YASKAWA

HV600

NARROW BYPASS INSTALLATION \& STARTUP

> AC DRIVEBYPASSFOR HVAC FAN \& PUMP APPLICATIONS

CATALOGCODE:
H6BPxxxx
CAPACITIES:
208 V: 0.5 to 25 HP
480 V: 0.5 to 60 HP

This Page Intentionally Blank

Table of Contents

i. Preface and General Precautions 7
i. 1 Definitions. 8
Product Description 8
Glossary 8
About Registered Trademarks 8
i. 2 Using the Product Safely 10
Explanation of Signal Words 10
General Safety 10
Warning Labels 12
Cybersecurity 13
Warranty Information 13

1. Receiving 15
1.1 Section Safety 16
1.2 Catalog Code and Nameplate Check 17
Narrow Bypass Nameplate 17
Drive Nameplate 18
How to Read Narrow Bypass Catalog Codes 18
2. Mechanical Installation 21
2.1 Section Safety 22
2.2 Installation Environment 24
2.3 Narrow Bypass Installation Position and Clearances 25
2.4 Bypass Components 26
2.5 Narrow Bypass Component Names 27
2.6 Moving the Bypass. 29
Using the Mounting Rails to Move the Bypass 29
2.7 Removing/Reattaching Covers 31
Removing/Reattaching the Bypass Cover Using Procedure 1 31
Removing/Reattaching the Drive Cover Using Procedure A 32
3. Electrical Installation 35
3.1 Section Safety 36
3.2 Wiring Diagram 38
Standard Connection Diagram 38
3.3 Main Circuit Wiring 42
Narrow Bypass Input and Output Power Wiring Connections 42
Factory Recommended Branch Circuit Protection 43
Wire Selection 43
Main Circuit Terminal and Motor Wiring 44
Protection of Main Circuit Terminals 45
3.4 Main Circuit Terminal Wiring Procedure 46
Narrow Bypass Main Circuit Terminal Block Wiring Procedure. 46
3.5 Bypass Controller 48
Wiring the Bypass Control Circuit Terminal 52
3.6 Drive Control Circuit 54
Wiring the Drive Control Circuit Terminal 59
3.7 Control I/O Connections 62
Set Input Signals for MFAI Terminals A1 and A2 62
Set Output Signals for MFAO Terminals FM, AM 62
3.8 Connect the Bypass to a PC 64
3.9 Motor Application Precautions 65
Precautions for Existing Standard Motors 65
Precautions for Specialized Motors 65
Notes on the Power Transmission Mechanism 66
4. Startup Procedure and Test Run 67
4.1 Section Safety 68
4.2 Keypad: Names and Functions 69
LCD Display 70
AUTO LED and HAND LED Indications 71
Keypad Mode and Menu Displays 73
4.3 Start-up, Test Operation, and Rotation Check 75
Items to Check before You Energize the Bypass 75
Bypass Start-Up Procedure. 76
Test Run and Rotation Check 77
4.4 Auto-Tuning. 81
Auto-Tuning for Induction Motors 81
Precautions before Auto-Tuning 81
4.5 Fine Tuning during Test Runs (Adjust the Control Function) 83
V/f Control 83
5. Troubleshooting 85
5.1 Section Safety 86
5.2 Types of Faults, Minor Faults, Alarms, and Errors 88
5.3 Faults, Minor Faults, Alarms, and Error Codes Listed Alphabetically 89
5.4 Faults, Minor Faults, Alarms, and Error Codes Listed by Decimal Value for Use with BACnet/Modbus 96
5.5 Faults 102
5.6 Minor Faults/Alarms 126
5.7 Parameter Setting Errors 139
5.8 Auto-Tuning Errors 142
5.9 Backup Function Operating Mode Display and Errors 145
5.10 Bypass Status Messages 146
5.11 Diagnosing and Resetting Faults 147
Fault and Power Loss Occur at the Same Time 147
Fault Occurs Without Power Loss 147
Fault Reset 147
6. Specifications 149
6.1 Section Safety 150
6.2 208 V Narrow Model Specifications 151
6.3 480 V Narrow Model Specifications 153
6.4 Common Bypass Specifications 155
6.5 Drive Watt Loss and Derating 157
6.6 Peripheral Devices and Options 158
Bypass Options 158
Option Installation Procedure 159
6.7 Periodic Inspection and Maintenance 163
7. Parameter List 165
7.1 How to Read the Parameter List 166
Terms that Identify Parameters 166
Parameter Groups 166
7.2 A: Initialization Parameters 168
7.3 b: Application 171
$7.4 \quad$ C: Tuning 178
7.5 d: Reference Settings 180
7.6 E: Motor Parameters 182
7.7 F: Options 184
7.8 H : Terminal Functions 189
7.9 L: Protection Functions 206
7.10 n : Special Adjustment 213
7.11 o: Keypad-Related Settings 214
7.12 S: Special Applications 220
7.13 Y: Application Features 229
7.14 Z: Bypass Parameters 237
7.15 U: Monitors 245
8. Network Communications 261
8.1 Section Safety 262
8.2 Fieldbus Network Support 263
8.3 BACnet Communications 264
Configure Master/Slave 264
Communication Specifications 264
Communication with the Controller 265
Bypass Operations by Serial Communications 266
BACnet Objects Supported 267
Accessing Drive Parameters and the Enter Command 278
Self-Diagnostics 279
BACnet Protocol Implementation Conformance Statement 280
8.4 Other Embedded Communication Protocols 283
9. Standards Compliance 285
9.1 Section Safety 286
9.2 UL Standards 288
Area of Use. 288
9.3 Seismic Standards 289
9.4 European Standards 290
EU Declaration of Conformity 290
CE Low Voltage Directive Compliance 290
EMC Directive 290
10. Disposal 297
10.1 Section Safety 298
10.2 Disposal Instructions. 299
10.3 WEEE Directive 300
Index 301
Revision History 305

Preface and General Precautions

This chapter gives information about important safety precautions for the use of this product. Failure to obey these precautions can cause serious injury or death, or damage to the product or related devices and systems. Yaskawa must not be held responsible for any injury or equipment damage as a result of the failure to observe these precautions and instructions.
i. 1 Definitions 8
i. 2 Using the Product Safely 10

i. 1 Definitions

These instructions contain the information necessary to use the product correctly. Read and understand the safety information and precautions before you start to use the product.

Product Description

The HV600 bypass provides a way to bypass the drive and allow the motor to operate directly from the AC line at full speed. It incorporates an AC drive and a two or three-contactor bypass arrangement in a single UL listed enclosure. The two electrically-interlocked IEC-rated contactors isolate the drive from the load when operating in Bypass Mode. Control logic provides industry standard Hand/Off/Auto functions, BAS Interlock, and safety circuit interlocks in both Drive and Bypass operating modes.
Bypass components include: a fused 120 Vac control circuit transformer, an input disconnect, motor overload, DC link choke, EMC filter, and an HOA keypad with LCD display.
The HV600 drive, a component of the bypass package, is a pulse width modulated drive for three-phase AC induction motors. This type of drive is also known as an adjustable frequency drive, variable frequency drive, AC Drive, AFD, ASD, VFD, and inverter.
The drive is a variable torque AC drive, designed specifically for HVAC applications in building automation, including fans, blowers and pumps.
The bypass has embedded communications for the popular building automation protocols, BACnet (MSTP), N2, P1, and Modbus ${ }^{\circledR}$.
The LCD keypad is equipped with Hand/Off/Auto functions. Optional DriveWizard software allows upload/ download, as well as graphing and monitoring of drive parameters from a PC for ease of drive management.
Built-in PI control eliminates the need for closed loop output signals from a building automation system. It includes feedback display, inverse, square root and differential control functions, and maintains setpoint for closed loop control of fans and pumps for pressure, flow, or temperature regulation. There is also an additional independent PI control for external devices.

Glossary

Phrase	
Bypass	Yefinition
Drive	YASKAWA AC Drive Bypass HV600
MFAI	Multi-Function Analog Input
MFAO	Multi-Function Analog Output
MFDI	Multi-Function Digital Input
MFDO	Multi-Function Digital Output
V/f	V/f Control

- About Registered Trademarks

- APOGEE FLN is a registered trademark of Siemens Building Technologies, Inc.
- APOGEE Anywhere is a trademark of Siemens Building Technologies, Inc.
- BACnet is a trademark of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE).
- EtherNet/IP is a registered trademark of Open DeviceNet Vendor Association, Inc. (ODVA).
- LonWorks and LonTalk are registered trademarks of Echelon Corporation.
- Metasys N2 is a trademark of Johnson Controls, Inc.
- Modbus is a registered trademark of Schneider Electric SA.
- PROFINET is a registered trademark of PROFIBUS International.
- Other company names and product names in this document are trademarks or registered trademarks of the respective companies.

i. 2 Using the Product Safely

Explanation of Signal Words

AWARNING

Read and understand this manual before you install, operate, or do maintenance on the drive. Install the drive as specified by this manual and local codes.
The symbols in this section identify safety messages in this manual. If you do not obey these safety messages, the hazards can cause serious injury, death, or damage to the products and related equipment and systems.

These identifier words categorize and emphasize important safety precautions in these instructions.

! DANGER

This signal word identifies a hazard that will cause serious injury or death if you do not prevent it.

AWARNING

This signal word identifies a hazard that can cause death or serious injuries if you do not prevent it.

ACAUTION

Identifies a hazardous situation, which, if not avoided, can cause minor or moderate injury.

NOTICE

This signal word identifies a property damage message that is not related to personal injury.

General Safety

General Precautions

Some figures in the instructions include options and bypasses without covers or safety shields to more clearly show the inside of the bypass. Replace covers and shields before operation. Use options and bypasses only as specified by the instructions.
The figures in this manual are examples only. All figures do not apply to all products included in this manual.
Yaskawa can change the products, specifications, and content of the instructions without notice to make the product and/or the instructions better.
If you damage or lose these instructions, contact a Yaskawa representative or the nearest Yaskawa sales office on the rear cover of the manual, and tell them the document number to order new copies.

! DANGER

Do not ignore the safety messages in this manual.
If you ignore the safety messages in this manual, it will cause serious injury or death. The manufacturer is not responsible for injuries or damage to equipment.

Electrical Shock Hazard

Do not examine, connect, or disconnect wiring on an energized bypass. Before servicing, disconnect all power to the equipment and wait for the time specified on the warning label at a minimum. The internal capacitor stays charged after the bypass is de-energized. The charge indicator LED extinguishes when the DC bus voltage decreases below 50 Vdc. When all indicators are OFF, remove the covers before measuring for dangerous voltages to make sure that the bypass is safe.
If you do work on the bypass when it is energized, it will cause serious injury or death from electrical shock.

ACAUTION

Crush Hazard

Tighten terminal cover screws and hold the case safely when you move the bypass.
If the bypass or covers fall, it can cause moderate injury.

NOTICE

Use an inverter-duty motor with reinforced insulation and windings applicable for use with an AC drive.
If the motor does not have the correct insulation, it can cause a short circuit or ground fault from insulation deterioration.

Damage to Equipment

When you touch the bypass, drive, and circuit boards, make sure that you observe correct electrostatic discharge (ESD) procedures.
If you do not follow procedures, it can cause ESD damage to the drive and bypass circuitry.
Do not do a withstand voltage test or use a megohmmeter or megger insulation tester on the bypass.
These tests can cause damage to the bypass.
Do not operate a bypass or connected equipment that has damaged or missing parts.
You can cause damage to the bypass and connected equipment.
Do not use steam or other disinfectants to fumigate wood for packaging the bypass. Use alternative methods, for example heat treatment, before you package the components.
Gas from wood packaging fumigated with halogen disinfectants, for example fluorine, chlorine, bromine, iodine or DOP gas (phthalic acid ester), can cause damage to the bypass.

Warning Labels

The drive warning label is in the location shown in Figure i.1. Use the drive as specified by this information.

Figure i. 1 Drive Warning Label Content and Location
The bypass warning labels are in the locations shown in Figure i.2. Use the bypass as specified by this information.

Figure i. 2 Bypass Warning Labels and Locations

- Cybersecurity

This product is designed to connect and communicate information and data through a network interface. It is the sole responsibility of the customer to provide and continuously guarantee a secure connection between the product and the customer's network or if applicable, any other network. The customer must establish and maintain the appropriate measures (such as, but not limited to, the installation of firewalls, the application of authentication measures, the encryption of data, the installation of antivirus programs, etc.) to protect the product, the network, its system and the interface against all types of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. Yaskawa and its affiliates are not responsible for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

Warranty Information

Exclusion of Liability

- This product is not designed and manufactured for use in life-support machines or systems.
- Contact a Yaskawa representative or your Yaskawa sales representative if you are considering the application of this product for special purposes, such as machines or systems used for passenger cars, medicine, airplanes and aerospace, nuclear power, electric power, or undersea relaying.

AWARNING
When you use this product in applications where its failure could cause the loss of human life, a serious accident, or physical injury, you must install aplicable safety devices. If you do not correctly install safety devices, it can cause serious injury or death.

Receiving

This chapter gives information about the different drive models and features, and how to examine the drive when you receive it.
1.1 Section Safety 16
1.2 Catalog Code and Nameplate Check. 17

1.1 Section Safety

! DANGER

Do not ignore the safety messages in this manual.
If you ignore the safety messages in this manual, it will cause serious injury or death. The manufacturer is not responsible for injuries or damage to equipment.

1.2 Catalog Code and Nameplate Check

Please examine these items after you received the bypass:

- Examine the bypass and drive for damage or missing parts. Immediately contact the shipping company if there is damage. The Yaskawa warranty does not cover damage from shipping.
- Examine the model number on the bypass nameplate to make sure that you received the correct model.
- If you received a product different than what you ordered or your product has a defect, contact Yaskawa or your nearest sales representative.

- Narrow Bypass Nameplate

Figure 1.1 Narrow Bypass Nameplate Location Example

Drive Nameplate

Figure 1.2 Drive Nameplate Location

How to Read Narrow Bypass Catalog Codes

Use the information in Figure 1.3 and Table 1.1 to read the bypass catalog codes.

Figure 1.3 Narrow Bypass Catalog Code
Table 1.1 Narrow Bypass Catalog Code Details

No.		Description
1	Product series	
2	Bypass type - P: IP20/UL Type 1 Narrow - N: IP55/UL Type 12 Narrow	
3	Input power supply voltage - D: Three-Phase 208 V - B: Three-Phase 480 V	

No.	Description
4	Bypass output amps
5	Power options - M: Lockable circuit breaker (100 kA SCCR Panel Rating) - B: 3-contactor bypass - G: Drive input service switch
6	Control options - W: Custom nameplate - D: EtherNet/IP - L: LonWorks
7	Special options - B: Bluetooth HOA keypad

- Narrow Bypass Models, Drive Models, and Capacities

Table 1.2 Three-Phase AC 208 V Narrow Models and Capacities (NEMA Rating)

Bypass Model H6BP	Capacity			Drive Catalog Code HV60U	Electrical Schematic	Weight (lb)
	HP	Input (A)	Output (A)			
D002	0.5	2.9	2.4	2011	DS.H6BP. 01	55
D003	0.75	4.0	3.5	2011	DS.H6BP. 01	55
D004	1	5.1	4.6	2011	DS.H6BP. 01	55
D007	2	8.0	7.5	2011	DS.H6BP. 01	55
D010	3	11.1	10.6	2011	DS.H6BP. 01	55
D016	5	17.2	16.7	2017	DS.H6BP. 01	55
D024	7.5	24.7	24.2	2024	DS.H6BP. 01	62
D030	10	31.3	30.8	2031	DS.H6BP. 01	64
D046	15	46.7	46.2	2046	DS.H6BP. 01	87
D059	20	59.9	59.4	2059	DS.H6BP. 01	92
D074	25	75.3	74.8	2075	DS.H6BP. 01	128

Table 1.3 Three-Phase AC 480 V Narrow Models and Capacities (NEMA Rating)

Bypass Model H6BP	Capacity			Drive Catalog Code HV60U	Electrical Schematic	Weight (lb)
	HP	Input (A)	Output (A)			
B1P1	0.5	1.3	1.1	4005	DS.H6BP. 01	56
B001	0.75	1.8	1.6	4005	DS.H6BP. 01	56
B002	1	2.3	2.1	4005	DS.H6BP. 01	56
B003	2	3.6	3.4	4005	DS.H6BP. 01	56
B004	3	5.0	4.8	4005	DS.H6BP. 01	56
B007	4	7.8	7.6	4008	DS.H6BP. 01	56
B011	7.5	11.2	11.0	4011	DS.H6BP. 01	56
B014	10	14.2	14.0	4014	DS.H6BP. 01	56
B021	15	21.2	21.0	4021	DS.H6BP. 01	62
B027	20	27.2	27.0	4027	DS.H6BP. 01	65
B034	25	34.2	34.0	4034	DS.H6BP. 01	81
B040	30	40.2	40.0	4040	DS.H6BP. 01	90
B052	40	52.2	52.0	4052	DS.H6BP. 01	96
B065	50	65.2	65.0	4065	DS.H6BP. 01	121
B077	60	77.2	77.0	4077	DS.H6BP. 01	135

Mechanical Installation

This chapter explains how to properly mount and install the drive.
2.1 Section Safety 22
2.2 Installation Environment 24
2.3 Narrow Bypass Installation Position and Clearances 25
2.4 Bypass Components 26
2.5 Narrow Bypass Component Names 27
2.6 Moving the Bypass 29
2.7 Removing/Reattaching Covers 31

2.1 Section Safety

AWARNING

Electrical Shock Hazard

Only let approved personnel install, wire, maintain, examine, replace parts, and repair the bypass. If personnel are not approved, it can cause serious injury or death.
Do not modify the bypass body, drive body, bypass circuitry, or drive circuitry.
Modifications to bypass and drive body and circuitry can cause serious injury or death, will cause damage to the bypass and drive, and will void the warranty. Yaskawa is not responsible for modifications of the product made by the user.

Fire Hazard

Do not put flammable or combustible materials on top of the bypass and do not install the bypass near flammable or combustible materials. Attach the bypass to metal or other noncombustible material.
Flammable and combustible materials can start a fire and cause serious injury or death.

Crush Hazard

Only approved personnel can operate a crane or hoist to move the bypass.
If unapproved personnel operate a crane or hoist, it can cause serious injury or death from falling equipment.
Before you hang the bypass vertically, use screws to correctly attach the front cover and other components.
If you do not secure the front cover, it can fall and cause minor injury.
When you use a crane or hoist to lift the bypass during installation or removal, prevent more than $1.96 \mathrm{~m} / \mathrm{s}^{2}$ (0.2 G) vibration or impact.
Too much vibration or impact can cause serious injury or death from falling equipment.
When you lift the bypass during installation or removal, do not try to turn it over and do not ignore a hanging bypass.
If you move a hanging bypass too much or if you ignore it, it can fall and cause serious injury or death.

Use a crane or hoist to move large bypasses when necessary.

If you try to move a large bypass without a crane or hoist, it can cause serious injury or death.

ACAUTION

Crush Hazard

Tighten terminal cover screws and hold the case safely when you move the bypass. If the bypass or covers fall, it can cause moderate injury.

NOTICE

Do not let unwanted objects, for example metal shavings or wire clippings, fall into the bypass during installation. Put a temporary cover over the bypass during installation. Remove the temporary cover before start-up.
Unwanted objects inside of the bypass can cause damage to the bypass.

Damage to Equipment

When you touch the drive and bypass circuit boards, make sure that you observe correct electrostatic discharge (ESD) procedures.
If you do not follow procedures, it can cause ESD damage to the drive and bypass circuitry.
Install vibration-proof rubber on the base of the motor or use the frequency jump function in the bypass to prevent specific frequencies that vibrate the motor.
Motor or system resonant vibration can occur in fixed speed machines that are converted to variable speed. Too much vibration can cause damage to equipment.

2.2 Installation Environment

The installation environment is important for the lifespan of the product and to make sure that the bypass performance is correct. Make sure that the installation environment agrees with these specifications.

Environment	Conditions
Area of Use	Indoors
Ambient Temperature Setting	IP20/UL Type 1: $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ IP55/UL Type $12:-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ - Do not let the bypass freeze.
Humidity	98% RH or less Do not let condensation form on the bypass.
Storage Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.+158{ }^{\circ} \mathrm{F}\right)$ (short-term temperature during transportation)
Surrounding Area	Pollution degree 2 or less Install the bypass in an area without: - Oil mist, corrosive or flammable gas, or dust - Metal powder, oil, water, or other unwanted materials - Radioactive materials or flammable materials, including wood - Harmful gas or fluids - Salt - Direct sunlight Keep wood and other flammable materials away from the bypass.
Altitude	$1000 \mathrm{~m}(3281 \mathrm{ft})$ maximum Note: Derate the output current by 1% for each $100 \mathrm{~m}(328 \mathrm{ft})$ to install the bypass in altitudes between 1000 m to $4000 \mathrm{~m}(3281 \mathrm{ft}$ to 13123 ft$)$. It is not necessary to derate the rated voltage in these conditions: - When you install the bypass at $2000 \mathrm{~m}(6562 \mathrm{ft})$ or lower - When you install the bypass between 2000 m to $4000 \mathrm{~m}(6562 \mathrm{ft}$ to 13123 ft) and ground the neutral point on the power supply.
Vibration	- 10 Hz to $20 \mathrm{~Hz}: 1 \mathrm{G}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}, 32.15 \mathrm{ft} / \mathrm{s}^{2}\right)$ - 20 Hz to 55 Hz : H6BPD002 to D030, H6BPB1P1, B001 to B034: $0.6 \mathrm{G}\left(5.9 \mathrm{~m} / \mathrm{s}^{2}, 19.36 \mathrm{ft} / \mathrm{s}^{2}\right)$ H6BPD046 to H6BPD074, H6BPB040 to B077: $0.2 \mathrm{G}\left(1.96 \mathrm{~m} / \mathrm{s}^{2}, 6.43 \mathrm{ft} / \mathrm{s}^{2}\right)$ - 20 Hz to 55 Hz : H6B1D002 to D030, H6B1A002 to A028, H6B1B1P1, B001 to B034: $0.6 \mathrm{G}\left(5.9 \mathrm{~m} / \mathrm{s}^{2}, 19.36 \mathrm{ft} / \mathrm{s}^{2}\right)$ H6B1D046 to D273, H6B1A042 to A248, H6B1B040 to B302: 0.2 G (1.96 m/s $\left.{ }^{2}, 6.43 \mathrm{ft} / \mathrm{s}^{2}\right)$
Installation Orientation	Install the bypass vertically for sufficient cooling airflow.

NOTICE: Do not let unwanted objects, for example metal shavings or wire clippings, fall into the bypass during installation. Put a temporary cover over the bypass during installation. Remove the temporary cover before start-up. Unwanted objects inside of the bypass can cause damage to the bypass.

Note:

Do not put peripheral devices, transformers, or other electronics near the bypass. Shield the bypass from electrical interference if components must be near the bypass. The bypass or the devices around the bypass may malfunction due to electrical interference.

2.3 Narrow Bypass Installation Position and Clearances

- Installation Dimensions

Refer to the Dimension Drawing (DD.HB.x.xx.xx) packaged with the bypass for exterior and mounting dimensions for your model.

Installation Position

Install the bypass vertically for sufficient cooling airflow.

A

B

A - Vertical installation
B - Horizontal installation
Figure 2.1 Installation Position

Single Narrow Bypass Installation Clearances

Use the clearances specified in Figure 2.2 to install the bypass. Make sure that there is sufficient space for wiring and airflow.

A- 50 mm (2 in) minimum

C - 120 mm (4.7 in) minimum *1
$B-30 \mathrm{~mm}$ ($\mathbf{1 . 2} \mathbf{i n}$) minimum

D - Airflow direction

Figure 2.2 Single Bypass Installation
*1 This is the distance from a component or mounting bracket that has the maximum height. The highest component is different for different models.

2.4 Bypass Components

Input Disconnect Switch

Electrically located on the input power side of the bypass, the door mounted rotary input disconnect switch provides a way to disconnect bypass from line power for equipment maintenance. Put the disconnect in the OFF position to open the bypass enclosure door. When open, you can use a padlock to lock the handle in the OFF position. The customer must supply branch short circuit protection for the bypass.

Contactors

The bypass is a 2 -contactor or 3-contactor bypass circuit employing IEC rated contactors in an electrically interlocked arrangement to allow mutually exclusive operation in Drive or Bypass modes.
The control logic and "soft start" characteristic of the drive limit the drive input and output contactors to motor FLA current or less. For this reason, the drive output contactor has a lower current rating than the bypass contactor. The bypass contactor is exposed to motor inrush current (LRA) when starting the motor across-the-line and therefore requires a higher current rating.

Overload Relay

Electronic overload relay consists of bypass relay board and two pass-through current transformers. Overload relay functions, settings, adjustments and reset operations are done through the keypad. The bypass three-phase output power connection to the motor is made to terminal block TB3.

Control Power Transformer

A Control Power Transformer (CPT) is provided to power the bypass 120 Vac control circuit. The VA capacity is determined by the control circuit and optional functions specified for the unit. The CPT primary is fused in both legs, the secondary is fused when required by NEC (transformer VA and wire size dependent). One side of the transformer secondary is grounded to the bypass enclosure.

2.5 Narrow Bypass Component Names

This section gives an overview of the Narrow Bypass components described in this manual.

208 V Narrow Models: H6BPD002 to D074 480 V Narrow Models: H6BPB1P1, B001 to B077

A-Bypass bracket mounting hole
B - Disconnect shaft
C - Bypass front cover captive screws
D - Disconnect handle
E - Bypass front cover
F - Bypass enclosure G - Keypad mounting screw

H - Keypad
I - Keypad mounting bracket screw
J - Keypad mounting bracket
K - Drive
L - Blank keypad
M - Drive mounting screw

Figure 2.3 Exploded View of Components (Example Narrow Model D024)

A - Output contactor K2
B - Input contactor K1
C - Motor connections
D - Input power terminals
E - Ground terminals
F - A2 bypass control board
G-120 V control transformer
H - Bypass contactor K3
I- USB port CN1

J - Terminal TB6 (Ground)
K - Terminal TB3 (Serial Comms)
L - RS-485 terminator switch S1
M - Terminal TB4 (Analog Input)
N - Analog input V or I switch S2
O - Terminal TB2 (Digital Inputs)
P - Terminal TB1 (Digital Outputs)
Q - Digital operator port CN2
R - Option card connector CN5

Figure 2.4 Front View of Narrow Components

2.6 Moving the Bypass

Obey local laws and regulations when you move and install this product.
CAUTION! Crush Hazard. Tighten terminal cover screws and hold the case safely when you move the bypass. If the bypass or covers fall, it can cause moderate injury.

Bypass Weight	Persons Necessary to Move the Bypass
$<15 \mathrm{~kg}(33 \mathrm{lbs})$.	1
$\geq 15 \mathrm{~kg}(33 \mathrm{lbs})$	$2+$ using appropriate lifting equipment

Refer to Using the Mounting Rails to Move the Bypass on page 29 for information about how to use suspension systems, wires, or hanging metal brackets to move the bypass.

Using the Mounting Rails to Move the Bypass

Use the holes in the mounting rails attached to the bypass to temporarily lift the bypass when you install it. Do not let the bypass stay vertically or horizontally suspended or move the bypass over a long distance while it is suspended. Before you install the bypass, make sure that you read these precautions:
WARNING! Crush Hazard. Before you hang the bypass vertically, use screws to correctly attach the front cover and other components. If you do not secure the front cover, it can fall and cause minor injury.
WARNING! Crush Hazard. When you use a crane or hoist to lift the bypass during installation or removal, prevent more than 1.96 $\mathrm{m} / \mathrm{s}^{2}(0.2 \mathrm{G})$ vibration or impact. Too much vibration or impact can cause serious injury or death from falling equipment.
WARNING! Crush Hazard. When you lift the bypass during installation or removal, do not try to turn it over and do not ignore a hanging bypass. If you move a hanging bypass too much or if you ignore it, it can fall and cause serious injury or death.

■ Vertical Suspension

To use the hanging brackets to vertically suspend the drive, lift the drive with this procedure:

1. Put wire through the two holes in the hanging brackets.

A - Suspension angle of at least 50 degrees

Figure 2.5 Vertical Suspension
2. Use a crane to gradually wind up the wire. Visually make sure that there is sufficient tension in the wire, then lift the drive to its correct location.
3. Prepare the control panel for installation, then lower the drive.

Note:

When you lower the drive, stop before the drive touches the floor, then slowly lower it the remaining distance.

Horizontal Suspension

When horizontal suspension is necessary, use this procedure to hang the bypass:

1. Put the bypass on the ground horizontally.

NOTICE: When you attach a horizontal lifting cable or chain to the bypass, use a jig or pad between the wire and the bypass. The wire can scratch the drive and cause damage to the bypass.

A - Hanging bracket (4)
Figure 2.6 Horizontal Suspension
2. Connect wires to the four hanging brackets.
3. Use a crane to lift the bypass.

2.7 Removing/Reattaching Covers

This section gives information about how to remove and reattach the bypass front cover and drive front cover and terminal cover for wiring and inspection.
Refer to Table 2.1 for more information.
Table 2.1 Procedures to Remove Covers by Model

Bypass Model H6BP	Bypass Cover Removal Procedure	Drive Cover Removal Procedure
D002 - D074	Procedure 1	Procedure A
B1P1-B077	31	32

Removing/Reattaching the Bypass Cover Using Procedure 1

DANGER! Electrical Shock Hazard. Do not examine, connect, or disconnect wiring on an energized bypass. Before servicing, disconnect all power to the equipment and wait for the time specified on the warning label at a minimum. The internal capacitor stays charged after the bypass is de-energized. The charge indicator LED extinguishes when the DC bus voltage decreases below 50 Vdc. When all indicators are OFF, remove the covers before measuring for dangerous voltages to make sure that the bypass is safe. If you do work on the bypass when it is energized, it will cause serious injury or death from electrical shock.

