perform logical TRUE or FALSE operations on numbers.
There are four logic operation instructions. You can use these instructions in motion programs or in
sequence programs.

The following table lists the logic operation instructions.

Note: The in the above formats indicates a register address.

Although operations that combine math operations are also possible, real number operations cannot be
performed.
Refer to the following section for details on the priority of numeric operations.

5.3 Operation Priority Levels (page 5-11)

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

 |
OR (Inclusive
OR)

MB = MB | MB;
MB = MB | 1;
MW = MW | MW;
MW = MW | 00FFH;
ML = ML | ML;
ML = ML | 00FF00FFH;
MQ = MQ | MQ;
MQ = MQ | 00FF00FF 00FF00FFH;

Performs a bit or integer
inclusive OR operation.

& AND (AND)

MB = MB & MB;
MB = MB & 1;
MW = MW & MW;
MW = MW & 00FFH;
ML = ML & ML;
ML = ML & 00FF00FFH;
MQ = MQ & MQ;
MQ = MQ & 00FF00FF 00FF00FFH;

Performs a bit or integer
AND operation.

^
XOR (Exclu-
sive OR)

MW = MW ^ MW;
MW = MW ^ 00FFH;
ML = ML ^ ML;
ML = ML ^ 00FF00FFH;
MQ = MQ ^ MQ;
MQ = MWQ ^ 00FF00FF 00FF00FFH;

Performs an integer exclu-
sive OR operation.

!
NOT (Logical
Complement)

MB = !MB;
MB = !1;
MW = !MW;
MW = !00FFH;
ML = !ML;
ML = !00FF00FFH;
MQ = !MQ;
MQ = !00FF00FF 00FF00FFH;

Returns the inverse of the
specified bit.

6-179

6.6 Logic Operation Instructions

Inclusive OR (|)

6-1
Inclusive OR (|)

The | (OR) instruction performs an inclusive OR for the immediately preceding operation result and the
specified registers, and then returns the result of that operation. Real number registers cannot be used.

Format

The format of the | (OR) instruction is as follows:

Programming Examples

The | (OR) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the | (OR) instruction are given below.

Table 6.3 Inclusive OR Truth Table for (A = B | C)

B C A

0 0 0

0 1 1

1 0 1

1 1 1

MW00100 = DW00102 | AAAAH;

Descrip-
tion

Application Usable Registers

 Data output

• All bit, integer, double-length integer, or quadruple-length integer registers (exclud-
ing # and C registers)

• Same as above except with a subscript.
• Subscript registers

, Data input

• All bit, integer, double-length integer, or quadruple-length integer registers (exclud-
ing # and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

Data
Type

Motion Programs/
Sequence Programs

Ladder Programming

B
MB001000 =
MB001010 | MB001011;

W
MW00100 =
MW00101 | MW00102

L
ML00106 =
ML00102 | ML00104;

F − −
80

6.6 Logic Operation Instructions

 AND (&)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
AND (&)

The & (AND) instruction performs an inclusive AND for the immediately preceding operation result and
the specified registers, and then returns the result of that operation. Real number registers cannot be used.

Format

The format of the & (AND) instruction is as follows:

Programming Examples

The & (AND) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the & (AND) instruction are given below.

Table 6.4 AND Truth Table for (A = B & C)

B C A

0 0 0

0 1 0

1 0 0

1 1 1

MW00100 = DW00102 & AAAAH;

Description Application Usable Registers

 Data output

• All bit, integer, double-length integer, or quadruple-length integer registers
(excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

, Data input

• All bit, integer, double-length integer, or quadruple-length integer registers
(excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

Data
Type

Motion Programs/
Sequence Programs

Ladder Programming

B
MB001000 =
MB001010&MB001011;

W
MW00101 = MW00100&
00FFH;

L
ML00106 = ML00102&
ML00104;

F − −
6-181

6.6 Logic Operation Instructions

Exclusive OR (^)

6-1
Exclusive OR (^)

The ^ (XOR) instruction performs an exclusive OR for the immediately preceding operation result and the
specified registers, and then returns the result of that operation. Real number registers cannot be used.

Format

The format of the ^ (XOR) instruction is as follows:

Programming Examples

The ^ (XOR) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the ^ (XOR) instruction are given below.

Table 6.5 XOR Truth Table for (A = B ^ C)

B C A

0 0 0

0 1 1

1 0 1

1 1 0

MW00100 = DW00102 ^ AAAAH;

Description Application Usable Registers

 Data output

• All integer, double-length integer, or quadruple-length integer registers (excluding
and C registers)

• Same as above except with a subscript.
• Subscript registers

, Data input

• All integer, double-length integer, or quadruple-length integer registers (excluding
and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

Data Type
Motion Programs/Sequence

Programs
Ladder Programming

B − −

W MW00101 = MW00100 ^ 00FFH;

L
ML00106 = ML00102 ^
ML00104;

F − −
82

6.6 Logic Operation Instructions

 NOT (!)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
NOT (!)

The ! (NOT) instruction inverts the data in the specified register and returns the result of that operation.
Real number registers cannot be used.

Format

The format of the ! (NOT) instruction is as follows:

* Bit data constants cannot be specified.

Programming Examples

The ! (NOT) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the ! (NOT) instruction are given below.

MB001000 = ! MB001010;

Description Application Usable Registers

 Data output

• All bit, integer, double-length integer, or quadruple-length integer registers
(excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

 Data input

• All bit, integer, double-length integer, or quadruple-length integer registers
(excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

• Constant∗

Data
Type

Motion Programs/
Sequence Programs

Ladder Programming

B MB001000 = !MB001010;

W MW00100 = !MW00101;

L ML00100 = !ML00102

F − −

Programming Example for the ! (NOT) Instruction
MW00100 = !MW00101;

Example

0010 0011 01000001
MW00101

1234H

1101 1100 10111110
MW00100

EDCBH
6-183

6.7 Numeric Comparison Instructions

6-1
6.7 Numeric Comparison Instructions

This section explains the numeric comparison instructions that are used in conditional expressions.
There are six numeric comparison instructions. You can use these instructions in motion programs or in
sequence programs.

The following table lists the numeric comparison instructions.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

= = Equal

IF MB = = MB;
WHILE MB = = MB;
IF MW = = MW;
WHILE MW = = MW;
IF ML = = ML;
WHILE ML = = ML;
IF MF = = MF;
WHILE MF = = MF;
IF MQ = = MQ;
WHILE MQ = = MQ;
IF MD = = MD;
WHILE MD = = MD;

Used in an IF or WHILE conditional expres-
sion. If the left side and right side are the
same, the condition is TRUE.

<> Mismatch

IF MW < > MW;
WHILE MW < > MW;
IF ML < > ML;
WHILE ML < > ML;
IF MF < > MF;
WHILE MF < > MF;
IF MQ < > MQ;
WHILE MQ < > MQ;
IF MD < > MD;
WHILE MD < > MD;

Used in an IF or WHILE conditional expres-
sion. If the left side and the right side do not
match, the condition is TRUE.

> Greater Than

IF MW > MW;
WHILE MW > MW;
IF ML > ML;
WHILE ML > ML;
IF MF > MF;
WHILE MF > MF;
IF MQ > MQ;
WHILE MQ > MQ;
IF MD > MD;
WHILE MD > MD;

Used in an IF or WHILE conditional expres-
sion. If the left side is greater than the right
side, the condition is TRUE.

Continued on next page.
84

6.7 Numeric Comparison Instructions

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Note: The in the above formats indicates a register address.

< Less Than

IF MW < MW;
WHILE MW < MW;
IF ML < ML;
WHILE ML < ML;
IF MF < MF;
WHILE MF < MF;
IF MQ < MQ;
WHILE MQ < MQ;
IF MD < MD;
WHILE MD < MD;

Used in an IF or WHILE conditional expres-
sion. If the left side is less than the right side,
the condition is TRUE.

>=
Greater Than
or Equal To

IF MW >= MW;
WHILE MW >= MW;
IF ML >= ML;
WHILE ML >= ML;
IF MF >= MF;
WHILE MF >= MF;
IF MQ >= MQ;
WHILE MQ >= MQ;
IF MD >= MD;
WHILE MD >= MD;

Used in an IF or WHILE conditional expres-
sion. If the left side is greater than or equal to
the right side, the condition is TRUE.

<=
Less Than or

Equal To

IF MW <= MW;
WHILE MW <= MW;
IF ML <= ML;
WHILE ML <= ML;
IF MF <= MF;
WHILE MF <= MF;
IF MQ <= MQ;
WHILE MQ <= MQ;
IF MD <= MD;
WHILE MD <= MD;

Used in an IF or WHILE conditional expres-
sion. If the left side is less than or equal to
the right side, the condition is TRUE.

Continued from previous page.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

6-185

6.7 Numeric Comparison Instructions

Numeric Comparison Instructions (==, <>, >, <, >=, <=)

6-1
Numeric Comparison Instructions (==, <>, >, <, >=, <=)

These instructions are used to determine the value of conditional expressions for instructions such as
branching instructions, repetition instructions, instructions for repetition with one scan wait, or I/O wait
instructions.
The following table lists the six numeric comparison instructions.

Format

The formats of the numeric comparison instructions are as follows:

* Only the == (Match) instruction can be used in bit data conditional expressions.

Programming Examples

Numeric comparison instructions can be used in motion programs, sequence programs, and ladder pro-
grams.
Programming examples that use the numeric comparison instructions are given below.

The conditional expressions that can be used with numeric comparison instructions are described below.

Comparison Instruction Description

= = Equal

< > Mismatch

> Greater Than

< Less Than

> = Greater Than or Equal To

< = Less Than or Equal To

IF MB001000 = = 1;

Description Application Usable Registers

Conditional
expression

• All bit*, integer, double-length integer, quadruple-length integer, real number, or
double-length real number registers (excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

Data
Type

Motion Programs/
Sequence Programs

Ladder Programming

B IF MB001000 = = 1;

W IF MW00100< >10;

L IF ML00100>10000;

F IF MF00100>= 3.0;
86

6.7 Numeric Comparison Instructions

 Numeric Comparison Instructions (==, <>, >, <, >=, <=)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 Bit Data Comparison

 Format

The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

Operations for Conditional Expressions

&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• If the <> (Mismatch) instruction is used for numeric comparison:

• When a numerical value is specified on the left, and a register on the right:

• When there is no numeric comparison instruction:

• When more than one numeric comparison instruction is used:

 Integer, Double-length Integer, or Real Number Data Comparison

 Format

All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

IF MB000000 = = 0; "MB000000 = 0
IF MB000000 = = 1; "MB000000 = 1

IF (MB000000 & MB000001) = = 1; "MB000000 = 1 and MB000001 = 1
IF (MB000000 & !MB000001) = = 1; "MB000000 = 1 and MB000001 = 0
IF (MB000000 | MB000001) = = 1; "MB000000 = 1 or MB000001 = 1
IF (MB000000 | !MB000001) = = 1; "MB000000 = 1 or MB000001 = 0

IF MB000000 <> 0; Syntax error

IF 1 = = MB000000; Syntax error
IF MB000000 = = MB000001; Syntax error

IF MB000000; Syntax error
IF (0); Syntax error

IF (MB000000 = = 0) & (MB000001 = = 1); Syntax error

IF MW00000 = = 3;"MW00000 = 3
IF ML00000 <> ML00002;"ML00000 ≠ ML00002
IF 1.23456 >= MF00000;"1.23456 ≥ MF00000
6-187

6.7 Numeric Comparison Instructions

Numeric Comparison Instructions (==, <>, >, <, >=, <=)

6-1
Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

 Examples of Syntax Errors

A syntax error occurs in the following cases:

• When a constant is specified both on the left and right:

• When there is no numeric comparison instruction:

• When more than one numeric comparison instruction is used:

IF MW00000 = = (MW00001/3);"MW00000 = (MW00001 ÷ 3)
IF (ML00000 & F0000000H) <> ML00002;"(ML00000 Λ F0000000H) ≠ ML00002
IF 1.23456 >= (MF00000 ∗ MF00002);"1.23456 ≥ (MF00000 × MF00002)

IF 0 = = 3; Syntax error
IF (3.14 ∗ 2 ∗ 1000) > 9000.0; Syntax error

IF MW000000; Syntax error
IF (-1); Syntax error

IF (MW00000 < 0) & (MW000001 > 0); Syntax error
88

6.8 Data Manipulations

Bit Shift Right (SFR)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
6.8 Data Manipulations

Data manipulation instructions copy, move, and perform other operations on the data in the specified reg-
isters.

There are six data manipulation instructions. You can use these instructions in motion programs or in
sequence programs.

The following table lists the data manipulation instructions.

Note: The in the above formats indicates a register address.

Bit Shift Right (SFR)

The SFR instruction shifts the bit string designated by the specified first bit number and bit width by the
specified number of bits to the right.

Format

The format of the SFR instruction is as follows:

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

SFR Right Shift SFR MB N W;
Shifts the bit variable by the specified num-
ber of bits to the right.

SFL Left Shift SFL MB N W;
Shifts the bit variable by the specified num-
ber of bits to the left.

BLK Move Block BLK MW MW W;
Copies the areas of specified blocks begin-
ning with the specified transfer source to
the specified transfer destination.

CLR Clear CLR MW W;
Clears the desired area to 0’s (zeros) begin-
ning with the specified register.

SETW
Table

Initialization
SETW MW DW; W;

Stores the specified data in all registers
starting from the target register to the speci-
fied number of registers thereafter.

ASCII
ASCII

Conversion 1
ASCII ‘Text_string’ MW;

Converts the specified characters to ASCII
text, and stores the results of that operation
in the specified registers.

SFR MB001000 N5 W10 ;

Description Application Usable Registers

 First bit
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers

Number of
bits to shift

• Integer registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers
• Constant

 Bit width
6-189

6.8 Data Manipulations

Bit Shift Right (SFR)

6-1
Programming Example

The SFR instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the SFR instruction is given below.

Data Type
Motion Programs/Sequence

Programs
Ladder Programming

B − −

W SFR MB001000 N5 W10;

L − −
F − −

Programming Example for SFR Instruction
In this example, five bits starting from MB001005 (bit 5 of MW00100) are shifted three bits to the
right.

With the SFR instruction, if the number of bits to shift is greater than the bit width, all data in the
specified bit width will be set to 0.

Example

SFR MB001005 N3 W5 ;

9 5 0
1 1 1 1 1

0 0 0 1 1

MW00100

MW00100

Before Execution

After Execution

0 is set here.

Information
90

6.8 Data Manipulations

 Bit Shift Left (SFL)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Bit Shift Left (SFL)

The SFL instruction shifts the bit string designated by the specified first bit number and bit width by the
specified number of bits to the left.

Format

The format of the SFL instruction is as follows:

Programming Example

The SFL instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the SFL instruction is given below.

SFL MB001000 N5 W10 ;

Description Application Usable Registers

 First bit
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers

Number of
bits to shift

• Integer registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers
• Constant

 Bit width

Data Type
Motion Programs/

Sequence Programs
Ladder Programming

B − −

W SFL MB001000 N5 W10;

L − −
F − −

Programming Example for SFL Instruction
In this example, ten bits starting from MB00100A (bit A of MW00100) are shifted five bits to the
left.

With the SFL instruction, if the number of bits to shift is greater than the bit width, all data in the
specified bit width will be set to 0.

Example

SFL MB00100A N5 W10 ;

F A
1 1 0 0 0MW00100

MW00101

1
3 0
0 101

F A
MW00100

MW00101
3 0
1 000

0 is set here.

1 0 0 0 0 0 The lower five bits are padded with zeroes.

The upper five bits are removed.

Information
6-191

6.8 Data Manipulations

Move Block (BLK)

6-1
Move Block (BLK)

The BLK instruction moves the specified number of words from the beginning of the source register to the
beginning of the destination register.

Format

The format of the BLK instruction is as follows:

Programming Example

The BLK instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the BLK instruction is given below.

BLK MW00100 DW00100 W10 ;

Description Application Usable Registers

First register at
source

• Integer registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers

First destination
register

• Integer registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers
• Constant

Number of blocks
to be moved

Data Type
Motion Programs/Sequence

Programs
Ladder Programming

B − −

W BLK MW00100 DW00100 W10;

L − −
F − −

Programming Example for the BLK Instruction
MW00100 to MW00109 are moved to MW00200 to MW00209.

As long as the source registers and destination registers do not overlap, the source data is moved to
the destination registers as it is. If the source and destination data overlap, the source data may not
be moved to the destination registers as it is.

Example

BLK MW00100 MW00200 W10;

1234 hex
1235 hex
1236 hex

123D hex
123C hex

MW00100
MW00101
MW00102

MW00109
MW00108

1234 hex
1235 hex
1236 hex

123D hex
123C hex

MW00200
MW00201
MW00202

MW00209
MW00208

Move source Move destination

Information
92

6.8 Data Manipulations

 Clear (CLR)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Clear (CLR)

The CLR instruction clears the specified number of blocks to 0 starting from the first specified data clear
register.

Format

The format of the CLR instruction is as follows:

Programming Example

The CLR instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the CLR instruction is given below.

CLR MW00100 W10 ;

Description Application Usable Registers

First data clear
register

• Integer registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers

 Number of blocks

• Integer registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers
• Constant

Data Type
Motion Programs/

Sequence Programs
Ladder Programming

B − −

W CLR MW00100 W10;

L − −
F − −

Programming Example for the CLR Instruction
The data in registers MW00100 to MW00119 is cleared to 0.

Example

CLR MW00100 W20;

0000
0000
0000

0000
0000

MW00100
MW00101
MW00102

MW00119
MW00118

0

6-193

6.8 Data Manipulations

Table Initialization (SETW)

6-1
Table Initialization (SETW)

The SETW instruction stores the specified data in all registers starting from the target register to the spec-
ified number of registers thereafter. The storage process is performed one word at a time in order of
ascending register addresses.

Format

The format of the SETW instruction is as follows:

SETW MW00100 DW00100 W10;

Description Application Usable Registers

First register at
source

• Integer registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers

 Move data
• Integer registers (excluding # and C registers)
• Same as above except with a subscript.
• Subscript registers
• Constant

Number of
words to set

xxxx xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

VWyyyy

VWyyyy + 1

VWyyyy + 2

VWyyyy + 3

VWyyyy +(n-1)

VWyyyy + n

V = S, M, I, O, D, GMove data
First register

at source

Number of words to set
94

6.8 Data Manipulations

 Table Initialization (SETW)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Example

A programming example that uses the SETW instruction is given below.

DW00100 = 1234;
SETW MW00100 DW00100 W7; "Store the value of DW00100 in registers MW00100 to MW00106.
END;

1234 1234

1234

1234

1234

1234

1234

1234

MW00100

MW00101

MW00102

MW00103

MW00105

MW00106

MW00104

Move data
First register

at source
6-195

6.8 Data Manipulations

ASCII Conversion 1 (ASCII)

6-1
ASCII Conversion 1 (ASCII)

The ASCII instruction converts the specified characters to ASCII text, and stores the result of that opera-
tion in the specified integer register. The text string is case sensitive.
The first character is stored in the lower byte of the first word and the second character is stored in the
upper byte of the first word. The remaining characters are stored in order in that same way. If the number
of characters in the string is odd, the upper byte of the last word in the destination register is 0. The input
text string can contain up to 32 characters.

Format

The format of the ASCII instruction is as follows:

The following tables show the characters that can and cannot be used in the ASCII instruction.

 Usable Characters

The following table lists the characters that can be used in the ASCII instruction.

 Unusable Characters

The following table lists the characters that cannot be used in the ASCII instruction.

ASCII 'ABCDEFG' MW00200;

Description Application Usable Registers

 Text string ASCII text

 Destination register address Integer registers (excluding # and C registers)

Item ASCII Characters

Alphanumeric characters a to z, A to Z, 0 to 9

Single-byte symbols
Space character
! # $ % & () ∗ + , - . / : ; < = > ? @ [] \] ^ _ ` { | } ~

Item ASCII Characters

Single quotation mark ‘

Double quotation mark “

Double slash //

Double-byte characters All double-byte characters

Single-byte Japanese characters All single-byte Japanese characters
96

6.8 Data Manipulations

 ASCII Conversion 1 (ASCII)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Examples

Programming examples that use the ASCII instruction are given below.

 Storing the Text String “ABCD” in Registers MW00100 to MW00101

 Storing the Text String “ABCDEFG” in Registers MW00100 to MW00103

ASCII 'ABCD' MW00100;

Upper byte Lower byte

MW00100 42H('B') 41H('A') MW00100 = 4241H

MW00101 44H('D') 43H('C') MW00101 = 4443H

ASCII 'ABCDEFG' MW00100;

Upper byte Lower byte

MW00100 42H('B') 41H('A') MW00100 = 4241H

MW00101 44H('D') 43H('C') MW00101 = 4443H

MW00102 46H('F') 45H('E') MW00102 = 4645H

MW00103 00H 47H('G') MW00103 = 0047H

The remaining bytes will be 0.
6-197

6.9 Basic Functions

6-1
6.9 Basic Functions

Basic function instructions perform special operations through a combination of numeric and logic opera-
tions. There are 17 basic function instructions.

The following table lists the basic function instructions.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

SIN Sine
SIN (MW);
SIN (90);

Calculates the sine.
The specifications depend on whether the
data type is integer or real number.

COS Cosine
COS (MW);
COS (90);

Calculates the cosine.
The specifications depend on whether the
data type is integer or real number.

TAN Tangent
TAN (MF);
TAN (45.0);

Calculates the tangent.
Only a real number register can be speci-
fied.

ASN Arc Sine
ASN (MF);
ASN (90.0);

Calculates the arc sine.
Only a real number register can be speci-
fied.

ACS Arc Cosine
ACS (MF);
ACS (90.0);

Calculates the arc cosine.
Only a real number register can be speci-
fied.

ATN Arc Tangent
ATN (MW);
ATN (45);

Calculates the arc tangent.
The specifications depend on whether the
data type is integer or real number.

SQT Square Root
SQT (MW);
SQT (100);

Calculates the square root.
The specifications depend on whether the
data type is integer or real number.

BIN BCD→BIN BIN (MW); Converts BCD data to binary data.

BCD BIN→BCD BCD (MW); Converts binary data to BCD data.

S { } Set Bit S {MB} = MB & MB;

If the logic operation result is TRUE, the
specified bit turns ON.
However, the specified bit is not turned
OFF even if the result of the logic opera-
tion is FALSE.

R { } Reset Bit R {MB} = MB & MB;

If the logic operation result is TRUE, the
specified bit turns OFF.
However, the specified bit is not turned
ON even if the result of the logic opera-
tion is FALSE.

PON
Rising-edge

Pulse

MB = PON (MB MB);
Or
IF PON (MB MB) = = 1;
⋅ ⋅ ⋅;
IEND;

The bit output turns ON for one scan
when the bit input status changes from
OFF to ON.

×

Continued on next page.
98

6.9 Basic Functions

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Note: The in the above formats indicates a register address.

NON
Falling-edge

Pulse

MB = NON (MB MB);
Or
IF NON (MB MB) = = 1;
⋅ ⋅ ⋅;
IEND;

The bit output turns ON for one scan
when the bit input status changes from
ON to OFF.

×

TON
On-Delay

Timer
MB = MB & TON (MB);

Counts the time whenever the bit input is
ON.
The bit output turns ON when the counted
value is equal to the set value.
Counting unit: 10 ms

×

TON1MS
1-ms ON-

Delay Timer
DB = DB & TON1MS (DB);

Counts the time whenever the bit input is
ON.
The bit output turns ON when the counted
value is equal to the set value.
Counting unit: 1 ms

×

TOF
Off-Delay

Timer
MB = MB & TOF (MB);

Counts the time whenever the bit input is
OFF.
The bit output turns OFF when the
counted value is equal to the set value.
Counting unit: 10 ms

×

TOF1MS
1-ms OFF-

Delay Timer
DB = DB & TOF1MS (DW);

Counts the time whenever the bit input is
OFF.
The bit output turns OFF when the
counted value is equal to the set value.
Counting unit: 1 ms

×

Continued from previous page.

In
st

ru
ct

io
n

Name Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
nc

e
P

ro
gr

am
s

6-199

6.9 Basic Functions

Sine (SIN)

6-2
Sine (SIN)

The SIN instruction returns the sine of the specified integer or real number data as the operation result.
Double-length integers cannot be used.

Format

The format of the SIN instruction is as follows:

* The input unit and output results will be different for integer and real number data.
• Integers

Use integers that are between -327.68° and 327.67°. The result of the immediately preceding operation (integer
data) is used as the input, and the operation result is returned in an integer register (input unit 1 = 0.01°). The oper-
ation result is multiplied by 10,000 before being output.

• Real Numbers
The result of the immediately preceding operation (real number data) is used as the input, and the sine is returned in
a real number register (unit = degrees).

Programming Examples

The SIN instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the SIN instruction are given below.

MW00100 = SIN (3000);

Description Application Unit Usable Registers

Sine value
output

−

• All integer, real number, or double-length real number registers
(excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

 Angle input Angle (°)∗

• All integer, real number, or double-length real number registers
(excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

Integer Data Real Number Data

If an integer is input that is not between -327.68° and 327.67°, a correct result will not be obtained.

Data Type Motion Programs/Sequence Programs Ladder Programming

B − −

W MW00102 = SIN(MW00100);

L − −

F DF00202 = SIN(DF00200);

 MW00102 = SIN (MW00100) ; 0.5=SIN30°

(05000) (03000)
⇒

Equivalent
MF00102 = SIN (MF00100) ;

(0.5) (30.0)

Note
00

6.9 Basic Functions

 Cosine (COS)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Cosine (COS)

The COS instruction returns the cosine of the specified integer or real number data as the operation result.
Double-length integers cannot be used.

Format

The format of the COS instruction is as follows:

* The input unit and output results will be different for integer and real number data.
• Integers

Use integers that are between -327.68° and 327.67°. The result of the immediately preceding operation (integer
data) is used as the input, and the operation result is returned in an integer register (input unit 1 = 0.01°).
The operation result is multiplied by 10,000 before being output.

• Real Numbers
The result of the immediately preceding operation (real number data) is used as the input, and the cosine is returned
in a real number register (unit = degrees).

Programming Examples

The COS instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the COS instruction are given below.

MW00100 = COS (3000);

Description Application Unit Usable Registers

Cosine
value output

−

• All integer, real number, or double-length real number registers
(excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

 Angle input Angle (°)∗

• All integer, real number, or double-length real number registers
(excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

Integer Data Real Number Data

If an integer is input that is not between -327.68° and 327.67°, a correct result will not be obtained.

Data Type Motion Programs/Sequence Programs Ladder Programming

B − −

W MW00102 = COS(MW00100);

L − −

F DF00202 = COS(DF00200);

 MW00102 = COS (MW00100) ;

(05000) (06000)
0.5=COS60°⇒

Equivalent MF00102 = COS (MF00100) ;

(0.5) (60.0)

Note
6-201

6.9 Basic Functions

Tangent (TAN)

6-2
Tangent (TAN)

The TAN instruction uses the specified variable or constant (unit = degrees) as the input and returns the
tangent in a real number register.

Format

The format of the TAN instruction is as follows:

* Example: To find the tangent of the input value (θ = 45.0°), the following calculation is performed: TAN(θ) = 1.0.

Programming Example

The TAN instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the TAN instruction is given below.

MW00100 = TAN (1.0);

Description Application Unit Usable Registers

Tangent
value output

−

• All real number, or double-length real number registers (excluding #
and C registers)

• Same as above except with a subscript.
• Subscript registers

 Angle input Angle (°)∗

• All real number, or double-length real number registers (excluding #
and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

The TAN instruction can be used only with real number data. A compiling error will occur when the
program is compiled if bit, integer, or double-length integer data is specified.

Data Type Motion Programs/Sequence Programs Ladder Programming

B − −
W − −
L − −

F DF00202 = TAN(DF00200);

 DF00102=TAN(DF00100);

(1.0) (45.0)

Important
02

6.9 Basic Functions

 Arc Sine (ASN)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Arc Sine (ASN)

The ASN instruction uses the specified variable or constant as the input and returns the arc sine (unit =
degrees) in a real number register.

Format

The format of the ASN instruction is as follows:

* Example: To find the arc sine of the input value (0.5), the following calculation is performed: ASN(0.5) = 30.0°.

Programming Example

The ASN instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the ASN instruction is given below.

MF00100 = ASN (0.5);

Description Application Unit Usable Registers

Angle
output Angle (°)∗

• All real number, or double-length real number registers (excluding #
and C registers)

• Same as above except with a subscript.
• Subscript registers

Sine value
input

−

• All real number, or double-length real number registers (excluding #
and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

The ASN instruction can be used only with real number data. A compiling error will occur when the
program is compiled if bit, integer, or double-length integer data is specified.

Data Type Motion Programs/Sequence Programs Ladder Programming

B − −
W − −
L − −

F DF00202 = ASN(DF00200);

 MF00202=ASN(MF00200);

(30.0) (0.5)

Important
6-203

6.9 Basic Functions

Arc Cosine (ACS)

6-2
Arc Cosine (ACS)

The ACS instruction uses the specified variable or constant as the input and returns the arc cosine (unit =
degrees) in a real number register.

Format

The format of the ACS instruction is as follows:

* Example: To find the arc cosine of the input value (0.5), the following calculation is performed: ACS(0.5) = 60.0°.

Programming Example

The ACS instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the ACS instruction is given below.

MF00100 = ACS (0.5);

Description Application Unit Usable Registers

Angle
output Angle (°)∗

• All real number, or double-length real number registers (excluding #
and C registers)

• Same as above except with a subscript.
• Subscript registers

Cosine
value input

−

• All real number, or double-length real number registers (excluding #
and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

The ACS instruction can be used only with real number data. A compiling error will occur when the
program is compiled if bit, integer, or double-length integer data is specified.

Data Type Motion Programs/Sequence Programs Ladder Programming

B − −
W − −
L − −

F DF00202 = ACS(DF00200);

 MF00100 = ACS (MF00102) ;

(60.0) (0.5)

Important
04

6.9 Basic Functions

 Arc Tangent (ATN)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Arc Tangent (ATN)

The ATN instruction returns the arc tangent of the specified integer or real number data as the operation
result.
Double-length integers cannot be used.

Format

The format of the ATN instruction is as follows:

* The input unit and output results will be different for integer and real number data.
• Integers

Use integers that are between -327.68 and 327.67.
The result of the immediately preceding operation (integer data) is used as the input, and the operation result is
returned in an integer register (input 1 = 0.01). The operation result is multiplied by 100 before it is output.