1. Turn the disconnect handle to the "OFF" position.

DANGER! Electrical Shock Hazard. Do not examine, connect, or disconnect wiring on an energized bypass. Before servicing, disconnect all power to the equipment and wait for the time specified on the warning label at a minimum. The internal capacitor stays charged after the bypass is de-energized. The charge indicator LED extinguishes when the DC bus voltage decreases below 50 Vdc. When all indicators are OFF, remove the covers before measuring for dangerous voltages to make sure that the bypass is safe. If you do work on the bypass when it is energized, it will cause serious injury or death from electrical shock.

Figure 2.7 Disconnect Power
2. Loosen the captive front cover screws.

Figure 2.8 Loosen the Front Cover Screws
3. Lift up the cover and gently pull forward to remove the front cover.

Figure 2.9 Remove the Front Cover
4. Reverse the steps to reattach the cover.

Removing/Reattaching the Drive Cover Using Procedure A

DANGER! Electrical Shock Hazard. Do not examine, connect, or disconnect wiring on an energized bypass. Before servicing, disconnect all power to the equipment and wait for the time specified on the warning label at a minimum. The internal capacitor stays charged after the bypass is de-energized. The charge indicator LED extinguishes when the DC bus voltage decreases below 50 Vdc. When all indicators are OFF, remove the covers before measuring for dangerous voltages to make sure that the bypass is safe. If you do work on the bypass when it is energized, it will cause serious injury or death from electrical shock.

Remove the Front Cover

1. Remove the bypass front cover in Procedure A
2. Loosen the front cover screw.

Figure 2.10 Loosen the Front Cover Screw
3. Push on the tabs in the sides of the front cover then pull the front cover forward to remove it from the drive.

Figure 2.11 Remove the Front Cover

Reattach the Front Cover

1. Wire the drive and other peripheral devices.
2. Reverse the steps to reattach the cover.

Note:

- Make sure that you did not pinch wires or signal lines between the front cover and the drive before you reattach the cover.
- Make sure that the tabs on the sides of the front cover correctly click into the hook.
-Tighten the screws to a tightening torque of $0.98 \mathrm{~N} \cdot \mathrm{~m}$ to $1.33 \mathrm{~N} \cdot \mathrm{~m}(8.67 \mathrm{in} \cdot \mathrm{lb}$ to $11.77 \mathrm{in} \cdot \mathrm{lb})$.

Figure 2.12 Reattach the Front Cover

Electrical Installation

This chapter explains how to wire the control circuit terminals, motor, and power supply.
3.1 Section Safety 36
3.2 Wiring Diagram 38
3.3 Main Circuit Wiring 42
3.4 Main Circuit Terminal Wiring Procedure 46
3.5 Bypass Controller 48
3.6 Drive Control Circuit 54
3.7 Control I/O Connections 62
3.8 Connect the Bypass to a PC 64
3.9 Motor Application Precautions 65

3.1 Section Safety

! DANGER
Electrical Shock Hazard
Do not examine, connect, or disconnect wiring on an energized bypass. Before servicing, disconnect all power to the equipment and wait for the time specified on the warning label at a minimum. The internal capacitor stays charged after the bypass is de-energized. The charge indicator LED extinguishes when the DC bus voltage decreases below 50 Vdd. When all indicators are OFF, remove the covers before measuring for dangerous voltages to make sure that the bypass is safe. If you do work on the bypass when it is energized, it will cause serious injury or death from electrical shock.

AWARNING

Electrical Shock Hazard

Do not operate the bypass when covers are missing. Replace covers and shields before you operate the bypass. Use the bypass only as specified by the instructions.
Some figures in this section include bypasses without covers or safety shields to more clearly show the inside of the bypass. If covers or safety shields are missing from the bypass, it can cause serious injury or death.

Ground the neutral point on the power supply of the bypass to comply with the EMC Directive before you turn on the EMC filter.
If you turn ON the EMC filter, but you do not ground the neutral point, it can cause serious injury or death.
Make sure that the protective ground wire conforms to technical standards and local safety regulations. The IEC/EN 61800-5-1:2007 standard specifies that you must wire the power supply to automatically de-energize when the protective ground wire disconnects. You can also connect a protective ground wire that has a minimum cross-sectional area of $10 \mathrm{~mm}^{2}$ (copper wire) or $16 \mathrm{~mm}^{2}$ (aluminum wire).
If you do not obey the standards and regulations, it can cause serious injury or death. The leakage current of the bypass will be more than 3.5 mA .

The bypass can cause a residual current with a DC component in the protective earthing conductor. When a residual current operated protective or monitoring device prevents direct or indirect contact, always use a type B Ground Fault Circuit Interrupter (GFCI) as specified by IEC/EN 60755.

If you do not use the correct GFCI, it can cause serious injury or death.
Do not wear loose clothing or jewelry when you do work on the bypass. Tighten loose clothing and remove all metal objects, for example watches or rings.
Loose clothing can catch on the bypass and jewelry can conduct electricity and cause serious injury or death.
Do not remove covers or touch circuit boards while the bypass is energized.
If you touch the internal components of an energized bypass, it can cause serious injury or death.
Only let approved personnel install, wire, maintain, examine, replace parts, and repair the bypass. If personnel are not approved, it can cause serious injury or death.
Do not modify the bypass body, drive body, bypass circuitry, or drive circuitry.
Modifications to bypass and drive body and circuitry can cause serious injury or death, will cause damage to the bypass and drive, and will void the warranty. Yaskawa is not responsible for modifications of the product made by the user.

Fire Hazard

Tighten all terminal screws to the correct tightening torque.
Connections that are too loose or too tight can cause incorrect operation and damage to the bypass. Incorrect connections can also cause death or serious injury from fire.

AWARNING

Tighten screws at an angle in the specified range shown in this manual.
If you tighten the screws at an angle not in the specified range, you can have loose connections that can cause damage to the terminal block or start a fire and cause serious injury or death.

Damage to Equipment

Do not apply incorrect voltage to the main circuit of the bypass. Operate the bypass in the specified range of the input voltage on the nameplate.
Voltages that are higher than the permitted nameplate tolerance can cause damage to the bypass.

NOTICE

Do not let unwanted objects, for example metal shavings or wire clippings, fall into the bypass during installation. Put a temporary cover over the bypass during installation. Remove the temporary cover before start-up.
Unwanted objects inside of the bypass can cause damage to the bypass.

Damage to Equipment

When you touch the bypass, drive, and circuit boards, make sure that you observe correct electrostatic discharge (ESD) procedures.
If you do not follow procedures, it can cause ESD damage to the drive and bypass circuitry.
Select a motor that is compatible with the load torque and speed range. When 100% continuous torque is necessary at low speed, use an inverter-duty motor. When you use a standard fan-cooled motor, decrease the motor torque in the low-speed range.
If you operate a standard fan-cooled motor at low speed and high torque, it will decrease the cooling effects and can cause heat damage.
Obey the speed range specification of the motor as specified by the manufacturer. When you must operate the motor outside of its specifications, contact the motor manufacturer.
If you continuously operate oil-lubricated motors outside of the manufacturer specifications, it can cause damage to the motor bearings.
When the input voltage is 440 V or higher or the wiring distance is longer than 100 m (328 ft), make sure that the motor insulation voltage is sufficient or use an inverter-duty motor with reinforced insulation.
Motor winding and insulation failure can occur.
Make sure that all connections are correct after you install the bypass and connect peripheral devices.
Incorrect connections can cause damage to the bypass.

Note:

- Torque characteristics are different than when you operate the motor directly from line power. Make sure that you understand the load torque characteristics for the application.
- The current rating of submersible motors is usually higher than the current rating of standard motors for a given motor power. Make sure that the rated output current of the bypass is equal to or more than the current rating of the motor. If the motor wire length is longer than 100 $\mathrm{m}(328 \mathrm{ft})$, select the correct wire gauge to adjust for a loss in voltage and prevent a loss of motor torque.
- Do not use unshielded wire for control wiring. Use shielded, twisted-pair wires and ground the shield to the ground terminal of the bypass. Unshielded wire can cause electrical interference and unsatisfactory system performance.

3.2 Wiring Diagram

3.2 Wiring Diagram

DANGER! Electrical Shock Hazard. Do not examine, connect, or disconnect wiring on an energized bypass. Before servicing, disconnect all power to the equipment and wait for the time specified on the warning label at a minimum. The internal capacitor stays charged after the bypass is de-energized. The charge indicator LED extinguishes when the DC bus voltage decreases below 50 Vdc. When all indicators are OFF, remove the covers before measuring for dangerous voltages to make sure that the bypass is safe. If you do work on the bypass when it is energized, it will cause serious injury or death from electrical shock.
WARNING! Electrical Shock Hazard. De-energize the bypass and wait 5 minutes minimum until the Charge LED turns off. Remove the front cover and terminal cover to do work on wiring, circuit boards, and other parts. Use terminals for their correct function only. Incorrect wiring, incorrect ground connections, and incorrect repair of protective covers can cause death or serious injury.
WARNING! Electrical Shock Hazard. Correctly ground the drive before you turn on the EMC filter switch. If you touch electrical equipment that is not grounded, it can cause serious injury or death.
WARNING! Electrical Shock Hazard. Use the terminals for the drive only for their intended purpose. Refer to the technical manual for more information about the I/O terminals. Wiring and grounding incorrectly or modifying the cover may damage the equipment or cause injury.

Standard Connection Diagram

Wire the bypass as specified by Figure 3.1.
WARNING! Sudden Movement Hazard. Set the MFDI parameters before you close control circuit switches. Incorrect Run/Stop circuit sequence settings can cause serious injury or death from moving equipment.
WARNING! Sudden Movement Hazard. Check the I/O signals and the external sequences for the drive before you set the Application Preset function. When you set the Application Preset function (A1-06 $=0$), it changes the I/O terminal functions for the drive and it can cause equipment to operate unusually. This can cause serious injury or death.
WARNING! Fire Hazard. Install sufficient branch circuit short circuit protection as specified by applicable codes and this manual. The bypass is suitable for circuits that supply not more than 100,000 RMS symmetrical amperes, 240 Vac maximum (208/240 V), 480 Vac maximum (480 V). Incorrect branch circuit short circuit protection can cause serious injury or death.
NOTICE: When the input voltage is 440 V or higher or the wiring distance is longer than 100 m (328 ft), make sure that the motor insulation voltage is sufficient or use an inverter-duty motor with reinforced insulation. Motor winding and insulation failure can occur.

Note:
Do not connect the AC control circuit ground to the drive enclosure. Incorrect ground wiring can cause the control circuit to operate incorrectly.

Page Intentionally Blank

3.3 Main Circuit Wiring

This section gives information about the functions, specifications, and procedures necessary to safely and correctly wire the main circuit in the bypass.
NOTICE: Damage to Equipment. Do not energize and de-energize the bypass more frequently than one time each 30 minutes. If you frequently energize and de-energize the bypass, it can cause failure.

Note:
Soldered wire connections can become loose over time and cause unsatisfactory performance.

Narrow Bypass Input and Output Power Wiring Connections

The input disconnect switch is located in the upper right hand side of the bypass. The three-phase input power connection is made to the input terminals of the disconnect. Refer to Figure 3.2 for a representative example. Motor Terminal Block TB1 is mounted to the contactor assembly or back panel (depending on rating), just above the bypass contactor. The bypass three-phase output power connection to the motor is made to Terminal Block TB1.

Note:
The location of components are different for different bypass models.

Figure 3.2 Narrow Bypass Circuit Components Example

Factory Recommended Branch Circuit Protection

WARNING! Fire Hazard. Branch Circuit protection is required to be installed according to applicable local codes and the requirements listed on the bypass nameplate. The bypass is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical amperes, 208/240 Vac and 480 Vac with the circuit breaker option or when protected by class J or class L fuses as specified on the bypass nameplate. Failure to obey can cause fire and damage to the bypass and drive or injury to personnel.
Yaskawa recommends installing branch circuit protection according to maintain compliance with UL508C.
Semiconductor protective type fuses are preferred. Alternate branch circuit protection devices are also listed in this manual.

- Wire Selection

Select the correct wires for main circuit wiring.

- Wire Selection Precautions

WARNING! Electrical Shock Hazard. Make sure that the protective ground wire conforms to technical standards and local safety regulations. The IEC/EN 61800-5-1:2007 standard specifies that you must wire the power supply to automatically de-energize when the protective ground wire disconnects. You can also connect a protective ground wire that has a minimum cross-sectional area of $10 \mathrm{~mm}^{2}$ (copper wire) or $16 \mathrm{~mm}^{2}$ (aluminum wire). If you do not obey the standards and regulations, it can cause serious injury or death. The leakage current of the bypass will be more than 3.5 mA .
Think about line voltage drop before you select wire gauges. Select wire gauges that drop the voltage by 2% or less of the rated voltage. Increase the wire gauge and the cable length when the risk of voltage drop increases. Calculate line voltage drop with this formula:
Line voltage drop $(V)=\sqrt{3} \times$ wire resistance $(\Omega / \mathrm{km}) \times$ wiring distance $(\mathrm{m}) \times$ motor rated current $(\mathrm{A}) \times 10^{-3}$.

- Wire Gauge and Torque Specifications for UL Listing

WARNING! Electrical Shock Hazard. Make sure that the protective ground wire conforms to technical standards and local safety regulations. The IEC/EN 61800-5-1:2007 standard specifies that you must wire the power supply to automatically de-energize when the protective ground wire disconnects. You can also connect a protective ground wire that has a minimum cross-sectional area of $10 \mathrm{~mm}^{2}$ (copper wire) or $16 \mathrm{~mm}^{2}$ (aluminum wire). If you do not obey the standards and regulations, it can cause serious injury or death. The leakage current of the bypass will be more than 3.5 mA .
Refer to the following tables for the recommended wire gauges and tightening torques of the main circuit terminals.

Note:

The recommended wire gauges are based on drive continuous current ratings with $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right) 600 \mathrm{~V}$ class copper wire. Assume these conditions:

- Ambient temperature: $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or lower
- Wiring distance: $100 \mathrm{~m}(3281 \mathrm{ft})$ or shorter
- Normal Duty Rated current value

- Bypass Control Circuit Wire Gauges and Torques

For input and output wire gauges and torques, refer to the Customer Connection Drawing (UDE00xxx) packaged with the bypass.

Table 3.1 Bypass Control Wiring

A1 Terminal Blocks TB1, TB3-TB6		A1 Terminal Block TB2 (FE)		A2 Terminal Blocks TB1-TB4 and TB6		Panel Terminal Block TB4
AWG, kcmil	Tightening Torque (in lb)	AWG, kcmil	Tightening Torque (in lb)	AWG, kcmil	Tightening Torque (in Ib)	AWG, kcmil
$24-16$	4.4 to 5.3	$24-18 * I$	8.85 to 10.62	$26-14$	4	Tightening Torque
(in lb)						

*1 24-16 is acceptable for solid wire or ferrule use only.

■ Bypass Input and Output Wire Gauges and Torques

For input and output wire gauges and torques, refer to the Customer Connection Drawing (UDE00xxx) packaged with the bypass.

Main Circuit Terminal and Motor Wiring

This section outlines the various steps, precautions, and checkpoints to wire the main circuit terminals and motor terminals.
WARNING! Sudden Movement Hazard. Make sure that you align the phase order for the bypass and motor when you connect the motor to output terminals U/T1, V/T2, and W/T3. If the phase order is incorrect, it can cause the motor to run in reverse. If the motor accidentally runs in reverse, it can cause serious injury or death.
NOTICE: Do not connect phase-advancing capacitors, LC/RC noise filters, or leakage breakers (GFCI) to the motor circuit. If you connect these devices to the output circuits, it can cause damage to the bypass and connected equipment.

Cable Length Between Bypass and Motor

When the wiring between the bypass and the motor is too long, voltage drop along the motor cable can decrease motor torque, usually at low frequency output. If you use a long motor cable to connect motors in parallel, this is also a problem. Output current increases when the leakage current from the cable increases. An increase in leakage current can cause overcurrent and decrease the precision of current detection.
If the system configuration makes the motor wiring distance more than $100 \mathrm{~m}(328 \mathrm{ft})$, do not use metal conduits or use isolated cables for each phase to decrease stray capacitance.

Table 3.2 Carrier Frequency against Cable Length Between Drive and Motor

Wiring Distance between the Bypass and Motor	$\mathbf{1 0 0} \mathbf{~ m ~ (3 2 8 ~ f t) ~ M a x i m u m ~}$
Carrier Frequency	2 kHz or less

Note:
-For bypass models D004 to D016, A002 to A015, and B1P1, B001 to B014:
-Shorter than 10 m : No carrier frequency derating from default setting (5 kHz) is necessary.
-10 m to 50 m : 5 kHz to 2 kHz is necessary.
-50 m and longer: 2 kHz

- To set the carrier frequency in a bypass that is operating more than one motor, calculate the cable length as the total distance of wiring to all connected motors.

- Ground Wiring

Follow these precautions to wire the ground for one bypass or a series of bypasses.
WARNING! Electrical Shock Hazard. Make sure that the protective ground wire conforms to technical standards and local safety regulations. The IEC/EN 61800-5-1:2007 standard specifies that you must wire the power supply to automatically de-energize when the protective ground wire disconnects. You can also connect a protective ground wire that has a minimum cross-sectional area of $10 \mathrm{~mm}^{2}$ (copper wire) or $16 \mathrm{~mm}^{2}$ (aluminum wire). If you do not obey the standards and regulations, it can cause serious injury or death. The leakage current of the bypass will be more than 3.5 mA .
WARNING! Electrical Shock Hazard. Ground the neutral point on the power supply of the bypass to comply with the EMC Directive before you turn on the EMC filter. If you turn ON the EMC filter, but you do not ground the neutral point, it can cause serious injury or death.
WARNING! Electrical Shock Hazard. Use a ground wire that complies with technical standards on electrical equipment and use the minimum length of ground wire. Incorrect equipment grounding can cause serious injury or death from dangerous electrical potentials on the equipment chassis.

Note:

- Only use the bypass grounding wire to ground the bypass. Do not share the ground wire with other devices, for example, welding machines or large-current electrical equipment. Incorrect equipment grounding can cause incorrect operation of equipment.
- To connect more than one bypass to the same grounding circuit, use the instructions in the manual. Incorrect equipment grounding can cause incorrect operation of equipment.
When you install more than one bypass, refer to Figure 3.3. Do not loop the grounding wire.

Figure 3.3 Wiring More than One Bypass

Wiring the Main Circuit Terminal Block

WARNING! Electrical Shock Hazard. Before you wire the main circuit terminals, make sure that MCCB and MC are OFF. If you touch electrical equipment when MCCB and MC are ON, it can cause serious injury or death.

Protection of Main Circuit Terminals

When you wire the main circuit terminals, do not let cable ends go near terminals or the drive. If you use crimped terminals, make sure that you also use insulation caps.

3.4 Main Circuit Terminal Wiring Procedure

DANGER! Electrical Shock Hazard. Do not examine, connect, or disconnect wiring on an energized bypass. Before servicing, disconnect all power to the equipment and wait for the time specified on the warning label at a minimum. The internal capacitor stays charged after the bypass is de-energized. The charge indicator LED extinguishes when the DC bus voltage decreases below 50 Vdc. When all indicators are OFF, remove the covers before measuring for dangerous voltages to make sure that the bypass is safe. If you do work on the bypass when it is energized, it will cause serious injury or death from electrical shock.

Notes on Wiring the Main Circuit Terminal

Read these safety messages and notes before you wire the main circuit terminal.
WARNING! Fire Hazard. Do not use bent or crushed wires. Remove the damaged end of the wire before you use it. Incorrect connections can cause death or serious injury from fire.
WARNING! Fire Hazard. If you use stranded wire, make sure that all of the wire strands are in the connection. Also, do not twist the stranded wire too much. Incorrect connections can cause death or serious injury from fire.
NOTICE: Do not solder stranded wire. Soldered wire connections can become loose over time and cause unsatisfactory drive performance.
NOTICE: If you use power tools to tighten the terminal screws, use a low speed setting (300 $\mathrm{min}^{-1}(\mathrm{r} / \mathrm{min})$ to $400 \mathrm{~min}^{-1}(\mathrm{r} / \mathrm{min})$). High speeds can cause damage to the terminal screws.

Note:

- Use UL Listed vinyl-coated insulated copper wires for operation with a continuous maximum permitted temperature of $75^{\circ} \mathrm{C}$ at 600 V .
- Remove all unwanted objects that are near the terminal block connections.
- Remove the insulation from the connection wires to the wire stripping lengths shown in the manual.
- Put the wire all the way into the terminal block. Remove the insulation from the wire to the recommended wire stripping length to fit the wire with insulation in the plastic housing.
- Use a torque driver, torque ratchet, or torque wrench for the screws. A slotted driver or a hex tool will be necessary to wire the screw clamp terminal. Use applicable tools as specified by the recommended conditions in the product manual.
- Put the bit all the way into the hex socket to tighten the hex socket cap screw.
-When tightening slotted screws, hold the straight-edge screwdriver perpendicularly to the screw. Take care to ensure that the tip of the straight-edge screwdriver is aligned with the screw groove.

Figure 3.4 Tightening Slotted Screws

- After connecting the wires to the terminal block, lightly pull on the wires to make sure that they do not come out of the terminals.

Narrow Bypass Main Circuit Terminal Block Wiring Procedure

1. Correctly ground the bypass terminal board.
2. Route the main circuit wiring. Figure 3.5 shows suggested wire entry and bending areas for the enclosure.

A - Optional drive control wiring
C - Main input circuit
B - Motor output circuit

Figure 3.5 Narrow Bypass Wire Routing Example (Models H6BPD002 to D074 and B1P1, B001 to B077)

3.5 Bypass Controller

Note:
When possible, use these control terminal connections on the bypass controller. There are additional control I/O terminals available on the drive, however those terminals are active in Drive Mode ONLY and may not report correctly in Bypass Mode.

Control Circuit Terminal Arrangement

The bypass control circuit terminals are in the positions shown in Figure 3.6.

Figure 3.6 Bypass Control Circuit Terminal Arrangement

Bypass Control Circuit Wire Gauges and Tightening Torques

Use the tables in this section to select the correct wires. Use shielded wire to wire the control circuit terminal block. Use crimp ferrules on the wire ends to make the wiring procedure easier and more reliable.

Table 3.3 Bypass Control Circuit Wire Gauges and Tightening Torques

Bypass Terminal Block	Terminal	Tightening Torque in•lb	Recommended Gauge AWG	Applicable Gauge AWG
TB1	DO-7- DO-10			
TB2	DI-1-DI-8, IG24, SHIELD			
TB3	SHEILD, TXRX-, TXRX+, IG5		18	$26-14$
TB4	+10 Vdc, AI-1, COMMON			
TB6	GROUND, GROUND			

Crimp Ferrules

Attach an insulated sleeve when you use crimp ferrules. Refer to Table 3.4 for the recommended external dimensions and model numbers of the crimp ferrules.
Use the CRIMPFOX 6, a crimping tool made by PHOENIX CONTACT.

Figure 3.7 External Dimensions of Crimp Ferrules
Table 3.4 Crimp Ferrule Models and Sizes

Wire Gauge $\mathbf{m m}^{2}$ (AWG)	Model	$\mathbf{L}(\mathbf{m m})$	$\mathbf{L 1}(\mathbf{m m})$	$\boldsymbol{\varphi d 1}(\mathbf{m m})$	$\boldsymbol{\varphi d 2}(\mathbf{m m})$
$0.25(24)$	AI $0.25-8 \mathrm{YE}$	12.5	8	0.8	
$0.34(22)$	AI $0.34-8 \mathrm{TQ}$	12.5	8	0.8	
$0.5(20)$	AI $0.5-8 \mathrm{WH}$ AI $0.5-8 \mathrm{OG}$	14	8	2.0	
$0.75(18)$	AI $0.75-8 \mathrm{GY}$	14	8	1.1	

Bypass Control Circuit Terminal Block Input Functions

WARNING! Sudden Movement Hazard. Correctly wire and test all control circuits to make sure that the control circuits operate correctly. If you use a drive that has incorrect control circuit wiring or operation, it can cause death or serious injury.
WARNING! Sudden Movement Hazard. Check the I/O signals and the external sequences for the drive before you set the Application Preset function. When you set the Application Preset function (A1-06 $=0$), it changes the I/O terminal functions for the drive and it can cause equipment to operate unusually. This can cause serious injury or death.
NOTICE: Damage to Equipment. Do not energize and de-energize the bypass more frequently than one time each 30 minutes. If you frequently energize and de-energize the bypass, it can cause failure.

Table 3.5 Bypass Digital Input Terminals (TB2)

Type	Terminal	Name (Default)	Function (Signal Level)
Digital Inputs		Digital Input 1	Dry contact rated, photocoupler sinking input to IG24, 24 Vdc 8 mA , Ground fault protected
	DI-1	(Run (AUTO))	
	$\begin{gathered} \text { TB2-2 } \\ \text { DI-2 } \end{gathered}$	Digital Input 2 (Run Enable - Safety (NC))	
	$\begin{gathered} \text { TB2-3 } \\ \text { DI-3 } \end{gathered}$	Digital Input 3 (Run Interlock (BAS))	
	$\begin{gathered} \text { TB2-4 } \\ \text { DI-4 } \end{gathered}$	Digital Input 4 (Remote Transfer to Bypass)	
	$\begin{gathered} \text { TB2-5 } \\ \text { DI-5 } \end{gathered}$	Digital Input 5 (Emergency Override Bypass)	
	$\begin{gathered} \text { TB2-6 } \\ \text { DI-6 } \end{gathered}$	Digital Input 6 (Not used)	
	$\begin{gathered} \text { TB2-7 } \\ \text { DI-7 } \end{gathered}$	Digital Input 7 (Not used)	
	$\begin{gathered} \text { TB2-8 } \\ \text { DI-8 } \end{gathered}$	Digital Input 8 (Not used)	
	$\begin{gathered} \text { TB2-9/10 } \\ \text { IG24 } \end{gathered}$	Isolated Ground	Digital input common

Table 3.6 Bypass Analog Input Terminals (TB4)

Type	Terminal	Name (Default)	Function (Signal Level)
Analog Input	$\begin{gathered} \text { TB4-1 } \\ +10 \mathrm{Vdc} \end{gathered}$	Analog Input Power Supply	AUTO Mode Speed Reference 0 to $10 \mathrm{Vdc}(20 \mathrm{k} \Omega)$ or 4 to $20 \mathrm{~mA}(250 \Omega)$
	$\begin{gathered} \text { TB4-2 } \\ \text { AI } \end{gathered}$	Analog Input Speed Reference	
	TB4-3 COMMON	Analog Input Common	

Bypass Control Circuit Terminal Block Output Functions

Table 3.7 Bypass Digital Output Terminals (TB1)

Type	Terminal	Name (Default)	Function (Signal Level)
Digital Outputs	$\begin{gathered} \text { TB1-1/2/3 } \\ \text { DO-7 } \end{gathered}$	Digital Output 7 (Run Active)	Relay, dry contact form C, 30 Vdc or 120 Vac , DO-7 to DO-10 for customer use, 2 Amp
	$\begin{gathered} \text { TB1-4/5/6 } \\ \text { DO-8 } \end{gathered}$	Digital Output 8 (HAND mode Active)	
	$\begin{gathered} \text { TB1-7/8/9 } \\ \text { DO-9 } \end{gathered}$	Digital Output 9 (AUTO mode Active)	
	$\begin{gathered} \text { TB1-10/11/ } \\ 12 \\ \text { DO-10 } \end{gathered}$	Digital Output 10 (Fault Active)	

Table 3.8 Control Circuit Ground Terminals (TB6)

Type	Terminal	Name (Default)	Function (Signal Level)
Ground	TB6-1/2	Chassis Ground	-

- Bypass Serial Communication Terminals

Table 3.9 Bypass Serial Communication Terminals (TB3)

Type	Terminal	Terminal Name	Function (Signal Level)	
Serial Communication	$\begin{gathered} \text { TB3-1 } \\ \text { IG5 } \end{gathered}$	Isolated ground	Ground reference for RS-485 signals. This is an isolated ground used only for communications and may be used in certain circumstances to connect the floating ground references of other communication devices.	
	TB3-2 TXRX + TB3-3 TXRX-	(+) Differential communication signal (-) Differential communication signal	- BACnet communications - APOGEE FLN communications - MEMOBUS/ Modbus communications - Metasys N2 communications Use an RS-485 cable to connect the drive. Note: Make sure that DIP switch S1 is ON to enable the termination resistor in the last drive in a BACnet, APOGEE FLN, MEMOBUS/ Modbus, or Metasys N2 network.	- RS-485 - BACnet communications: Maximum 76.8 kbps - APOGEE FLN communications: 4.8 or 9.6 kbps - MEMOBUS/Modbus communications: Maximum 115.2 kbps - Metasys N 2 communications: 9.6 kbps
	TB3-4 SHIELD	Shield tie point	Capacitively coupled to chassis ground.	

Switches on the Bypass Controller

The bypass controller has switches to adapt the bypass I/Os to the external control signals as shown in Figure 3.8. Set the switches to select the functions for each terminal.

Figure 3.8 Locations of Switches

Table 3.10 I/O Switch Functions

Position	Switch	Function	
A	DIP switch S1	RS-485 Terminating Resistor (120Ω) enables and disables the termination resistor of these communications: BACnet (MSTP) - APOGEE FLN - MEMOBUS/Modbus - Metasys N2	Default Setting
B	DIP switch S2	V/I switch for analog input.	OFF

Wiring the Bypass Control Circuit Terminal

WARNING! Electrical Shock Hazard. Do not remove covers or touch circuit boards while the bypass is energized. If you touch the internal components of an energized bypass, it can cause serious injury or death.
NOTICE: Do not let wire shields touch other signal lines or equipment. Insulate the wire shields with electrical tape or shrink tubing. If you do not insulate the wire shields, it can cause a short circuit and damage the drive.

Note:

- Isolate control circuit wiring from main circuit wiring and other high-power wiring. If the control circuit wires are adjacent to the main circuit wires, electrical interference can cause the bypass or the devices around the bypass to malfunction.
- Isolate TB1 contact output terminals from other control circuit wiring. If the output terminal wires are adjacent to other control circuit wires, electrical interference can cause the bypass or devices around the bypass to malfunction.
-Use a UL Listed Class 2 Power Supply to connect external power to the TB1 contact output control terminals. If the power supply for peripheral devices is incorrect, it can cause a decrease in bypass performance.
- Connect the shield of shielded cable to the applicable ground or shield terminal. If the shield connections are not correct, electrical interference can cause the bypass or devices around the bypass to malfunction.
Correctly ground the bypass terminals and complete main circuit wiring before you wire the control circuit. Remove the front cover.

1. Refer to Figure 3.9 and wire the control circuit.

WARNING! Fire Hazard. Tighten all terminal screws to the correct tightening torque. Connections that are too loose or too tight can cause incorrect operation and damage to the bypass. Incorrect connections can also cause death or serious injury from fire.
Note:

- Use shielded wires and shielded twisted-pair wires for the control circuit terminal wiring. If the grounding is not correct, electrical interference can cause the drive or devices around it to malfunction.
- Do not use control circuit wiring that is longer than $50 \mathrm{~m}(164 \mathrm{ft})$ to supply the frequency reference with an analog signal from a remote source. Wiring that is too long can cause unsatisfactory system performance.

Figure 3.9 Wiring Procedure for the Control Circuit
WARNING! Fire Hazard. Tighten all terminal screws to the correct tightening torque. Connections that are too loose or too tight can cause incorrect operation and damage to the bypass. Incorrect connections can also cause death or serious injury from fire.

NOTICE: Do not tin stranded wire with solder. Soldered wire connections can become loose over time and cause unsatisfactory system performance.

Note:

- Refer to Figure 3.10 for information to prepare terminal ends of the shielded wire.
- Prepare the wire ends of shielded twisted-pair wires as shown in Figure 3.10 to use an analog reference from an external frequency setting potentiometer to set the frequency. Connect the shield to TB2-11 or TB2-12 on the bypass control board or terminal FE on the drive.

A - Connect the shield to TB2-11 or TB2-12.
C - Insulate with electrical tape or shrink tubing.
B - Sheath

Figure 3.10 Prepare the Ends of Shielded Wire
2. Install the front cover to its initial position.

3.6 Drive Control Circuit

Note:

When possible, use the control terminal connections on the Bypass PCB A2. The additional control I/O terminals available on the Drive Control circuit, are active in Drive Mode ONLY and may not report correctly in Bypass Mode. Typically, the Drive Control circuit wiring is used with a PID feedback signal or an analog monitor (output). In most applications, you should not connect to the drive control circuit digital inputs (S1 to S 7) because it can cause unintended operation.

- Drive Control Circuit Terminal Arrangement

The drive control circuit terminals are in the positions shown in Figure 3.11.

Figure 3.11 Drive Control Circuit Terminal Arrangement
The tightening torque for the drive terminal screws is shown on the reverse side or the lower front side of the drive front cover.

Figure 3.12 Tightening Torque Display Location (Reverse Side of Drive Front Cover)

Figure 3.13 Tightening Torque Display Location (Lower Front Side of Drive Front Cover)

- Drive Control Circuit Wire Gauges and Tightening Torques

Use the tables in this section to select the correct wires. Use shielded wire to wire the control circuit terminal block. Use crimp ferrules on the wire ends to make the wiring procedure easier and more reliable.

Table 3.11 Drive Control Circuit Wire Gauges and Tightening Torques

Drive Terminal Block	Terminal	Screw Size	Tightening Torque $\mathrm{N} \cdot \mathrm{m}$ (in•lb)	Bare Wire		Crimp Ferrule	
				Recommended Gauge mm^{2} (AWG)	Applicable Gauge $\mathbf{m m}^{2}$ (AWG)	Recommended Gauge mm² (AWG)	Applicable Gauge $\mathbf{m m}^{2}$ (AWG)
TB1	$+\mathrm{V}, \mathrm{AC}, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{FM}$	M3	$\begin{gathered} 0.5-0.6 \\ (4.4-5.3) \end{gathered}$	$\begin{aligned} & 0.75 \\ & (18) \end{aligned}$	Stranded wire: $\begin{aligned} & 0.25-1.5 \\ & (24-16) \end{aligned}$ Solid wire: $\begin{aligned} & 0.25-1.5 \\ & (24-16) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (18) \end{aligned}$	$\begin{gathered} 0.25-1.5 \\ (24-16) \end{gathered}$
TB3	AM, AC, S1-S7						
TB4	SN, SC, SP, +P						
TB5	SN, HC, H1, H2						
TB6	AC, D+, D-, PS						
TB7	MA, MB, MC, M1-M6						
					Stranded wire: $0.12-0.75$		
			1.0-1.2	0.75	(26-18)	0.75	0.25-1.5
TB2	FE		$(8.85-10.62)$		Solid wire:		$(24-16)$
					0.2-1.5		
					(26-16)		

Crimp Ferrules

Attach an insulated sleeve when you use crimp ferrules. Refer to Table 3.12 for the recommended external dimensions and model numbers of the crimp ferrules.
Use the CRIMPFOX 6, a crimping tool made by PHOENIX CONTACT.

Figure 3.14 External Dimensions of Crimp Ferrules
Table 3.12 Crimp Ferrule Models and Sizes

Wire Gauge mm^{2} (AWG)	Model	L (mm)	L1 (mm)	$\varphi \mathrm{d} 1$ (mm)	$\varphi \mathrm{d} 2$ (mm)
0.25 (24)	AI $0.25-8 \mathrm{YE}$	12.5	8	0.8	2.0
0.34 (22)	AI 0.34-8TQ	12.5	8	0.8	2.0
0.5 (20)	$\begin{aligned} & \text { AI } 0.5-8 \mathrm{WH} \\ & \text { AI } 0.5-8 \mathrm{OG} \end{aligned}$	14	8	1.1	2.5
0.75 (18)	AI 0.75-8 GY	14	8	1.3	2.8

Drive Control Circuit Terminal Block Input Functions

$H x$-xx parameters set functions for the multi-function input and output terminals.
WARNING! Sudden Movement Hazard. Correctly wire and test all control circuits to make sure that the control circuits operate correctly. If you use a drive that has incorrect control circuit wiring or operation, it can cause death or serious injury.
WARNING! Sudden Movement Hazard. Check the I/O signals and the external sequences for the drive before you set the Application Preset function. When you set the Application Preset function ($A 1-06 \neq 0$), it changes the I/O terminal functions for the drive and it can cause equipment to operate unusually. This can cause serious injury or death.
NOTICE: Damage to Equipment. Do not energize and de-energize the bypass more frequently than one time each 30 minutes. If you frequently energize and de-energize the bypass, it can cause failure.
Refer to Table 3.13 for a list of input terminals and functions on the drive.

Table 3.13 Drive Multi-function Input Terminals

Drive Control Circuit Terminal Block Output Functions

Refer to Table 3.14 and Table 3.15 for a list of output terminals and functions.

Table 3.14 Drive Control Circuit Output Terminals

Type	Terminal	Name (Default)	Function (Signal Level)
Fault Relay Output	MA	N.O. output (Fault)	Drive Fault Signal Output - Relay output - $30 \mathrm{Vdc}, 10 \mathrm{~mA}$ to 2 A - $250 \mathrm{Vac}, 10 \mathrm{~mA}$ to 2 A - Minimum load: $5 \mathrm{~V}, 10 \mathrm{~mA}$ (Reference value) Note: - Active during Drive Mode only. - This will signal drive-based faults only. Note:
	MB	N.C. output (Fault)	
	MC	Digital output common	
MFDO	M1	MFDO (During Run)	Multi Function Digital Output - Relay output - $30 \mathrm{Vdc}, 10 \mathrm{~mA}$ to 2 A - $250 \mathrm{Vac}, 10 \mathrm{~mA}$ to 2 A - Minimum load: $5 \mathrm{~V}, 10 \mathrm{~mA}$ (Reference value) Note: - Active during Drive Mode only. - These are active for drive-based conditions only. - Do not set functions that frequently switch ON/OFF to MFDO (M1 to M6) because this will decrease the performance life of the relay contacts. Yaskawa estimates switching life at 200,000 times (assumes 1 A , resistive load).
	M2		
	M3	MFDO (Zero Speed)	
	M4		
	M5	MFDO (Speed Agree 1)	
	M6		

Table 3.15 Drive Control Circuit Monitor Output Terminals

\begin{tabular}{|c|c|c|c|}
\hline Type \& Terminal \& Name (Default) \& Function (Signal Level)

\hline \multirow[t]{2}{*}{Monitor Output} \& FM

AM \& \begin{tabular}{l}
MFAO 1

(Output frequency)

MFAO 2

(Output current)

 \&

Multi Function Analog Output

Select voltage or current output.

- 0 V to $10 \mathrm{~V} / 0 \%$ to 100%

- 4 mA to 20 mA (receiver recommended impedance: 250Ω)

Note:

- This functions in Drive Mode only.

- Select with jumper switch S5 and H4-07 [Terminal FM Signal Level Select] or H4-08 [Terminal AM Signal Level Select].
\end{tabular}

\hline \& AC \& Monitor common \& 0 V

\hline External Power Supply Output (Not used) \& +P \& External power supply \& | Power supply for external devices. |
| :--- |
| - 24 V (150 mA maximum) |

\hline
\end{tabular}

Switches and Jumpers on the Drive Control Circuit

The terminal board has switches to adapt the drive I/Os to the external control signals as shown in Figure 3.15.
Set the switches to select the functions for each terminal.
Note:
Active during Drive Mode only.

Figure 3.15 Locations of Switches
Table 3.16 I/O Terminals and Switches Functions

Position	Switch	Terminal	Function	Default Setting
A	Jumper switch S1	A1, A2	Sets terminals A1 and A2 to voltage or current output.	A1: V (voltage input) A2: I (current input)
B	Jumper switch S5	FM, AM	Sets terminals FM and AM to voltage or current output.	FM: V (voltage output) AM: V (voltage output)
C	DIP switch S2	-	Enables and disables the termination resistor of embedded communications protocols. This switch should always be in the ON position.	ON Note: This switch should always be ON when the drive is part of a bypass package.

Wiring the Drive Control Circuit Terminal

WARNING! Electrical Shock Hazard. Do not remove covers or touch circuit boards while the bypass is energized. If you touch the internal components of an energized bypass, it can cause serious injury or death.
NOTICE: Do not let wire shields touch other signal lines or equipment. Insulate the wire shields with electrical tape or shrink tubing. If you do not insulate the wire shields, it can cause a short circuit and damage the drive.

Note:

- Isolate control circuit wiring from main circuit wiring (terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, -, +1) and other high-power wiring. If the control circuit wires are adjacent to the main circuit wires, electrical interference can cause the drive or the devices around the drive to malfunction.
- Isolate contact output terminals MA, MB, MC and M1-M6 from other control circuit wiring. If the output terminal wires are adjacent to other control circuit wires, electrical interference can cause the drive or devices around the drive to malfunction.
- Use a UL Listed Class 2 Power Supply to connect external power to the contact output control terminals. If the power supply for peripheral devices is incorrect, it can cause a decrease in drive performance.
- Connect the shield of shielded cable to the applicable ground terminal. If the grounding is not correct, electrical interference can cause the drive or devices around the drive to malfunction.
Correctly ground the drive terminals and complete main circuit wiring before you wire the control circuit. Remove the keypad and front cover.

1. Refer to Figure 3.16 and wire the control circuit.

WARNING! Fire Hazard. Tighten all terminal screws to the correct tightening torque. Connections that are too loose or too tight can cause incorrect operation and damage to the bypass. Incorrect connections can also cause death or serious injury from fire.

Note:

- Use shielded wires and shielded twisted-pair wires for the control circuit terminal wiring. If the grounding is not correct, electrical interference can cause the drive or devices around it to malfunction.
- Do not use control circuit wiring that is longer than $50 \mathrm{~m}(164 \mathrm{ft})$ to supply the frequency reference with an analog signal from a remote source. Wiring that is too long can cause unsatisfactory system performance.

D - If you do not use crimp ferrules, remove approximately 5.5 mm (0.21 in) of the covering at the end of the wire.
E - Blade width of 2.5 mm (0.1 in) or less
F - Blade depth of 0.4 mm (0.01 in) or less

Figure 3.16 Wiring Procedure for the Control Circuit
WARNING! Fire Hazard. Tighten all terminal screws to the correct tightening torque. Connections that are too loose or too tight can cause incorrect operation and damage to the bypass. Incorrect connections can also cause death or serious injury from fire.
NOTICE: Do not tin stranded wire with solder. Soldered wire connections can become loose over time and cause unsatisfactory system performance.

Note:

- Refer to Figure 3.17 for information to prepare terminal ends of the shielded wire.
- Prepare the wire ends of shielded twisted-pair wires as shown in Figure 3.17 to use an analog reference from an external frequency setting potentiometer to set the frequency. Connect the shield to terminal FE of the drive.

A - Connect the shield to terminal FE of the drive.
B - Sheath

C - Insulate with electrical tape or shrink tubing.

Figure 3.17 Prepare the Ends of Shielded Wire
2. Install the front cover to its initial position.

3.7 Control I/O Connections

This section gives information about the settings for the listed control circuit I/O signals.

- MFDI (terminals S1 to S7)
- MFDO (terminals M1 to M6)
- MFAI (terminals A1, A2)
- MFAO (terminals FM, AM)
- RS-485 communications (terminals D+, D-, AC)

Set Input Signals for MFAI Terminals A1 and A2

Use terminals A1 and A2 to input a voltage or a current signal. Set the signal type as shown in Table 3.17.

Figure 3.18 Location of Jumper Switch S1
Table 3.17 MFAI Terminals A1 and A2 Signal Settings

Terminal	Types of Input Signals	Jumper Switch S1	Parameter	
			No.	Signal Level
A1	Voltage input (Default)		H3-01	0: 0 V to $10 \mathrm{~V} / 0 \%$ to 100% (input impedance: $20 \mathrm{k} \Omega$)
	Current input			2: 4 mA to $20 \mathrm{~mA} / 0 \%$ to 100% (input impedance: 250Ω) 3: 0 mA to $20 \mathrm{~mA} / 0 \%$ to 100% (input impedance: 250Ω)
A2	Voltage input		H3-09	0: 0 V to $10 \mathrm{~V} / 0 \%$ to 100% (input impedance: $20 \mathrm{k} \Omega$)
	Current input (Default)			2: 4 mA to $20 \mathrm{~mA} / 0 \%$ to 100% (input impedance: 250Ω) 3: 0 mA to $20 \mathrm{~mA} / 0 \%$ to 100% (input impedance: 250Ω)

Note:

Set H3-02, H3-10 = 0 [Terminal A1 Function Selection, Terminal A2 Function Selection $=$ Frequency Reference] to set A1 and A2 to frequency reference. The drive will add the analog input values together to make the frequency reference.

Set Output Signals for MFAO Terminals FM, AM

Set the signal type for terminals AM and FM to voltage or current output. Use jumper switch S5 and H4-07, H4-08 [Terminal FM Signal Level Select, Terminal AM Signal Level Select] to set the signal type.

Figure 3.19 Location of Jumper Switch S5

Terminal	Types of Output Signals	Jumper Switch S5	Parameter	
			No.	Signal Level
FM	Voltage output (Default)		H4-07	0: 0 V to 10 V
	Current output			2: 4 mA to 20 mA
AM	Voltage output (Default)		H4-08	0: 0 V to 10 V
	Current output			2: 4 mA to 20 mA

3.8 Connect the Bypass to a PC

The bypass control board has a mini-B type USB port.
You can use a USB cable (USB 2.0, type: A - mini-B) to connect the bypass to a type-A USB port on a PC. Open the front door of the bypass cabinet to connect the USB cable to the CN1 port on the bypass PCB. After you connect the bypass PCB to the PC, you can use Yaskawa DriveWizard HVAC software to monitor drive performance and manage parameter settings. Visit the Yaskawa website to download the DriveWizard HVAC software: https://www.yaskawa.com/products/drives/hvac-drives/software-tools/drivewizard-hvac

Note:
Do not connect to the USB port on the drive. Always use the CN1 port on the bypass PCB to communicate with a bypass.

$\begin{array}{ll}\text { A - Mini-B type connector } & \text { C - Type-A connector } \\ \text { B - USB 2.0, type A - mini-B cable } & \text { D - PC }\end{array}$
Figure 3.20 Connect to a PC (USB)
Yaskawa recommends that you use a USB cable with connectors connected with shielded wires.

Figure 3.21 Recommended USB Cable

3.9 Motor Application Precautions

Precautions for Existing Standard Motors

Insulation Withstand Voltage

Consider motor voltage tolerance levels and motor insulation in applications with an input voltage of over 440 V or particularly long wiring distances. Use an insulated drive motor.
NOTICE: Use an inverter-duty motor with reinforced insulation and windings applicable for use with an AC drive. If the motor does not have the correct insulation, it can cause a short circuit or ground fault from insulation deterioration.

Vibration

Vibrations can occur in the these conditions:

- Resonance with the natural frequency of machinery Use caution if you add a variable-speed drive to applications that operate the motor from line power at a constant speed. If resonance occurs, install shock-absorbing rubber around the base of the motor and enable the Jump frequency control.
- The motor is not balanced

Use caution if the motor speed is higher than the rated motor speed.

- Subsynchronous resonance

Subsynchronous resonance can occur with long motor shafts and in applications such as turbines, blowers, and fans with high inertia loads.

Audible Noise

The audible noise of the motor changes when the carrier frequency setting changes. When you use a high carrier frequency, audible noise from the motor is equivalent to the motor noise generated when you operate from line power. If you operate at speeds that are more than the rated rotation speed, the unwanted motor noise increases.

Precautions for Specialized Motors

- Pole Change Motors

The rated current of pole change motors is different than standard motors. Check the maximum current of the motor before you select a drive. Always stop the motor before you switch between the number of motor poles. If you change the number of poles while the motor is rotating, the overvoltage from regeneration or the overcurrent protection circuitry will make the motor coast to stop.

- Submersible Motors

The rated current of a submersible motor is more than the rated current of a standard motor. Use a sufficiently large motor cable that will not let voltage drop decrease the maximum torque level.

Explosion-Proof Motors

You must test the motor and the drive together for explosion-proof certification. You must also test existing installations of explosion-proof motors. The drive is not designed for explosion-proof areas. Install the drive in a safe location.
The encoder used with pressure-resistant explosion-proof motors is intrinsically safe. When wiring between the drive and encoder, always connect through a specialized pulse coupler.

- Geared Motors

The continuous speed range is different for different lubricating methods and manufacturers. For oil lubrication, continuous operation in the low-speed range can cause burnout. Contact the manufacturer for more information about applications where operating at more than the rated frequency is necessary.

Single-Phase Motors

Variable speed drives are not designed to operate with single-phase motors. The drive is for use with three-phase motors only. If you use capacitors to start the motor, it can cause a high frequency current to flow to the capacitors and can damage the capacitors. A split-phase start or a repulsion start can burn out the starter coils because the internal centrifugal switch is not activated.

Notes on the Power Transmission Mechanism

For power transmission machinery that uses oil to lubricate gearboxes, transmissions, or reduction gears, make sure that you use precaution if you operate the machinery continuously at low speed. Oil does not lubricate the system as well at low speeds. If you operate at frequencies higher than the rated frequency, it can cause problems with the power transmission mechanism. These problems include audible noise, decreased service life, and decreased durability.

Startup Procedure and Test Run

4.1 Section Safety 68
4.2 Keypad: Names and Functions 69
4.3 Start-up, Test Operation, and Rotation Check 75
4.4 Auto-Tuning 81
4.5 Fine Tuning during Test Runs (Adjust the Control Function) 83

4.1 Section Safety

! DANGER

Electrical Shock Hazard

Do not examine, connect, or disconnect wiring on an energized bypass. Before servicing, disconnect all power to the equipment and wait for the time specified on the warning label at a minimum. The internal capacitor stays charged after the bypass is de-energized. The charge indicator LED extinguishes when the DC bus voltage decreases below 50 Vdc . When all indicators are OFF, remove the covers before measuring for dangerous voltages to make sure that the bypass is safe.
If you do work on the bypass when it is energized, it will cause serious injury or death from electrical shock.

AWARNING

Electrical Shock Hazard

Do not operate the bypass when covers are missing. Replace covers and shields before you operate the bypass. Use the bypass only as specified by the instructions.
Some figures in this section include bypasses without covers or safety shields to more clearly show the inside of the bypass. If covers or safety shields are missing from the bypass, it can cause serious injury or death.

Do not remove covers or touch circuit boards while the bypass is energized.
If you touch the internal components of an energized bypass, it can cause serious injury or death.

NOTICE
Sudden Movement Hazard
Deactivate the Run command before you switch from Programming Mode to Drive Mode.
If you switch from Programming Mode to Drive Mode and there is an active Run command, the motor will rotate
and the equipment can suddenly start.

4.2 Keypad: Names and Functions

Figure 4.1 Keypad
Table 4.1 Keypad: Names and Functions

No.	Name	Function
A	AUTO LED *1 AUTO	Illuminates to show that the drive is in AUTO Mode.
B	ALM LED ALM	Illuminates when the drive detects a fault. Flashes when the drive detects: - An alarm - An oPE parameter setting error - A fault or alarm during Auto-Tuning The LED turns off when there are no drive faults or alarms.
C	microSD Card Insertion Slot	The insertion point for a microSD card.
D	Function Keys (F1, F2, F3) F1 F2 F3	The menu shown on the keypad sets the functions for function keys. The name of each function is in the lower half of the display window.
E	HAND LED *I (1)HAND	Illuminates to show that the drive is in HAND Mode.
F	$\begin{gathered} \text { HAND Key } \\ \text { (1)HAND } \end{gathered}$	Sets drive operation to HAND Mode. The drive uses the S5-01 [HAND Frequency Reference Selection] setting.
G	$\begin{aligned} & \text { OFF Key } \\ & \text { © OFF } \end{aligned}$	Stops drive operation. Note: The OFF key has highest priority. Push OFF to stop the motor even when a Run command is active at an external Run command source. Set o2-02 $=0$ [STOP Key Function Selection $=$ Disabled $]$ to disable \otimes OFF priority.

No.	Name	Function
H	Left Arrow Key	Moves the cursor to the left.
	Up Arrow Key/Down Arrow Key	- Scrolls up or down to display the next item or the previous item. - Selects parameter numbers, and increments or decrements setting values.
	Right Arrow Key (RESET)	- Moves the cursor to the right. - Continues to the next screen. - Clears drive faults.
	ENTER Key	- Enters parameter values and settings. - Selects menu items to move the user between keypad displays. - Selects each mode, parameter, and set value.
I	$\begin{gathered} \text { AUTO Key } \\ \text { @AUTO } \end{gathered}$	Sets drive operation to AUTO Mode. The drive uses the b1-01 [Frequency Reference Selection 1] and b1-02 [Run Command Selection 1] settings. Note: Push (1)HAND \square on the keypad to set the drive to HAND Mode before you use the keypad to operate the motor.
J	USB Terminal	Insertion point for a mini USB cable. Uses a USB cable (USB standard 2.0, type A - mini-B) to connect the keypad to a PC.
K	RJ-45 Connector	Uses an RJ-45 8-pin straight through UTP CAT5e extension cable or keypad connector to connect to the drive.
L	Clock Battery Cover	Cover for the clock battery. Note: - The battery included with the keypad is for operation check. It may be exhausted earlier than the expected battery life described in the manual. - Refer to "Maintenance \& Troubleshooting Manual (TOEPYAIHV6001)" for more information about replacement procedure. To replace the battery, use a Hitachi Maxell "CR2016 Lithium Manganese Dioxide Lithium Battery" or an equivalent battery with these properties: - Nominal voltage: 3 V - Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
M	Insulation Sheet	An insulating sheet is attached to the keypad battery to prevent battery drain. Remove the insulation sheet before you use the keypad for the first time.

*1 Refer to AUTO LED and HAND LED Indications on page 71 for more information about AUTO LED and HAND LED indications.

LCD Display

Figure 4.2 LCD Display Indications
Table 4.2 LCD Display Indications and Meanings

Symbol	Name	Description
A	Time display area	Shows the current time. Set the time on the default settings screen.
B	Forward/Reverse run indication	Shows direction of motor rotation. - FWD: Shown when set to Forward run. - REV: Shown when set to Reverse run.
C	Ready	The screen will show Rdy when the drive is ready for operation or when the drive is running.

Symbol	Name	Description
D	Mode display area	Shows the name of the current mode or screen.
E	Alarm codes and status messages display area	Shows an alarm code or message about bypass status. Refer to page 146 for more information about status messages.
F	Frequency reference source indication	Shows the current frequency reference source. - KPD: keypad - AI: analog input terminal (Bypass PCB Terminal TB4-2) - COM: serial communications - OPT: option card
G	Data display area	Shows parameter values, monitor values, and details of the results of operations.
H	Function keys 1 to 3 (F1 to F3)	The function names shown in this area will change when the selected screen changes. Push one of the function keys F1 \square F3 on the keypad to do the function.
I	Alarm and message texts display area	Shows a fault, minor fault, alarm, or error name and message text. Note: When the drive must show an alarm and a message on the keypad at the same time, the keypad will switch between the alarm code and message text in 2 -second intervals.
J	HOA mode or alternative Run command source indication	- OFF: The bypass is operating in OFF Mode. - AUTO: The bypass is operating in AUTO Mode. - HAND: The bypass is operating in HAND Mode. - EMOV: The bypass is operating in Emergency Override Mode.

AUTO LED and HAND LED Indications

Table 4.3 AUTO LED and HAND LED Indications

AUTO LED	OFF	OFF Mode		
OFF	ON	HAND Mode		
OFF	Long blink (50\% duty)	HAND Mode $-\quad$ When the Frequency Reference is 0 or during deceleration - OFF		
OFF	Double bling PI Sleep		\quad	HAND Mode
:---				
When you clear the Run command and enter the Run command again during the time set in Cl-02 [Deceleration Time 1]				

Figure 4.3 AUTO LED and HAND LED Timing Status

Figure 4.4 LEDs and Drive Operation in AUTO and HAND Modes

Keypad Mode and Menu Displays

10:00 am FWD Rdy	Home	
OFF \quad Idle		
		F2
$\begin{aligned} & \text { Freq Reference (AI) } \\ & \text { U1-01 Hz } \end{aligned}$	0.00	
Output Frequency U1-02 Hz	0.00	F2
DRIVE Menu	BYPASS	
HOME		

Figure 4.5 Keypad Functions and Display Levels

Note:

- Pushfrom the Home screen to show monitors.
- Push to set d1-01 [Reference 1] when you set b1-01 = 0 [Frequency Reference Selection $1=$ Keypad] and the Home screen shows U101 [Frequency Reference].
- The keypad will show [Rdy] when the drive is in Ready-to-Run Mode. The drive is prepared to accept a Run command.
- The bypass will not accept a Run command in Programming Mode in the default setting. Set b1-08 [Run Command Select in PRG Mode] to accept or reject a Run command from an external source while in Programming Mode.
-Set b1-08 = 0 [Disregard RUN while Programming] to reject the Run command from an external source while in Programming Mode (default).
-Set b1-08 $=1$ [Accept RUN while Programming] to accept the Run command from an external source while in Programming Mode.
-Set bl-08 = 2 [Allow Programming Only at Stop] to prevent changes from Drive Mode to Programming Mode while the drive is operating.

Table 4.4 Drive Mode Screens and Functions

Mode	Keypad Screen	Function
Ready-to-Run Mode	Monitors	Sets monitor items to display.
	Parameters	Changes parameter settings.
	User Custom Parameters	Shows the User Parameters.
	Parameter Backup/Restore	Saves parameters to the keypad as backup.
	Auto-Tuning	Shows modified parameters and fault history.
	Initial Setup	Auto-Tunes the drive.
	Diagnostic Tools	Changes initial settings.

4.3 Start-up, Test Operation, and Rotation Check

This section gives the basic steps necessary to get the bypass started and make sure the motor spins in the correct direction. This section gives information about only the most basic settings.

Items to Check before You Energize the Bypass

1. Make sure there is no power to the bypass. Use a properly rated and functioning multimeter to make sure that it is safe and do all appropriate lockout/tagout procedures.
WARNING! Electrical Shock Hazard. Do not operate the bypass when covers are missing. Replace covers and shields before you operate the bypass. Use the bypass only as specified by the instructions. Some figures in this section include bypasses without covers or safety shields to more clearly show the inside of the bypass. If covers or safety shields are missing from the bypass, it can cause serious injury or death.
2. Record the motor nameplate information and make sure that the input voltage aligns with the bypass rating.