• Real Numbers
The result of the immediately preceding operation (real number data) is used as the input, and the arc tangent is
returned in a real number register.

Programming Examples

The ATN instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the ATN instruction are given below.

MW00100 = ATN (100);

Descrip-
tion

Application Unit Usable Registers

Angle
output Angle (°)∗

• All integer, real number, or double-length real number registers
(excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers

Tangent
value input

−

• All integer, real number, or double-length real number registers
(excluding # and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

Integer Data Real Number Data

Data Type Motion Programs/Sequence Programs Ladder Programming

B − −

W MW00102 = ATN(MW00100);

L − −

F DF00202 = ATN(DF00200);

 MW00100 = ATN (MW00102) ; 45=ATN(1.0)

(04500) (00100)
⇒

Equivalent MF00100 = ATN (MF00102) ;

(45.0) (1.0)
6-205

6.9 Basic Functions

Square Root (SQT)

6-2
Square Root (SQT)

The SQT instruction returns the square root of the specified integer or real number data as the operation
result.
Double-length integers cannot be used.

Format

The format of the SQT instruction is as follows:

Note: The input unit and output results will be different for integer and real number data.
• Integer Data

The result is different from that obtained for the mathematical square root, and is calculated with the following
formula:

 sign(Input data): The sign of the input data.
 |input data|: The absolute value of the input data.

This is the same as multiplying the result of the mathematical square root by . If the input is a nega-
tive number, the square root of the absolute value is calculated, and the negative value is given as the operation
result. The maximum operation error is ±2.

• Real Number Data
The SQT instruction uses the immediately preceding operation result (real number data) as the input and
returns the square root as real number data.

MW00100 = SQT (100);

Description Application Usable Registers

 Square root output

• All integer, real number, or double-length real number registers (excluding
and C registers)

• Same as above except with a subscript.
• Subscript registers

 Data input

• All integer, real number, or double-length real number registers (excluding
and C registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

Integer Data Real Number Data

Positive
input value

Negative
input value

sign(Input data) × |Input data| × 32,768

32768

 MW00100 = SQT (MW00102) ;

(01448) (00064)

64 × 32768 = 1448

(8) (181)

 MF00100 = SQT (MF00102) ;

(8.0) (64.0)

 MW00100 = SQT (MW00102) ;

(-01448) (-00064)

64 × 32768 = -1448

(8)

-

(181)

 MF00100 = SQT (MF00102) ;

(-8.0) (-64.0)
06

6.9 Basic Functions

 Square Root (SQT)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Programming Examples

The SQT instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the SQT instruction are given below.

Data Type Motion Programs/Sequence Programs Ladder Programming

B − −

W MW00102 = SQT(MW00100);

L − −

F DF00202 = SQT(DF00200);
6-207

6.9 Basic Functions

BCD to Binary (BIN)

6-2
BCD to Binary (BIN)

The BIN instruction converts BCD data to binary data.
Only integer data can be used. If non-BCD data is specified, a correct result cannot be obtained.

Format

The format of the BIN instruction is as follows:

Programming Examples

The BIN instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the BIN instruction are given below.

BCD to Binary Conversion Example

If non-BCD data is specified, a correct result cannot be obtained.

MW00100 = BIN (1234H);

Description Application Usable Registers

 Binary output

• All registers with integer and double-length integer data types (excluding # and C
registers)

• Same as above except with a subscript.
• Subscript registers

 BCD input

• All registers with integer and double-length integer data types (excluding # and C
registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

Data Type Motion Programs/Sequence Programs Ladder Programming

B − −

W MW00101 = BIN(MW00100);

L ML00102 = BIN(ML00100);

F − −

Example

2 3 41MW00101

(1234H)

4 D 20MW00100
Converted.

1,234 (decimal)

2 3 F1MW00101

(123FH)

4 D D0MW00100

Converted.

1,245 (decimal)

Note
08

6.9 Basic Functions

 Binary to BCD (BCD)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Binary to BCD (BCD)

The BCD instruction converts binary data to BCD data.
Only integer data can be used. If the binary data exceeds 270F or is a negative value, a correct result can-
not be obtained.

Format

The format of the BCD instruction is as follows:

Programming Examples

The BCD instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the BCD instruction are given below.

Binary to BCD Conversion Example

If the binary data exceeds 270F, a correct result cannot be obtained.

MW00100 = BCD (1234);
A B

Description Application Usable Registers

A BCD output

• All registers with integer and double-length integer data types (excluding # and C
registers)

• Same as above except with a subscript.
• Subscript registers

B Binary input

• All registers with integer and double-length integer data types (excluding # and C
registers)

• Same as above except with a subscript.
• Subscript registers
• Constant

Data Type Motion Programs/Sequence Programs Ladder Programming

B − −

W MW00101 = BCD(MW00100);

L ML00102 = BCD(ML00100);

F − −

Example

MW00101 MW00100 2 3 414 D 20

1234 hex

Converted.

1,234 decimal

0 3 93MW00101 3 4 5CMW00100

C345 hex

Converted.

1,234 decimal

Note
6-209

6.9 Basic Functions

Set Bit (S{ })

6-2
Set Bit (S{ })

The S{} instruction turns ON the specified bit if the result of the specified logic operation is TRUE.
However, the specified bit is not turned OFF even if the result of the logic operation is FALSE.

Format

The format of the S{} instruction is as follows:

Programming Example

The S{} instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the S{} instruction is given below.

S { MB001000 } = MB001010 & MB001011;

Description Application Usable Registers

 Specified bit
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

 Logic operation expression
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.
• Constant

Data
Type

Motion Programs/
Sequence Programs

Ladder Programming

B
S{MB001000} =
MB001010&MB001011;

W − −
L − −
F − −
10

6.9 Basic Functions

 Reset Bit (R{ })

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
Reset Bit (R{ })

The R{} instruction turns OFF the specified bit if the result of the specified logic operation is TRUE.
However, the specified bit is not turned ON even if the result of the logic operation is FALSE.

Format

The format of the R{} instruction is as follows:

Programming Example

The R{} instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the R{} instruction is given below.

R { MB001000 } = MB001010 & MB001011;

Description Application Usable Registers

 Specified bit
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

 Logic operation expression
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.
• Constant

Data
Type

Motion Programs/
Sequence Programs

Ladder Programming

B
R{MB001000} =
MB001010&MB001011;

W − −
L − −
F − −
6-211

6.9 Basic Functions

Rising-edge Pulse (PON)

6-2
Rising-edge Pulse (PON)

The PON instruction turns ON the bit output for one scan when the bit input changes from 0 to 1. The reg-
ister that stores the previous bit output value is used as the work register for PON instruction processing.
Set a register that is not used in any other processes.

Format

The format of the PON instruction is as follows:

Programming Example

A programming example that uses the PON instruction is given below.

 Outputting to a Coil

• Equivalent Ladder Programming Example

• Timing Charts

DB000002 = PON (DB000000 DB000001) ;

Description Application Usable Registers

 Bit output
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

 Bit input
• All bit data registers
• Same as above except with a subscript.

 Storage for the previous bit output value
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

DB000002 = PON(DB000000 DB000001);

DB000000

DB000001

DB000002

1 scan 1 scan
12

6.9 Basic Functions

 Rising-edge Pulse (PON)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 When Used with the IF Instruction

• Equivalent Ladder Programming Example

• Timing Charts

IF PON(DB000000 DB000001) = = 1;
 •
 •
IEND;

DB000000

DB000001

Processing in
the IF instruction

Executed for only one scan. Executed for only one scan.
6-213

6.9 Basic Functions

Falling-edge Pulse (NON)

6-2
Falling-edge Pulse (NON)

The NON instruction turns ON the bit output for one scan when the bit input changes from 1 to 0. The reg-
ister that stores the previous bit output value is used as the work register for NON instruction processing.
Set a register that is not used in any other processes.

Format

The format of the NON instruction is as follows:

Programming Example

A programming example that uses the NON instruction is given below.

 Outputting to a Coil

• Equivalent Ladder Programming Example

• Timing Charts

DB000002 = NON (DB000000 DB000001) ;

Description Application Usable Registers

 Bit output
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

 Bit input
• All bit data registers
• Same as above except with a subscript.

 Storage for the previous bit output value
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

DB000002 = NON(DB000000 DB000001);

DB000000

DB000001

DB000002

1 scan 1 scan
14

6.9 Basic Functions

 Falling-edge Pulse (NON)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
 When Used with the IF Instruction

• Equivalent Ladder Programming Example

• Timing Charts

IF NON(DB000000 DB000001) = = 1;
 •
 •
IEND;

DB000000

DB000001

Processing in
the IF instruction

Executed for only one scan. Executed for only one scan.
6-215

6.9 Basic Functions

On-delay Timer: Measurement unit = 10 ms (TON)

6-2
On-delay Timer: Measurement unit = 10 ms (TON)

The TON instruction counts the duration that the bit input is ON with a measurement unit of 10 ms.
The bit output turns ON when the counted value is equal to the set value.
If the bit input turns OFF during counting, the timer stops. If the bit input turns ON again, the timer starts
counting again from 0. The actual counted time (in units of 10 ms) is stored in the Count register.

Format

The format of the TON instruction is as follows:

Programming Example

A programming example that uses the TON instruction is given below.

• Equivalent Ladder Programming Example

• Timing Charts

DB000001 = DB000000 & TON (500 DW00001);

Description Application Usable Registers

 Bit output
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

 Bit input
• All bit data registers
• Same as above except with a subscript.

 Set Value
• All integer data registers
• Same as above except with a subscript.
• Constants (0 to 65,535 (655.35 s) in 10 ms intervals)

 Register for timer counting
• All integer data registers
• Same as above except with a subscript.

1. Time is not counted while the debugging operation is stopped.
Counting starts again from the current value after the debugging operation restarts.

2. Never omit the “DB &” bit input.

DB000001 = DB000000 & TON (500 DW00001);
 ↑ Set to 5 seconds.

Important

DB000000

DB000001

500

DW00001 5.00s - Ts

(Ts = Scan time set value)
16

6.9 Basic Functions

 1-ms ON-Delay Timer (TON1MS)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
1-ms ON-Delay Timer (TON1MS)

The TON1MS instruction counts the duration that the bit input is ON with a measurement unit of 1 ms,
and turns ON the bit output when the counted value is equal to the set value.
If the bit input turns OFF during counting, the timer stops. If the bit input turns ON again, the timer starts
counting again from 0. The actual counted time (in units of 1 ms) is stored in the Count register.

Format

The format of the TON1MS instruction is as follows:

Programming Example

A sequence programming example and a ladder programming example that use the TON1MS instruction
are given below.

• Equivalent Ladder Programming Example

• Timing Charts

DB000001 = DB000000 & TON1MS(500 DW00001);

Description Application Applicable Data

 Bit output
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

 Bit input
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

 Set Value
• All integer data registers
• Same as above except with a subscript.
• Constants (0 to 65,535 (65.535 s) in 1 ms intervals)

 Register for timer counting
• All integer data registers
• Same as above except with a subscript.

DB000001 = DB000000 & TON1MS(500 DW00001);

DB000000

DB000001

DW00001 0

500

500ms-Ts

ON
OFF

ON
OFF

(Ts = Scan time set value)
6-217

6.9 Basic Functions

Off-delay Timer: Measurement unit = 10 ms (TOF)

6-2
Off-delay Timer: Measurement unit = 10 ms (TOF)

The TOF instruction counts the duration that the bit input is OFF with a measurement unit of 10 ms.
The bit output turns OFF when the counted value is equal to the set value.
If the bit input turns ON during counting, the timer stops. If the bit input turns OFF again, the timer starts
counting again from 0. The actual counted time (in units of 10 ms) is stored in the Count register.

Format

The format of the TOF instruction is as follows:

Programming Example

A programming example that uses the TOF instruction is given below.

• Equivalent Ladder Programming Example

• Timing Charts

DB000001 = DB000000 & TOF (500 DW00001);

Description Application Usable Registers

 Bit output
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

 Bit input
• All bit data registers
• Same as above except with a subscript.

 Set Value
• All integer data registers
• Same as above except with a subscript.
• Constants (0 to 65,535 (655.35 s) in 10 ms intervals)

 Register for timer counting
• All integer data registers
• Same as above except with a subscript.

1. Time is not counted while the debugging operation is stopped.
Counting starts again from the current value after the debugging operation restarts.

2. Never omit the “DB &” bit input.

DB000001 = DB000000 & TOF (500 DW00001);

Important

DB000000

DB000001

500

DW00001 0 5.00s - Ts

(Ts = Scan time set value)
18

6.9 Basic Functions

 1-ms OFF-Delay Timer (TOF1MS)

6

M
ot

io
n

La
ng

ua
ge

 In
st

ru
ct

io
ns
1-ms OFF-Delay Timer (TOF1MS)

The TOF1MS instruction counts the duration that the bit input is OFF with a measurement unit of 1 ms,
and turns OFF the bit output when the counted value is equal to the set value.
If the bit input turns ON during counting, the timer stops. If the bit input turns OFF again, the timer starts
counting again from 0. The actual counted time (in units of 1 ms) is stored in the Count register.

Format

The format of the TOF1MS instruction is as follows:

Programming Example

A sequence programming example and a ladder programming example that use the TOF1MS instruction
are given below.

• Equivalent Ladder Programming Example

• Timing Charts

DB000001 = DB000000 & TOF1MS(500 DW00001);

Description Application Applicable Data

 Bit output
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

 Bit input
• All bit data registers (excluding # and C registers)
• Same as above except with a subscript.

 Set Value
• All integer data registers
• Same as above except with a subscript.
• Constants (0 to 65,535 (65.535 s) in 1 ms intervals)

 Register for timer counting
• All integer data registers
• Same as above except with a subscript.

DB000001 = DB000000 & TOF1MS(500 DW00001);

DB000000

DB000001

DW00001 0

500

500ms-Ts

ON
OFF

ON
OFF

(Ts = Scan time set value)
6-219

6.10 Vision Instructions

6-2
6.10 Vision Instructions

The vision instructions are used to get or analyze images taken with the camera of a YVD-001 Vision
Unit.

There are five vision instructions. You can use these instructions only in motion programs.

The following table lists the vision instructions.

Instruc-
tion

Name Format Description
Motion

Programs
Sequence
Programs

VCAPI Capture Image

VCAPI[Logical_circuit_name.Logical_-
camera_name]Image_memory_num-
ber[Logical_circuit_name.Logical_cam
era_name]Image_memory_number...;

Gets an image
from the camera. ○ ×

VCAPS
Capture Image
with External
Trigger Sync

VCAPS[Logical_circuit_name.Logi-
cal_camera_name]Image_memo-
ry_number[Logical_circuit_name.Logic
al_camera_name]Image_memory_num-
ber...TW(FW)Release_signal;

Gets an image
from the camera
on an external
trigger signal.

○ ×

VFIL Filter Image
VFIL[Logical_cir-
cuit_name]Request_parameter[Logi-
cal_circuit_name]Request_parameter...;

Applies a filter
before image
analysis.

○ ×

VANA
Analyze
Image

VANA[Logical_cir-
cuit_name]Request_parameter Respon-
se_parameter[Logical_circuit_name]Re
quest_parameter Response_parame-
ter...;

Analyzes an
image. ○ ×

VRES
Get Analysis
Results

VRES[Logical_cir-
cuit_name]Request_parameter Respon-
se_parameter[Logical_circuit_name]Re
quest_parameter Response_parame-
ter...;

Gets the results
of image analy-
sis.