Make sure that the motor rated FLA is not more than the output current rating of the bypass as shown on the bypass nameplate.
Make sure that the motor rated FLA is in range of the specifications.
3. The bypass will have one of two types of main input disconnect:

A non-fusible disconnect switch

The standard bypass includes a non-fusible disconnect switch that does not provide branch circuit protection. If you will be installing the bypass according to applicable local codes and the requirements shown on the bypass nameplate, you must install appropriate branch circuit protection. Yaskawa recommends semiconductor fusing to ensure 100 kAIC SCCR panel rating. This fusing is specified on the bypass nameplate.
WARNING! Fire Hazard. You must install branch circuit protection according to applicable local codes and the requirements listed on the bypass nameplate. The bypass is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical amperes, 208 Vac and 480 Vac with the circuit breaker option or when protected by class J or class L fuses as specified on the bypass nameplate. Consult factory with questions. Failure to comply could result in fire and damage to the bypass unit or injury to personnel

An input circuit breaker

Bypass Option M includes an input circuit breaker. You must use the two dials on the circuit breaker to set the adjustable trip level. The dial marked "FLA" sets the breaker to match the motor FLA. Use a small straightedge screwdriver and adjust to the appropriate current level. The other dial sets the inrush level. Make sure this dial is set to "Auto 1 " (factory setting).
4. Make sure that the available three-phase line power is the correct voltage. Connect line power to the input disconnect device.
5. Connect the bypass grounding terminal to the appropriate building ground circuit.
6. If you are using a dual voltage motor, make sure that the motor is wired for the application voltage.
7. Connect the motor to the output terminal block in the bypass or to the motor overload (if provided).
8. Connect the motor ground to the bypass drive ground terminal.
9. If you have an external motor overload, set the correct FLA from Step 2 there.
10. Use the connection diagram or the schematic packaged with the bypass to make sure that you correctly terminate wiring connections and connected to appropriate circuits at Bypass PCB A2. Please note the following with respect to the safety circuit (DI-2, terminal TB2-2) and the BAS interlock circuit (DI-3, terminal TB2-3):

Safety Interlock Circuit

DI-2 (terminal TB2-2) is provided to connect safety devices in a normally-closed series circuit, such as: freeze up thermostats, smoke/fire sensors, high pressure limits, temperature limits, or vibration detectors.
The keypad will display the status "Safety Open" if a N.C. safety circuit is not closed between DI-2 and IG24 (TB2-10) on Bypass PCB A2. An open circuit between DI-2 and IG24 will prevent drive or bypass operation. Take ONE of these steps to ensure proper operation prior to startup:

- Install normally-closed (N.C.) safety circuit between DI-2 and IG24 on Bypass PCB A2.
- Install a jumper between DI-2 and IG24 on Bypass PCB A2.

Building Automation System Interlock Circuit (Drive and Bypass Enable Input)

The keypad will display an ALO2 - Interlock Open alarm or FB-02 - Wait For Interlock Timeout fault if a N.C. safety circuit is not closed between DI-3 (TB2-3 by default setting of Z2-03) and IG24 on Bypass PCB A2 when there is an active Run command in either HAND or AUTO Mode. An open circuit between TB2-3 and IG24 (TB2-10) will prevent drive or bypass operation.
Take ONE of these steps to ensure proper operation prior to startup:

- Install a normally-closed (N.C.) BAS Interlock Circuit/Damper Interlock between DI-3 and IG24 on Bypass PCB A2.
- Install a jumper between DI-3 and IG24 on Bypass PCB A2.

11. Record all other connections to the bypass by terminal number to determine if special programming of any of the following is required:

- Multi-function Digital Inputs - Bypass control board TB2 (A2)
- Multi-function Digital Outputs - Bypass control board TB1 (A2)
- Analog Speed Reference - Bypass control board TB4 (A2)
- Other Analog Inputs - Drive control board (A1)
- Analog Outputs - Drive control board (A1)
- Differential PI control - Drive control board (A1)
- Serial Communications - Bypass control board TB3 (A2)

12. Run all control wiring in separate conduit from motor or line power. Route digital output wiring exceeding 24 V in conduit separate from other control wiring.
13. Make sure that the building automation system logic is ready for the start, stop, and speed command functions.

Bypass Start-Up Procedure

1. Replace all bypass and drive covers.
2. Before you apply power to the bypass, use a properly rated multimeter to check all three-phases of input power for proper levels and balance. Record these levels for future reference.
3. Turn the main input disconnect handle (if equipped) clockwise to energize the bypass.
4. When you energize the bypass for the first time, the keypad will show the Setup Wizard prompt screen.

10:00 am FWD wizard	10:00 am FWD wizard
Setup wizard Yaskawa We Make the Complicated simple	This wizard may require the unit to be powered down during some steps to check wiring. Caution, the unit contains high voltage.
Back Home	Back Home

The Setup Wizard will quickly configure and adjust commonly used parameters related to:

- Clock
- Motor FLA
- Frequency Reference
- Run Command
- Accel/Decel Times
- Safety Interlocks
- Speed Search

5. Select [Yes] to run the Setup Wizard. After you complete the Setup Wizard, the bypass will not show the Setup Wizard prompt again.

$10: 00$ am FWD wizard
Run the Setup wizard?
Yes now but maybe next time
No
Back \quad Home

10:00 am FWD Wizard
Parameter settings applied.
Remember to check for proper
motor rotation in both Drive
and Bypass modes.
Setup wizard Done.
Home

Note:

If you select [Not now but maybe next time] from the Setup Wizard prompt, the keypad will show the Setup Wizard prompt each time you energize the bypass.
If you select [No], the keypad will not show the Setup Wizard prompt nor the Initial Setup screen when you energize the bypass. You can set the date and time or run the Setup Wizard from the Initial Setup screen.
6. Check for correct motor rotation in Drive Mode and Bypass Mode. Refer to Test Run and Rotation Check on page 77 for more information about checking and changing motor rotation.

- Test Run and Rotation Check
 - Test Run (No Load)

When possible, Yaskawa recommends that you do a test run in Drive Mode and Bypass Mode to check rotation in both modes before you mechanically connect the motor to the rest of the machine. This is critically important if running the machine at full speed and/or running the machine in the wrong direction could cause damage or injury.

Rotation Check in Drive Mode and Bypass Mode

You must check the rotation in both Drive Mode and Bypass Mode. If the rotation direction is incorrect in Drive Mode, you must change the output (motor) wiring. If the rotation direction is incorrect in Bypass Mode, you must change the input power wiring.

Note:

Do the Drive Mode rotation check first. If there are any problems, make sure that you correct them before you do the Bypass Mode rotation check.

Precautions before You Do a Test Run

Before you rotate the motor, check these items:

- Check for safety issues near the bypass system, motor, and machine.
- Make sure that all safety, interlock, emergency stop circuits and safety mechanisms are operating correctly.

Test Run and Rotation Check - Drive Mode (HAND)

Note:

Yaskawa strongly recommends that you do the items in Start-up, Test Operation, and Rotation Check on page 75, including completing the Setup Wizard before you do this procedure.

1. Energize the bypass. If the HOME screen is not shown, push F2
2. Push © off to make sure that the bypass does not respond to an Auto-Run command.
3. Check the lower-left corner of the keypad screen to make sure that the bypass is in Drive Mode. "DRIVE" will flash when the bypass is in Drive Mode.

10:00 an	WD Rdy	Home
OFF		
$\begin{aligned} & \text { Freq Reference }(A I) \quad 0,00 \\ & \text { U1-01 Hz } \end{aligned}$		
Output F U1-8R	ency	0.
感DRIVE	Menu	BYPAS

WARNING! Sudden Movement Hazard. Before you do the next step, remove all personnel and objects from the area around the bypass and motor. The motor will rotate in the next step and can cause serious injury or death.
4. Push \triangle HAND to give the bypass a Run command from HAND Mode.
5. Push to show S5-05 [HAND Frequency Reference], and set it to 6.00 Hz .
6. Push to save the value and the motor will start to run.

10:00 am FWD Rdy Parameters
HAND Frequency Reference
S5-05

	006.00 HZ	
Defau7t $:$	0.00 Hz	
Range $:$	$0.00 \sim 400.00$	
	Home	Min/Max

If the system does not run, check the keypad for a "Safety Open" message or an "ALO2 - Interlock Open" alarm.

- If there is a "Safety Open" message, check the safety circuit (or jumper) connected at TB2-2.
- If there is an "AL02 - Interlock Open" alarm, check the BAS Interlock circuit (or jumper) connected at TB2-3.

7. Push F2 to return to the HOME screen, then push $\boldsymbol{\square}$ until you can see the Output Current display on the keypad screen.

10:00 am FWD Rdy	Monitor
$\begin{aligned} & \text { Freq Reference (AI) } \\ & \text { U1-01 Hz } \end{aligned}$	6.00
Output Frequency U1-02 Hz	6.00
output Current U1-03 A	12.34
DRIVE Menu	BYPASS

Output current should typically be between 20\% and 100\% of motor full load amps (FLA).
If the output current is not in this range:

- Make sure that there are no mechanical issues or binding in the machinery.
- Make sure that the motor is correctly wired to the motor terminal block (or motor overload, if equipped).
- Make sure that a multi-voltage motor is correctly wired in the motor junction box.

8. Look at the motor (or load) to make sure that the rotation direction is correct (Drive Mode).

If the motor direction in Drive Mode is CORRECT, do steps 15 to 18.
If the motor direction in Drive Mode is INCORRECT, do steps 9 to 14.
9. Push © off to stop the motor.
10. De-energize the system at the power source. Observe correct lockout/tagout safety procedures and wait for the CHARGE light to completely go out on the HV600. The CHARGE light will be visible after you open the cabinet door.
11. Remove lower cover (or open cabinet door) to access motor wiring.
12. Switch any two phases on the customer wiring side of the motor terminal block or motor overload.

Note:
DO NOT change the wiring connected directly to the HV600 drive unit.
13. Replace lower cover (or close cabinet door).
14. Repeat Steps 1 to 8 of this procedure to confirm correct rotation in Drive Mode.

WARNING! Sudden Movement Hazard. Before you do this step, remove all personnel and objects from the area around the bypass and motor. The motor will rotate at full speed in this step and can cause serious injury or death.
15. Push \triangle HAND to give the bypass a Run command from HAND Mode.
16. Push to show S5-05 [HAND Frequency Reference].
17. Push to increase the frequency reference value.

Change the setting value in increments of 10 Hz if necessary and examine the response.
Each time you increase the setting value, use U1-03 [Output Current] to check the drive output current. Watch and listen for unusual conditions or noises.
When the output current of the drive is not more than the motor rated current, the status is correct.
Example: $6 \mathrm{~Hz} \rightarrow 20 \mathrm{~Hz} \rightarrow 30 \mathrm{~Hz} \rightarrow 40 \mathrm{~Hz} \rightarrow 50 \mathrm{~Hz} \rightarrow 60 \mathrm{~Hz}$

10:00 am FWD Rdy	Home
$\begin{aligned} & \text { Freq Reference (AI) } \\ & \text { U1-01 Hz } \end{aligned}$	60.00
Output Frequency U1-02 Hz	60.00
output Current U1-03 A	29,48
DRIVE Menu	BYPASS

18. Set the HAND frequency reference back to the desired value, then push ©off. The Drive Mode test run and rotation check is complete.

- Test Run and Rotation Check - Bypass Mode (HAND)

Before you do this procedure, Yaskawa strongly recommends that you do the items in Start-up, Test Operation, and Rotation Check on page 75 (including the Setup Wizard), and do the steps in Test Run and Rotation Check - Drive Mode (HAND) on page 77.

1. Energize the bypass. If the HOME screen is not shown, push F2.
2. Push © OFF to make sure that the bypass does not respond to an Auto-Run command.
3. Check the lower-right corner of the keypad screen to make sure that the bypass is in Bypass Mode. "BYPASS" will flash when the bypass is in Bypass Mode. If it is NOT in Bypass Mode, push F3 to put the system into Bypass Mode

WARNING! Sudden Movement Hazard. Before you do the next step, remove all personnel and objects from the area around the bypass and motor. The motor will immediately rotate at full speed in the next step and can cause serious injury or death.
4. Push © $\mathrm{H} A \mathrm{ND}$ to give the bypass a Run command from HAND Mode. Make sure that Ub-01 [Motor Current] is not more than the nameplate FLA. It is normal for the current be more than full load amps temporarily at start. Watch and listen for unusual conditions or noises.

10:00 am	FWD Rdy	Home
HAND	Running	Bypass
Motor Current		
Ub-01	29.48A	
DRIVE	Menu	BYPASS

5. Look at the motor (or load) to make sure that the rotation direction is correct (Bypass Mode). If you cannot determine the rotation direction, push © OFF and watch the motor as it coasts to stop. If the motor direction in Bypass Mode is CORRECT, the test is complete.
If the motor direction in Bypass Mode is INCORRECT, do steps 6 to 11.
6. Push © off to stop the motor.
7. De-energize the system at the power source. Observe correct lockout/tagout safety procedures and wait for the CHARGE light to completely go out on the HV600. The CHARGE light will be visible after you open the cabinet door.
8. Remove lower cover (or open cabinet door) to access motor wiring.
9. Switch any two phases on the customer connection side of incoming power.

Note:
-DO NOT change the motor (output) wiring.
-DO NOT change the wiring connected directly to the HV600 drive unit.
10. Replace lower cover (or close cabinet door).
11. Repeat Steps 1 to 5 of this procedure to confirm correct rotation in Bypass Mode.

4.4 Auto-Tuning

Auto-Tuning uses motor characteristics to automatically set parameters. Think about the type of motor and the motor installation environment and select the best Auto-Tuning method.
The keypad will show the messages with prompts to input the necessary parameter information.

Auto-Tuning for Induction Motors

This section gives information about Auto-Tuning for induction motors. Auto-Tuning sets motor parameters E1-xx, E2-xx.

Note:

Do Stationary Auto-Tuning if you cannot do Rotational Auto-Tuning. There can be large differences between the measured results and the motor characteristics when Auto-Tuning is complete. Examine the parameters for the measured motor characteristics after you do Stationary Auto-Tuning.

Table 4.5 Types of Auto-Tuning for Induction Motors

Mode	
	Application Conditions and Benefits
Rotational Auto-Tuning	- When you can decouple the motor and load the motor can rotate freely while Auto-Tuning. - When operating motors that have fixed output characteristics. - When it is necessary to use motors that have high-precision control. - When you cannot decouple the motor and load, but the motor load is less than 30%
Line-to-Line Resistance	- After Auto-Tuning, the wiring distance between the drive and motor changed by 50 m or more. - When the wiring distance is 50 m or more in the V / f Control mode. - When the motor output and drive capacity are different.

Input Data for Induction Motor Auto-Tuning

To do Auto-Tuning, input data for the items in Table 4.6 that have an "x". Before starting Auto-Tuning, prepare the motor test report or record the information on the motor nameplate as a reference.

Table 4.6 Input Data for Induction Motor Auto-Tuning

Input Data	Unit	Auto-Tuning Mode	
		Rotational Auto-Tuning	Line-to-Line Resistance
Motor Rated Power	HP	x	x
Motor Rated Voltage	V	x	-
Motor Rated Current	A	x	x
Motor Base Frequency	Hz	x	-
Number of Motor Poles	-	x	-
Motor Base Speed	RPM (min^{-1})	x	-
Motor Iron Loss	W	x	-

Precautions before Auto-Tuning

Examine the topics in this section before you start Auto-Tuning.

Prepare for Basic Auto-Tuning

- You must input data from the motor nameplate or motor test report to do Auto-Tuning. Make sure that this data is available before Auto-Tuning.
- For best performance, make sure that the input supply voltage is equal to or more than the motor rated voltage.
- Push ©off on the keypad to cancel Auto-Tuning.
- Table 4.7 shows the status of input/output terminals during Auto-Tuning.

Table 4.7 Status of Drive Unit Input/Output Terminals during Auto-Tuning

Auto-Tuning Type	Mode		Multi-Function Inputs	Multi-Function Outputs *l
Induction Motor Auto-Tuning	Rotational	Rotational Auto-Tuning	Disabled	Functions the same as during usual operation.
	Stationary	Line-to-Line Resistance	Disabled	Keeps the status at the start of Auto-Tuning.

*1 A terminal to which $H 2-x x=E$ [MFDO Function Selection $=$ Fault $]$ is assigned functions the same as during usual operation.
WARNING! Sudden Movement Hazard. Before you do Rotational Auto-Tuning, disconnect the load from the motor. The load can move suddenly and cause serious injury or death.
WARNING! Injury to Personnel. Rotational Auto-Tuning rotates the motor at 50% or more of the motor rated frequency. Make sure that there are no issues related to safety in the area around the drive and motor. Increased motor frequency can cause serious injury or death.
WARNING! Electrical Shock Hazard. During Auto-Tuning, the motor will receive high voltage when the motor is stopped. Do not touch the motor until Auto-Tuning is complete. If you touch a motor that is energized, it can cause serious injury or death.

Precautions before Rotational Auto-Tuning

WARNING! Electrical Shock Hazard. During Auto-Tuning, the motor will receive high voltage when the motor is stopped. Do not touch the motor until Auto-Tuning is complete. If you touch a motor that is energized, it can cause serious injury or death.

- Before you do Rotational Auto-Tuning, to prevent drive malfunction, uncouple the motor from the load. If you do Rotational Auto-Tuning with the motor connected to a load that is more than 30% of the motor duty rating, the bypass will not correctly calculate the motor parameters and the motor can operate incorrectly.
- When the load is 30% or less of the motor duty rating, you can do Auto-Tuning with the motor connected to a load.
- Make sure that external force from the machine will not cause the motor to rotate.

Precautions before Stationary Auto-Tuning

- Make sure that external force from the machine will not cause the motor to rotate.

WARNING! Electrical Shock Hazard. During Auto-Tuning, the motor will receive high voltage when the motor is stopped. Do not touch the motor until Auto-Tuning is complete. If you touch a motor that is energized, it can cause serious injury or death.

Precautions before Stationary Auto-Tuning for Line-to-Line Resistance and Stator Resistance Auto-Tuning

In V/f control, when the motor cable is 50 meters (164 feet) or longer, do Stationary Auto-Tuning for Line-to-Line Resistance.

WARNING! Electrical Shock Hazard. During Auto-Tuning, the motor will receive high voltage when the motor is stopped. Do not touch the motor until Auto-Tuning is complete. If you touch a motor that is energized, it can cause serious injury or death.

4.5 Fine Tuning during Test Runs (Adjust the Control Function)

This section gives information about the adjustment procedures to stop hunting or oscillation errors caused by control function during a test run. Adjust the applicable parameters as specified by your status.

Note:
This section only lists frequently adjusted parameters. If you must adjust parameters that have a higher degree of precision, contact Yaskawa.

- V/f Control

Table 4.8 Parameters for Fine Tuning the Drive (V/f)

Issue	Parameter Number	Possible Solutions	Default	Recommended Setting
Hunting or oscillation at mid-range speeds (10 Hz to 40 Hz)	n1-02 [Hunting Prevention Gain Setting]	- If torque is not sufficient with heavy loads, decrease the setting value. - If hunting or oscillation occur with light loads, increase the setting value. - If hunting occurs with a lowinductance motor, for example a motor with a larger frame size or a high-frequency motor, lower the setting value.	1.00	0.10-2.00
- The volume of the motor excitation sound is too high. - Hunting or oscillation at low speeds (10 Hz or lower), or at mid-range speeds (10 Hz to 40 Hz)	C6-02 [Carrier Frequency Selection]	- If the volume of the motor excitation sound is too high, increase the carrier frequency. - If hunting or oscillation occur at low or mid-range speeds, decrease the carrier frequency.	$1(2 \mathrm{kHz}){ }^{*} \mathrm{I}$	1 to upper limit value
- Unsatisfactory motor torque and speed response - Hunting or oscillation	C4-02 [Torque Compensation Delay Time]	- If torque or speed response are slow, decrease the setting value. - If hunting or oscillation occur, increase the setting value.	200 ms * 1	100-1000 ms
- Torque at low speeds $(10 \mathrm{~Hz}$ or lower) is not sufficient. - Hunting or oscillation	C4-01 [Torque Compensation Gain]	- If torque at low speeds $(10 \mathrm{~Hz}$ or lower) is not sufficient, increase the setting value. - If hunting or oscillation occur with light loads, decrease the setting value.	1.00	0.50-1.50
- Torque at low speeds $(10 \mathrm{~Hz}$ or lower) is not sufficient. - Large initial vibration at start up.	- E1-08 [Mid Point A Voltage] - E1-10 [Minimum Output Voltage]	- If torque at low speeds $(10 \mathrm{~Hz}$ or lower) is not sufficient, increase the setting value. - If there is large initial vibration at start up, decrease the setting value	- E1-08: $15.0 \mathrm{~V}^{* 2}$ - E1-10: $9.0 \mathrm{~V}^{* 2}$	Default setting +/- 5 V *3
Speed precision is unsatisfactory. (V/f Control)	C3-01 [Slip Compensation Gain]	Set E2-01 [Motor Rated Current], E2-02 [Motor Rated Slip], and E203 [Motor No-Load Current], then adjust C3-01.	0.0 (no slip compensation)	0.5-1.5

*1 The default setting changes when the setting for o2-04 [Drive Model (KVA) Selection] changes.
*2 The default setting changes when the setting for E1-03 [V/f Pattern Selection] changes.
*3 Recommended settings are for 208/240 V. Multiply the voltage by 2 for 480 V .

Troubleshooting

5.1 Section Safety 86
5.2 Types of Faults, Minor Faults, Alarms, and Errors 88
5.3 Faults, Minor Faults, Alarms, and Error Codes Listed Alphabetically 89
5.4 Faults, Minor Faults, Alarms, and Error Codes Listed by Decimal Value for Use with BACnet/Modbus 96
5.5 Faults 102
5.6 Minor Faults/Alarms 126
5.7 Parameter Setting Errors 139
5.8 Auto-Tuning Errors 142
5.9 Backup Function Operating Mode Display and Errors 145
5.10 Bypass Status Messages 146
5.11 Diagnosing and Resetting Faults 147

5.1 Section Safety

\quad Electrical Shock Hazard
!
Do not examine, connect, or disconnect wiring on an energized bypass. Before servicing,
disconnect all power to the equipment and wait for the time specified on the warning label at a
minimum. The internal capacitor stays charged after the bypass is de-energized. The charge
indicator LED extinguishes when the DC bus voltage decreases below 50 Vdc. When all indicators
are OFF, remove the covers before measuring for dangerous voltages to make sure that the bypass
is safe.
If you do work on the bypass when it is energized, it will cause serious injury or death from electrical shock.

AWARNING

Electrical Shock Hazard

Do not operate the bypass when covers are missing. Replace covers and shields before you operate the bypass. Use the bypass only as specified by the instructions.
Some figures in this section include bypasses without covers or safety shields to more clearly show the inside of the bypass. If covers or safety shields are missing from the bypass, it can cause serious injury or death.

Always ground the motor-side grounding terminal.
If you do not ground the equipment correctly, it can cause serious injury or death if you touch the motor case.
After the bypass blows a fuse or trips a GFCI, do not immediately energize the bypass or operate peripheral devices. Wait for the time specified on the warning label at a minimum and make sure that all indicators are OFF. Then check the wiring and peripheral device ratings to find the cause of the problem. If you do not know the cause of the problem, contact Yaskawa before you energize the bypass or peripheral devices.
If you do not fix the problem before you operate the bypass or peripheral devices, it can cause serious injury or death.

Only let approved personnel install, wire, maintain, examine, replace parts, and repair the bypass. If personnel are not approved, it can cause serious injury or death.
Do not wear loose clothing or jewelry when you do work on the bypass. Tighten loose clothing and remove all metal objects, for example watches or rings.
Loose clothing can catch on the bypass and jewelry can conduct electricity and cause serious injury or death.
Do not remove covers or touch circuit boards while the bypass is energized.
If you touch the internal components of an energized bypass, it can cause serious injury or death.
Do not modify the bypass body, drive body, bypass circuitry, or drive circuitry.
Modifications to bypass and drive body and circuitry can cause serious injury or death, will cause damage to the bypass and drive, and will void the warranty. Yaskawa is not responsible for modifications of the product made by the user.

Fire Hazard

Tighten all terminal screws to the correct tightening torque.
Connections that are too loose or too tight can cause incorrect operation and damage to the bypass. Incorrect
connections can also cause death or serious injury from fire.
Tighten screws at an angle in the specified range shown in this manual.
If you tighten the screws at an angle not in the specified range, you can have loose connections that can cause damage to the terminal block or start a fire and cause serious injury or death.
【@WARNING

Do not apply incorrect voltage to the main circuit of the bypass. Operate the bypass in the specified range of the input voltage on the nameplate.
Voltages that are higher than the permitted nameplate tolerance can cause damage to the bypass.

Fire Hazard

Do not put flammable or combustible materials on top of the bypass and do not install the bypass near flammable or combustible materials. Attach the bypass to metal or other noncombustible material.
Flammable and combustible materials can start a fire and cause serious injury or death.

Crush Hazard

Wear eye protection when you do work on the bypass.
If you do not use correct safety equipment, it can cause serious injury or death.
Use a crane or hoist to move large bypasses when necessary.
If you try to move a large bypass without a crane or hoist, it can cause serious injury or death.

NOTICE

```
Damage to Equipment
When you touch the bypass, drive, and circuit boards, make sure that you observe correct electrostatic discharge (ESD) procedures.
```

If you do not follow procedures, it can cause ESD damage to the drive and bypass circuitry.
Do not break the electrical connection between the bypass and the motor when the bypass is outputting voltage.
Incorrect equipment sequencing can cause damage to the bypass.
Make sure that all connections are correct after you install the bypass and connect peripheral devices.
Incorrect connections can cause damage to the bypass.
Note:
Do not use unshielded wire for control wiring. Use shielded, twisted-pair wires and ground the shield to the ground terminal of the bypass. Unshielded wire can cause electrical interference and unsatisfactory system performance.

5.2 Types of Faults, Minor Faults, Alarms, and Errors

If the bypass or motor do not operate correctly, check the keypad for a code or message.
If problems occur that are not identified in this manual, contact the nearest Yaskawa representative with this information:

- Bypass model
- Bypass software version
- Date of purchase
- Description of the problem (such as failure conditions)

Table 5.1 contains descriptions of the different types of faults, minor faults, alarms, and errors that can occur during operation.
Contact Yaskawa if there is damage to the bypass. Contact information is on the back cover of the manual.
Table 5.1 Types of Faults, Minor Faults, Alarms, and Errors

Type	Response
Faults	Drive faults thrown by the HV600 drive will stop the bypass from running the drive, but will not stop it from running in Bypass Mode. If $Z 1-05=1$ [Auto Transfer To Bypass = Enabled], a drive fault will cause the unit to start running in Bypass Mode. System faults (FB0x) will stop the drive and also stop the bypass from running in Bypass Mode. When the bypass detects a fault, it will cause these conditions: - The keypad shows the fault code and ALM and ALM/ERR of the LED Status Ring illuminate continuously. - The keypad shows the fault code and ALM and ALM/ERR on the LED Status Ring illuminate continuously when o2-24 $=0$ or 1 [LED Light Function Selection = Enable Status Ring \& Keypad LED or LED Status Ring Disable]. - The bypass shuts off output, and the motor coasts to a stop. Some faults let the user select a motor stopping method. - On the bypass control board (A2), fault output contacts TB1-11 and TB1-12 will turn ON, and TB1-10 and TB1-11 will turn OFF. This requires that $Z 2-26=15$ [Digital Output 10 (TB110~12) $=$ Fault Active], which is the default setting. The bypass will not operate until you clear the fault with a Fault Reset and the bypass goes back to usual status.
Minor Faults/Alarms	When the bypass detects a minor fault or an alarm, it will cause these conditions: - The keypad shows the alarm code and ALM and ALM/ERR on the LED Status Ring flash when $o 2-24=0$ or 1 . - The bypass will continue to operate the motor. Some alarms let the user select a motor stopping method. - If the bypass detects a minor fault, the terminal set to $\mathrm{H2}-01$ to $\mathrm{Hz}-03=10$ [MFDO Function Select $=$ Alarm] will switch ON. If you do not set parameters H2-01 to H2-03, the bypass will not trigger MFDO terminals when it detects a minor fault. - The bypass will not output a minor fault signal when it detects an alarm. It is not necessary to do Fault Reset.
Operation Errors	An error occurs when parameter settings do not agree or a parameter combination is incorrect. The bypass will not operate until you set the parameters correctly. When the bypass detects an operation error, these conditions will result: - The keypad shows the error code. - Multi-function outputs do not output an alarm signal. Find the parameters that caused the error and correct the settings.
Auto-Tuning Errors	An error occurs during Auto-Tuning. When the bypass detects a tuning error, it will cause these conditions: - The keypad shows the error code. - Multi-function outputs do not output an alarm signal. - The motor coasts to stop. Remove the cause of the error and do Auto-Tuning again.
Copy Function Errors	An error occurs when you use the keypad for a backup, restore, or verify operation. When the bypass detects a copy function error, it will cause these conditions: - The keypad shows the error code. - Multi-function outputs do not output an alarm signal. Push a key on the keypad to clear the error. Remove the cause of the error and try the backup, restore, or verify operation again.

5.3 Faults, Minor Faults, Alarms, and Error Codes Listed Alphabetically

Table 5.2 shows the possible fault, minor fault, alarm, and error codes.
The display codes are in alphabetical order. Search the table for the code shown on the keypad, and identify its causes and possible solutions.
Drive Faults thrown by the HV600 drive will stop the bypass from running the drive but will not stop it from running in Bypass Mode.
System Faults will stop the drive and also keep it from running in Bypass Mode.

Note:

The number in parentheses adjacent to the code in the table identifies the fault code or minor fault code (hex. number) that was read during serial communications.

Example: AFBL (00A2)
Table 5.2 List of Fault, Minor Fault, Alarm, and Error Codes

Display (Hex.)	Name	ALM LED	Type	Ref.
AFBL (00A2)	Analog Fbk Lost, Switched to Net	Flashing	Alarm	126
AL02 (00B2)	Interlock Open	Flashing	Alarm	126
AL03 (00B3)	Emergency Override Bypass	Flashing	Alarm	126
AL09 (00B9)	Restart Delay Active	Flashing	Alarm	126
AL13 (00BD)	Loss of Load Detected	Flashing	Alarm	126
AL16 (00C0)	Input Phase Rotation	Flashing	Alarm	126
AL17 (00C1)	Remote Xfer disabled in Reverse	Flashing	Alarm	126
AL18 (00C2)	Auto Xfer disabled in Reverse	Flashing	Alarm	126
AuDis (00A3)	Low PI Aux Fdbk Drive Disabled	Flashing	Alarm	126
AuFbl (00A5)	PI Aux Fdbk Lost Switched to Net	Flashing	Alarm	126
AUXFB (00A4)	PI Aux Feedback Level Loss	Flashing	Alarm	126
AUXFB (0420)	PI Aux Feedback Level Loss	Illuminated	Drive Fault	102
bAT (0085)	Keypad Battery Low Voltage	Flashing	Alarm	127
bAT (0402)	Keypad Battery Low Voltage	Illuminated	Drive Fault	102
bb (0008)	Baseblock	Flashing	Alarm	127
bCE (0416)	Bluetooth Communication Fault	Illuminated	Drive Fault	102
bCE (008A)	Bluetooth Communication Error	Flashing	Alarm	127
BuDif (00A6)	Main Fdbk Lost, Using Diff Fdbk	Flashing	Alarm	127
$\mathrm{Bu}-\mathrm{Fb}$ (0090)	Main Fdbk Lost Using Backup Fdbk	Flashing	Alarm	127
BuFbl (0091)	Backup Fdbk Lost Chk/Repl Xducer	Flashing	Alarm	127
bUS (0015)	Option Communication Error	Flashing	Alarm	127
bUS (0022)	Option Communication Error	Illuminated	Drive Fault	102
bUSy	Busy	-	Not an alarm.	128
CALL (001D)	Serial Comm Transmission Error	Flashing	Alarm	128
CE (0092)	Run at H5-34 (CE Go-To-Freq)	Flashing	Alarm	129
CE (0014)	Serial Communication Error	Flashing	Alarm	128
CE (0021)	Serial Communication Error	Illuminated	Drive Fault	102
CoF (0046)	Current Offset Fault	Illuminated	Drive Fault	103
CPF00 (0081)	Control Circuit Error	Illuminated	Drive Fault	103
CPF01 (0082)	Control Circuit Error	Illuminated	Drive Fault	103

5.3 Faults, Minor Faults, Alarms, and Error Codes Listed Alphabetically

Display (Hex.)	Name	ALM LED	Type	Ref.
CPF02 (0083)	A/D Conversion Error	Illuminated	Drive Fault	103
CPF03 (0084)	Control Board Connection Error	Illuminated	Drive Fault	103
CPF06 (0087)	EEPROM Memory Data Error	Illuminated	Drive Fault	104
CPF07 (0088)	Terminal Board Connection Error	Illuminated	Drive Fault	104
CPF08 (0089)	Terminal Board Connection Error	Illuminated	Drive Fault	104
CPF11 (008C)	RAM Fault	Illuminated	Drive Fault	104
CPF12 (008D)	FLASH Memory Fault	Illuminated	Drive Fault	104
CPF13 (008E)	Watchdog Circuit Exception	Illuminated	Drive Fault	104
CPF14 (008F)	Control Circuit Fault	Illuminated	Drive Fault	104
CPF16 (0091)	Clock Fault	Illuminated	Drive Fault	105
CPF17 (0092)	Timing Fault	Illuminated	Drive Fault	105
CPF18 (0093)	Control Circuit Fault	Illuminated	Drive Fault	105
CPF19 (0094)	Control Circuit Fault	Illuminated	Drive Fault	105
CPF20 (0095)	Control Circuit Error	Illuminated	Drive Fault	105
CPF21 (0096)	Control Circuit Error	Illuminated	Drive Fault	105
CPF22 (0097)	Hybrid IC Error	Illuminated	Drive Fault	105
CPF23 (0098)	Control Board Connection Error	Illuminated	Drive Fault	105
CPF24 (0099)	Drive Unit Signal Fault	Illuminated	Drive Fault	106
CPF26 (009B)	BB Circuit Error	Illuminated	Drive Fault	106
CPF27 (009C)	PWM Set Reg Error	Illuminated	Drive Fault	106
CPF28 (009D)	PWM Pattern Error	Illuminated	Drive Fault	106
CPF29 (009E)	On-Delay Error	Illuminated	Drive Fault	106
CPF30 (009F)	BB On Error	Illuminated	Drive Fault	106
CPF31 (00A0)	ASIC Code Error	Illuminated	Drive Fault	106
CPF32 (00A1)	ASIC Startup Error	Illuminated	Drive Fault	106
CPF33 (00A2)	Watch-dog Eror	Illuminated	Drive Fault	107
CPF34 (00A3)	Power/Clock Eror	Illuminated	Drive Fault	107
CPF35 (00A4)	Ext A/D Conv Error	Illuminated	Drive Fault	107
CPF36 (00A5)	ASIC COM Error	Illuminated	Drive Fault	107
CPF37 (00A6)	ASIC COM Error	Illuminated	Drive Fault	107
CPF38 (00A7)	EEPROM Data Error	Illuminated	Drive Fault	107
CPF39 (00A8)	CPU-ASIC Communication Error	Illuminated	Drive Fault	107
CPyE	Error Writing Data	-	Backup Function Runtime Error	145
CrST	Cannot Reset	Flashing	Not an alarm.	129
CSEr	Control Mode Mismatch	-	Backup Function Runtime Error	145
CyPo (0029)	Cycle Power to Accept Changes	Flashing	Alarm	129
dFPS	Drive Model Mismatch	-	Backup Function Runtime Error	145
DIFF (0093)	Differential Feedback Exceeded	Flashing	Alarm	129
DIFF (0421)	Differential Feedback Exceeded	Illuminated	Drive Fault	108
dnE (002A)	Drive Disabled	Flashing	Alarm	129
dv7 (005B)	Polarity Judge Timeout	Illuminated	Drive Fault	108
EF (0007)	FWD/REV Run Command Input Error	Flashing	Alarm	130
EF0 (001A)	Option Card External Fault	Flashing	Alarm	130

Display (Hex.)	Name	ALM LED	Type	Ref.
EF0 (0027)	Option Card External Fault	Illuminated	Drive Fault	108
EF1 (0039)	External Fault (Terminal S1)	Flashing	Alarm	130
EF1 (0042)	External Fault (Terminal S1)	Illuminated	Drive Fault	108
EF2 (003A)	External Fault (Terminal S2)	Flashing	Alarm	130
EF2 (0043)	External Fault (Terminal S2)	Illuminated	Drive Fault	108
EF3 (0009)	External Fault (Terminal S3)	Flashing	Alarm	130
EF3 (0011)	External Fault (Terminal S3)	Illuminated	Drive Fault	108
EF4 (000A)	External Fault (Terminal S4)	Flashing	Alarm	130
EF4 (0012)	External Fault (Terminal S4)	Illuminated	Drive Fault	109
EF5 (000B)	External Fault (Terminal S5)	Flashing	Alarm	130
EF5 (0013)	External Fault (Terminal S5)	Illuminated	Drive Fault	109
EF6 (000C)	External Fault (Terminal S6)	Flashing	Alarm	130
EF6 (0014)	External Fault (Terminal S6)	Illuminated	Drive Fault	109
EF7 (000D)	External Fault (Terminal S7)	Flashing	Alarm	131
EF7 (0015)	External Fault (Terminal S7)	Illuminated	Drive Fault	109
End1	Excessive Rated Voltage Setting	Flashing	An Auto-Tuning Error	142
End2	Iron Core Saturation Coefficient	Flashing	An Auto-Tuning Error	142
End3	Rated Current Setting Alarm	Flashing	An Auto-Tuning Error	142
End4	Adjusted Slip Calculation Error	Flashing	An Auto-Tuning Error	142
End5	Resistance Tuning Error	Flashing	An Auto-Tuning Error	142
End6	Leakage Inductance Alarm	Flashing	An Auto-Tuning Error	142
End7	No-Load Current Alarm	Flashing	An Auto-Tuning Error	142
EOF (0067)	Emergency Override FWD	Flashing	Alarm	131
EOR (0068)	Emergency Override REV	Flashing	Alarm	131
EP24v (0081)	External Power 24V Supply	Flashing	Alarm	131
Er-01	Motor Data Error	Flashing	An Auto-Tuning Error	142
Er-02	Drive in an Alarm State	Flashing	An Auto-Tuning Error	143
Er-03	STOP Button was Pressed	Flashing	An Auto-Tuning Error	143
Er-04	Line-to-Line Resistance Error	Flashing	An Auto-Tuning Error	143
Er-05	No-Load Current Error	Flashing	An Auto-Tuning Error	143
Er-08	Rated Slip Error	Flashing	An Auto-Tuning Error	143
Er-09	Acceleration Error	Flashing	An Auto-Tuning Error	144
Er-12	Current Detection Error	Flashing	An Auto-Tuning Error	144
Er-13	Leakage Inductance Error	Flashing	An Auto-Tuning Error	144
Er-18	Back EMF Error	Flashing	An Auto-Tuning Error	144
Er-25	HighFreq Inject Param Tuning Err	Flashing	An Auto-Tuning Error	144
Err (001F)	EEPROM Write Error	Illuminated	Drive Fault	109
FAn1 (0413)	Drive Cooling Fan Fault	Illuminated	Drive Fault	109
FB02 (043A)	Wait For Interlock Timeout	Illuminated	System Fault	110
FB03 (043B)	External Fault Bypass (EFB)	Illuminated	System Fault	110
FB05 (043D)	Motor Overload	Illuminated	System Fault	110
FB06 (043E)	External Overload 1	Illuminated	System Fault	111
FB07 (043F)	External Overload 2	Illuminated	System Fault	111

5.3 Faults, Minor Faults, Alarms, and Error Codes Listed Alphabetically

Display (Hex.)	Name	ALM LED	Type	Ref.
FB08 (0440)	Brownout Detected	Illuminated	System Fault	111
FB09 (0441)	Blackout Detected	Illuminated	System Fault	111
FB10 (0442)	Loss of Drive Communications	Illuminated	Drive Fault	111
FB13 (0445)	Loss of Load	Illuminated	System Fault	111
FB15 (0447)	Input Phase Loss	Illuminated	System Fault	112
FB16 (0448)	Input Phase Rotation	Illuminated	System Fault	112
FB17 (0449)	Load Verify Fault	Illuminated	System Fault	112
FB18 (044A)	Welded Bypass Contactor Detected	Illuminated	System Fault	112
FB26 (0452)	Option on Drive Detected	Illuminated	Drive Fault	112
FB27 (0453)	Drive Hardware Fault (CPFx oFx)	Illuminated	Drive Fault	112
FB28 (0454)	Drive Faulted	Illuminated	System Fault	112
FB30 (0456)	Conflicting SW Check UB-99	Illuminated	Drive Fault	113
FDBKL (0094)	Feedback Loss Wire Break	Flashing	Alarm	131
FDBKL (0422)	WIRE Break	Illuminated	Drive Fault	113
FIRE_ST (00CA)	Fire Stat Open	Flashing	Alarm	131
FREEZ_ST (00CB)	Freeze Stat Open	Flashing	Alarm	132
FLGT (0095)	Feedback Loss, Go To Freq b5-83	Flashing	Alarm	131
FR<MS (009E)	Freq Ref $<$ Minimum Speed (Y1-06)	Flashing	Alarm	132
FR<TH (009F)	Freq. Reference < Thrust (Y4-12)	Flashing	Alarm	132
GF (0006)	Ground Fault	Illuminated	Drive Fault	113
HCA (0034)	High Current Alarm	Flashing	Alarm	132
HFB (0423)	High Feedback Sensed	Illuminated	Drive Fault	114
HIAUX (0096)	High PI Aux Feedback Level	Flashing	Alarm	132
HIAUX (0424)	High PI Aux Feedback Level	Illuminated	Drive Fault	114
HIFB (0097)	High Feedback Sensed	Flashing	Alarm	132
iFEr	Communication Err	-	Backup Function Runtime Error	145
INTLK (0069)	BAS Interlock	Flashing	Alarm	133
LCP (00A7)	Low City Pressure	Flashing	Alarm	133
LF (001C)	Output Phase Loss	Illuminated	Drive Fault	114
LF2 (0036)	Output Current Imbalance	Illuminated	Drive Fault	114
LFB (0425)	Low Feedback Sensed	Illuminated	Drive Fault	114
LOAUX (0099)	Low PI Aux Feedback Level	Flashing	Alarm	133
LOAUX (0426)	Low PI Aux Feedback Level	Illuminated	Drive Fault	114
LoG	Com Error / Abnormal SD Card	Flashing	Alarm	133
LOFB (009A)	Low Feedback Sensed	Flashing	Alarm	133
LOP (009B)	Loss of Prime	Flashing	Alarm	133
LOP (0427)	Loss of Prime	Illuminated	Drive Fault	115
LOW_SUCT (00CE)	Low Suction Detected	Flashing	Alarm	134
LSP (00A8)	Low Suction Pressure	Flashing	Alarm	134
LT-1 (0035)	Cooling Fan Maintenance Time	Flashing	Alarm	134
LT-2 (0036)	Capacitor Maintenance Time	Flashing	Alarm	134
LT-3 (0043)	SoftChargeBypassRelay MainteTime	Flashing	Alarm	134
LT-4 (0044)	IGBT Maintenance Time (50\%)	Flashing	Alarm	134

Display (Hex.)	Name	ALM LED	Type	Ref.
LWT (00A9)	Low Water In Tank	Flashing	Alarm	134
ndAT	Model, VolClass,Capacity Mismatch	-	Backup Function Runtime Error	145
NMS (009C)	Setpoint Not Met	Flashing	Alarm	134
NMS (0429)	Setpoint Not Met	Illuminated	Drive Fault	115
oC (0007)	Overcurrent	Illuminated	Drive Fault	115
OD (009D)	Output Disconnect	Flashing	Alarm	135
OD (042A)	Output Disconnect	Illuminated	Drive Fault	116
oFA00 (0101)	Option Not Compatible with Port	Illuminated	Drive Fault	116
oFA01 (0102)	Option Fault/Connection Error	Illuminated	Drive Fault	116
oFA05 (0106)	Option A/D Error	Illuminated	Drive Fault	116
oFA06 (0107)	Option Communication Error	Illuminated	Drive Fault	116
oFA10 (0111)	Option RAM Error	Illuminated	Drive Fault	116
oFA11 (0112)	Option Ope Mode Error	Illuminated	Drive Fault	116
oFA12 (0113)	Drive Receive CRC Error	Illuminated	Drive Fault	117
oFA13 (0114)	Drive Receive Frame Error	Illuminated	Drive Fault	117
oFA14 (0115)	Drive Receive Abort Error	Illuminated	Drive Fault	117
oFA15 (0116)	Option Receive CRC Error	Illuminated	Drive Fault	117
oFA16 (0117)	Option Receive Frame Error	Illuminated	Drive Fault	117
oFA17 (0118)	Option Receive Abort Error	Illuminated	Drive Fault	117
oFA30 (0131)	COM ID Error	Illuminated	Drive Fault	117
oFA31 (0132)	Type Code Error	Illuminated	Drive Fault	117
oFA32 (0133)	SUM Check Error	Illuminated	Drive Fault	118
oFA33 (0134)	Option Receive Time Over	Illuminated	Drive Fault	118
oFA34 (0135)	Memobus Time Over	Illuminated	Drive Fault	118
oFA35 (0136)	Drive Receive Time Over 1	Illuminated	Drive Fault	118
oFA36 (0137)	CI Check Error	Illuminated	Drive Fault	118
oFA37 (0138)	Drive Receive Time Over 2	Illuminated	Drive Fault	118
oFA38 (0139)	Control Reference Error	Illuminated	Drive Fault	118
oFA39 (013A)	Drive Receive Time Over 3	Illuminated	Drive Fault	118
oFA40 (013B)	CtrlResSel 1Err	Illuminated	Drive Fault	119
oFA41 (013C)	Drive Receive Time Over 4	Illuminated	Drive Fault	119
oFA42 (013D)	CtrlResSel 2Err	Illuminated	Drive Fault	119
oFA43 (013E)	Drive Receive Time Over 5	Illuminated	Drive Fault	119
oH (0003)	Heatsink Overheat	Flashing	Alarm	135
oH (0009)	Heatsink Overheat	Illuminated	Drive Fault	119
oH1 (000A)	Heatsink Overheat	Illuminated	Drive Fault	119
oH2 (0004)	External Overheat (H1-XX=B)	Flashing	Alarm	135
oH3 (001D)	Motor Overheat (PTC Input)	Illuminated	Drive Fault	119
oH3 (0022)	Motor Overheat (PTC Input)	Flashing	Alarm	135
oH4 (0020)	Motor Overheat Fault (PTC Input)	Illuminated	Drive Fault	120
oL1 (000B)	Motor Overload	Illuminated	Drive Fault	120
oL2 (000C)	Drive Overload	Illuminated	Drive Fault	121
oL3 (0005)	Overtorque 1	Flashing	Alarm	136

5.3 Faults, Minor Faults, Alarms, and Error Codes Listed Alphabetically

Display (Hex.)	Name	ALM LED	Type	Ref.
oL3 (000D)	Overtorque Detection 1	Illuminated	Drive Fault	122
oL4 (0006)	Overtorque 2	Flashing	Alarm	136
oL4 (000E)	Overtorque Detection 2	Illuminated	Drive Fault	122
oL7 (002B)	High Slip Braking Overload	Illuminated	Drive Fault	122
oPE01	Drive Capacity Setting Fault	Flashing	Parameter Setting Error	139
oPE02	Parameter Range Setting Error	Flashing	Parameter Setting Error	139
oPE03	Multi-Function Input Setting Err	Flashing	Parameter Setting Error	139
oPE05	Run Cmd/Freq Ref Source Sel Err	Flashing	Parameter Setting Error	140
oPE07	Analog Input Selection Error	Flashing	Parameter Setting Error	140
oPE08	Parameter Selection Error	Flashing	Parameter Setting Error	140
oPE09	PID Control Selection Fault	Flashing	Parameter Setting Error	140
oPE10	V/f Data Setting Error	Flashing	Parameter Setting Error	140
oPE11	Carrier Frequency Setting Error	Flashing	Parameter Setting Error	141
oPE16	Energy Saving Constants Error	Flashing	Parameter Setting Error	141
oPE20	No Motor Overload Set	Flashing	Parameter Setting Error	141
oPE29	Baud Rate Setting Error	Flashing	Parameter Setting Error	141
oPE34	HAND/OFF/AUTO Input Setting	Flashing	Parameter Setting Error	141
oPE36	Bypass Energy Savings Setting Err	Flashing	Parameter Setting Error	141
oPr (001E)	Keypad Connection Fault	Illuminated	Drive Fault	122
ov (0002)	DC Bus Overvoltage	Flashing	Alarm	136
ov (0008)	Overvoltage	Illuminated	Drive Fault	122
ov2 (0405)	DC Bus Overvoltage 2	Illuminated	Drive Fault	123
ovEr	Too Many Parameters Changed	-	Not an alarm.	136
OV_PRESS (00CD)	Over Pressure Detected	Flashing	Alarm	136
PA1 (003F)	PLC Error 1	Flashing	Alarm	136
PASS	Serial Communication Test	Flashing	Not an alarm.	136
PE1 (0047) PE2 (0048)	PLC Faults	Illuminated	Drive Fault	123
PF (0047)	Input Phase Loss	Flashing	Alarm	136
PF (001B)	Input Phase Loss	Illuminated	Drive Fault	123
PSE (0437)	JOHB-SMP3 Protocol set Error	Illuminated	Drive Fault	123
rdEr	Error Reading Data	-	Backup Function Runtime Error	145
SAFE (00C9)	Safety Open	Flashing	Alarm	137
SC (0005)	Short Circuit/IGBT Failure	Illuminated	Drive Fault	124
SCF (040F)	Safety Circuit Fault	Illuminated	Drive Fault	124
SE (0020)	Modbus Test Mode Error	Flashing	Alarm	137
SEr (003B)	Speed Search Retries Exceeded	Illuminated	Drive Fault	124
SMK_ALRM (00CC)	Smoke Alarm Active	Flashing	Alarm	137
STo (003C)	Safe Torque OFF	-	Alarm	137
SToF (003B)	Safe Torque OFF	Flashing	Alarm	137
TiM (0089)	Keypad Time Not Set	Flashing	Alarm	137
TiM (0401)	Keypad Time Not Set	Illuminated	Drive Fault	124
TrPC (0042)	IGBT Maintenance Time (90\%)	Flashing	Alarm	137

Display (Hex.)	Name	ALM LED	Type	Ref.
UL3 (001E)	Undertorque Detection 1	Flashing	Alarm	138
UL3 (0029)	Undertorque Detection 1	Illuminated	Drive Fault	124
UL4 (001F)	Undertorque Detection 2	Flashing	Alarm	138
UL4 (002A)	Undertorque Detection 2	Illuminated	Drive Fault	124
UL6 (004E)	Underload or Belt Break Detected	Flashing	Alarm	138
UL6 (005A)	Underload or Belt Break Detected	Illuminated	Drive Fault	124
Uv (0001)	DC Bus Undervoltage	Flashing	Alarm	138
Uv1 (0002)	DC Bus Undervoltage	Illuminated	Drive Fault	125
Uv2 (0003)	Control Power Undervoltage	Illuminated	Drive Fault	125
Uv3 (0004)	Soft Charge Answerback Fault	Illuminated	Drive Fault	125
vAEr	Voltage Class, Capacity Mismatch	-	Backup Function Runtime Error	145
VBRATION (00CF)	Vibration Detected	Flashing	Alarm	138
vFyE	Parameters do not Match	-	Backup Function Runtime Error	145
VLTS (042B)	Thermostat Fault	Illuminated	Drive Fault	125

5.4 Faults, Minor Faults, Alarms, and Error Codes Listed by Decimal Value for Use with BACnet/Modbus

Table 5.3 shows the list of faults by decimal number. Faults are read in Modbus register 0080 or BACnet AV42.
Table 5.4 shows the list of minor faults and alarms by decimal number. Minor fault and alarm decimal numbers are read in Modbus register 007F.
The display codes are in decimal order. Search the tables for the decimal code, and identify its causes and possible solutions.
Drive Faults thrown by the HV600 drive will stop the bypass from running the drive but will not stop it from running in Bypass Mode.
System Faults will stop the drive and also stop it from running in Bypass Mode.

Note:

The number in parentheses adjacent to the code in the table identifies the fault code or minor fault code (hex. number) that was read during serial communications.
Example: AFBL (00A2)
Table 5.3 List of Faults by Decimal

Decimal Value	Display (Hex.)	Name	ALM LED	Type	Ref.
2	Uv1 (0002)	DC Bus Undervoltage	Illuminated	Drive Fault	125
3	Uv2 (0003)	Control Power Undervoltage	Illuminated	Drive Fault	125
4	Uv3 (0004)	Soft Charge Answerback Fault	Illuminated	Drive Fault	125
5	SC (0005)	Short Circuit/IGBT Failure	Illuminated	Drive Fault	124
6	GF (0006)	Ground Fault	Illuminated	Drive Fault	113
7	oC (0007)	Overcurrent	Illuminated	Drive Fault	115
8	ov (0008)	Overvoltage	Illuminated	Drive Fault	122
9	oH (0009)	Heatsink Overheat	Illuminated	Drive Fault	119
10	oH1 (000A)	Heatsink Overheat	Illuminated	Drive Fault	119
11	oL1 (000B)	Motor Overload	Illuminated	Drive Fault	120
12	oL2 (000C)	Drive Overload	Illuminated	Drive Fault	121
13	oL3 (000D)	Overtorque Detection 1	Illuminated	Drive Fault	122
14	oL4 (000E)	Overtorque Detection 2	Illuminated	Drive Fault	122
17	EF3 (0011)	External Fault (Terminal S3)	Illuminated	Drive Fault	108
18	EF4 (0012)	External Fault (Terminal S4)	Illuminated	Drive Fault	109
19	EF5 (0013)	External Fault (Terminal S5)	Illuminated	Drive Fault	109
20	EF6 (0014)	External Fault (Terminal S6)	Illuminated	Drive Fault	109
21	EF7 (0015)	External Fault (Terminal S7)	Illuminated	Drive Fault	109
25	dEv (0019)	Speed Deviation	Illuminated	Drive Fault	107
27	PF (001B)	Input Phase Loss	Illuminated	Drive Fault	123
28	LF (001C)	Output Phase Loss	Illuminated	Drive Fault	114
29	oH3 (001D)	Motor Overheat (PTC Input)	Illuminated	Drive Fault	119
30	oPr (001E)	Keypad Connection Fault	Illuminated	Drive Fault	122
31	Err (001F)	EEPROM Write Error	Illuminated	Drive Fault	109
32	oH4 (0020)	Motor Overheat Fault (PTC Input)	Illuminated	Drive Fault	120
33	CE (0021)	Serial Communication Error	Illuminated	Drive Fault	102
34	bUS (0022)	Option Communication Error	Illuminated	Drive Fault	102
39	EF0 (0027)	Option Card External Fault	Illuminated	Drive Fault	108

Decimal Value	Display (Hex.)	Name	ALM LED	Type	Ref.
41	UL3 (0029)	Undertorque Detection 1	Illuminated	Drive Fault	124
42	UL4 (002A)	Undertorque Detection 2	Illuminated	Drive Fault	124
43	oL7 (002B)	High Slip Braking Overload	Illuminated	Drive Fault	122
54	LF2 (0036)	Output Current Imbalance	Illuminated	Drive Fault	114
59	SEr (003B)	Speed Search Retries Exceeded	Illuminated	Drive Fault	124
66	EF1 (0042)	External Fault (Terminal S1)	Illuminated	Drive Fault	108
67	EF2 (0043)	External Fault (Terminal S2)	Illuminated	Drive Fault	108
70	CoF (0046)	Current Offset Fault	Illuminated	Drive Fault	103
71	PE1 (0047)	PLC Faults	Illuminated	Drive Fault	123
72	PE2 (0048)	PLC Faults	Illuminated	Drive Fault	123
90	UL6 (005A)	Underload or Belt Break Detected	Illuminated	Drive Fault	124
91	dv7 (005B)	Polarity Judge Timeout	Illuminated	Drive Fault	108
129	CPF00 (0081)	Control Circuit Error	Illuminated	Drive Fault	103
130	CPF01 (0082)	Control Circuit Error	Illuminated	Drive Fault	103
131	CPF02 (0083)	A/D Conversion Error	Illuminated	Drive Fault	103
132	CPF03 (0084)	Control Board Connection Error	Illuminated	Drive Fault	103
135	CPF06 (0087)	EEPROM Memory Data Error	Illuminated	Drive Fault	104
136	CPF07 (0088)	Terminal Board Connection Error	Illuminated	Drive Fault	104
137	CPF08 (0089)	Terminal Board Connection Error	Illuminated	Drive Fault	104
140	CPF11 (008C)	RAM Fault	Illuminated	Drive Fault	104
141	CPF12 (008D)	FLASH Memory Fault	Illuminated	Drive Fault	104
142	CPF13 (008E)	Watchdog Circuit Exception	Illuminated	Drive Fault	104
143	CPF14 (008F)	Control Circuit Fault	Illuminated	Drive Fault	104
145	CPF16 (0091)	Clock Fault	Illuminated	Drive Fault	105
146	CPF17 (0092)	Timing Fault	Illuminated	Drive Fault	105
147	CPF18 (0093)	Control Circuit Fault	Illuminated	Drive Fault	105
148	CPF19 (0094)	Control Circuit Fault	Illuminated	Drive Fault	105
149	CPF20 (0095)	Control Circuit Error	Illuminated	Drive Fault	105
150	CPF21 (0096)	Control Circuit Error	Illuminated	Drive Fault	105
151	CPF22 (0097)	Hybrid IC Error	Illuminated	Drive Fault	105
152	CPF23 (0098)	Control Board Connection Error	Illuminated	Drive Fault	105
153	CPF24 (0099)	Drive Unit Signal Fault	Illuminated	Drive Fault	106
155	CPF26 (009B)	BB Circuit Error	Illuminated	Drive Fault	106
156	CPF27 (009C)	PWM Set Reg Error	Illuminated	Drive Fault	106
157	CPF28 (009D)	PWM Pattern Error	Illuminated	Drive Fault	106
158	CPF29 (009E)	On-Delay Error	Illuminated	Drive Fault	106
159	CPF30 (009F)	BB On Error	Illuminated	Drive Fault	106
160	CPF31 (00A0)	ASIC Code Error	Illuminated	Drive Fault	106
161	CPF32 (00A1)	ASIC Startup Error	Illuminated	Drive Fault	106
162	CPF33 (00A2)	Watch-dog Eror	Illuminated	Drive Fault	107
163	CPF34 (00A3)	Power/Clock Eror	Illuminated	Drive Fault	107
164	CPF35 (00A4)	Ext A/D Conv Error	Illuminated	Drive Fault	107
165	CPF36 (00A5)	ASIC COM Error	Illuminated	Drive Fault	107

Decimal Value	Display (Hex.)	Name	ALM LED	Type	Ref.
166	CPF37 (00A6)	ASIC COM Error	Illuminated	Drive Fault	107
167	CPF38 (00A7)	EEPROM Data Error	Illuminated	Drive Fault	107
168	CPF39 (00A8)	CPU-ASIC Communication Error	Illuminated	Drive Fault	107
257	oFA00 (0101)	Option Not Compatible with Port	Illuminated	Drive Fault	116
258	oFA01 (0102)	Option Fault/Connection Error	Illuminated	Drive Fault	116
262	oFA05 (0106)	Option A/D Error	Illuminated	Drive Fault	116
263	oFA06 (0107)	Option Communication Error	Illuminated	Drive Fault	116
273	oFA10 (0111)	Option RAM Error	Illuminated	Drive Fault	116
274	oFA11 (0112)	Option Ope Mode Error	Illuminated	Drive Fault	116
275	oFA12 (0113)	Drive Receive CRC Error	Illuminated	Drive Fault	117
276	oFA13 (0114)	Drive Receive Frame Error	Illuminated	Drive Fault	117
277	oFA14 (0115)	Drive Receive Abort Error	Illuminated	Drive Fault	117
278	oFA15 (0116)	Option Receive CRC Error	Illuminated	Drive Fault	117
279	oFA16 (0117)	Option Receive Frame Error	Illuminated	Drive Fault	117
280	oFA17 (0118)	Option Receive Abort Error	Illuminated	Drive Fault	117
305	oFA30 (0131)	COM ID Error	Illuminated	Drive Fault	117
306	oFA31 (0132)	Type Code Error	Illuminated	Drive Fault	117
307	oFA32 (0133)	SUM Check Error	Illuminated	Drive Fault	118
308	oFA33 (0134)	Option Receive Time Over	Illuminated	Drive Fault	118
309	oFA34 (0135)	Memobus Time Over	Illuminated	Drive Fault	118
310	oFA35 (0136)	Drive Receive Time Over 1	Illuminated	Drive Fault	118
311	oFA36 (0137)	CI Check Error	Illuminated	Drive Fault	118
312	oFA37 (0138)	Drive Receive Time Over 2	Illuminated	Drive Fault	118
313	oFA38 (0139)	Control Reference Error	Illuminated	Drive Fault	118
314	oFA39 (013A)	Drive Receive Time Over 3	Illuminated	Drive Fault	118
315	oFA40 (013B)	CtrlResSel 1Err	Illuminated	Drive Fault	119
316	oFA41 (013C)	Drive Receive Time Over 4	Illuminated	Drive Fault	119
317	oFA42 (013D)	CtrlResSel 2Err	Illuminated	Drive Fault	119
318	oFA43 (013E)	Drive Receive Time Over 5	Illuminated	Drive Fault	119
1025	TiM (0401)	Keypad Time Not Set	Illuminated	Drive Fault	124
1026	bAT (0402)	Keypad Battery Low Voltage	Illuminated	Drive Fault	102
1029	ov2 (0405)	DC Bus Overvoltage 2	Illuminated	Drive Fault	123
1039	SCF (040F)	Safety Circuit Fault	Illuminated	Drive Fault	124
1043	FAn1 (0413)	Drive Cooling Fan Fault	Illuminated	Drive Fault	109
1046	bCE (0416)	Bluetooth Communication Fault	Illuminated	Drive Fault	102
1056	AUXFB (0420)	PI Aux Feedback Level Loss	Illuminated	Drive Fault	102
1057	DIFF (0421)	Differential Feedback Exceeded	Illuminated	Drive Fault	108
1058	FDBKL (0422)	WIRE Break	Illuminated	Drive Fault	113
1059	HFB (0423)	High Feedback Sensed	Illuminated	Drive Fault	114
1060	HIAUX (0424)	High PI Aux Feedback Level	Illuminated	Drive Fault	114
1061	LFB (0425)	Low Feedback Sensed	Illuminated	Drive Fault	114
1062	LOAUX (0426)	Low PI Aux Feedback Level	Illuminated	Drive Fault	114
1063	LOP (0427)	Loss of Prime	Illuminated	Drive Fault	115

Decimal Value	Display (Hex.)	Name	ALM LED	Type	Ref.
1065	NMS (0429)	Setpoint Not Met	Illuminated	Drive Fault	115
1066	OD (042A)	Output Disconnect	Illuminated	Drive Fault	116
1067	VLTS (042B)	Thermostat Fault	Illuminated	Drive Fault	125
1079	PSE (0437)	JOHB-SMP3 Protocol set Error	Illuminated	Drive Fault	123
1082	FB02 (043A)	Wait For Interlock Timeout	Illuminated	System Fault	110
1083	FB03 (043B)	External Fault Bypass (EFB)	Illuminated	System Fault	110
1085	FB05 (043D)	Motor Overload	Illuminated	System Fault	110
1086	FB06 (043E)	External Overload 1	Illuminated	System Fault	111
1087	FB07 (043F)	External Overload 2	Illuminated	System Fault	111
1088	FB08 (0440)	Brownout Detected	Illuminated	System Fault	111
1089	FB09 (0441)	Blackout Detected	Illuminated	System Fault	111
1090	FB10 (0442)	Loss of Drive Communications	Illuminated	Drive Fault	111
1093	FB13 (0445)	Loss of Load	Illuminated	System Fault	111
1095	FB15 (0447)	Input Phase Loss	Illuminated	System Fault	112
1096	FB16 (0448)	Input Phase Rotation	Illuminated	System Fault	112
1097	FB17 (0449)	Load Verify Fault	Illuminated	System Fault	112
1098	FB18 (044A)	Welded Bypass Contactor Detected	Illuminated	System Fault	112
1106	FB26 (0452)	Option on Drive Detected	Illuminated	Drive Fault	112
1107	FB27 (0453)	Drive Hardware Fault (CPFx oFx)	Illuminated	Drive Fault	112
1108	FB28 (0454)	Drive Faulted	Illuminated	System Fault	112
1110	FB30 (0456)	Conflicting SW Check UB-99	Illuminated	Drive Fault	113

Table 5.4 List of Minor Faults and Alarms by Decimal
Minor fault and alarm decimal numbers are read in Modbus register 007F.