○ ×
20

Features of the MPE720
Engineering Tool 7

This chapter describes the features of the MPE720 Engineering
Tool for motion programs and sequence programs.

7.1 Motion Editor . 7-2

7.2 Motion Instruction Entry Assistance 7-5

7.3 Task Assignments . 7-9

7.4 Debug Operation . 7-11

7.5 Drive Control Panel . 7-18

7.6 Test Runs . 7-20

7.7 Axis Monitor and Alarm Monitor 7-23

7.8 Cross References . 7-27

7.1 Motion Editor

7-2
7.1 Motion Editor

The Motion Editor is a programming tool that is required to create and edit motion programs and sequence
programs. It has a full range of functions to create and edit these programs, including text editing, compil-
ing (saving), debugging, and monitoring.

The Motion Editor Tab Page is shown below.

To start the Motion Editor, select a program to open in the Motion Pane.

7.1 Motion Editor

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
Motion Editor Tab Page

No. Name Description

 Monitor Toolbar

This icon causes the display to follow the Block Monitor so that it is
always visible on the screen.

This icon displays the Motion Alarm Dialog Box.

This icon calls a motion subprogram.

This icon displays the Motion Tasks Tab Page.

 Programming Toolbar

This icon compiles the currently open program.

This icon displays the Motion Command Assist Dialog Box.

This icon automatically adds a semicolon.

This icon displays the Task Allocation Dialog Box.

Motion Debugging
Toolbar

This icon performs operation in Debug Operation Mode.

This icon performs operation in Normal Operation Mode.

This icon executes the program.

This icon stops execution of the program.

This icon forces the program in execution to end.

This icon performs a step-in operation.

This icon performs a step-over operation.

This icon moves the start point for execution.

This icon sets or removes a breakpoint.

This icon enables or disables a breakpoint.

This icon displays a list of all breakpoints.

This icon updates to the most recent state.

Continued on next page.

7-3

7.1 Motion Editor

7-4
 Input Guidance

The guidance allows you to check the syntax of motion language instructions
as you create the motion program. Place the mouse cursor over any motion
language instruction (blue text) to display details on how to enter that instruc-
tion.

 Line
This is the number of lines of text (instructions, comments, blank lines, etc.)
in the currently open program.

 Block
This is the number of lines of actual code executed in the program. This does
not include lines such as comments or empty space.

 Editor Area This is the area where you enter the instruction in the program.

 Status Bar

The status bar displays information such as the current operating mode or
alarms that have occurred.
Normal Operation Mode

Executing: Execution is in progress.
Alarm: An alarm occurred.

Debug Operation Mode
Executing in Debug Operation Mode: Debug Operation Mode
Single-block execution stopped: Single-block execution is stopped in Debug
Operation Mode.
Alarm: An alarm occurred in Debug Operation Mode

 Parallel/Nest The fork number and nesting level are displayed here.

 Main Program
The number of the main program that is calling the currently open program is
displayed.

Compiler Version

The compiling options are specified.
Version 7.00

All MP3000 motion program functions are supported.
This setting is used for all programs created in MPE720 version 7.

Version 6 Compatible
Only MP2000 motion program functions are supported.
This setting is used for programs that were created on MPE720 version 6 or
version 5.

Continued from previous page.

No. Name Description

11

7.2 Motion Instruction Entry Assistance

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
7.2 Motion Instruction Entry Assistance

Instruction entry assistance helps you enter motion language instructions when you create motion pro-
grams.

Motion language instructions must be entered in the correct format in the text-based programming lan-
guage called motion language. You can use the Motion Command Assist Dialog Box to easily select
instructions to add to your program.

You can open the Motion Command Assist Dialog Box from the Motion Editor Tab Page. There are two
different methods to do so.

• Right-click and select Motion Command Assist from the menu.

• Or, right-click and select the instruction you want to insert under Insert Command.
7-5

7.2 Motion Instruction Entry Assistance

7-6
Motion Command Assist Dialog Box

 Select Command
Click the arrow to display a list of the instructions that you can insert.

 Instruction Format
This area displays the format of the currently selected instruction.

 Number of Controlled Axes
For axis movement instructions, the number of controlled axes is selected from 1 to the number of axes set in
the group definition.
When the number of controlled axes is fixed, the fixed number of axes is displayed and the box is grayed out.

MOV: Positioning

+: Add

MOV (Positioning): Specify the number of controlled axes.

EXM (External Positioning): Fixed number of controlled axes

Example

Example

7.2 Motion Instruction Entry Assistance

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
 Parameter Settings
This area allows you to set the parameters (arguments) for the instruction. The setting items are listed in the
following table.

The logical axis names are defined in the group definitions.
The units are displayed according to the motion parameter setting for each axis. If a unit has not been speci-
fied in the motion parameter settings, the corresponding cell is displayed in yellow. Place the mouse cursor
over a cell to view its tooltip. Follow the instructions to set the motion parameters.
If the selected instruction does not require the number of controlled axes or any parameters to be specified,
the Input program Text Box is displayed in the Motion Command Assist Dialog Box as shown below.
Enter the instruction block referring to the instruction format.

 Comment Check Box and Comment Box
Select the Comment Check Box to enter a comment on the line above the instruction. When this check box is
not selected, the text box is grayed out and a comment cannot be entered.

 Update Button
This button updates the display of the Motion Command Assist Dialog Box.

Item Description

Argument
Displays the parameter names that are set as arguments to the instruction. These cannot
be changed. Arguments that can be omitted will be designated as optional.

Axis Displays the logical axis name. Change these as required.

Set value Specify a constant or register for the set value.

Unit Displays the unit for the parameter. The unit cannot be changed.

The location to insert the comment cannot be changed.

Click the Update Button to refresh the display after changing any unit-related motion parameter.

Information

Information
7-7

7.2 Motion Instruction Entry Assistance

7-8
 Insert Button
Click the Insert Button to insert the instruction in the Motion Command Assist Dialog Box at the cursor
position in the Motion Editor.

 Close Button
This button closes the Motion Command Assist Dialog Box.

 Help Button
This button displays information on the relevant instruction.

Jumps to the hJumps to the h

Jumps to the help
page of the
selected instruction.

7.3 Task Assignments

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
7.3 Task Assignments

Task allocation is used to call motion programs or sequence programs.

The Task Allocation Dialog Box makes it easy to register the motion programs and sequence programs
that you create in the MP3000 system.
There are two methods to display the Task Allocation Dialog Box, as described below.

• Click the [] Icon in the Motion Editor.

• Open the Detail Definition for the M-EXECUTOR under Module Configuration, then click the

[] Icon.
7-9

7.3 Task Assignments

7-1
 Task Allocation Dialog Box

 Task Allocation No.
This box displays the task number that is assigned to the program. You can select the task number when you

click the [] Icon on the toolbar in the Motion Editor Tab Page.

 Task Type
Set the execution type of the program.

 Program Specification
Set the program designation method.
The designation method can be different for each program.

 Program
Set the program number.

 Allocation Register
This area is used to assign registers. The assigned registers exchange data in realtime with the M-EXECU-
TOR control registers. I, O, and M registers can be assigned.

Execution Type Supported Programs Execution Condition

Startup sequence programs

Sequence programs

Startup (These programs are executed once when
the power supply is turned ON.)

L-scan sequence programs
Started at a fixed interval. (These drawings are
executed once every low-speed scan cycle.)

H-scan sequence programs
Started at a fixed interval. (These drawings are
executed once every high-speed scan cycle.)

Motion programs Motion programs

Request for Start of Program Operation control
signal (The program is executed when the
Request for Start of Program Operation is turned
ON.)

Designation
Method

Motion
Programs

Sequence
Programs

Description

Direct
Designation

Supported. Supported.
The program is specified with the program number.
Examples: MPM001 or SPM002

Indirect
Designation

Supported.
Not

supported.

The program is specified by specifying a register that contains
the program number.
Example: OW0C0C (If 1 is stored in OW0C0C, MPM001 is

executed.)

0

7.4 Debug Operation

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
7.4 Debug Operation

The Debug Operation Mode allows you to monitor the line of the motion or sequence program that is cur-
rent being executed. This makes it easier to find bugs in the program.
You can pause the execution of a program, set breakpoints, perform single-step execution (single-block
execution), and perform other operations to ensure proper operation of the programs that you developed.

In Debug Operation Mode, the program line that is being executed is displayed at the top of the tab page as
shown below.

To start Debug Operation Mode, first connect to the Machine Controller, then click the [] Icon on the
Motion Editor Tab Page.

In Debug Operation Mode, the program line that is being executed is highlighted at the top of the tab page.

You must register the program to execute before you can start Debug Operation Mode.

Normal Operation ModeNormal Operation Mode Debug Operation Mode

Highlighted.

Note
7-11

7.4 Debug Operation

7-1
Debug Interface

 Current Program Line
The program line that is currently being executed is displayed in blue.
If an alarm has occurred in the motion program, the line will be displayed in red.
Refer to the following manual for details on motion program alarms.

MP3000 Series MP3200/MP3300 Troubleshooting Manual (Manual No.: SIEP C880725 01)

 Toolbar Icons and Function Keys
The following table describes the icons and function keys that are used in Debug Operation Mode.

Note: : Possible, ×: Not possible.

Function Icon
Key

Operation
Description

Motion
Programs

Sequence
Programs

Debug Operation
Mode

F1 Starts Debug Operation Mode.

Normal Opera-
tion Mode

F11
Ends Debug Operation Mode and starts the
continuous execution of the program in
Normal Operation Mode.

Move Start Point F6 Moves the start point for execution.

Breakpoint Set/
Remove

F7
Sets or removes a breakpoint. Displays the
breakpoints in the program.

Step In F4
Executes one block. For an MSEE or SSEE
instruction, debugging will move to the
first line of the subprogram.

Step Over F5

Executes one block. For an MSEE or SSEE
instruction, the subprogram will be exe-
cuted and debugging will continue at the
next block after the MSEE or SSEE
instruction.

Execute F8
Continuously executes a motion program in
Debug Operation Mode.

Break F10
Pauses the execution of a motion program
in Debug Operation Mode.

End F2 Ends execution of the motion program. ×

Update Current
Position

− Updates the current position coordinates. ×

Set Motion Task − Sets the fork number, level number, and
task of the selected program.

Breakpoint
Enable/Disable

− −
Enables or disables breakpoints.
Use the Debug Menu or the pop-up menu
for this setting.

Add Quick Watch − −
Registers a register in the Quick Reference
Pane.
Use the pop-up menu for this setting.

2

7.4 Debug Operation

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
• Debug Operation Mode
In Debug Operation Mode, the program is executed one line at a time. Debugging starts from the first
line in the program.

• Normal Operation Mode
In Normal Operation Mode, the program is executed from the beginning to the end without interruption.
Debugging is canceled and program execution restarts from the currently executing line. All breakpoints
that have been set are removed.

• Move Start Point
This moves the first line of execution to the selected line.

Note: The line MOV [A1]90000; is not executed.

The line where debugging starts when the operating mode is changed to Debug Operation Mode
depends on whether the program you are editing is a motion program or a sequence program, as
described below.
• When Debug Operation Mode Is Started for a Motion Program that Is Not Currently Running

As shown in the above example, debugging starts from the first line in the program.
• When Debug Operation Mode Is Started for a Motion Program that Is Currently Running

When Debug Operation Mode is started during axis operation, debugging starts from the next
block position after the axis completes its movement.

• When Debug Operation Mode Is Started for a Sequence Program that Is Not Currently Running
Debugging cannot be performed.

• When Debug Operation Mode Is Started for a Sequence Program that Is Currently Running
As shown in the above example, debugging starts from the first line in the program.

The debug
The debug execution
line is in the first line.

Information

Operation is resumed from the current
program execution line.

Click the Move First Line for

Click the line you want
to be executed first.

This moves the first line for execution
to the selected line.

Execution Icon.
7-13

7.4 Debug Operation

7-1
• Breakpoint Set/Remove
This icon sets or removes a breakpoint. You can set a maximum of up to four breakpoints.
Clicking the button for a line for which a breakpoint has been already set will delete the breakpoint.

• Step In
This icon executes one line of the program.
If this icon is clicked at an MSEE or SSEE instruction, execution jumps to the first line of the called sub-
program.

• Step Over
This icon executes one line of the program.
If this icon is clicked at an MSEE or SSEE instruction, the called subprogram is executed and then exe-
cution moves to the next line.

You can use the SNGD and SNGE instructions to set multiple processes as one unit for the step
execution processing.

MPM001

 Click the Step In Icon.

 Execution moves to the first

MPS002

 line in the called subprogram.

 Click the Step Over Icon.

MPM001 MPS002

 Execution moves to the next line after

 The subprogram is executed.

the MSEE or SSEE instruction.

Information

SNGD;

SNGE;

The instruction blocks that are
between SNGD and SNGE
instructions form the processing
unit for execution of step in or
step over.

Instruction blocks to be processed as one
unit for execution of step in or step over
4

7.4 Debug Operation

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
• Execute
This icon executes the program without stopping. Execution stops at any line with a breakpoint.

• Break
This icon pauses execution of the program in Debug Operation Mode. To resume the program, click the

[] Icon.

• End
This icon forces execution of the program in Debug Operation Mode to stop.

• Update Current Position
This icon has the same function as the PLD command. When this icon is selected, the operation of the
PLD instruction is processed by the system when the Step In, Step Over, or Execute Icon is clicked.
Refer to the following section for details on the PLD instruction.

Update Program Current Position (PLD) (page 6-120)

 Set a breakpoint. Click the Execute Icon.

 Execution stops at the line with
the breakpoint.

 Execute the motion program. Click the Break Icon.

 Program execution stops.

All of the processing after the current
program execution line is not executed.
7-15

7.4 Debug Operation

7-1
• Set Motion Task (Subprograms Only)
Set the subprogram information to use for monitoring or debugging subprograms. The currently running
main program is displayed, and you can set which main program to call subprograms from.

• Set Call Stack (Subprograms Only)
This icon allows you to set more detailed subprogram information.

Main Program No.
This box sets the main program from which to call subprograms.

 Fork No.
This box sets the fork of the main program from which to call subprograms.
For example, set 3 for the fork number to perform debugging and program monitoring of MPS004.
<For MPM001>

 Nest No.
This box sets the nesting level of the call to the subprogram.
For example, set 2 for the nesting level to perform debugging and program monitoring of MPS003.

PFORK Label1 Label2 Label3 Label4;
Label1: "Fork 1

MSEE MPS002;
JOINTO LabelX;

Label2: "Fork 2
MSEE MPS003;
JOINTO LabelX;

Label3: "Fork 3
MSEE MPS004;
JOINTO LabelX;

Label4: "Fork 4
MSEE MPS005;
JOINTO LabelX;

LabelX: PJOINT;
••••
END;

MW0000=1;
MSEE MPS002;

END;

MPM001

MW0000=2;
MSEE MPS003;

RET;

MW0000=3;

RET;

MPS002 (nesting level 1)

MPS003 (nesting level 2)
6

7.4 Debug Operation

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
• Breakpoint Enable/Disable
This icon enables or disables a breakpoint.

• Add Quick Watch
Any register that is displayed on the Motion Editor can be registered to the Watch Page of quick refer-
ences. You can monitor the values of registers that are registered as quick references.

1. Right-click the register to monitor and select Add to Watch from the menu.

2. The register is added to the Quick Reference Watch Tab Page.

Breakpoint enabled (red).

Breakpoint disabled (white).

Debug MenuDebug Menu Pop-up Menu in Motion Editor Tab Page
7-17

7.5 Drive Control Panel

7-1
7.5 Drive Control Panel

The Drive Control Panel allows you to perform test runs of programs and monitor the operating status of
programs that are currently in execution.

To execute a motion program, the program must be registered in the MP3000 system and the program start
request must be issued using the user application.
If you want to execute a motion program before you create the user application, you can perform a test run
from the Drive Control Panel Dialog Box.
You can send commands, such as Request for Start of Program, Request for Stop of Program, and Alarm
Reset Request, from the Drive Control Panel.

Note: The Drive Control Panel does not support setting breakpoints or one-step execution (single-block execu-
tion) like Debug Operation Mode.

1. Make sure the area is safe before moving the axes with a test run operation.
2. Be sure not to overwrite the motion program control registers from a sequence program or ladder

program. Doing so may disable the control from the Drive Control Panel.
3. Do not simultaneously execute axes movement instruction for one axis from more than one pro-

gram. Unexpected operation may occur.

Important
8

7.5 Drive Control Panel

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
Click the [] Icon in the Motion Pane to open the Drive Control Panel.

 Drive Control Panel

 Task
This row displays the task numbers.

Main Program
This row displays the numbers of the main programs for which to perform the test run.
The program number must be set in the M-EXECUTOR Program Execution Definitions in advance.

 Control Signals
This row displays the control signal status details.

 Status
This row displays the status of the executed control signal.

7-19

7.6 Test Runs

7-2
7.6 Test Runs

You can perform a test run of the axes that are connected to the Machine Controller from the Test Run Dia-
log Box.

This allows you to turn the Servo ON or OFF and perform jogging and step operations without writing a
program.

To display the Test Run Dialog Box, double-click Test Run in the System Pane.

1. Make sure the area is safe before moving the axes with a test run operation.
2. Before starting operation, design the system to enable stopping axis movement whenever necessary.
3. Stop the execution of all ladder and sequence programs before you start a test run.Important
0

7.6 Test Runs

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
 Test Run Dialog Box

 Axis Selection
This button is used to select the axis for the test run.

 Servo Enabled/Disabled and Alarm Display
These indicators display the ON/OFF status of the Servo and the current alarm status for the axis.

 Enable, Disable, and Monitor
These buttons turn the Servo ON or OFF. These operations will change the setting parameters for the axis.
Click the Monitor Button to display details on alarms for the axis.

Click the Jog or Step Tab to switch
between jogging and step execution.
7-21

7.6 Test Runs

7-2
 Speed Reference
Use this button to set the speed reference. These operations will change the setting parameters for the axis.

 Step Distance
This button sets the step travel distance for step execution. These operations will change the setting parame-
ters for the axis.

 Direction Setting
This button displays the Direction Setting Dialog Box to set the axis direction for step execution.
Select either the Forward or Reverse Option in the Direction Setting Dialog Box. These operations will
change the setting parameters for the axis.
You can also specify repetitive run operation in this dialog box.

 Jog
These buttons are used to perform jogging.
The axis moves in the specified direction while the Forward or Reverse Button is clicked. The axis stops
when the button is released.

 Step
These buttons perform step execution.
Click the Run Button to perform one step for the specified axis. Unlike with the jog operation, the button
does not need to be continuously pressed.
When the Repetitive running check box is selected in the Direction Setting dialog box, the step opera-
tion is repeated for the specified number of times, and then the axis stops. You can also stop the axis if repet-
itive operation is in progress.
2

7.7 Axis Monitor and Alarm Monitor

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
7.7 Axis Monitor and Alarm Monitor

Use the Axis Monitor to monitor the operating status of axes connected to the Machine Controller.

The axis status (operation ready, Servo ON, alarms, warnings, distribution/positioning completed, and
motion command) and selected monitor parameters are displayed in the Axis Monitor.
Use the Alarm Monitor to monitor the alarm status of axes connected to the Machine Controller.

To open the Axis Monitor or Alarm Monitor, double-click Axis monitor or Alarm monitor in the Sys-
tem Pane.

Axis Monitor Alarm Monitor
7-23

7.7 Axis Monitor and Alarm Monitor

7-2
 Axis Monitor Tab Page

This section describes the Axis Monitor Tab Page.

 Circuit
This box is used to select the circuit for which to display the monitor parameters.

Monitoring Cycle Selection
The monitor cycle is selected here.

 Stop/Start Monitor
Click this button to start or pause monitoring.

 Alarm Monitor
Click this icon to display the Axis Alarm Monitor.

 Refresh
Click this icon to update the Axis Monitor display.

 Status Display
This area displays the operation ready, Servo ON, alarms, warnings, distribution/positioning completed, and
motion command status for the axes. The display changes based on the current status.

4

7.7 Axis Monitor and Alarm Monitor

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
Monitor Parameter Selection Area
You can select up to eight monitor parameters to monitor at the same time.
By default, the APOS (Machine Coordinate System Feedback Position), PERR (Position Deviation), Feed-
back Speed, and Torque/Force Reference Monitor are displayed.

Click the [] Button, and select the desired monitoring parameter from the list in the Mon-
itor Parameter Dialog Box.

Monitor Parameters in Monitor List

Monitor Parameter Display
This area displays the status of the specified monitor parameters.

Monitor Parameter Register Unit

Machine Coordinate System Target Position (TPOS) IL0E Reference units

Machine Coordinate System Calculated Position (CPOS) IL10 Reference units

Machine Coordinate System Reference Position (MPOS) IL12 Reference units

32-bit DPOS (DPOS) IL14 Reference units

Machine Coordinate System Feedback Position (APOS) IL16 Reference units

Machine Coordinate System Latch Position (LPOS) IL18 Reference units

Position Deviation (PERR) IL1A Reference units

Number of POSMAX Turns IL1E [rev]

Speed Reference Output Monitor IL20 [pulse/s]

Feedback Speed IL40 Speed Unit Selection

Torque/Force Reference Monitor IL42 Torque Unit Selection

If you want to set a monitor parameter that is not in this list, specify the register directly
(IW08000, for example).

Information
7-25

7.7 Axis Monitor and Alarm Monitor

7-2
 Alarm Monitor Tab Page

This section describes the interface of the Alarm Monitor Tag Page.

Manually Refresh
Click this button to manually update the alarm and warning information.

 Stop/Start Monitor
Click this button to start or pause monitoring.

 Alarm/Warning Display
This area displays the alarm and warning status.

Display Axis Status

(Blue) No alarms or warnings have occurred.

(Red) An alarm has occurred.

(Yellow) A warning has occurred.

6

7.8 Cross References

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
7.8 Cross References

This section describes cross-referencing.

Use cross-referencing to search for variables and registers that are used in programs.

When a search is performed, the program number and block number of any program that uses the register
that was searched for are displayed in the Cross Reference Pane.

Select Cross Reference from the Debug Menu to open the Cross Reference Pane.
7-27

7.8 Cross References

7-2
Cross Reference Window

 Variable Box
Enter the variable or register that you want to search for here.

 Search Button
Click this button to perform the cross-reference search.

 Settings Button
Click this button to set the cross-reference conditions.
When you click the button, the Cross Reference Setting Dialog Box is displayed.

 Register
The variable or register address that was searched for is displayed here.

 Program
The number of the program that uses the variable or register address that was searched for is displayed here.

 Execution Instruction
The instruction that uses the variable or register address that was searched for is displayed here.

 Execution Step
The number of the block that uses the variable or register address that was searched for is displayed here.

Item Description

Variable Enter the variable or register that you want to search for.

Search Program Specify the program to search.

Search Address Specify whether to search for the same register or the same address.

Option Specify how to display the next cross-reference search results.

11
8

7.8 Cross References

7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol
Write/Read
This column designates whether the variable or register address that was searched for is written to or read
from. If the variable or register address is written to, the text is displayed in red. If the variable or register
address is read from, the text is displayed in blue.

 Comment
The comment for the variable or register address that was searched for is displayed here.

 Same Register
This area displays all registers that match the variable name or register type, data type, and address of the
variable or register address that was searched for.

Same Memory Address
This area displays all registers that have the same memory address as the variable or register address that was
searched for.
For example, if you searched for MW00000, all locations that use ML00000 would be displayed here.

11
7-29

Appendix
Specifications A

This appendix describes the Units and Modules that support
motion programming and the specifications for motion programs.

A.1 Applicable Units and Modules A-2

A.2 Machine Controller Specifications A-3

A.1 Applicable Units and Modules

A-2
A.1 Applicable Units and Modules

The following Units and Modules support motion programs.

The axes that are connected to any of the Units or Modules that are listed below can be controlled by a
motion program.

• MP3000/CPU-20 SVC32

• MP3000/CPU-20 SVR32

• MP3000/CPU-30 SVC

• MP3000/CPU-30 SVR

• MP2000/SVA-01

• MP2000/SVB-01

• MP2000/SVC-01

• MP2000/PO-01

A.2 Machine Controller Specifications

AppA

S
pe

ci
fic

at
io

ns
A.2 Machine Controller Specifications

This section provides the specifications for programs for the Machine Controller.

Specification CPU-20 and CPU-30 Remarks

M
ot

io
n

P
ro

gr
am

s

Number of
Programs

512 max.

You can create a com-
bined total of 512 motion
programs and sequence
programs.

Number of Groups 16 groups −

Number of Tasks
32 tasks max. (This is the number of simultaneously exe-
cutable motion programs.)

−

Number of
Parallel Forks per
Task

8 parallel forks max. (select from these 4 modes)
• 4 main program forks, 2 subprogram forks
• 8 main program forks
• 2 main program forks, 4 subprogram forks
• 8 subprogram forks

Change the mode using
the MPE720.

Execution
Registration

• Use the MSEE instruction from a ladder program.
• Use the M-EXECUTOR.

−

Starting Method
Program execution starts on the rising edge of bit 0
(Request for Start of Program Operation) in the control
signals.

−

Override for
Positioning
Speeds

Can be specified from 0.01% to 327.67%. −

Operating Modes Absolute Mode and Incremental Mode
The mode is changed
with the ABS and INC
instructions.

Reference Units

• SVC, SVC 32, SVC-01, SVB-01, SVR, and SVR 32
pulses, mm, deg, inches, or μm

• SVA-01/PO-01
pulse, mm, deg, inch

−

Minimum Refer-
ence Unit

• pulse
1

• mm, deg, inch, μm
1, 0.1, 0.01, 0.001, 0.0001, 0.00001

−

Reference Range -2,147,483,648 to 2,147,483,647 (signed, 32-bit data) −

Number of
Simultaneously
Controlled Axes
per Task

• Positioning, Linear Interpolation, Zero Point Return,
Skip Function, and Set-time Positioning

32 axes max.
• Circular Interpolation

2 axes
• Helical Interpolation

3 axes
• External Positioning

1 axis

−

Continued on next page.
A-3

A.2 Machine Controller Specifications

A-4
S
eq

ue
nc

e
P

ro
gr

am
s

Number of
Programs

512 max. (There are three settings for the execution tim-
ing: startup processing, high-speed scan processing, or
low-speed scan processing.)

You can create a com-
bined total of 512 motion
programs and sequence
programs.

Number of Tasks
32 tasks max. (This is the number of simultaneously exe-
cutable sequence programs.)

−

Number of
Parallel Forks per
Task

The PFORK instruction cannot be used. −

Execution
Registration

Use the M-EXECUTOR. −

Starting Method Automatically started by the system.

The system starts
sequence programs that
are registered in the
M-EXECUTOR.

A
cc

es
si

bl
e

R
eg

is
te

rs

M Registers 1,048,576 words
These registers are
backed up with a battery.

S Registers 65,535 words
These registers are
backed up with a battery.

G Registers 2,097,152 words

These registers are
shared by all programs.
They are not backed up
with a battery.

I Registers
65,536 words + Setting parameters + Registers for CPU
interface

−

O Registers
65,536 words + Monitor parameters + Registers for CPU
interface

−

C Registers 16,384 words −

D Registers Can be specified from 0 to 16,384 words.

These are internal regis-
ters that are unique
within each DWG. They
can be referenced only
within the local drawing.

Continued from previous page.

Specification CPU-20 and CPU-30 Remarks

Appendix
Sample Programs B

This appendix provides programming examples for motion pro-
grams and sequence programs.

B.1 Motion Program Control Program B-2

B.2 Parallel Processing . B-3

B.3 Performing Speed Control with a Motion Program . .B-4

B.4 Simple Synchronized Operation with a Virtual Axis . . B-5

B.5 Sequence Programs . B-7

B.1 Motion Program Control Program

B-2
B.1 Motion Program Control Program

This sample program controls the execution of a motion program.

An example ladder program is given below.

Power to the Servomotor is turned
ON when IB00000 turns ON.

The motion program is started when
IB00001 turns ON.

The MSEE instruction is used to register the
motion program for execution.

B.2 Parallel Processing

AppB

S
am

pl
e

P
ro

gr
am

s

B.2 Parallel Processing

In this example, the PFORK instruction is used in a motion program to perform parallel execution.

The operation of the above sample program is shown in the following figure.

ABS;
PFORK 001 002 003 004;

001:FMX T10000K;
PLN [A1] [B1];
MCC [A1] 0 [B1]0 U100000 V0 F10000K;
JOINTO 005;

002:FMX T10000K;
MVS [C1] 131072 [D1] 20000 F10000K;
JOINTO 005;

003:IOW IL8016>130000;
OB00000=1;
JOINTO 005;

004:IOW IL8096>12000;
OB00001=1;
JOINTO 005;

005:PJOINT;
END;

"Absolute Mode Parallel processing
is started.

"Set maximum interpolation speed.
"Set circular interpolation plane.
"Circular
interpolation

Fork 1: Performs circular
interpolation.

"Set maximum interpolation speed.
"Linear
interpolation

Fork 2: Performs linear
interpolation.

"Monitor the position of axis C1.

"When positioning is
completed, OB00000 turns ON.

Fork 3: Monitors the
position of axis C1.

"Monitor the position of axis D1.
"When positioning is
completed, OB00001 turns ON.

Fork 4: Monitors the
position of axis D1.

001 002 003 004

005

Circular interpolation
with axes A1 and B1

Two-axis linear interpola-
tion with axes C1 and D1

Monitoring the
position of axis C1

Monitoring the
position of axis D1
B-3

B.3 Performing Speed Control with a Motion Program

B-4
B.3 Performing Speed Control with a Motion Program

In this example, a motion program is used to perform speed control.
For this example, bits 0 to 3 (Speed Unit Selection) in the OW03 setting parameter are set to 0.01%
(percentage of rated speed).

The operation of the above sample program is shown in the following figure.

OW8008=23;"Speed control mode
OL8010=6000;"Change the speed to 60% of the rated speed.
TIM T300;"Wait 3 seconds.
OL8010=10000;"Change the speed to the rated speed.
TIM T400;"Wait 4 seconds.
OL8010=5000;"Change the speed to 50% of the rated speed.
TIM T600;"Wait 6 seconds.
OW8008=0;"Stop speed control mode.
END;

50

100

0

3 s 4 s 6 s
0

5,000

10,000

Speed (%)

Rated speed

Time (s)

Time (s)

Setting parameter
OL���10 (Speed Reference Setting)

B.4 Simple Synchronized Operation with a Virtual Axis

AppB

S
am

pl
e

P
ro

gr
am

s

B.4 Simple Synchronized Operation with a Virtual Axis

This sample program moves an SVR (virtual axis) and distributes the feedback position of the SVR to two
physical axes to perform synchronized operation with two axes.