Decimal Value	Display (Hex.)	Name	ALM LED	Type	Ref.
1	Uv (0001)	DC Bus Undervoltage	Flashing	Alarm	138
2	ov (0002)	DC Bus Overvoltage	Flashing	Alarm	136
3	oH (0003)	Heatsink Overheat	Flashing	Alarm	135
4	oH2 (0004)	External Overheat ($\mathrm{H} 1-\mathrm{XX}=\mathrm{B}$)	Flashing	Alarm	135
5	oL3 (0005)	Overtorque 1	Flashing	Alarm	136
6	oL4 (0006)	Overtorque 2	Flashing	Alarm	136
7	EF (0007)	FWD/REV Run Command Input Error	Flashing	Alarm	130
8	bb (0008)	Baseblock	Flashing	Alarm	127
9	EF3 (0009)	External Fault (Terminal S3)	Flashing	Alarm	130
10	EF4 (000A)	External Fault (Terminal S4)	Flashing	Alarm	130
11	EF5 (000B)	External Fault (Terminal S5)	Flashing	Alarm	130
12	EF6 (000C)	External Fault (Terminal S6)	Flashing	Alarm	130
13	EF7 (000D)	External Fault (Terminal S7)	Flashing	Alarm	131
20	CE (0014)	Serial Communication Error	Flashing	Alarm	128
21	bUS (0015)	Option Communication Error	Flashing	Alarm	127
26	EF0 (001A)	Option Card External Fault	Flashing	Alarm	130
29	CALL (001D)	Serial Comm Transmission Error	Flashing	Alarm	128
30	UL3 (001E)	Undertorque Detection 1	Flashing	Alarm	138
31	UL4 (001F)	Undertorque Detection 2	Flashing	Alarm	138

Decimal Value	Display (Hex.)	Name	ALM LED	Type	Ref.
32	SE (0020)	Modbus Test Mode Error	Flashing	Alarm	137
34	oH3 (0022)	Motor Overheat (PTC Input)	Flashing	Alarm	135
41	CyPo (0029)	Cycle Power to Accept Changes	Flashing	Alarm	129
42	$\mathrm{dnE}(002 \mathrm{~A})$	Drive Disabled	Flashing	Alarm	129
52	HCA (0034)	High Current Alarm	Flashing	Alarm	132
53	LT-1 (0035)	Cooling Fan Maintenance Time	Flashing	Alarm	134
54	LT-2 (0036)	Capacitor Maintenance Time	Flashing	Alarm	134
57	EF1 (0039)	External Fault (Terminal S1)	Flashing	Alarm	130
58	EF2 (003A)	External Fault (Terminal S2)	Flashing	Alarm	130
59	SToF (003B)	Safe Torque OFF	Flashing	Alarm	137
60	STo (003C)	Safe Torque OFF	-	Alarm	137
63	PA1 (003F)	PLC Error 1	Flashing	Alarm	137
66	TrPC (0042)	IGBT Maintenance Time (90\%)	Flashing	Alarm	137
67	LT-3 (0043)	SoftChargeBypassRelay MainteTime	Flashing	Alarm	134
68	LT-4 (0044)	IGBT Maintenance Time (50\%)	Flashing	Alarm	134
71	PF (0047)	Input Phase Loss	Flashing	Alarm	136
78	UL6 (004E)	Underload or Belt Break Detected	Flashing	Alarm	138
103	EOF (0067)	Emergency Override FWD	Flashing	Alarm	131
104	EOR (0068)	Emergency Override REV	Flashing	Alarm	131
105	INTLK (0069)	BAS Interlock	Flashing	Alarm	133
129	EP24v (0081)	External Power 24V Supply	Flashing	Alarm	131
133	bAT (0085)	Keypad Battery Low Voltage	Flashing	Alarm	127
137	TiM (0089)	Keypad Time Not Set	Flashing	Alarm	137
138	bCE (008A)	Bluetooth Communication Error	Flashing	Alarm	127
144	$\mathrm{Bu}-\mathrm{Fb}(0090)$	Main Fdbk Lost Using Backup Fdbk	Flashing	Alarm	127
145	BuFbl (0091)	Backup Fdbk Lost Chk/Repl Xducer	Flashing	Alarm	127
146	CE (0092)	Run at H5-34 (CE Go-To-Freq)	Flashing	Alarm	129
147	DIFF (0093)	Differential Feedback Exceeded	Flashing	Alarm	129
148	FDBKL (0094)	Feedback Loss Wire Break	Flashing	Alarm	131
149	FLGT (0095)	Feedback Loss, Go To Freq b5-83	Flashing	Alarm	131
150	HIAUX (0096)	High PI Aux Feedback Level	Flashing	Alarm	132
151	HIFB (0097)	High Feedback Sensed	Flashing	Alarm	132
153	LOAUX (0099)	Low PI Aux Feedback Level	Flashing	Alarm	133
154	LOFB (009A)	Low Feedback Sensed	Flashing	Alarm	133
155	LOP (009B)	Loss of Prime	Flashing	Alarm	133
156	NMS (009C)	Setpoint Not Met	Flashing	Alarm	134
157	OD (009D)	Output Disconnect	Flashing	Alarm	135
158	FR<MS (009E)	Freq Ref < Minimum Speed (Y1-06)	Flashing	Alarm	132
159	FR<TH (009F)	Freq. Reference < Thrust (Y4-12)	Flashing	Alarm	132
162	AFBL (00A2)	Analog Fbk Lost, Switched to Net	Flashing	Alarm	126
163	AuDis (00A3)	Low PI Aux Fdbk Drive Disabled	Flashing	Alarm	126
164	AUXFB (00A4)	PI Aux Feedback Level Loss	Flashing	Alarm	126
165	AuFbl (00A5)	PI Aux Fdbk Lost Switched to Net	Flashing	Alarm	126

Decimal Value	Display (Hex.)	Name	ALM LED	Type	Ref.
166	BuDif (00A6)	Main Fdbk Lost, Using Diff Fdbk	Flashing	Alarm	127
167	LCP (00A7)	Low City Pressure	Flashing	Alarm	133
168	LSP (00A8)	Low Suction Pressure	Flashing	Alarm	134
169	LWT (00A9)	Low Water In Tank	Flashing	Alarm	134
178	AL02 (00B2)	Interlock Open	Flashing	Alarm	126
179	AL03 (00B3)	Emergency Override Bypass	Flashing	Alarm	126
185	AL09 (00B9)	Restart Delay Active	Flashing	Alarm	126
189	AL13 (00BD)	Loss of Load Detected	Flashing	Alarm	126
192	AL16 (00C0)	Input Phase Rotation	Flashing	Alarm	126
193	AL17 (00C1)	Remote Xfer disabled in Reverse	Flashing	Alarm	126
194	AL18 (00C2)	Auto Xfer disabled in Reverse	Flashing	Alarm	126
201	SAFE (00C9)	Safety Open	Flashing	Alarm	137
202	FIRE_ST (00CA)	Fire Stat Open	Flashing	Alarm	131
203	FREEZ_ST (00CB)	Freeze Stat Open	Flashing	Alarm	132
204	SMK_ALRM (00CC)	Smoke Alarm Active	Flashing	Alarm	137
205	OV_PRESS (00CD)	Over Pressure Detected	Flashing	Alarm	136
206	LOW_SUCT (00CE)	Low Suction Detected	Flashing	Alarm	134
207	VBRATION (00CF)	Vibration Detected	Flashing	Alarm	138

5.5 Faults

5.5 Faults

This section gives information about some of the causes and possible solutions of faults. You must use the Fault Reset operation to remove the fault before you can operate the drive. Use the information in this table to remove the cause of the fault.

Code	Name	Causes	Possible Solutions
AUXFB	PI Aux Feedback Level Loss	The analog input from the terminal set for $P I$ Auxiliary Control Feedback Level [H3-xx $=27]$ is more than 21 mA or less than 3 mA for longer than 1 s.	Repair transducer or wiring.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
bAT	Keypad Battery Low Voltage	The keypad battery voltage is low.	Replace the keypad battery.
Note: Use o4-24 [bAT Detection Selection] to enable/disable bAT detection.			
Code	Name	Causes	Possible Solutions
bCE	Bluetooth Communication Fault	The smartphone or tablet with DriveWizard Mobile installed is too far from the keypad.	Use the smartphone or tablet 10 m (32.8 ft) or nearer to the keypad. Note: $b C E$ can occur when the smartphone or tablet is $10 \mathrm{~m}(32.8 \mathrm{ft})$ or nearer to the keypad depending on the specifications of the smartphone or tablet.
		Radio waves from a different device are causing interference with communications between the smartphone or tablet and keypad.	Make sure that no device around the keypad uses the same radio bandwidth (2400 MHz to 2480 MHz), and prevent radio interference.

Note:

- The drive detects this error when you use the Bluetooth LCD keypad and operate the drive with a smartphone or tablet.
- Do a Fault Reset to clear the fault.
- Set the stopping method for this fault in o2-27 [bCE Detection Selection].

Code	Name	Causes	Possible Solutions
bUS	Option Communication Error	The drive did not receive a signal from the controller.	Correct wiring errors.
		The communications cable wiring is incorrect.	
		There is a short-circuit in the communications cable or the communications cable is not connected.	- Repair short circuits and connect cables. - Replace the defective communications cable.
		Electrical interference caused a communication data error.	- Examine the control circuit lines, main circuit lines, and ground wiring, and decrease the effects of electrical interference. - Make sure that a magnetic contactor is not the source of the electrical interference, then use a Surge Protective Device if necessary. - Use only the recommended cables or other shielded line. Ground the shield on the controller side or the drive input power side. - Separate the communication wiring from drive power lines, and install a noise filter to the input side of the power supply for communication. - Decrease the effects of electrical interference from the controller
		The option is incorrectly installed to the bypass control board A2.	Correctly install the option to the bypass control board A2.
		The option is damaged.	If the fault continues and the wiring is correct, replace the option.
Note: - The drive detects this error if the Run command or frequency reference is assigned to the option card. - Do a Fault Reset to clear the fault. - If the drive detects this error, the drive will operate the motor as specified by the stopping method set in F6-01 [Communication Error Selection].			
Code	Name	Causes	Possible Solutions
CE	Serial Communication Error	The communications cable wiring is incorrect.	Correct wiring errors.
		There is a short circuit in the communications cable or the communications cable is not connected.	- Repair short circuits and connect cables. - Replace the defective communications cable.

Code	Name	Causes	Possible Solutions
		Electrical interference caused a communication data error.	- Examine the control circuit lines, main circuit lines, and ground wiring, and decrease the effects of electrical interference. - Make sure that a magnetic contactor is not the source of the electrical interference, then use a Surge Protective Device if necessary. - Use only the recommended cables or other shielded line. Ground the shield on the controller side or the drive input power side. - Separate the communication wiring from drive power lines, and install a noise filter to the input side of the power supply for communication. - Decrease the effects of electrical interference from the controller.
Note: - The drive detects this error if it does not correctly receive control data for the CE detection time set to H5-09 [CE Detection Time]. - Do a Fault Reset to clear the fault. - If the drive detects this error, the drive will operate the motor as specified by the stopping method set in $\mathrm{H} 5-04$ [Communication Error Stop Method].			
Code	Name	Causes	Possible Solutions
CoF	Current Offset Fault	The drive starts operation while the induced voltage stays in the motor (during coasting to a stop or after fast deceleration).	- Make a sequence that does not restart operation when induced voltage stays in the motor. - Set b3-01 $=1$ [Speed Search at Start Selection = Enabled] . - Use Speed Search from Fmax or Fref [H1-xx = 61, 62] to do a speed search through one of the external terminals.
		A drive hardware problem occurred.	Replace the drive.
Note: - The drive detects this error if the current offset value is more than the permitted setting range while the drive automatically adjusts the current offset. - Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
CPF00	Control Circuit Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF01	Control Circuit Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF02	A/D Conversion Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF03	Control Board Connection Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			

5.5 Faults

Code	Name	Causes	Possible Solutions
CPF06	EEPROM Memory Data Error	The drive power supply was de-energized while a communication option card entered a parameter Write command.	Set A1-03 $=2220$ [Initialize Parameters $=2$-Wire Initialization] and initialize the drive.
		An EEPROM peripheral circuit error occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - The drive detects this error if there is an error in the data written to the EEPROM of the drive. - Do a Fault Reset to clear the fault. - Fault trace is not available for this fault.			
Code	Name	Causes	Possible Solutions
CPF07	Terminal Board Connection Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF08	Terminal Board Connection Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF11	RAM Fault	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF12	FLASH Memory Fault	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF13	Watchdog Circuit Exception	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF14	Control Circuit Fault	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			

Code	Name	Causes	Possible Solutions
CPF16	Clock Fault	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF17	Timing Fault	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF18	Control Circuit Fault	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF19	Control Circuit Fault	A drive hardware problem occurred.	- Re-energize the drive and check if the fault still remains. - Replace the control board or the entire drive if the fault continues. Contact Yaskawa or your nearest sales representative for instructions on replacing the control board.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF20	Control Circuit Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF21	Control Circuit Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF22	Hybrid IC Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF23	Control Board Connection Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			

5.5 Faults

Code	Name	Causes	Possible Solutions
CPF24	Drive Unit Signal Fault	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF26	BB Circuit Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF27	PWM Set Reg Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF28	PWM Pattern Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF29	On-Delay Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF30	BB On Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF31	ASIC Code Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF32	ASIC Startup Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			

Code	Name	Causes	Possible Solutions
CPF33	Watch-dog Eror	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF34	Power/Clock Eror	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF35	Ext A/D Conv Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF36	ASIC COM Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF37	ASIC COM Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF38	EEPROM Memory Data Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
CPF39	CPU-ASIC Communication Error	A drive hardware problem occurred.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for these faults.			
Code	Name	Causes	Possible Solutions
dEv	Speed Deviation	The load is too heavy.	Decrease the load.
		Acceleration and deceleration times are set too short.	Increase the values set in C1-01 to C1-04 [Acceleration/ Deceleration Time].
		The $d E v$ detection level settings are incorrect.	Adjust F1-10 [Speed Deviation Detection Level] and F1-11 [Speed Deviation Detect DelayTime].
		The load is locked up.	Examine the machine.

5.5 Faults

Code	Name	Causes	Possible Solutions
		The holding brake is stopping the motor.	Release the holding brake.
Note: - The drive detects this error if the difference between the detected speed and the speed reference is more than the setting of F1-10 for longer than F1-11. - Do a Fault Reset to clear the fault. - If the drive detects this error, the drive will operate the motor as specified by the stopping method set in F1-04 [Speed Deviation Detection Select].			
Code	Name	Causes	Possible Solutions
DIFF	Differential Feedback Exceeded	The difference between the PID Feedback and Differential Level Source $[H 3-x x=2 D]$ is more than the level set in Y4-18 [Differential Level] for the time set in Y4-19 [Differential Lvl Detection Time].	- Replace the feedback transducer or transducers. - Make sure that the settings of Y4-18 [Differential Level] to Y4-20 [Differential Level Detection Sel] are correct.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
dv7	Polarity Judge Timeout	There is a disconnection in the motor coil winding.	Measure the motor line-to-line resistance and replace the motor if a coil is disconnected.
		The screws on the drive output terminals are loose.	Tighten the terminal screws to the correct tightening torque.
Note: - The drive detects this error if it cannot detect polarity in a pre-set length of time. - Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
EF0	Option Card External Fault	The communication option received an external fault from the controller.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input from the controller.
		A programming error occurred on the controller side.	Examine the operation of the controller program.
Note: - The drive detects this fault if the alarm function on the external device side is operating. - Do a Fault Reset to clear the fault. - If the drive detects this fault, it will operate the motor as specified by the stop method set in F6-03 [Comm External Fault (EF0) Select].			
Code	Name	Causes	Possible Solutions
EF1	External Fault (Terminal S1)	MFDI terminal S1 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S1.
		External Fault [H1-01 $=20$ to 2 B] is set to MFDI terminal S 1 , but the terminal is not in use.	Correctly set the MFDI.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
EF2	External Fault (Terminal S2)	MFDI terminal S2 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S2.
		External Fault [H1-02 $=20$ to 2B] is set to MFDI terminal S2, but the terminal is not in use.	Correctly set the MFDI.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
EF3	External Fault (Terminal S3)	MFDI terminal S3 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S3.
		External Fault [H1-03 $=20$ to 2B] is set to MFDI terminal S3, but the terminal is not in use.	Correctly set the MFDI.
Note: Do a Fault Reset to clear the fault.			

Code	Name	Causes	Possible Solutions
EF4	External Fault (Terminal S4)	MFDI terminal S4 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S4.
		External Fault [H1-04 = 20 to 2B] is set to MFDI terminal S4, but the terminal is not in use.	Correctly set the MFDI.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
EF5	External Fault (Terminal S5)	MFDI terminal S5 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S5.
		External Fault [H1-05 $=20$ to 2 B] is set to MFDI terminal 55 , but the terminal is not in use.	Correctly set the MFDI.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
EF6	External Fault (Terminal S6)	MFDI terminal S6 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S6.
		External Fault [HI-06 $=20$ to 2B] is set to MFDI terminal 66 , but the terminal is not in use.	Correctly set the MFDI.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
EF7	External Fault (Terminal S7)	MFDI terminal S7 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S7.
		External Fault [H1-07 $=20$ to 2B] is set to MFDI terminal S7, but the terminal is not in use.	Correctly set the MFDI.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
Err	EEPROM Write Error	There was a problem with the EEPROM hardware.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. Contact Yaskawa or your nearest sales representative to replace the board.
		Electrical interference corrupted the data while it was writing to the EEPROM of the drive.	- Push ENTER Key. - Set the parameters again.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FAn1	Drive Cooling Fan Fault	The cooling fan stopped operating correctly.	- Examine cooling fan operation. - Re-energize the drive. - Examine U4-03 [Cooling Fan Ope Time] and U4-04 [Cool Fan Maintenance]. If the performance life of the cooling fan is expired or if there is damage to the fan, replace the fan.
		The circulation fan is damaged.	- Examine circulation fan operation. - Re-energize the drive. - Examine U4-03 [Cooling Fan Ope Time] and U4-04 [Cool Fan Maintenance]. If there is damage to the circulation fan or if the performance life of the fan is expired, replace the fan.
Note: Do a Fault	set to clear the fault.		

5.5 Faults

Code	Name	Causes	Possible Solutions
FB02	Wait For Interlock Timeout	The digital input set to Run Interlock is open. This will usually be Terminal TB2-3 on bypass control PCB A2.	- Install a NC BAS Interlock Circuit/Damper Interlock between TB2-3 and TB2-9 on the bypass control board A2. - Install a jumper between TB2-3 and TB2-9 on the bypass control board A2... Use this method when you will add a BAS (Building Automation System) Interlock circuit in the future or if you will not use a Building Automation System interlock circuit. - Make sure that the input assigned for the Interlock is active in the timeout period set in Z1-15.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB03	External Fault Bypass (EFB)	An digital input set for external fault (EFB) was activated.	Remove the cause of the external fault.
		An external fault (EFB) was received from the serial communications network.	- Remove the cause of the external fault. - Remove the external fault input from the controller. - Make sure that the controller program is correct.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB05	Motor Overload	The load is too heavy.	Decrease the load. Note: You can only reset $F B 05$ when U4-16 [Motor oL1 Level] <100.
		The acceleration/deceleration times or cycle times are too short.	- Examine the acceleration/deceleration times and the motor start/ stop frequencies (cycle times). - Increase the values set in C1-01 to C1-04 [Acceleration/ Deceleration Times].
		Overload occurred while running at low speed.	- Decrease the load when running at low speed. - Increase the motor speed. - If the motor is run frequently at low speeds, replace the motor with a larger motor or use a drive-dedicated motor. Note: For general-purpose motors, overload can occur while running at low speed when operating at below the rated current.
		Starting the motor too often in Bypass Mode.	Decrease the number of times the motor is started in Bypass Mode.
		The V/f pattern does not fit the motor qualities.	- Examine the ratios between the V/f pattern frequency and voltage. Decrease the voltage if it is too high compared to the frequency. - Adjust E1-04 to E1-10 [V/f Pattern Parameters]. Decrease the values set in E1-08 [Mid Point A Voltage] and E1-10 [Minimum Output Voltage]. Note: If the values set in E1-08 and E1-10 are too low, the overload tolerance will decrease at low speeds.
		E1-06 [Base Frequency] is set incorrectly.	Set E1-06 to the rated frequency shown on the motor nameplate.
		One drive is operating more than one motor.	Set L1-01 $=0$ [Motor Overload (oL1) Protection $=$ Disabled], connect thermal overload relay to each motor to prevent damage to the motors.
		The electronic thermal protector is operating at an incorrect level.	- Set E2-01 [Motor Rated Current (FLA)] correctly to the value specified by the motor nameplate. - Check that L1-08 $=0.0$ A [oLl Current Level $=0.0$] or the correct value specified by the motor nameplate.
		There is increased motor loss from overexcitation operation.	- Lower the value set in n3-13 [OverexcitationBraking (OEB) Gain]. - Set $L 3-04 \neq 4$ [Stall Prevention during Decel \neq Overexcitation/ High Flux]. - Set n 3-23 $=0$ [Overexcitation Braking Operation $=$ Disabled] .
		The speed search-related parameters are set incorrectly.	- Examine the settings for all speed search related parameters. - Adjust b3-03 [Speed Search Deceleration Time]. - Set b3-24 = 1 [Speed Search Method Selection $=$ Speed Estimation] after Auto-Tuning.
		Phase loss in the input power supply is causing the output current to change.	Make sure that there is no phase loss, and repair problems.

Code	Name	Causes	Possible Solutions
		Overload occurred during overexcitation deceleration.	- Decrease the value set in n3-13 [OverexcitationBraking (OEB) Gain]. - Decrease the value set in n3-21 [HSB Current Suppression Level].
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB06	External Overload 1	The load is too heavy.	Decrease the load.
		The cycle times for acceleration and deceleration are too short.	Increase the acceleration and deceleration times in C1-01 and C102.
		The external motor overload is set incorrectly.	Adjust the dial on the external motor overload to align with the motor nameplate rating.
		External motor overload wiring error.	Make sure that the wiring is correct between the normally-closed control contacts on the external motor overload and the digital input [Z2-0x] programmed to 29 [External Overload Motor 1 (NC)].
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB07	External Overload 2	The load is too heavy.	Decrease the load.
		The cycle times for acceleration and deceleration are too short.	Increase the acceleration and deceleration times in $\mathrm{Cl}-01$ and Cl 02.
		The external motor overload is set incorrectly.	Adjust the dial on the external motor overload to align with the motor nameplate rating.
		External motor overload wiring error.	Make sure that the wiring is correct between the normally-closed control contacts on the external motor overload and the digital input [Z2-0x] programmed to 30 [External Overload Motor 2 (NC)].
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB08	Brownout Detected	Input power is too low.	Make sure that the input power is sufficient to power the bypass.
		The brownout settings are incorrect.	Make sure that Z1-27 [Brownout Voltage Level] and Z1-28 [Brownout Time] are correct.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB09	Blackout Detected	Input power is too low.	Make sure that the input power is sufficient to power the bypass.
		The blackout settings are incorrect.	- Make sure that Z1-29 [Blackout Voltage Level] is correct. - Set $Z 1-60 \neq 0$ [Blackout Operation Select \neq Fault $]$.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB10	Loss of Drive Communications	The cable between the bypass controller and the drive is disconnected or damaged.	Make sure that the cable between the bypass controller board (A2) connector CN6 to drive terminal CN6 is connected at both ends and is not damaged.
		The drive does not have power (look at the CHARGE LED to verify).	- If equipped, check the drive input disconnect switch, the drive input fuses, and/or correct operation of the K1 input contactor. - Switch the system into Bypass Mode.
		The bypass controller circuit is defective.	Replace the bypass control board.
		The drive circuitry is defective.	Replace the drive.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB13	Loss of Load	The motor is disconnected from the drive	Check the continuity between the drive/bypass and the motor.
		The load is disconnected from the motor.	Check the belt/coupling between the motor and the load.
		The Loss of Load settings are incorrect.	Make sure that the settings in Z1-31 to Z1-36 are correct.
Note: Do a Fault Reset to clear the fault.			

5.5 Faults

Code	Name	Causes	Possible Solutions
FB15	Input Phase Loss	Bypass Mode current unbalance condition is more than the unbalance level limit in $Z 1$ - 50 for the length of time in Z1-51.	- Make sure that the input wiring including fuses, breakers, and connections upstream from the bypass is correct. - Make sure that the motor wiring and connections are correct. - To disable this fault, set Z1-51 [Bypass Input Phase Loss Delay] to 0.0 sec .
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB16	Input Phase Rotation	Incorrect phase rotation while Z1-52 $=2$ in Bypass Mode.	- Make sure that the sequence (phase rotation) of the input wiring to the bypass package is correct. - To disable this fault, set Z1-52 [Input Phase Rotation Detection] to 0 or 1
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB17	Load Verify Fault	The drive or bypass output current is less than 5% of E2-01, Motor Rated Current for longer than 10 seconds.	- Close all external output disconnects. - Make sure that the frequency reference or PID output >0. - Check motor wiring. - Set $d 2-02>0.0 \%$ - To disable this fault, set Z1-53 $=0$ [Load Verify Detection $=$ Disabled].
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB18	Welded Bypass Contactor Detected	The bypass detected a welded contactor condition.	Inspect the K3 bypass contactor.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB26	Option on Drive Detected	There is a communications option PCB connected to the CN5 port on the drive.	Remove the option PCB from the drive and install it in the CN5 port of the bypass controller.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB27	Drive Hardware Fault (CPFx oFx)	There is a CPFxx or oFA fault on the drive.	Remove the cause of the fault on the drive.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
FB28	Drive Faulted	Generic fault code to identify a drive fault that was duplicated or not detected by the bypass.	Investigate and remove the cause of the drive fault.
Note: Do a Fault Reset to clear the fault.			