Motion Program

FMX T10000K;"Set maximum interpolation speed K = 1,000.
INC; "Incremental Mode
IAC T500;"Interpolation acceleration time = 500 ms
IDC T500;"Interpolation deceleration time = 500 ms
MVS [SVR] 1000K F10000K;"Interpolation for travel distance of 1,000,000
END;

SVB

SVR (virtual axis)

One-axis interpolation operation is
executed with a motion program.

A ladder program is used to copy the
feedback position of the SVR to the
position references of axes 1 and 2 to
perform synchronized operation.

Axis 1

Axis 2
B-5

B.4 Simple Synchronized Operation with a Virtual Axis

B-6
 Ladder Program

This programming example does not include recovery processing for axis errors. If you decide to
incorporate this programming example into your application, be sure to add the necessary
programming to ensure safe operation in the event of an axis error.Important

B.5 Sequence Programs

AppB

S
am

pl
e

P
ro

gr
am

s

B.5 Sequence Programs

In this example, a sequence program is used to execute jogging and step operations for a single-axis Ser-
vomotor.

Main Sequence Program (SPM001)

 Sequence Subprogram (SPS002)

"SPM001: Main program"

SSEE SPS002; "Settings common to all axes
SSEE SPS003; "Jogging and step operation processing
END;

"--

"--
IF IW8008 = = 0;
 MB300010 = 1;
ELSE;
 MB300010 = 0;
IEND;

"--

"--
OB80000 = MB300000 & (IB80000 | IB80002);

"--

"--
OB8000F = MB300001;

"---

"

"---
DW00010 = OW8003 & FF00H;
OW8003 = DW00010 | 0011H;

"---

"---
IF MB300020 = = 1;

OL8036 = 100;
OL8038 = 100;

IEND;

RET;

"SPS002: Settings common to all axes

”Motion Command 0 Detection

"Turn ON the Servo.

"Servo ON

"Reset alarm.

"Speed Unit and Acceleration/Deceleration Rate Unit Selection

"Set linear acceleration/deceleration rate.

"Linear Acceleration Rate/Acceleration Time Constant
"Linear Deceleration Rate/Deceleration Time Constant

"Bits 0 to 3: Speed Unit Selection (0: reference units/s, 1: reference units/min, 2: percentage of maximum speed)
"Bits 4 to 7: Acceleration/Deceleration Rate Unit Selection (0: reference units/s^2, 1: ms)

"Function Settings 1, Work
"Function Settings 1

"Resetting Alarms

Turn ON the Servo when
MB300000 turns ON.
B-7

B.5 Sequence Programs

B-8
 Sequence Subprogram (SPS003)

"----------------------------------

"----------------------------------
IF IB80001 & ((DB000010 & !DB000011) | (!DB000010 & DB000011)) = = 1;

DB000000 = 1;
ELSE;

DB000000 = 0;
IEND;

DB000001 = PON(DB000000 DB000050) & MB300010;
DB000002 = NON(DB000000 DB000051);

IF DB000001 = = 1;
OL8010 = 1000;
OW8008 = 7;

IEND;
IF DB000002 = = 1;

OW8008 = 0;
IEND;

"----------------------------------

"----------------------------------
IF IB80001 & ((DB000012 & !DB000013) | (!DB000012 & DB000013)) = = 1;

DB000008 = 1;
ELSE;

DB000008 = 0;
IEND;

DB000009 = PON(DB000008 DB000058) & MB300010;
DB00000A = NON(DB000008 DB000059);

IF DB000009 = = 1;
OL8010 = 1000;
OL8044 = 1000;
OW8008 = 8;

IEND;

IF DB00000A = = 1;
OW8008 = 0;

IEND;

"----------------------------------

"----------------------------------
OB80092 = (DB000000 & DB000011) | (DB000008 & DB000013);

RET;

"SPS003: Jogging and Step Operation Processing"

"Jogging

Start jogging with positive rotation
when DB000010 turns ON.

Start jogging with negative rotation
when DB000011 turns ON.

"Start jogging.
"Stop jogging.

"FEED motion command

"NOP motion command

"Step operation

Start step operation with positive
rotation when DB000012 turns ON.

Start step operation with negative
rotation when DB000013 turns ON.

"Start step operation.
"Stop step operation.

"Set the STEP speed.
"Set STEP Travel Distance (1,000 pulses).
"STEP motion command

"NOP motion command

"Negative Rotation Selection

"Select negative rotation.

Appendix

The differences between the MP2000-series and the MP3000-
series Machine Controllers in terms of motion programs are listed
in the following table.

Differences between
MP2000-series and
MP3000-series Machine
Controllers C

C-2

Motion Programs

 Debug Operation Mode

Item
MP2000-series

Machine Controller
MP3000-series

Machine Controller
Remarks

Number of Programs 256 512
This number includes both motion
programs and sequence programs.

Number of Groups 8 16 −

Number of Tasks 16 32
This is the number of simulta-
neously executable programs.

Maximum Number of
Controlled Axes per
Group

16 axes 32 axes

The timing of transmitting refer-
ences to slave stations via
MECHATROLINK is different
between the SVC/SVC32 and the
SVB-01/SVC-01. Therefore,
interpolation operations cannot be
performed between the SVC/
SVC32 and the SVB-01/SVC-01.

Number of forks
4 main program forks,
2 subprogram forks

Select from the follow-
ing four options:
• 4 main program

forks, 2 subprogram
forks

• 8 main program forks
• 2 main program

forks, 4 subprogram
forks

• 8 subprogram forks

Parallel Execution of Pro-
grams (page 1-7)

G Registers Not supported. Supported. −

Quadruple-length Inte-
gers

Not supported. Supported.
This data type cannot be used for
indirect designation in motion lan-
guage instruction.

Double-length Real Num-
bers

Not supported. Supported.
This data type cannot be used for
indirect designation in motion lan-
guage instruction.

Arrays Not supported. Supported. −

Item
MP2000-series

Machine Controller
MP3000-series

Machine Controller
Remarks

Number of Breakpoints 4 8 −

C-3

D
iff

er
en

ce
s

be
tw

ee
n

M
P

20
00

-s
er

ie
s

an
d

M
P

30
00

-s
er

ie
s

M
ac

hi
ne

 C
on

tro
lle

rs

AppC

Motion Program Operation When an Alarm Occurs for an Axis Specified in an Axis Move-
ment Instruction

The MP3000-series Machine Controllers are different from the MP2000-series Machine Controllers in
that they check for errors in all axes specified in axis movement instructions. If an alarm occurs, all of the
specified axes are stopped and NOP motion commands are issued. Therefore, with the MP3000-series
Machine Controllers, interlocks do not have to be created in the application for when alarms occur in spec-
ified axes, which improves safety in comparison the the MP2000-series Machine Controllers.

The following table describes the motion program operation when an alarm occurs for an axis specified in
an axis movement instruction.

* The operation is different between the MP2000-series Machine Controllers and MP3000-series Machine Controllers
when a software limit alarm occurs for an axis specified in an interpolation instruction.
Refer to the following section for details.

 Operation When a Software Limit Alarm Occurs for an Axis Specified in an Interpolation Instruction

Note: The motion program execution block does not change to the next block for the MP2000-series External Positioning
(EXM) and Zero-point Return (ZRN) instructions. Therefore, you must execute a program reset or alarm reset
request after a program stop request is executed.

The following table describes the motion program operation when an alarm occurs for an
axis specified in an axis movement instruction. For the versions in the following table, you
can select an MP2000-compatible mode for the motion program operation to use an
MP3000-series Machine Controller in an application to replace an MP2000-series Machine
Controllers without changing the interlocks.

Axis Movement
Instruction

MP2000-series Machine Controller MP3000-series Machine Controller

Axis
with

Alarm

Axes
without
Alarms

Motion Program Opera-
tion

Axis
with

Alarm

Axes
without
Alarms

Motion Program
Operation

Positioning (MOV)
or Set-time Posi-

tioning (MVT)
Stop.

Move to
target
posi-
tions.

References continue to
axes without alarms and
they move to the target
positions.

Stop. Stop.

A motion program
alarm occurs and
references to all
specified axes are
stopped (alarm
code: 8F hex (axis
alarm)).

External Position-
ing (EXM)

Stop. −

References continue until
bit 8 (Command Execution
Completed) in IW09
(Motion Command Status)
turns ON.

Stop. −

Zero Point Return
(ZRN)

Stop.
Move to

zero
point.

References continue until
bit 5 (Zero Point Return/
Setting Completed) in
IW0C (Position
Management Status) turns
ON for all specified axes.

Stop. Stop.

Linear Interpola-
tion (MVS),* Circu-

lar Interpolation/
Helical Interpola-
tion (MCW and

MCC),* or Linear
Interpolation with

Skip Function
(SKP)*

Stop.

Stop.

A motion program alarm
(84 hex: Duplicated
Motion Command) occurs
and references to all speci-
fied axes are stopped. Stop. Stop.

Move to
target
posi-
tions.

References continue to
axes without alarms and
they move to the target
positions.

Information

Machine Controller or MPE720 Applicable Versions

MP3000-series Machine Controller Version 1.08 or later

MPE720 Version 7 Version 7.21 or later

C-4

Operation When a Software Limit Alarm Occurs for an Axis Specified in an Interpolation
Instruction

A software limit alarm occurs before the software limit so that the specified software limit is not exceeded.

For an MP3000-series Machine Controller, the axes stop when the axis alarm occurs, so all of the axes
specified for the interpolation instructions stop when the axis with the alarm is before the software limit.

With an MP2000-series Machine Controller, the axis with the software limit alarm moves to the software
limit and then stops. The axes without software limit alarms continue moving to their target positions.

Item MP2000-series Machine Controller MP3000-series Machine Controller

Axis with the Soft-
ware Limit Alarm

The axis moves to the software limit.
The axis stops when the alarm occurs
(it stops before the software limit).

Axes without a Soft-
ware Limit Alarm

The axes move to their target positions. The axes stop when the alarm occurs.

Motion Program
Alarm Code

None 8F hex (axis alarm)

Current position

Travel direction
Software limit

Target position

Axis stopping position for an MP3000
motion program (All specified axes stop.)

Axis stopping position for an MP2000
motion program

Software limit alarm occurs.

C-5

D
iff

er
en

ce
s

be
tw

ee
n

M
P

20
00

-s
er

ie
s

an
d

M
P

30
00

-s
er

ie
s

M
ac

hi
ne

 C
on

tro
lle

rs

AppC

 Procedure to Enable or Disable Axis Alarm Checks

This section describes how to enable and disable axis alarm checks.

The setting for axis alarm checks is performed on the Environment Setting Dialog Box of MPE720 ver-
sion 7.

Axis alarm checks are enabled by default.

1. Select File − Environment Setting from the menu bar.

C-6

2. Select the desired setting for Motion Program Operation Mode under Motion in the Environ-
ment Setting Dialog Box.

 Timing at Which the Axis Alarm Check Setting Becomes Valid

The axis alarm setting becomes valid as soon as the OK Button is clicked in the Environment Setting Dia-
log Box.

Appendix
Precautions D

This appendix provides precautions for motion programs and
sequence programs.

D.1 General Precautions . D-2

Saving Data to Flash Memory when Changing Applications .D-2
Debugging a System in Operation .D-2

D.2 Precautions on Motion Parameters D-3

Performing Axis Movement Instructions on
the Same Axis in Motion Programs .D-3

Using a Subscript to Reference a Motion Register from an
I/O Register .D-3
Referencing the Motion Register of a Different CircuitD-4
OL1C (Position Reference Setting) Setting Parameter .D-5
Axis Operation for Software Limit AlarmsD-5

D.1 General Precautions

Saving Data to Flash Memory when Changing Applications

D-2
D.1 General Precautions

This section provides general precautions for motion programs and sequence programs.

Saving Data to Flash Memory when Changing Applications

Always save the data to flash memory after you change motion programs, sequence programs, or other
application data. If you do not, any changes that were made to the applications will be lost when the power
supply to the Machine Controller is turned OFF.

Debugging a System in Operation

Never perform debugging on a system that is in operation. Debugging will cause changes in program
operation, such as in instruction execution timing, resulting in malfunction or failure of the system.
For debugging, use a special system for debugging.

D.2 Precautions on Motion Parameters

Performing Axis Movement Instructions on the Same Axis in Motion Programs

P
re

ca
ut

io
ns

AppD
D.2 Precautions on Motion Parameters

This section describes general precautions to consider when using motion parameters in a motion pro-
gram.

Performing Axis Movement Instructions on the Same Axis in
Motion Programs

If a movement instruction is executed by a motion program for an axis that is already in motion, the axis
operation depends on the setting of bit 5 (Position Reference Type) in the OW09 setting parameter.

The axis operation for each position reference type setting is described below.

Incremental Addition Method

This method adds the reference positions of both motion programs to perform positioning. The final posi-
tion will be different from both original reference positions.

Absolute Value Set Method

This method performs positioning to the last-issued target position.

Using a Subscript to Reference a Motion Register from an I/O
Register

I/O registers and motion registers are not assigned to consecutive memory locations.
When using a subscript, make sure that you access registers within the range of I/O registers or within the
range of motion registers.

IW00000/OW00000

IW07FFF/OW07FFF

IW08000/OW08000

IW0FFFF/OW0FFFF

I = 1;
OW07FFFi = 0;

I/O registers

Motion registers

Accessible.

Accessible.

Not accessible.

Example:
D-3

D.2 Precautions on Motion Parameters

Referencing the Motion Register of a Different Circuit

D-4
Referencing the Motion Register of a Different Circuit

Motion registers for different circuits are not assigned to continuous memory location, just as is true for I/
O registers and motion registers.
When using a subscript, access a register within the range of motion registers that is assigned to the circuit.
If the circuit numbers are the same, it is even possible to access registers for different axes.
The following table lists the motion registers.

Circuit
Number

Axis 1 Axis 2 ⋅ ⋅ ⋅ Axis 16

1 OW08000 to OW0807F OW08080 to OW080FF ⋅ ⋅ ⋅ OW08780 to OW087FF

3 OW09000 to OW0907F OW09080 to OW090FF ⋅ ⋅ ⋅ OW09780 to OW097FF

5 OW0A000 to OW0A07F OW0A080 to OW0A0FF ⋅ ⋅ ⋅ OW0A780 to OW0A7FF

7 OW0B000 to OW0B07F OW0B080 to OW0B0FF ⋅ ⋅ ⋅ OW0B780 to OW0B7FF

9 OW0C000 to OW0C07F OW0C080 to OW0C0FF ⋅ ⋅ ⋅ OW0C780 to OW0C7FF

11 OW0D000 to OW0D07F OW0D080 to OW0D0FF ⋅ ⋅ ⋅ OW0D780 to OW0D7FF

13 OW0E000 to OW0E07F OW0E080 to OW0E0FF ⋅ ⋅ ⋅ OW0E780 to OW0E7FF

15 OW0F000 to OW0F07F OW0F080 to OW0F0FF ⋅ ⋅ ⋅ OW0F780 to OW0F7FF

Accessing the Motion Register of a Different CircuitExample

I = 1;
OW087FFi = 0;

I = 1;
OW0807Fi = 0;

Circuit 1

Circuit 3

Accessible.

Not accessible.

Example:

Example:

Axis 1 (IW08000 to IW0807F, OW08000 to OW0807F)
Axis 2 (IW08080 to IW080FF, OW08080 to OW080FF)

Axis 16 (IW08780 to IW087FF, OW08780 to OW087FF)

Axis 1 (IW09000 to IW0907F, OW09000 to OW0907F)
Axis 2 (IW09080 to IW090FF, OW09080 to OW090FF)

Axis 16 (IW09780 to IW097FF, OW09780 to OW097FF)

D.2 Precautions on Motion Parameters

 OL1C (Position Reference Setting) Setting Parameter

P
re

ca
ut

io
ns

AppD
OL1C (Position Reference Setting) Setting Parameter

If the OL1C (Position Reference Setting) setting parameter is changed in a program (e.g., a ladder
program) while axis motion is in progress for another motion program, the axes will move with the new
value of the parameter. This will result in a difference between the actual axis position and the position
specified in the motion program.

Axis Operation for Software Limit Alarms

When a software limit alarm (IL04 bits 3 and 4) occurs during execution of an interpolation instruc-
tion, the axis may stop before the software limit depending on the speed setting. The stopping position
depends on the speed setting.

If the travel distance of axis A1 that is specified in OL1C (Position Reference Setting) is
changed from 1,000 to 1,500 from a ladder program while execution of in the following motion
program is in progress, the axis will move to 1,500. This results in a difference between the actual
axis position and the reference position (1,000) that is specified in the motion program. Line in
the motion program is then executed. As a result, the actual final position of axis A1 will be at a
different position from that specified in the motion program.

INC;
ZRN [A1]0;

MOV [A1]1000;⋅ ⋅ ⋅
MOV [A1]1000; ⋅ ⋅ ⋅

END;

Example

0 1,000 1,500 2,000 2,500

� �

� �

Position specified by
the motion program

Actual position of
the axis Travel distance

changed from the
ladder program

Discrepancy in
final position
D-5

Index

Inde
Index

Symbols
- - 6-171

-- 6-174

^ - 6-182

! - 6-183

* - 6-176

/ - 6-177

&- 6-181

registers -4-4

+ - 6-170

++ - 6-172

< - 6-186

<= - 6-186

<> - 6-186

= - 6-169

== - 6-186

> - 6-186

>= - 6-186

|- 6-180

Numerics
1-ms OFF-Delay Timer (TOF1MS) - 6-219

1-ms ON-Delay Timer (TON1MS)- 6-217

A
ABS -6-7

Absolute Mode- -6-7

Absolute Mode (ABS) -6-7

ACC - 6-15

acceleration times and deceleration times - - - - - - - - - - - - - - - - - 6-34

Acceleration/Deceleration Mode with
Continuous Process Control Signal Monitoring- - - - - - - - - - - - - 6-65

Acceleration/Deceleration Mode with Interpolation
Overlapping - 6-69

acceleration/deceleration type - 6-82, 6-88

ACCMODE - 6-63

ACS - 6-204

active program numbers - 1-34

Add (+) - 6-170

Add Quick Watch - 7-17

Alarm Monitor - 7-24

Alarm Reset Request - 1-26

Allocation Register - 7-10

AND (&) - 6-181

Arc Cosine (ACS)- 6-204

Arc Sine (ASIN)- 6-203

Arc Tangent (ATN) - 6-205

array registers- 4-20

ASCII - 6-196

ASCII Conversion 1 (ASCII)- 6-196

ASCII text - 6-196

ASN - 6-203

assigned interlock contact - 1-32

assigned registers - 1-32

ATN - 6-205

axis control instructions - 6-115

Axis Monitor - 1-13

axis movement instructions - 6-77

axis number - 5-10

axis setting instructions -6-4

B
basic functions - 6-198

batch transfer - 3-14

BCD - 6-209

BCD data - 6-208, 6-209

BCD to Binary (BIN) - 6-208

BIN - 6-208

binary data - 6-208, 6-209

Binary to BCD (BCD) - 6-209

Bit Shift Left (SFL) - 6-191

Bit Shift Right (SFR) - 6-189

BLK - 6-192

block -5-2

Branching Instructions (IF, ELSE, and IEND)- - - - - - - - - - - - - 6-131

Break- 7-15

Breakpoint Enable/Disable - 7-17

Breakpoint Set/Remove - 7-14

C
C registers - 4-3, 4-16

Call Motion Subprogram (MSEE) - 6-148

Call Sequence Subprogram (SSEE) - 6-149

Call User Function - 6-150, 6-158

Call User Function from Motion Program (UFC) - - - - - - - - - - 6-150

Call User Function from Sequence Program (FUNC) - - - - - - - 6-158

calling motion programs using the M-EXECUTOR program
execution definitions- 1-21

center point position - 6-91

Change Acceleration Time (ACC) - 6-15

Change Deceleration Time (DCC) - 6-21

Change Interpolation Acceleration Time (IAC)- - - - - - - - - - - - - 6-50

Change Interpolation Deceleration Time (IDC)- - - - - - - - - - - - - 6-52

Change Interpolation Deceleration Time for
Temporary Stop (IDH) - 6-54

Change S-curve Time Constant (SCC) - - - - - - - - - - - - - - - - - - - 6-27

character

D- -5-6

F -5-5

FW -5-5

M -5-5

MPS -5-6

N- -5-6

P -5-5
x-1

Index

R - 5-5

SPS- 5-6

SS- 5-6

T- 5-5

TW - 5-5

U - 5-5

V - 5-5

W - 5-6

circuit - 5-9

circuit number - 5-9

Circular Interpolation with Specified Center Point
(MCW and MCC) - 6-90

Circular Interpolation with Specified Radius
(MCW and MCC) - 6-95

Clear (CLR)- 6-193

Comment Check Box - 7-7

comments - 5-2, 5-7

compiling - 3-9

composite travel distance - 6-86

constant registers - 4-3

control signals - 1-26

conveyance device - 1-43

Coordinate Plane Setting (PLN) - 6-128

coordinate words - 5-2, 5-4

COS - 6-201

Cosine (COS) - 6-201

creating a project - 3-4

creating programs- 3-8

cross references - 7-27

Current Position Set (POS) - 6-117

current program line - 7-12

D
D registers -4-3, 4-17

data manipulations - 6-189

data registers -4-2, 4-12

data types -4-8, 6-151

data types of registers used in user functions - - - - - - - - - - - - - 6-151

DCC - 6-21

Debug Operation Mode - 1-24, 7-11, 7-13

Debugging- -1-13, 2-4

debugging programs- 3-16

decimal integer - 5-8

DEFAULT - 6-143

DEN - 6-107

direct designation - 2-8

Disable Single-block Signal (SNGD) and Enable Single-block
Signal (SNGE)- 6-167

Divide (/)- 6-177

Drive Control Panel - 7-18

Dwell Time (TIM) - 6-161

E
easy programming functions -1-13, 2-4

electronic gear - 6-37

encoder cable- 3-3

END - 6-159

End - 7-15

end of block- 5-2, 5-6

end position - 6-91

EOX - 6-166

Error List Dialog Box- 3-9

Exclusive OR (^) - 6-182

Execute - 7-15

executing programs - 3-18

Execution Scan Error - 1-24

execution scans - 5-13

EXM- 6-113

Extended Add (++) - 6-172

Extended Subtract (--) - 6-174

External Positioning (EXM) - 6-113

external positioning signal - 6-114

F
F reference - 6-47, 6-87

Falling-edge Pulse (NON) - 6-214

Filter Time Constant- 6-28

filter type selection- 6-32

finite-length axis - 6-9

FMX - 6-39

FUNC - 6-158

function keys - 7-12

Function Selection Flags- -6-9, 6-13

G
G registers -4-2, 4-13

global registers- 4-5, 5-8

group definition - 5-9

group definition settings - 3-6

group name - 5-9

H
Helical Interpolation with Specified Center Point
(MCW and MCC) - 6-99

Helical Interpolation with Specified Radius
(MCW and MCC) - 6-102

Help Button - 7-8

hexadecimal integer - 5-8

high-speed drawing - 1-15

how to directly change the acceleration time settings - - - - - - - - 6-20

how to directly change the deceleration time settings - - - - - - - - 6-26

I
I registers -4-2, 4-14

I/O services - 1-17

I/O Variable Wait (IOW)- 6-163

IAC- 6-50
Index-2

Index

Inde
IDC - 6-52

IDH - 6-54

IF, ELSE, and IEND - 6-131

IFMX - 6-42

IFP - 6-47

INC - 6-11

Inclusive OR (|) - 6-180

Incremental Mode (INC) - 6-7, 6-11

index i - 4-18

index j - 4-18

indirect designation- 1-31

indirect designation of a program number using a register - - - - - 1-31

infinite-length axis -6-9

Infinite-length Axis Reset Position- - - - - - - - - - - - - - - - - - 6-9, 6-13

INP - 6-124

In-position Check (PFN) - 6-122

in-position range- 6-124

In-Position Range (INP) - 6-124

input registers- 4-2, 4-14

installing MPE720 version 7 -3-3

Instruction Entry Assistance - 1-13, 2-4

instruction format -7-6

instruction type table- 5-15

instruction types - 5-13

interpolation acceleration time- 6-51

interpolation deceleration time- 6-53

interpolation feed speed - 6-47, 6-87

interpolation feed speed ratio- 6-48

interpolation instructions- 6-31, 6-47

interpolation override - 1-29

Interpolation Override Setting - 1-27

IOW - 6-163

J
jogging - 7-22

JOINTO- 6-140, 6-143

L
labels - 5-2, 5-3

ladder programs -1-4

language instructions -2-3

linear acceleration rate - 6-17

linear deceleration rate - 6-23

linear deceleration time constant - 6-22

Linear Interpolation (MVS) - 6-85

Linear Interpolation with Skip Function (SKP) - - - - - - - - - - - - 6-109

local registers - 4-6, 5-8

logic operation instructions - 6-179

logical axis name - 5-10

logical axis names- 5-2, 5-3

M
M registers - 4-2, 4-12

Machine Controller specifications - A-3

machine coordinate system - 6-117

Main Program Number Limit Exceeded Error- - - - - - - - - - - - - - 1-25

main programs - 1-15, 2-5

maximum interpolation feed speed- 6-40

MCC - 6-90, 6-95, 6-99, 6-102

MCW - 6-90, 6-95, 6-99, 6-102

metal sheet pressing equipment - 1-44

M-EXECUTOR control registers - 1-21

M-EXECUTOR program execution definitions- - - - - - - - - - - - - 1-21

MOD- 6-178

Modulo (MOD) - 6-178

Monitor Parameter Display - 7-25

Monitor Parameter Selection Area - 7-25

monitor parameters - 4-14

monitoring motion program execution information using
the S registers- 1-33

Motion Control Function Module - 1-14

Motion Editor- 1-13, 1-14, 3-8

motion language -1-3

motion language instructions - 5-2, 6-1

motion parameters - 1-14

motion program execution timing figure- - - - - - - - - - - - - - - - - - 1-17

motion program numbers - 1-15

motion programs - 1-3, 1-4

application examples - 1-43

data transfer to and from ladder programs- - - - - - - - - - - - - - -1-6

execution information - 1-34

execution methods -1-4

execution processing methods - 1-19

execution registration - 1-22

execution timing- 1-17

format -5-2

groups - 1-16

motion control -1-5

online editing - 1-12

parallel execution -1-7

system configuration- 1-14

types - 1-15

use of subprograms- -1-6

motor cable -3-3

MOV- 6-81

Move Block (BLK)- 6-192

Move on Machine Coordinates (MVM) - - - - - - - - - - - - - - - - - 6-119

Move Start Point- 7-13

movement paths for interpolation instructions and
S-curve acceleration/deceleration- 6-31

Moving Average Filter - 6-32

MPE720 version 7.0 - 1-13

MSEE - 6-148

M-type instructions- 5-14

Multiply (*) - 6-176

MVM - 6-119

MVS - 6-85

MVT - 6-111
x-3

Index

N
NEAR Signal Output Width - 6-122, 6-124

No System Work Available - 1-24

NON - 6-214

Normal Operation Mode- 7-13

NOT (!) - 6-183

notation for constants - 5-8

number of controlled axes- 5-9, 7-6

number of groups - 5-9

number of turns - 6-93

numeric comparison instructions - 6-186

numeric operation instructions - 6-168

O
O registers -4-3, 4-15

Off-delay Timer

Measurement unit = 10 ms (TOF) - - - - - - - - - - - - - - - - - - 6-218

On-delay Timer

Measurement unit = 10 ms (TON) - - - - - - - - - - - - - - - - - - 6-216

One Scan Wait (EOX) - 6-166

online editing- 1-12

Operation Control Panel - 1-13

operation priority levels - 5-11

operation with multiple groups - 1-16

operation with one group - 1-16

output registers -4-3, 4-15

overrides - 6-36

P
panel processing machine - 1-44

Parallel Execution Instructions
(PFORK, JOINTO, and PJOINT) - 6-140

parameter settings - 7-7

part inserter - 1-43

PFN - 6-122

PFORK - 6-140

PFP- 6-126

PJOINT- 6-140

PLD - 6-120

PLN - 6-128

PON - 6-212

POS - 6-117

Position after Distribution (DEN) - 6-107

position reference value - 6-7

Positioning (MOV) - 6-81

Positioning Completed Check (PFP) - - - - - - - - - - - - - - - - - - - 6-126

positioning instructions- 6-33

positioning speed - 6-16, 6-17, 6-22

POSMAX -6-9, 6-13

PP cable - 3-3

precautions to consider when performing register operations - - - 4-10

procedure to create the user function - - - - - - - - - - - - - - - - - - - 6-155

Program Alarms- 1-24

program control instructions - 6-129

program current position- 6-7

program development flow - 3-2

Program End (END)- 6-159

Program Executing- 1-24

Program Paused - 1-24

program properties - 4-17

Program Single-block Execution Stopped - - - - - - - - - - - - - - - - 1-24

Program Single-block Mode Selection- - - - - - - - - - - - - - - - - - - 1-26

Program Single-block Start Request - 1-26

program status - 1-35

Program Stopped at Breakpoint- 1-24

Program Stopped for Request for Stop Request - - - - - - - - - - - - 1-24

Program Type - 1-24

programming with variables - 5-17

R
R{ } - 6-211

radius - 6-96

rated speed - 6-16, 6-22

real number - 5-8

reference position- 6-7

Reference Unit Selection - 6-34

register list- 3-2

registering motion programs in the M-EXECUTOR program
execution definitions - 1-22

registering program execution - 3-10

relationship between I/O registers
and internal function registers - 6-152

relative travel distances - 6-11

Repetition Instructions (WHILE, WEND) - - - - - - - - - - - - - - - 6-134

Repetition with One Scan Wait (WHILE and WENDX) - - - - - 6-137

Request for Pause of Programs - 1-26

Request for Start of Continuous Program Operation - - - - - - - - - 1-26

Request for Start of Program Operation - - - - - - - - - - - - - - - - - - 1-26

Request for Stop of Program - 1-26

Reset Bit (R{ }) - 6-211

RET - 6-160

Rising-edge Pulse (PON) - 6-212

S
S registers -4-2, 4-11

S{ } - 6-210

sample programs

motion program control program- -B-2

parallel processing -B-3

performing speed control with a motion program - - - - - - - - -B-4

sequence programs- -B-7

simple synchronized operation with a virtual axis- - - - - - - - -B-5

saving programs to flash memory - 3-17

scan execution - 1-4, 2-2, 2-3

SCC - 6-27

S-curve acceleration/deceleration - 6-83

S-curve time constant - 6-27, 6-30

Select Command - 7-6
Index-4

Index

Inde
Selective Execution Instructions
(SFORK, JOINTO, SJOINT)- 6-143

self configuration -3-6

sequence programs

execution -2-6

execution methods -2-3

execution processing method- -2-6

execution timing- -2-7

features -2-3

M-EXECUTOR program execution definitions- - - - - - - - - - -2-7

registering program execution -2-8

types -2-5

use of subprograms- -2-4

sequential execution -1-4

SERVOPACK -3-3

Set Bit (S{ }) - 6-210

Set Call Stack- 7-16

Set Interpolation Acceleration/Deceleration Mode
(ACCMODE)- 6-63

Set Interpolation Feed Speed Axes (+ and -) - - - - - - - - - - - - - - - 6-60

Set Interpolation Feed Speed Ratio (IFP) - - - - - - - - - - - - - - - - - 6-47

Set Maximum Individual Axis Speeds for Interpolation
(IFMX) - 6-42

Set Maximum Interpolation Feed Speed (FMX) - - - - - - - - - - - - 6-39

Set Motion Task - 7-16

Set Speed (VEL)- 6-33

Set-time Positioning (MVT) - 6-111

setting parameters- 4-15

setting up the system- -3-6

SETW - 6-194

SFL - 6-191

SFORK - 6-143

SFR - 6-189

SIN - 6-200

Sine (SIN) - 6-200

single-block operation mode - 6-167

single-step linear acceleration/deceleration - - - - - - - - - - - - - - - - 6-82