Code	Name	Causes	Possible	tions
FB30	Conflicting SW Check UB-99	The bypass controller software version does not align with the drive software version. The bypass controller firmware is for a different drive series than HV600. You can see the drive series on the keypad during a power-up sequence (splash screen).	Do ONE of these solutions: 1. Update the firmware in the HV600 drive to align with what is displayed in bypass monitor $U b-99$ (set $A 1-01=3$ to be able to view this monitor). 2. Update the firmware in the bypass controller to one that aligns with the firmware in the HV600 drive as listed in the table below:	
			HV600 Drive Software (Read from U1-25)	Update Bypass Controller Firmware Version to:
			01011	00442
			01012	00442
			01013	00444
			01014	00444
			01015	00445
			01016	00446
			01017	00447 or 00448 *1
			*1 If your bypass c version 00448 or to an older versi 3. Disable firmware version che $Z 1-98 \leq U 1-25 \leq Z 1-99$. (set these parameters). Refer to th Parameter Details description more information.	oller has firmware r, do not downgrade firmware. Set Z1-98 or Z1-99 so that $=3$ to be able to change 99 [Maximum Drive SW Ver] Technical Reference for
Note: - Do a Fault Reset to clear the fault. - If this fault is detected, the bypass will still function in Bypass Mode. Only operation in Drive Mode is prohibited. - The HV600 drive firmware number is shown in bypass monitor U1-25. - The bypass controller firmware version is shown in bypass monitor Ub-18.				
Code	Name	Causes	Possible Solutions	
FDBKL	WIRE Break	The analog input from the terminal set for PID Feedback $[H 3-x x=B]$ is more than 21 mA or less than 3 mA for longer than 1 s in these conditions: - b5-82 $=2$ [Feedback Loss 4~20mA Detect Sel $=$ Fault] - b5-01 $=0$ [PID Mode Setting \neq Disabled] - H3-01 or H3-09 = 2 [Terminal A1/A2 Signal Level Selection $=4$ to 20 mA$]$	Make sure that you install the PID feedback source and it operates correctly.	
Note: - Do a Fault Reset to clear the fault. - If the drive detects this fault, it will operate the motor as specified by the settings of $b 5-82$. - Parameter L5-42 [Feedback Loss Fault Retry Select] sets the Auto Restart function of this fault.				
Code	Name	Causes	Possible Solutions	
GF	Ground Fault	Overheating caused damage to the motor or the motor insulation is not satisfactory.	Measure the motor insulation resistance, and replace the motor if there is electrical conduction or unserviceable insulation.	
		The motor main circuit cable is contacting ground to make a short circuit.	- Examine the motor main circuit cable for damage, and repair short circuits. - Measure the resistance between the motor main circuit cable and the ground terminal. If there is electrical conduction, replace the cable.	
		An increase in the stray capacitance of the cable and the ground terminal caused an increase in the leakage current.	- If the wiring length of the cable is more than 100 m , decrease the carrier frequency. - Decrease the stray capacitance.	
		There was a problem with the drive hardware.	Replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.	
Note: - The drive detects this fault if a current short to ground was more than 50% of rated current on the output side of the drive. - Do a Fault Reset to clear the fault. - L5-08 [Fault Reset Enable Select Grp2] disables the Auto Restart function.				

5.5 Faults

Code	Name	Causes	Possible Solutions
HFB	High Feedback Sensed	The feedback level is more than the level set in Y1-11 [High Feedback Level] for the time set in Y1-12 [High Feedback Lvl Fault Dly Time].	- Decrease the feedback level less than Y1-11. - Set Y1-11 and Y1-12 correctly.
Note: - Do a Fault Reset to clear the fault. - If the drive detects this fault, it will respond as specified by the setting of Y1-13 [High Feedback Selection]. - Parameter L5-41 [Hi Feedback Flt Retry Selection] sets the Auto Restart function of this fault.			
Code	Name	Causes	Possible Solutions
HIAUX	High PI Aux Feedback Level	PI Auxiliary Feedback is more than the level set in YF-12 [PI Aux Control High Level Detect] for the time set in YF-13 [PI Aux High Level Detection Time] in these conditions: - The drive operates in AUTO Mode. - The output frequency >0.	- Decrease the PI Auxiliary Feedback level less than YF-12. - Set YF-12 and YF-13 correctly.
Note: - Do a Fault Reset to clear the fault. - Parameter YF-14 [PI Aux Hi Level Detection Select] sets the Auto Restart function of this fault.			
Code	Name	Causes	Possible Solutions
LF	Output Phase Loss	The motor main circuit cable is disconnected.	Connect motor main circuit cable wiring. Correct wiring errors in the main circuit drive input power.
		There is a disconnection in the motor coil winding.	If a coil is disconnected, measure the motor Line-to-Line Resistance and replace the motor.
		The screws on the drive output terminals are loose.	Tighten the terminal screws to the correct tightening torque.
		The rated current of the motor is less than 5% of the drive rated output current.	Examine the drive capacity or the motor output to be applied.
		You are trying to use a single-phase motor.	The drive cannot operate a single-phase motor.
		The output transistor in the drive is damaged.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
		One of the output contactors K2 (K4 or K5 if equipped) is defective.	Contact Yaskawa or your nearest sales representative.
Note: - The drive detects this fault if phase loss occurs on the output side of the drive. - Do a Fault Reset to clear the fault. - Set L8-07 [Output Phase Loss Protection Sel] to enable and disable $L F$ detection.			
Code	Name	Causes	Possible Solutions
LF2	Output Current Imbalance	Phase loss occurred in the wiring on the output side of the drive.	Examine for wiring errors or disconnected wires on the output side of the drive, and repair problems.
		The output terminal screws of the drive are loose.	Tighten the terminal screws to the correct tightening torque.
		The drive output circuit is broken.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Code	Name	Causes	Possible Solutions
LFB	Low Feedback Sensed	The feedback level is less than the level set in Y1-08 [Low Feedback Level] for the time set in Y1-09 [Low Feedback Lvl Fault Dly Time].	- Increase the feedback level to more than Y1-08. - Set Y1-08 and Y1-09 correctly.
Note: - Do a Fault Reset to clear the fault. - If the drive detects this fault, it will respond as specified by the setting of Y1-10 [Low Feedback Selection]. - Parameter L5-40 [Low Feedback Flt Retry Selection] sets the Auto Restart function of this fault.			
Code	Name	Causes	Possible Solutions
LOAUX	Low PI Aux Feedback Level	When the drive operates in AUTO Mode or HAND Mode, PI Auxiliary Feedback is less than the level set in YF-09 [PI Aux Control Low Lvl Detection] for the time set in YF-10 [PI Aux Control Low Lvl Det Time] and the drive is running.	- Increase the PI Auxiliary Feedback level to be more than YF-09. - Set YF-09 and YF-10 correctly.
Note: - Do a Fault Reset to clear the fault. - Parameter YF-11 [PI Aux Control Low Level Det Sel] sets the Auto Restart function of this fault.			

Code	Name	Causes	Possible Solutions
LOP	Loss of Prime	The drive used the Y1-18 [Prime Loss Detection Method] setting and measured a pump load that is less than the level set in Y1-19 [Prime Loss Level] for the time set in Y1-20 [Prime Loss Time], and the output frequency is Y1-21 [Prime Loss Activation Freq] or more.	- Examine for a dry well, air in the system, or no water in the system. Use preferred priming method suggested by the pump manufacturer to restart the pump. - When there is resistance in the pump, let the system pump water again. - Set Y1-18 to Y1-21 correctly.
Note: - Do a Fault Reset to clear the fault. - If the drive detects this fault, it will respond as specified by the setting of Y1-22 [Prime Loss Selection]. - Parameters L5-51 [Loss of Prime Fault Retry Select] and Y1-23 [Prime Loss Max Restart Time] set the Auto Restart function of this fault.			
Code	Name	Causes	Possible Solutions
NMS	Setpoint Not Met	The feedback deviates from the setpoint at a level more than Y1-15 [Maximum Setpoint Difference] for the time set in Y1-16 [Not Maintaining Setpoint Time].	- Examine for a blocked impeller, over cycling, or broken pipe. - Set Y1-15 and Y1-16 correctly.
Note: - Do a Fault Reset to clear the fault. - If the drive detects this fault, it will respond as specified by the setting of Y1-17 [Not Maintaining Setpoint Sel]. - Parameter L5-50 [Setpoint Not Met Fault Retry Sel] sets the Auto Restart function of this fault.			
Code	Name	Causes	Possible Solutions
oC	Overcurrent	The load is too large.	- Measure the current flowing into the motor. - Replace the drive with a larger capacity model if the current value is more than the drive rated current. - Decrease the load or replace with a larger drive to prevent sudden changes in the current level.
		Overheating caused damage to the motor or the motor insulation is not satisfactory.	Measure the motor insulation resistance, and replace the motor if there is electrical conduction or unserviceable insulation.
		The motor main circuit cable is contacting ground to make a short circuit.	- Examine the motor main circuit cable for damage, and repair short circuits. - Measure the resistance between the motor main circuit cable and the ground terminal. If there is electrical conduction, replace the cable.
		A short circuit or ground fault on the drive output side caused damage to the output transistor of the drive.	- Make sure that there is not a short circuit in terminals - and terminals U/T1, V/T2, and W/T3. - If there is a short circuit, contact Yaskawa or your nearest sales representative.
		The acceleration time is too short.	- Calculate the torque necessary during acceleration related to the load inertia and the specified acceleration time. - Increase the values set in C1-01 or C1-03 [Acceleration Times] to get the necessary torque. - Increase the values set in C2-01 to C2-04 [S-Curve Characteristics] to get the necessary torque. - Replace the drive with a larger capacity model.
		The drive is trying to operate a specialized motor or a motor that is larger than the maximum applicable motor output of the drive.	- Examine the motor nameplate, the motor, and the drive to make sure that the drive rated current is larger than the motor rated current. - Replace the drive with a larger capacity model.
		A magnetic contactor was switched at the output.	Set the operation sequence to not turn ON or OFF the magnetic contactor while the drive is outputting voltage.
		The V/f pattern settings are incorrect.	- Examine the ratios between the V/f pattern frequency and voltage. Decrease the voltage if it is too high compared to the frequency. - Adjust E1-04 to E1-10 [V/f Pattern Parameters].
		The torque compensation gain is too large.	Decrease the value set in C4-01 [Torque Compensation Gain] to make sure that the motor does not stall.
		Electrical interference caused a problem.	Examine the control circuit lines, main circuit lines, and ground wiring, and decrease the effects of electrical interference.
		The gain during overexcitation operation is too large.	- Find the time when the fault occurs. - If the fault occurs at the same time as overexcitation operation, decrease the value set in n3-13 [OverexcitationBraking (OEB) Gain] and consider the motor flux saturation.
		The drive received a Run command while the motor was coasting.	- Examine the sequence and input the Run command after the motor fully stops. - Set $b 3-01=1$ [Speed Search at Start Selection $=$ Enabled $]$ or set $H 1-x x=61$, 62 [Speed Search from Fmax or Fref] to input speed search commands from the MFDI terminals.
		The motor main circuit cable is too long.	Replace the drive with a larger capacity model.

5.5 Faults

Code	Name	Causes	Possible Solutions
		The relay or contactor on the soft-charge bypass relay is damaged.	- Re-energize the drive. - If the fault stays, replace the control board or the drive.
		An overcurrent condition occurred during overexcitation deceleration.	- Decrease the value set in n3-13 [OverexcitationBraking (OEB) Gain]. - Decrease the value set in n3-21 [HSB Current Suppression Level].

Note:

- This fault occurs if the drive sensors detect a drive output current more than the specified overcurrent detection level.
- Do a Fault Reset to clear the fault.

Code	Name	Causes	Possible Solutions
OD	Output Disconnect	The output circuit between the drive and the motor is open, and the drive output current is less than 5% of E2-01 [Motor Rated Current (FLA)].	- Close the disconnected output circuit between the drive and the motor. - You can adjust Y4-42 [Output Disconnect Detection Sel] to disable this fault.
Note: - Do a Fault Reset to clear the fault. - If the drive detects this fault, it will respond as specified by the setting of Y4-42 [Output Disconnect Detection Sel].			
Code	Name	Causes	Possible Solutions
oFA00	Option Not Compatible with Port	The option card connected to connector CN5 is not compatible or it is not functioning correctly.	Remove the option PCB connected to CN5 on the bypass controller.
		The DIP switches on a JOHB-SMP3 Multi-Protocol Ethernet card are set incorrectly for your protocol.	Check the DIP switch settings for your protocol. Refer to the instructions packaged with the JOHB-SMP3 card for more information.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for this fault.			
Code	Name	Causes	Possible Solutions
oFA01	Option Fault/Connection Error	The option card connected to connector CN5 is not compatible.	1. De-energize the drive. 2. Refer to the option card manual and correctly connect the option card to the connector on the bypass controller.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA05	Option A/D Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA06	Option Communication Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA10	Option RAM Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA11	Option Ope Mode Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			

Code	Name	Causes	Possible Solutions
oFA12	Drive Receive CRC Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA13	Drive Receive Frame Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA14	Drive Receive Abort Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA15	Option Receive CRC Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA16	Option Receive Frame Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA17	Option Receive Abort Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA30	COM ID Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA31	Type Code Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Faul	et to clear the fault.		

5.5 Faults

Code	Name	Causes	Possible Solutions
oFA32	SUM Check Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA33	Option Receive Time Over	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA34	Memobus Time Over	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA35	Drive Receive Time Over 1	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA36	CI Check Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA37	Drive Receive Time Over 2	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA38	Control Reference Error	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA39	Drive Receive Time Over 3	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			

Code	Name	Causes	Possible Solutions
oFA40	CtriResSel 1Err	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA41	Drive Receive Time Over 4	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA42	CtrlResSel 2Err	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oFA43	Drive Receive Time Over 5	A fault occurred in the option card.	1. De-energize the drive. 2. Make sure that the option card is correctly connected to the connector. 3. If the problem continues, replace the option card.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oH	Heatsink Overheat	The ambient temperature is high and the heatsink temperature of the drive is more than the value set in L8-02 [Overheat Alarm Level].	- Measure the ambient temperature. - Increase the airflow in the control panel. - Install a cooling device (cooling fan or air conditioner) to lower the ambient temperature. - Remove objects near the drive that are producing too much heat.
		The load is too heavy.	- Measure the output current. - Decrease the load. - Decrease the value set in C6-02 [Carrier Frequency Selection].
		The internal cooling fan of the drive stopped.	1. Use the procedures in this manual to replace the cooling fan. 2. Set $04-03=0[$ Fan Operation Time Setting $=0 \mathrm{~h}]$.
Note: - The drive detects this fault if the heatsink temperature of the drive is more than the value set in $L 8-02$. - Do a Fault Reset to clear the fault. - If the drive detects this fault, it will operate the motor as specified by the Stopping Method set in L8-03 [Overheat Pre-Alarm Selection].			
Code	Name	Causes	Possible Solutions
oH1	Heatsink Overheat	The ambient temperature is high and the heatsink temperature of the drive is more than the oHl detection level.	- Measure the ambient temperature. - Increase the airflow in the control panel. - Install a cooling device (cooling fan or air conditioner) to lower the ambient temperature. - Remove objects near the drive that are producing too much heat.
		The load is too heavy.	- Measure the output current. - Decrease the load. - Decrease the value set in C6-02 [Carrier Frequency Selection].
Note: - The drive detects this fault if the heatsink temperature of the drive is more than the oH 1 detection level. o2-04 [Drive Model (KVA) Selection] determines the oH 1 detection level. - Do a Fault Reset to clear the fault. - L5-08 [Fault Reset Enable Select Grp2] disables the Auto Restart function.			
Code	Name	Causes	Possible Solutions
oH3	Motor Overheat (PTC Input)	The thermistor wiring that detects motor temperature is defective.	Correct wiring errors.
		A fault occurred on the machine. Example: The machine is locked.	Examine the machine and remove the cause of the fault

5.5 Faults

Code	Name	Causes	Possible Solutions
		The motor has overheated.	- Check the load level, acceleration/deceleration time, and motor start/stop frequency (cycle time). - Decrease the load. - Increase the values set in C1-01 to C1-04 [Acceleration/ Deceleration Times]. - Set E2-01 [Motor Rated Current (FLA)] correctly to the value specified by the motor nameplate. - Make sure that the motor cooling system is operating correctly, and repair or replace it if it is damaged. - Adjust E1-04 to E1-10 [V/f Pattern Parameters]. Decrease the values set in E1-08 [Mid Point A Voltage] and E1-10 [Minimum Output Voltage]. Note: If the values set in E1-08 and E1-10 are too low, the overload tolerance will decrease at low speeds.
Note: - When H3-02 or H3-10 = E [MFAI Function Selection = Motor Temperature (PTC Input)], the drive detects this fault if the motor overheat signal entered to analog input terminals A1 or A2 is more than the alarm detection level. - Do a Fault Reset to clear the fault. - If the drive detects this fault, it will operate the motor as specified by the Stopping Method set in L1-03 [Motor Thermistor oH Alarm Select].			
Code	Name	Causes	Possible Solutions
oH4	Motor Overheat Fault (PTC Input)	The motor has overheated.	- Check the load level, acceleration/deceleration time, and motor start/stop frequency (cycle time). - Decrease the load. - Increase the values set in C1-01 to C1-04 [Acceleration/ Deceleration Times]. - Set E2-01 [Motor Rated Current (FLA)] correctly to the value specified by the motor nameplate. - Make sure that the motor cooling system is operating correctly, and repair or replace it if it is damaged. - Adjust E1-04 to E1-10 [V/f Pattern Parameters]. Decrease the values set in E1-08 [Mid Point A Voltage] and E1-10 [Minimum Output Voltage]. Note: If E1-08 and E1-10 are set too low, the overload tolerance will decrease at low speeds.
Note: - The drive detects this fault if the motor overheat signal that was entered to an analog input terminals A1 or A2 is more than the alarm detection level. (If $H 3-02$ or $H 3-10=E[M F A I$ Function Select $=$ Motor Temperature (PTC Input)] was set.) - Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
oL1	Motor Overload	The load is too heavy.	Decrease the load. Note: Reset oL1 when U4-16 [Motor oL1 Level] < 100.
		The acceleration/deceleration times or cycle times are too short.	- Examine the acceleration/deceleration times and the motor start/ stop frequencies (cycle times). - Increase the values set in C1-01 to C1-04 [Acceleration/ Deceleration Times].
		Overload occurred while running at low speed.	- Decrease the load when running at low speed. - Increase the motor speed. - If the motor is run frequently at low speeds, replace the motor with a larger motor or use a drive-dedicated motor. Note: For general-purpose motors, overload can occur while running at low speed when operating at below the rated current.
		The V/f pattern does not fit the motor qualities.	- Examine the ratios between the V/f pattern frequency and voltage. Decrease the voltage if it is too high compared to the frequency. - Adjust E1-04 to E1-10 [V/f Pattern Parameters]. Decrease the values set in E1-08 [Mid Point A Voltage] and E1-10 [Minimum Output Voltage]. Note: If the values set in E1-08 and E1-10 are too low, the overload tolerance will decrease at low speeds.
		E1-06 [Base Frequency] is set incorrectly.	Set E1-06 to the rated frequency shown on the motor nameplate.
		One drive is operating more than one motor.	Set L1-01 $=0$ [Motor Overload (oL1) Protection $=$ Disabled $]$, connect thermal overload relay to each motor to prevent damage to the motor.
		The electronic thermal protector qualities and the motor overload properties do not align.	Connect a thermal overload relay to the motor.

Code	Name	Causes	Possible Solutions
		The electronic thermal protector is operating at an incorrect level.	Set E2-01 [Motor Rated Current (FLA)] correctly to the value specified by the motor nameplate.
		There is increased motor loss from overexcitation operation.	- Lower the value set in n3-13 [OverexcitationBraking (OEB) Gain]. - Set L3-04 $\neq 4$ [Stall Prevention during Decel \neq Overexcitation/ High Flux]. - Set $n 3-23=0$ [Overexcitation Braking Operation $=$ Disabled] .
		The speed search-related parameters are set incorrectly.	- Examine the settings for all speed search related parameters. - Adjust b3-03 [Speed Search Deceleration Time]. - Set b3-24 = 1 [Speed Search Method Selection = Speed Estimation] after Auto-Tuning.
		Phase loss in the input power supply is causing the output current to change.	Make sure that there is no phase loss, and repair problems.
		Overload occurred during overexcitation deceleration.	- Decrease the value set in n3-13 [OverexcitationBraking (OEB) Gain]. - Decrease the value set in n3-21 [HSB Current Suppression Level].
Note: - Parameter E2-01 normally sets the motor overload level. In special applications, for example motors with a service factor of greater than 1, you can use L1-08 [oLl Current Level for Motor 1] . - Do a Fault Reset to clear the fault. - L5-07 [Fault Reset Enable Select Grp1] disables the Auto Restart function.			
Code	Name	Causes	Possible Solutions
oL2	Drive Overload	The load is too large.	Decrease the load.
		The acceleration/deceleration times or cycle times are too short.	- Examine the acceleration/deceleration times and the motor start/ stop frequencies (cycle times). - Increase the values set in C1-01 to C1-04 [Acceleration/ Deceleration Times].
		The V/f pattern does not fit the motor qualities.	- Examine the ratios between the V/f pattern frequency and voltage. Decrease the voltage if it is too high compared to the frequency. - Adjust E1-04 to E1-10 [V/f Pattern Parameters]. Decrease the values set in E1-08 [Mid Point A Voltage] and E1-10 [Minimum Output Voltage]. Note: If the values set in E1-08 and E1-10 are too low, the overload tolerance will decrease at low speeds.
		The drive capacity is too small.	Replace the drive with a larger capacity model.
		Overload occurred while running at low speed.	- Decrease the load when running at low speed. - Replace the drive with a larger capacity model. - Decrease the value set in C6-02 [Carrier Frequency Selection].
		The torque compensation gain is too large.	Decrease the value set in C4-01 [Torque Compensation Gain] to make sure that the motor does not stall.
		The speed search-related parameters are set incorrectly.	- Examine the settings for all speed search-related parameters. - Adjust b3-03 [Speed Search Deceleration Time]. - Set b3-24 = 1 [Speed Search Method Selection $=$ Speed Estimation] after Auto-Tuning.
		Phase loss in the input power supply is causing the output current to change.	- Correct errors with the wiring for main circuit drive input power. - Make sure that there is no phase loss, and repair problems.
		Overload occurred during overexcitation deceleration.	- Decrease the value set in n3-13 [OverexcitationBraking (OEB) Gain]. - Decrease the value set in n3-21 [HSB Current Suppression Level].
Note: - The drive detects this fault if the electronic thermal protector of the drive started the drive overload protection. - Do a Fault Reset to clear the fault. - L5-07 [Fault Reset Enable Select Grp1] disables the Auto Restart function.			

Note:

- Do a Fault Reset to clear the fault
- L5-07 [Fault Reset Enable Select Grp1] disables the Auto Restart function.

5.5 Faults

Code	Name	Causes	Possible Solutions
oL3	Overtorque Detection 1	A fault occurred on the machine. Example: The machine is locked.	Examine the machine and remove the cause of the fault.
		The parameters are incorrect for the load.	Adjust L6-02 [Torque Detection Level 1] and L6-03 [Torque Detection Time 1] settings.
Note: - The drive detects this fault if the drive output current is more than the level set in $L 6-02$ for longer than $L 6-03$. - Do a Fault Reset to clear the fault. - If the drive detects this fault, it will operate the motor as specified by the Stopping Method set in L6-01 [Torque Detection Selection 1]. - L5-07 [Fault Reset Enable Select Grp1] disables the Auto Restart function.			
Code	Name	Causes	Possible Solutions
oL4	Overtorque Detection 2	A fault occurred on the machine. Example: The machine is locked.	Examine the machine and remove the cause of the fault.
		The parameters are incorrect for the load.	Adjust L6-05 [Torque Detection Level 2] and L6-06 [Torque Detection Time 2] settings.
Note: - The drive detects this fault if the drive output current is more than the level set in $L 6-05$ for longer than $L 6-06$. - Do a Fault Reset to clear the fault. - If the drive detects this fault, it will operate the motor as specified by the Stopping Method set in L6-04 [Torque Detection Selection 2]. - L5-07 [Fault Reset Enable Select Grp1] disables the Auto Restart function.			
Code	Name	Causes	Possible Solutions
oL7	High Slip Braking Overload	The load inertia is too large.	Decrease deceleration times in C1-02 and C1-04 [Deceleration Times] for applications that do not use High Slip Braking.
		An external force on the load side rotated the motor. Something is preventing deceleration on the load side.	
		The value set in n3-04 [HSB Overload Time] is too small.	- Increase the value set in $n 3-04$. - Connect a thermal overload relay to the motor, and set $n 3-04=$ 1200 s (maximum value).

Note:

- The drive detects this fault if the output frequency is constant for longer than n3-04.
- Do a Fault Reset to clear the fault.

Code	Name	Causes	Possible Solutions
oPr	Keypad Connection Fault	The keypad is not securely connected to the connector on the bypass controller.	Examine the connection between the keypad and the bypass controller
		The connection cable between the bypass controller and the keypad is disconnected.	- Remove the keypad and connect it again. - If the cable is damaged, replace it.
Note: - The bypass controller detects this fault if these conditions are correct: $-o 2-06=1$ [Keypad Disconnect Detection $=$ Enabled]. -b1-02 $=0$ [Run Command Selection $1=$ Keypad], or the bypass controller is operating in HAND Mode with the keypad. $-Z 1-39=0 \text { [Drive/Bypass Source Select }=\text { Keypad }]$ - Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
ov	Overvoltage	Deceleration time is too short and regenerative energy is flowing from the motor into the drive.	- Set $L 3-04=1$ [Stall Prevention during Decel $=$ General Purpose]. - Increase the values set in C1-02 or C1-04 [Deceleration Times]. - Do Deceleration Rate Auto-Tuning.
		The acceleration time is too short.	- Make sure that sudden drive acceleration does not cause the fault. - Increase the values set in C1-01 or C1-03 [Acceleration Times]. - Increase the value set in C2-02 [S-Curve Time @ End of Accel]. - Set $L 3-11=1$ [Overvoltage Suppression Select $=$ Enabled].
		The drive output cable or motor is shorted to ground (the current short to ground is charging the main circuit capacitor of the drive through the power supply).	1. Examine the motor main circuit cable, terminals, and motor terminal box, and then remove ground faults. 2. Re-energize the drive.
		If the drive detects $o v$ in these conditions, the speed search-related parameters are incorrect: - During speed search - During momentary power loss recovery - When the drive starts again automatically - When you do rotational Auto-Tuning	- Examine the settings for all speed search related parameters. - Set $b 3-19 \neq 0$ [Speed Search Restart Attempts $\neq 0$ times]. - Adjust b3-03 [Speed Search Deceleration Time] setting. - Do Stationary Auto-Tuning for Line-to-Line Resistance and then set $b 3-24=1$ [Speed Search Method Selection $=$ Speed Estimation]. - Increase the value set in L2-04 [Powerloss V/f Recovery Ramp Time].

Note:

- The drive detects this error if the DC bus voltage changes irregularly without regeneration.
- Do a Fault Reset to clear the fault.
- Use $L 8-05$ to enable and disable $P F$ detection.

Code	Name	Causes	Possible Solutions
PSE	JOHB-SMP3 Protocol Set Error	- The DIP switches on the JOHB-SMP3 Multi- Protocol Ethernet Card are at factory default settings. The DIP switches on the JOHB-SMP3 are not set to a valid protocol.	Remove power from the drive, wait for the charge light to go out, then set the DIP switches on the JOHB-SMP3 to the desired protocol. Note: Refer to the instructions packaged with the JOHB-SMP3 for more information about DIP switch settings.
Note: Do a Fault Reset to clear the fault.			

5.5 Faults

Code	Name	Causes	Possible Solutions
SC	Short Circuit/IGBT Failure	Overheating caused damage to the motor or the motor insulation is not satisfactory.	Measure the motor insulation resistance, and replace the motor if there is electrical conduction or unserviceable insulation.
		The motor main circuit cable is contacting ground to make a short circuit.	- Examine the motor main circuit cable for damage, and repair short circuits. - Measure the resistance between the motor main circuit cable and the ground terminal. If there is electrical conduction, replace the cable.
		A short circuit or ground fault on the drive output side caused damage to the output transistor of the drive.	- Make sure that there is not a short circuit in terminal B1 and terminals $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$, and $\mathrm{W} / \mathrm{T} 3$. Make sure that there is not a short circuit in terminals - and terminals U/T1, V/T2, and W/T3. - If there is a short circuit, contact Yaskawa or your nearest sales representative.

Note:

- The drive detects this error if there is a short circuit or ground fault on the drive output side, or an IGBT failure.
- Do a Fault Reset to clear the fault.