SJOINT - 6-143

Skip 1 Information - 1-26

Skip 2 Information - 1-26

Skip Input Signal 1 (SS1) - 6-109

Skip Input Signal 2 (SS2) - 6-109

Skip Input Signal Selection - 6-109

SKP- 6-109

SNGD - 6-167

SNGE - 6-167

software limit switches - 6-118

specific characters - 5-2, 5-5

specified center point - 6-99

specified radius -6-95, 6-102

speed reference- 7-22

speed unit- 6-34

SQT- 6-206

Square Root - 6-198

Square Root (SQT) - 6-206

SSEE- 6-149

Start Request History - 1-24

Status Display - 7-24

Status Flags - 1-24, 2-9

step distance- 7-22

step execution - 7-22

Step In - 7-14

Step In execution - 3-16

Step Over- 7-14

Stop/Start Monitor - 7-24, 7-26

S-type instructions - 5-14

Subprogram Return (RET) - 6-160

subprograms- 1-6, 1-15, 2-4, 2-5

Substitute (=) - 6-169

Subtract (-)- 6-171

SVA-01 - 1-14

SVB-01 - 1-14

SVR - 1-14

syntax error -4-4

system registers - 4-2, 4-11

system work number- 1-29

System Work Number Setting - 1-27

T
Table Initialization (SETW)- 6-194

TAN - 6-202

Tangent (TAN) - 6-202

task assignments- -7-9

Test Runs - 1-13

TIM- 6-161

TIM1MS - 6-162

TOF- 6-218

TOF1MS - 6-219

TON - 6-216

TON1MS- 6-217

toolbar icons - 7-12

transferring programs - 3-13

T-type instructions - 5-14

types of registers -4-2

typical system configuration -3-3

U
UFC - 6-150

Update Current Position - 7-15

Update Program Current Position (PLD) - - - - - - - - - - - - - - - - 6-120

user functions- 6-151

using registers - 4-11

V
VEL - 6-33

virtual axes - 1-43
x-5

Index

W
Warning Display - 7-26

WHILE and WENDX- 6-137

WHILE, WEND - 6-134

work registers -1-23, 2-9

working coordinate system - 6-104, 6-117

Z
Zero Point Return (ZRN) - 6-104

Zero Point Return Method - 6-105

zero point return speed - 6-105

ZRN - 6-104
Index-6

Revision History-1

Revision History

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.

Date of
Publication

Rev.
No.

WEB
Rev.
No.

Section Revised Contents

March 2018 <3> 0 1.7 Addition: Supplemental information for timing chart

5.5 Addition: Strings that Cannot Be Used in Variable Names

6.4 Addition: Using parallel execution instructions with subprograms

July 2016 <2> 2 4.3 Addition: Setting range for indices i and j

6.4 Revision: Radius of a circle drawn using the WHILE and WEND instruction

August 2015 1 Front covert Revision: Format

1.8 Revision: SW08192 to SW09215 → SL08192 to SL09214
SW03264 to SW03321 → SW03264 to SW03321 and SL08192 to
SL08222
SW03380 to SW03437 → SW03380 to SW03437 and SL08256 to
SL08286

6.2 Revision: Interpolation feed speed figure (INC MVS[A1]1200 [B1]900 F500;)

Appendix C Revision: Information on motion program operation for MP2000-series Machine Con-
trollers.

Back cover Revision: Address and format

June 2014 0 − Based on Japanese user’s manual, SIJP C880725 14D<3>-0, available on the Web in
March 2014

All chapters Addition: Description of MP3300

5.4 Addition: Description of FUT and IUT instructions

6.1 Addition: Description of FUT, IUT, and ACCMODE instructions

Back cover Revision: Address

September 2012 <1> 0 − Based on Japanese user’s manual, SIJP C880725 14B<1>-1, available on the Web in
July 2012

Back cover Revision: Address

July 2012 <0> 1 6.2 Revision: Example of setting the interpolation feed speed in the MVS instruction

Back cover Revision: Address

March 2012 − − − First edition

MANUAL NO. SIEP C880725 14A <0>-1

Published in Japan July 2012

Date of publication

Revision number
WEB revision number

IRUMA BUSINESS CENTER (SOLUTION CENTER)
480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan
Phone: +81-4-2962-5151 Fax: +81-4-2962-6138
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.
2121, Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310
http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.
777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil
Phone: +55-11-3585-1100 Fax: +55-11-3585-1187
http://www.yaskawa.com.br

YASKAWA EUROPE GmbH
Hauptstraβe 185, 65760 Eschborn, Germany
Phone: +49-6196-569-300 Fax: +49-6196-569-398
http://www.yaskawa.eu.com E-mail: info@yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION
35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea
Phone: +82-2-784-7844 Fax: +82-2-784-8495
http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
151, Lorong Chuan, #04-02A, New Tech Park, 556741, Singapore
Phone: +65-6282-3003 Fax: +65-6289-3003
http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.
59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand
Phone: +66-2-017-0099 Fax: +66-2-017-0799
http://www.yaskawa.co.th

YASKAWA ELECTRIC (CHINA) CO., LTD.
22F, One Corporate Avenue, No.222, Hubin Road, Shanghai, 200021, China
Phone: +86-21-5385-2200 Fax: +86-21-5385-3299
http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Ave.,
Dong Cheng District, Beijing, 100738, China
Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION
12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan
Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519
http://www.yaskawa.com.tw

In the event that the end user of this product is to be the military and said product is to
be employed in any weapons systems or the manufacture thereof, the export will fall
under the relevant regulations as stipulated in the Foreign Exchange and Foreign
Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant
documentation according to any and all rules, regulations and laws that may apply.

Specifications are subject to change without notice for ongoing product modifications
and improvements.

© 2012 YASKAWA ELECTRIC CORPORATION

Published in Japan March 2018

MANUAL NO. SIEP C880725 14D <3>-0

17-4-13

Motion Program
Machine Controller MP3000 Series

PROGRAMMING MANUAL

	Front Cover
	About this Manual
	Using this Manual
	Related Manuals
	Safety Precautions
	Warranty
	Contents
	1 Introduction to Motion Programs
	1.1 What Is a Motion Program?
	1.2 Features of Motion Programs
	Motion Program Execution Methods
	Full Synchronization of Sequence Control and Motion Control
	Advanced Motion Control
	Easy-to-understand Motion Language Instructions
	Numerical Calculations in Motion Programs
	Data Transfer to and from Ladder Programs
	Memory Usage Reduced by Use of Subprograms
	Parallel Execution of Programs
	Axis Alarm Checks
	Online Editing of Programs
	Easy Programming Functions (MPE720 Version 7.0 or Later)

	1.3 Motion Program System Configuration
	1.4 Types of Motion Programs
	1.5 Motion Program Groups
	1.6 Motion Program Execution Timing
	1.7 Executing Motion Programs
	Execution Processing Method
	Program Execution Registration Methods
	Work Registers

	1.8 Advanced Programming
	Indirect Designation of a Program Number Using a Register
	Controlling Motion Programs Directly from an External Device
	Monitoring Motion Program Execution Information

	1.9 Application Examples
	Conveyance Device
	Part Inserter
	Panel Processing Machine
	Metal Sheet Pressing Equipment

	2 Introduction to Sequence Programs
	2.1 What Is a Sequence Program?
	2.2 Features of a Sequence Program
	Sequence Program Execution Methods
	Same Language as Motion Programs
	Data Transfer to and from Motion Programs
	Memory Usage Reduced by Use of Subprograms
	Easy Programming Functions

	2.3 Types of Sequence Programs
	2.4 Executing Sequence Programs
	Execution Processing Method
	Registering Program Execution
	Work Registers

	3 Program Development Flow
	3.1 Program Development Flow
	3.2 Program Development Procedures
	Preparation for Devices to be Connected
	Creating a Project
	Self Configuration
	Going Online
	Group Definition Settings
	Creating Programs
	Registering Program Execution
	Transferring the Programs
	Debugging Programs
	Saving the Programs to Flash Memory
	Executing the Programs

	4 Registers
	4.1 Registers
	Types of Registers
	Global Registers
	Local Registers
	Data Types

	4.2 Using Registers
	System Registers (S Registers)
	Data Registers (M Registers)
	Data Registers (G Registers)
	Input Registers (I Registers)
	Output Registers (O Registers)
	C Registers
	D Registers

	4.3 Using Indices i and j
	4.4 Using Array Registers

	5 Programming Rules
	5.1 Entering Programs
	Motion Program Structure
	Block Format
	Notation for Constants and Registers

	5.2 Group Definition Details
	5.3 Operation Priority Levels
	5.4 Instruction Types and Execution Scans
	Instruction Types
	Instruction Type Table

	5.5 Programming with Variables
	Declaring Variables
	Variable Format
	Strings That Cannot Be Used in Variable Names
	Programming Examples

	6 Motion Language Instructions
	6.1 Axis Setting Instructions
	Absolute Mode (ABS)
	Incremental Mode (INC)
	Change Acceleration Time (ACC)
	Change Deceleration Time (DCC)
	Change S-curve Time Constant (SCC)
	Set Speed (VEL)
	Set Maximum Interpolation Feed Speed (FMX)
	Set Maximum Individual Axis Speeds for Interpolation (IFMX)
	Change Interpolation Feed Speed Unit (FUT)
	Set Interpolation Feed Speed Ratio (IFP)
	Change Interpolation Acceleration Time (IAC)
	Change Interpolation Deceleration Time (IDC)
	Change Interpolation Deceleration Time for Temporary Stop (IDH)
	Change Interpolation Acceleration/Deceleration Unit (IUT)
	Set Interpolation Feed Speed Axes (+ and -)
	Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

	6.2 Axis Movement Instructions
	Positioning (MOV)
	Linear Interpolation (MVS)
	Circular Interpolation with Specified Center Point (MCW and MCC)
	Circular Interpolation with Specified Radius (MCW and MCC)
	Helical Interpolation with Specified Center Point (MCW and MCC)
	Helical Interpolation with Specified Radius (MCW and MCC)
	Zero Point Return (ZRN)
	Position after Distribution (DEN)
	Linear Interpolation with Skip Function (SKP)
	Set-time Positioning (MVT)
	External Positioning (EXM)

	6.3 Axis Control Instructions
	Current Position Set (POS)
	Move on Machine Coordinates (MVM)
	Update Program Current Position (PLD)
	In-position Check (PFN)
	In-Position Range (INP)
	Positioning Completed Check (PFP)
	Coordinate Plane Setting (PLN)

	6.4 Program Control Instructions
	Branching Instructions (IF, ELSE, and IEND)
	Repetition Instructions (WHILE, WEND)
	Repetition with One Scan Wait (WHILE and WENDX)
	Parallel Execution Instructions (PFORK, JOINTO, and PJOINT)
	Selective Execution Instructions (SFORK, JOINTO, SJOINT)
	Call Motion Subprogram (MSEE)
	Call Sequence Subprogram (SSEE)
	Call User Function from Motion Program (UFC)
	Call User Function from Sequence Program (FUNC)
	Program End (END)
	Subprogram Return (RET)
	Dwell Time (TIM)
	Dwell Time (TIM1MS)
	I/O Variable Wait (IOW)
	One Scan Wait (EOX)
	Disable Single-block Signal (SNGD) and Enable Single-block Signal (SNGE)

	6.5 Numeric Operation Instructions
	Substitute (=)
	Add (+)
	Subtract (-)
	Extended Add (++)
	Extended Subtract (--)
	Multiply (*)
	Divide (/)
	Modulo (MOD)

	6.6 Logic Operation Instructions
	Inclusive OR (|)
	AND (&)
	Exclusive OR (^)
	NOT (!)

	6.7 Numeric Comparison Instructions
	Numeric Comparison Instructions (==, <>, >, <, >=, <=)

	6.8 Data Manipulations
	Bit Shift Right (SFR)
	Bit Shift Left (SFL)
	Move Block (BLK)
	Clear (CLR)
	Table Initialization (SETW)
	ASCII Conversion 1 (ASCII)

	6.9 Basic Functions
	Sine (SIN)
	Cosine (COS)
	Tangent (TAN)
	Arc Sine (ASN)
	Arc Cosine (ACS)
	Arc Tangent (ATN)
	Square Root (SQT)
	BCD to Binary (BIN)
	Binary to BCD (BCD)
	Set Bit (S{ })
	Reset Bit (R{ })
	Rising-edge Pulse (PON)
	Falling-edge Pulse (NON)
	On-delay Timer: Measurement unit = 10 ms (TON)
	1-ms ON-Delay Timer (TON1MS)
	Off-delay Timer: Measurement unit = 10 ms (TOF)
	1-ms OFF-Delay Timer (TOF1MS)

	6.10 Vision Instructions

	7 Features of the MPE720 Engineering Tool
	7.1 Motion Editor
	7.2 Motion Instruction Entry Assistance
	7.3 Task Assignments
	7.4 Debug Operation
	7.5 Drive Control Panel
	7.6 Test Runs
	7.7 Axis Monitor and Alarm Monitor
	7.8 Cross References

	Appendix A Specifications
	A.1 Applicable Units and Modules
	A.2 Machine Controller Specifications

	Appendix B Sample Programs
	B.1 Motion Program Control Program
	B.2 Parallel Processing
	B.3 Performing Speed Control with a Motion Program
	B.4 Simple Synchronized Operation with a Virtual Axis
	B.5 Sequence Programs

	Appendix C Differences between MP2000-series and MP3000-series Machine Controllers
	Appendix D Precautions
	D.1 General Precautions
	Saving Data to Flash Memory when Changing Applications
	Debugging a System in Operation

	D.2 Precautions on Motion Parameters
	Performing Axis Movement Instructions on the Same Axis in Motion Programs
	Using a Subscript to Reference a Motion Register from an I/O Register
	Referencing the Motion Register of a Different Circuit
	OLooo1C (Position Reference Setting) Setting Parameter
	Axis Operation for Software Limit Alarms

	Index
	Symbol
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	Revision History
	Back Cover