Code	Name	Causes	Possible Solutions
SCF	Safety Circuit Fault	The safety circuit is broken.	Replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
SEr	Speed Search Retries Exceeded	The speed search-related parameters are set incorrectly.	- Decrease b3-10 [Speed Estimation Detection Gain]. - Increase b3-17 [Speed Est Retry Current Level]. - Increase b3-18 [Speed Est Retry Detection Time]. - Do Auto-Tuning again.
		The motor is coasting in the opposite direction of the Run command.	Set b3-14 $=1$ [Bi-directional Speed Search $=$ Enabled $]$.
Note: - The drive detects this error if the number of speed search restarts is more than b3-19 [Speed Search Restart Attempts]. - Do a Fault Reset to clear the fault.			
Code	Name	Causes	Possible Solutions
TiM	Keypad Time Not Set	There is a battery in the keypad, but the date and time are not set.	Use the keypad to set the date and time.
Note: - Do a Fault Reset to clear the fault. - Parameter o4-24 [bAT Detection Selection] enables and disables TiM detection.			
Code	Name	Causes	Possible Solutions
UL3	Undertorque Detection 1	A fault occurred on the machine. Example: There is a broken pulley belt.	Examine the machine and remove the cause of the fault.
		The parameters are incorrect for the load.	Adjust L6-02 [Torque Detection Level 1] and L6-03 [Torque Detection Time 1] settings.
Note: - The drive detects this error if the drive output current is less than the level set in L6-02 for longer than L6-03. - Do a Fault Reset to clear the fault. - If the drive detects this error, it will operate the motor as specified by the Stopping Method set in L6-01 [Torque Detection Selection 1].			
Code	Name	Causes	Possible Solutions
UL4	Undertorque Detection 2	A fault occurred on the machine. Example: There is a broken pulley belt.	Examine the machine and remove the cause of the fault.
		The parameters are incorrect for the load.	Adjust L6-05 [Torque Detection Level 2] and L6-06 [Torque Detection Time 2] settings.
Note: - The drive detects this error if the drive output current is less than the level set in $L 6-05$ for longer than $L 6-06$. - Do a Fault Reset to clear the fault. - If the drive detects this error, it will operate the motor as specified by the Stopping Method set in L6-04 [Torque Detection Selection 2].			
Code	Name	Causes	Possible Solutions
UL6	Underload or Belt Break Detected	The output current decreased less than the motor underload curve set in L6-14 [Motor Underload Level @ Min Freq] for longer than the time set in L6-03 [Torque Detection Time 1].	Adjust the L6-14 setting to set the output current to stay the level more than the motor underload curve during usual operations.
Note: Do a Fault Reset to clear the fault.			

Code	Name	Causes	Possible Solutions
Uv1	DC Bus Undervoltage	There is a phase loss in the drive input power.	Correct errors with the wiring for main circuit drive input power.
		There is loose wiring in the drive input power terminals.	Tighten the terminal screws to the correct tightening torque.
		The drive input power voltage is changing too much.	- Examine the input power for problems. - Make the drive input power stable. - If the input power supply is good, examine the magnetic contactor on the main circuit side for problems.
		There was a loss of power.	Use a better power supply.
		The main circuit capacitors have become unserviceable.	Examine the capacitor maintenance time in monitor U4-05 [CapacitorMaintenance]. If $U 4-05$ is more than 90%, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
		The relay or contactor on the soft-charge bypass relay is damaged.	U4-06 [PreChargeRelayMainte] shows the performance life of the soft-charge bypass relay. If $U 4-06$ is more than 90%, replace the board or the drive. For information about replacing the board, contact Yaskawa or your nearest sales representative.
Note: - The drive detects this error if the DC bus voltage decreases below the level set in L2-05 [Undervoltage Detection Lvl (Uv1)] while the drive is running. - The $U v I$ detection level is approximately 190 V for $208 / 240 \mathrm{~V}$ bypasses. The detection level is approximately 380 V for 480 V bypasses. The detection level is approximately 350 V when E1-01 [Input AC Supply Voltage] <400. - Do a Fault Reset to clear the fault. - Fault trace is not available for this fault. - L5-08 [Fault Reset Enable Select Grp2] disables the Auto Restart function.			
Code	Name	Causes	Possible Solutions
Uv2	Control Power Undervoltage	The value set in L2-02 [Power Loss Ride Through Time] increased and the momentary power loss recovery unit is not connected to the drive.	Connect the momentary power loss recovery unit to the drive.
		There was a problem with the drive hardware.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: - The drive detects this error if the control power supply voltage decreases. - Do a Fault Reset to clear the fault. - Fault trace is not available for this fault.			
Code	Name	Causes	Possible Solutions
Uv3	Soft Charge Answerback Fault	The relay or contactor on the soft-charge bypass relay is damaged.	- Re-energize the drive. - If the fault stays, replace the control board or the drive. - Check monitor U4-06 [PreChargeRelayMainte], which shows the performance life of the soft-charge bypass relay. If $U 4-06$ is more than 90%, replace the board or the drive. For information about replacing the board, contact Yaskawa or your nearest sales representative.
Note: - Do a Fault Reset to clear the fault. - Fault trace is not available for this fault.			
Code	Name	Causes	Possible Solutions
VLTS	Thermostat Fault	The digital input from the terminal set for Thermostat Fault $[H 1-x x=88]$ is active.	Examine the wiring or wait for the motor to cool.
Note: - Do a Fault Reset to clear the fault. - Parameter L5-53 [Thermostat Fault Retry Selection] sets the Auto Restart function of this fault.			

5.6 Minor Faults/Alarms

This section gives information about the causes and possible solutions when a minor fault or alarm occurs. Use the information in this table to remove the cause of the minor fault or alarm.

Code	Name	Causes	Possible Solutions
AFBL	Analog Fbk Lost, Switched to Net	The analog input source is defective or broken.	Make sure that you install the PID Feedback source and it operates correctly.
		The parameter setting is $H 3-x x \neq B$ [MFAI Function Selection \neq PID Feedback].	Set $H 3-x x=B$ to use the analog input source for PID Feedback.
Note:			
Code	Name	Causes	Possible Solutions
AuDis	Low PI Aux Fdbk Drive Disabled	- PI Auxiliary Feedback is less than the YF-06 [PI Aux Control Wake-up Level] setting, and the drive is stopped or running as a Lag drive.	- Make sure that the YF-06 setting is correct. - Wait for the PI Auxiliary Feedback to recover.
Note: If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
AL02	Interlock Open	The digital input set to interlock is open	Make sure that the damper is functioning correctly. The damper could be opening and the switch could be open.
Code	Name	Causes	Possible Solutions
AL03	Emergency Override Bypass	The digital input terminal set to $H 2-0 x=25$ [Digital input function selection $=$ Emergency Override Bypass] activated.	When the emergency condition is gone, deactivate the digital input set to Emergency Override Bypass.
Code	Name	Causes	Possible Solutions
AL09	Restart Delay Active	The restart delay is active and the drive received a Run command.	- This is not an alarm. It is information to show that the drive is not running. When you remove the Run command to the drive, the $A L 09$ alarm will go away. - Parameters Z1-60 [Blackout Operation Select] and Z1-61 [Power Loss Restart Delay Time] set restart delay.
Code	Name	Causes	Possible Solutions
AL13	Loss of Load Detected	The motor is disconnected from the load.	Replace the belt or coupling between the motor and the load. If the bypass detected this alarm incorrectly, make sure that parameters Z1-31 to Z1-36 are correct for your application.
Code	Name	Causes	Possible Solutions
AL16	Input Phase Rotation	The phase rotation is incorrect while $Z 1-52=1$ in Bypass Mode.	Make sure that the sequence (phase rotation) of the input wiring to the bypass package is correct.
Code	Name	Causes	Possible Solutions
AL17	Remote Xfer disabled in Reverse	The drive is running in reverse and it received a Remote Transfer command.	This is not an alarm. It is information to show that the bypass cannot remote transfer when the drive is running in reverse.
Code	Name	Causes	Possible Solutions
AL18	Auto Xfer disabled in Reverse	When auto transfer is enabled, the drive detects a fault and it cannot transfer while it is running in reverse.	This is not an alarm. It is information to show that the drive cannot auto transfer when reverse run is active.
Code	Name	Causes	Possible Solutions
AuFbl	PI Aux Fdbk Lost Switched to Net	The analog input source is defective or broken.	Make sure that you install the Auxiliary PI Feedback source and it operates correctly.
Note: - The drive detects this error if it detected a wire-break with the PI Auxiliary Control Feedback [H3-xx $=27$] analog signal and it uses PI Auxiliary Feedback. - If the drive detects this error, the terminal set to $\mathrm{H2}-01$ to $\mathrm{H2} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
AUXFB	PI Aux Feedback Level Loss	The analog input from the terminal set to $H 3-x x=27$ [MFAI Function Selection = PI Auxiliary Control Feedback Level] is more than 21 mA or less than 3 mA for longer than 1 s .	Repair transducer or wiring.
Note:	ects this error, the terminal set to H	$\text { to } \mathrm{H} 2-03=10[M F D O \text { Function Selection }=\text { Alarm }]$	activate.

Code	Name	Causes	Possible Solutions
bAT	Keypad Battery Low Voltage	The keypad battery voltage is low.	Replace the keypad battery.
Note: - If the drive detects this error, the terminal set to H2-01 to H2-03 = 10 [MFDO Function Selection $=$ Alarm $]$ will activate. - Set o4-24 [bAT Detection Selection] to enable/disable bAT detection.			
Code	Name	Causes	Possible Solutions
bb	Baseblock	An external baseblock command was entered through one of the drive MFDI terminals $S x$, and the drive output stopped as shown by an external baseblock command.	Examine the external sequence and timing of the baseblock command input.
Note: The drive will not output a minor fault signal for this alarm.			
Code	Name	Causes	Possible Solutions
bCE	Bluetooth Communication Error	The smartphone or tablet with DriveWizard Mobile is too far from the keypad.	Move to $10 \mathrm{~m}(32.8 \mathrm{ft})$ or less from the keypad. Note: $b C E$ can occur when the smartphone or tablet is $10 \mathrm{~m}(32.8 \mathrm{ft})$ or nearer to the keypad for different smartphone and tablet specifications.
		Radio waves from a different device are causing interference with communications between the smartphone or tablet and keypad.	Make sure that no device around the keypad uses the same radio bandwidth (2400 MHz to 2480 MHz), and prevent radio interference.
Note: - The drive detects this error when you use a smartphone or tablet and a Bluetooth LCD keypad to operate the drive. - If the drive detects this error, the terminal set to H2-01 to H2-03 = 10 [MFDO Function Selection =Alarm] will activate. - Use $o 2-27$ [bCE Detection selection] to enable and disable $b C E$ detection.			
Code	Name	Causes	Possible Solutions
BuDif	Main Fdbk Lost, Using Diff Fdbk	Parameter Y4-41 = 1 [Diff Lvl Src Fdbk Backup Select $=$ Enabled] and the drive detected a wire-break on the analog input terminal set for PID Feedback [H3-xx $=B]$.	Examine the connection of the Main PID Feedback Transducer.
		Main PID Feedback Transducer is broken.	Replace Main PID Feedback Transducer.
Note: - The drive detects this error if it does not receive the PID Feedback signal and it uses Differential Feedback [H3-xx $=2 D]$ as backup. - If the drive detects this error, the terminal set to H2-01 to H2-03 = 10 [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
$\mathrm{Bu}-\mathrm{Fb}$	Main Fdbk Lost Using Backup Fdbk	The drive detected wire-break on the analog input terminal set to H3-xx = B [MFAI Function Selection = PID Feedback].	Examine the connection of the Main PID Feedback Transducer.
		Main PID Feedback Transducer is broken.	Replace Main PID Feedback Transducer.
Note: If the drive detects this error, the terminal set to H2-01 to H2-03 $=10$ [MFDO Function Selection $=$ Alarm] will activat			
Code	Name	Causes	Possible Solutions
BuFbl	Backup Fdbk Lost Chk/Repl Xducer	The drive detected wire-break on the analog input terminal set for PID Feedback Backup [H3-xx = 24].	Examine the connection of the Differential PID Feedback transducer.
		Backup PID Feedback Transducer is broken.	Replace Backup PID Feedback Transducer.
		Parameter Y4-41 $=1$ [Diff Lvl Src Fdbk Backup Select $=$ Enabled] and the drive detected a wire-break on the analog input terminal set for Differential Level Source $[H 3-x x=2 D]$.	Examine the connection of the Differential PID Feedback transducer.
		Parameter $Y 4-41=1$ and the Differential PID Feedback Transducer is broken.	- Replace the Differential PID Feedback Transducer. - Set $Y 4-41=0$ [Disabled].

Note:

- The drive detects this error if it does not receive the PID Feedback Backup signal.
- If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.

Code	Name	Causes	Possible Solutions
bUS	Option Communication Error	The communications cable wiring is incorrect.	Correct wiring errors.
		There is a short-circuit in the communications cable or the communications cable is not connected.	- Repair short circuits and connect cables. Replace the defective communications cable.

5.6 Minor Faults/Alarms

Code	Name	Causes	Possible Solutions

Note:

- The drive detects this error if the Run command or frequency reference is assigned to the option card.
- If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.
- If the drive detects this error, it will operate the motor as specified by the stopping method set in F6-01 [Communication Error Selection].

Code	Name	Causes	Possible Solutions
bUSy	Busy	You set the bypass controller to use serial communications to change parameters, but you used the keypad to change parameters.	Use serial communications to enter the enter command, then use the keypad to change the parameter.
		You tried to change a parameter while the bypass controller was changing a setting.	Wait until the process is complete.
Code	Name	Causes	Possible Solutions
CALL	Serial Comm Transmission Error	The communications cable wiring is incorrect.	Correct wiring errors.
		There is a short circuit in the communications cable or the communications cable is not connected.	- Repair the short-circuited or disconnected portion of the cable. - Replace the defective communications cable.
		A programming error occurred on the controller side.	Examine communications at start-up and correct programming errors.
		There is damage to the communications circuitry.	- Do a self-diagnostics check. - If the problem continues, replace the control board or the drive. Contact Yaskawa or your nearest sales representative to replace the control board.
		The termination resistor setting for RS-485 based communications is incorrect.	On the last drive of an RS-485 based network, set DIP switch S2 to the ON position to enable the termination resistor.
Note: - The drive detects this error if it does not correctly receive communications from the controller when the drive is first energized. - Parameter H5-33 [Power-up CALL Alarm] enables or disables the detection of this alarm at power-up. - In bypass controller software versions 00444 and later, HAND operation is available during a CALL alarm.			
Code	Name	Causes	Possible Solutions
CE	Serial Communication Error	The communications cable wiring is incorrect.	Correct wiring errors.
		There is a short circuit in the communications cable or the communications cable is not connected.	- Repair short circuits and connect cables. - Replace the defective communications cable.
		Electrical interference caused a communication data error.	- Examine the control circuit lines, main circuit lines, and ground wiring, and decrease the effects of electrical interference. - Make sure that a magnetic contactor is not the source of the electrical interference, then use a Surge Protective Device if necessary. - Use only the recommended cables or other shielded line. Ground the shield on the controller side or the drive input power side. - Separate the communication wiring from drive power lines, and install a noise filter to the input side of the power supply for communication. - Decrease the effects of electrical interference from the controller.
		The communication protocol is not compatible.	- Examine the values set in $H 5-x x$. - Examine the settings on the controller side and correct the difference in communication conditions.
		The value set in H5-09 [CE Detection Time] is too small for the communications cycle.	- Change the controller software settings. - Increase the value set in $\mathrm{H} 5-09$.

Code	Name	Causes	Possible Solutions
		The controller software or hardware is causing a communication problem.	Examine the controller and remove the cause of the problem.
Note: - This alarm is a different alarm from CE [Run at H5-34 (CE Go-To-Freq)]. The keypad will show this alarm wh $-H 5-04 \neq 4$ [Communication Error Stop Method \neq Run at H5-34 (CE Go-To-Freq)] $-H 5-04=4$ but the drive cannot operate at the selected frequency - The drive detects this error if it does not correctly receive control data for the CE detection time set to H5-09. - If the drive detects this error, it will operate the motor as specified by the stopping method set in H5-04.			
Code	Name	Causes	Possible Solutions
CE	Run at H5-34 (CE Go-To-Freq)	The communications cable wiring is incorrect.	Correct wiring errors.
		There is a short circuit in the communications cable or the communications cable is not connected.	- Repair short circuits and connect cables. - Replace the defective communications cable.
		Electrical interference caused a communication data error.	- Examine the control circuit lines, main circuit lines, and ground wiring, and decrease the effects of electrical interference. - Make sure that a magnetic contactor is not the source of the electrical interference, then use a Surge Protective Device if necessary. - Use only recommended shielded line. Ground the shield on the controller side or on the drive input power side. - Separate the communication wiring from drive power lines, and install a noise filter to the input side of the power supply for communication. - Decrease the effects of electrical interference from the controller.
		The communication protocol is not compatible.	- Examine the values set in $H 5-x x$. - Examine the settings on the controller side and correct the difference in communication conditions.
		The value set in H5-09 [CE Detection Time] is too small for the communications cycle.	- Make sure that the settings are compatible. - Change the software settings in the PLC. - Increase the value set in $\mathrm{H} 5-09$.
		The controller software or hardware is causing a communication problem.	Examine the controller and remove the cause of the problem.
Note: - This alarm is a different alarm from the standard CE [Serial Communication Error]. The keypad will show this alarm only when $H 5-04=4$ [Communication Error Stop Method $=$ Run at H5-34 (CE Go-To-Freq)]. If the drive cannot operate at the selected frequency, the keypad will show the standard CE alarm. - The drive detects this error if it does not correctly receive control data for the $C E$ detection time set to $\mathrm{H5}-09$.			
Code	Name	Causes	Possible Solutions
CrST	Cannot Reset	The drive received a fault reset command when a Run command was active.	Turn off the Run command or switch into OFF mode, then reset the fault.
Code	Name	Causes	Possible Solutions
СуPo	Cycle Power to Accept Changes	Although F6-15 $=1$ [Comm. Option Parameters Reload $=$ Reload Now], the drive does not update the communication option parameters.	De-energize then re-energize the bypass to activate the new option communication parameters.
Code	Name	Causes	Possible Solutions
DIFF	Differential Feedback Exceeded	The difference between the PID Feedback and Differential Level Source [H3-xx=2D] is more than the level set in Y4-18 [Pre-Charge Loss of Prime Level 2] for the time set in Y4-19 [Differential Lvl Detection Time].	- Replace the feedback transducer or transducers. - Set Y4-18 and Y4-19 correctly.
Note: - If the drive detects this error, it will respond as specified by the setting of Y4-20 [Differential Level Detection Sel]. - If the drive detects this error, the terminal set to $\mathrm{H2}-01$ to $\mathrm{H2} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
dnE	Drive Disabled	A terminal set for $H 1-x x=6 A$ [MFDI Function Selection $=$ Drive Enable] deactivated.	Examine the operation sequence.
Note: If the drive detects this error, the terminal set to $\mathrm{H2}-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
EF	FWD/REV Run Command Input Error	The drive received a forward command and a reverse command at the same time for longer than 0.5 s .	Examine the forward and reverse command sequence and correct the problem.
Note: - If the drive detects $E F$, the motor will ramp to stop. - If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10[M F D O$ Function Selection $=$ Alarm $]$ will activate.			

5.6 Minor Faults/Alarms

Code	Name	Causes	Possible Solutions
EF0	Option Card External Fault	The communication option card received an external fault from the controller.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input from the controller.
		Programming error occurred on the controller side.	Examine the operation of the controller program.
Note: - The drive detects this error if the alarm function on the external device side is operating. - Use F6-03 [Comm External Fault (EF0) Select] to set the stopping method for this fault.			
Code	Name	Causes	Possible Solutions
EF1	External Fault (Terminal S1)	MFDI terminal S1 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S1.
		External Fault [H1-01 $=2 \mathrm{C}$ to $2 F]$ is set to MFDI terminal S 1 , but the terminal is not in use.	Correctly set the MFDI.
Note: If the drive detects this error, the terminal set to H2-01 to H2-03 $=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
EF2	External Fault (Terminal S2)	MFDI terminal S2 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S2.
		External Fault [H1-02 $=2$ C to $2 F]$ is set to MFDI terminal S2, but the terminal is not in use.	Correctly set the MFDI.
Note: If the drive detects this error, the terminal set to H2-01 to H2-03 $=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
EF3	External Fault (Terminal S3)	MFDI terminal S3 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S3.
		External Fault [H1-03 = 2C to $2 F]$ is set to MFDI terminal S 3 , but the terminal is not in use.	Correctly set the MFDI.
Note: If the drive detects this error, the terminal set to H2-01 to H2-03 $=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
EF4	External Fault (Terminal S4)	MFDI terminal S4 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S4.
		External Fault [H1-04 $=2 \mathrm{C}$ to $2 F]$ is set to MFDI terminal S4, but the terminal is not in use.	Correctly set the MFDI.
Note: If the drive detects this error, the terminal set to $\mathrm{H2} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
EF5	External Fault (Terminal S5)	MFDI terminal S5 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S5.
		External Fault [H1-05 $=2$ C to 2 F] is set to MFDI terminal S 5 , but the terminal is not in use.	Correctly set the MFDI.
Note: If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
EF6	External Fault (Terminal S6)	MFDI terminal S6 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S6.

Code	Name	Causes	Possible Solutions
		External Fault [H1-06 $=2 \mathrm{C}$ to $2 F]$ is set to MFDI terminal S6, but the terminal is not in use.	Correctly set the MFDI.
Note: If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
EF7	External Fault (Terminal S7)	MFDI terminal S7 caused an external fault through an external device.	1. Find the device that caused the external fault and remove the cause. 2. Clear the external fault input in the MFDI.
		The wiring is incorrect.	Correctly connect the signal line to MFDI terminal S7.
		External Fault [H1-07 $=2 \mathrm{C}$ to 2 F] is set to MFDI terminal S7, but the terminal is not in use.	Correctly set the MFDI.
Note: If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
EOF	Emergency Override FWD	The digital input terminal set to $H 1-x x=A F[M F D I$ Function Selection $=$ Emergency Override FWD] activated.	When the emergency condition is gone, deactivate the digital input set to Emergency Override FWD.
Note: If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
EOR	Emergency Override REV	The digital input terminal set to $H 1-x x=B 0[M F D I$ Function Selection $=$ Emergency Override REV] activated.	When the emergency condition is gone, deactivate the digital input set to Emergency Override REV.
Note: If the drive detects this error, the terminal set to $\mathrm{H2}-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
EP24v	External Power 24V Supply	The voltage of the main circuit power supply decreased, and the 24 V power supply is supplying power to the drive.	- Examine the main circuit power supply. - Turn ON the main circuit power supply to run the drive.
Note: - Set o2-26 [Ext. Power 24V Supply Display] to enable or disable EP24v detection. - The drive will not output an alarm signal for this alarm.			
Code	Name	Causes	Possible Solutions
FDBKL	Feedback Loss Wire Break	The analog input from the terminal set to $H 3-x x=B$ [MFAI Function Selection $=$ PID Feedback] is more than 21 mA or less than 3 mA for longer than 1 s in these conditions: - b5-82 $=1$ [Feedback Loss 4~20mA Detect Sel $=$ Alarm Only] - b5-01 $=0$ [PID Mode Setting \neq Disabled] - H3-01 or H3-09 = 2 [Terminal A1/A2 Signal Level Selection $=4$ to 20 mA$]$	Make sure that you install the PID feedback source and it operates correctly.
Note: - If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this error, it will operate the motor as specified by the settings of $b 5-82$. - Parameter L5-42 [Feedback Loss Fault Retry Select] sets the Auto Restart function of this error.			
Code	Name	Causes	Possible Solutions
FLGT	Feedback Loss, Go To Freq b5-83	The analog input from the terminal set to $H 3-x x=B$ [MFAI Function Selection = PID Feedback] is more than 21 mA or less than 3 mA for longer than 1 s in these conditions: - b5-82 $=3$ [Feedback Loss 4~20mA Detect Sel $=$ Run At b5-83] - b5-01 $=0$ [PID Mode Setting \neq Disabled] - H3-01 or H3-09 = 2 [Terminal A1/A2 Signal Level Selection $=4$ to 20 mA$]$	Make sure that you install the PID feedback source and it operates correctly.
Note: - If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this error, it will operate the motor at the speed set in $b 5-83$ [Feedback Loss Goto Frequency] as specified by the setting of b5-82.			
Code	Name	Causes	Possible Solutions
FIRE_ST	Fire Stat Open	The bypass detected a Fire Stat condition.	- Check the digital input programmed for Fire Stat Switch (Z2-0x $=38$). - Check the connected device for continuity. - Check Bypass Digital Input Invert Settings in Z2-09 to Z2-16.

5.6 Minor Faults/Alarms

Code	Name	Causes	Possible Solutions
FREEZ_ST	Freeze Stat Open	The bypass detected a Freeze Stat condition.	- Check the digital input programmed for Freeze Stat Switch (Z2$0 x=39$). - Check the connected device for continuity. - Check Bypass Digital Input Invert Settings in Z2-09 to Z2-16.
Code	Name	Causes	Possible Solutions
FR<MS	Freq Ref < Minimum Speed (Y1-06)	The drive frequency reference setting is less than the value set in Y1-06 [Minimum Speed] in these conditions: - The drive is not in PI Mode - The drive is running - Minimum Speed is enabled (Y1-06>0.00) - Y1-06> Y4-12 [Thrust Frequency]	Increase the frequency reference to a value more than Y1-06.
Note: - If the drive detects this error, the terminal set to H2-01 to H2-03 $=10$ [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this error, it internally sets the frequency reference to the value set in Y1-06.			
Code	Name	Causes	Possible Solutions
FR<TH	Freq. Reference < Thrust (Y4-12)	The drive frequency reference setting is less than the value set in Y4-12 [Thrust Frequency] in these conditions: - The drive is not in PI Mode - The drive is running - Thrust is enabled (Y4-11 [Thrust Acceleration Time] >0.00 and Y4-12 > Y1-06 [Minimum Speed])	Increase the frequency reference to a value more than Y4-12.
Note: - If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this error, it internally sets the frequency reference to the value set in Y4-12.			
Code	Name	Causes	Possible Solutions
HCA	High Current Alarm	The load is too heavy.	- Decrease the load for applications with repetitive starts and stops. - Replace the drive with a larger capacity model.
		The acceleration time is too short.	- Calculate the torque necessary during acceleration related to the load inertia and the specified acceleration time. - Increase the values set in C1-01 or C1-03 [Acceleration Times] until you get the necessary torque. - Increase the values set in C2-01 to C2-04 [S-Curve Characteristics] until you get the necessary torque. - Replace the drive with a larger capacity model.
		The drive is trying to operate a specialized motor or a motor that is larger than the maximum applicable motor output of the drive.	- Examine the motor nameplate, the motor, and the drive to make sure that the drive rated current is larger than the motor rated current. - Replace the drive with a larger capacity model.
		The current level temporarily increased because of speed search after a momentary power loss or while trying to Auto Restart.	If speed search or Auto Restart cause an increase in current, the drive can temporarily show this alarm. The time that the drive shows the alarm is short. No more steps are necessary to clear the alarm.
Note: - The drive detects this error if the drive output current is more than the overcurrent alarm level (150% of the rated current). - If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10[M F D O$ Function Selection $=$ Alarm $]$ will activate.			
Code	Name	Causes	Possible Solutions
HIAUX	High PI Aux Feedback Level	PI Auxiliary Feedback is more than the level set in YF-12 [PI Aux Control High Level Detect] for the time set in YF-13 [PI Aux High Level Detection Time] in these conditions: - The drive operates in AUTO Mode. - The output frequency >0.	- Decrease the PI Auxiliary Feedback level to less than YF-12. - Set YF-12 and YF-13 correctly.
Note: If the drive detects this error, the terminal set to H2-01 to H2-03 $=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
HIFB	High Feedback Sensed	The feedback level is more than the level set in Y1-11 [High Feedback Level].	- Decrease the feedback level to less than Y1-11-Y1-14 [Hysteresis Level]. - Set Y1-11 and Y1-12 correctly.
Note: - If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this error, it will respond as specified by the setting of Y1-13 [High Feedback Selection].			

Code	Name	Causes	Possible Solutions
INTLK	BAS Interlock	The digital input terminal set to $H 1-x x=B 2$ [MFDI Function Selection $=$ BAS Interlock] deactivates.	Make sure the cause of interlock.
Note: If the drive	tects this error, \square ALM will only fl	when there is a Run command.	
Code	Name	Causes	Possible Solutions
L24v	Loss of External Power 24 Supply	The voltage of the backup 24 V power supply has decreased. The main circuit power supply is operating correctly.	- Examine the external 24 V power supply for disconnected wires and wiring errors and repair the problems. - Examine the external 24 V power supply for problems.
Note: - Set o2-23 [External 24V Powerloss Detection] to enable or disable L24v detection. - The drive will not output an alarm signal for this alarm.			
Code	Name	Causes	Possible Solutions
LCP	Low City Pressure	Insufficient pressure is present on the inlet to the pump in these conditions: - Y4-24 $=0$ [Low City Alarm Text = Low City Pressure] - The terminal set for Z2-0x $=46$ [Bypass MFDI Function Selection - Low City Pressure] activates	- Examine the pressure switch contact for correct operation. - Make sure that control wiring to drive terminal strip from pressure switch contact. - Make sure that suction pressure is present with an isolated measuring device. - Set Y4-22 [Low City On-Delay Time] and Y4-23 [Low City OffDelay Time] correctly. - Deactivate the digital input terminals set to $Z 2-0 x=46$ [Bypass MFDI Function Selection - Low City Pressure].
Note: If the drive detects this error during run, it coasts to stop and does not operate until the digital input has deactivated for the time set in Y4-22.			
Code	Name	Causes	Possible Solutions
LOAUX	Low PI Aux Feedback Level	When the drive operates in AUTO Mode or HAND Mode, PI Auxiliary Feedback is less than the level set in YF-09 [PI Aux Control Low Lvl Detection] for the time set in YF-10 [PI Aux Control Low Lvl Det Time] and the drive is running.	- Increase the PI Auxiliary Feedback level more than YF-09. - Set YF-09 and YF-10 correctly.
Note: If the drive detects this error, the terminal set to $\mathrm{H2}-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
LOFB	Low Feedback Sensed	The feedback level is less than the level set in Y1-08 [Low Feedback Level] for the time set in Y1-09 [Low Feedback Lvl Fault Dly Time].	- Increase the feedback level to more than Y1-08 + Y1-14 [High Feedback Hysteresis Level]. - Set Y1-08 and Y1-09 correctly.
Note: - If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this fault, it will respond as specified by the setting of Y1-10 [Low Feedback Selection].			
Code	Name	Causes	Possible Solutions
LoG	Com Error / Abnormal SD Card	There is not a micro SD card in the keypad.	Put a micro SD card in the keypad.
		- The drive is connected to USB. - The number of log communication files is more than 1000 . - The micro SD card does not have available memory space. - The line number data in a log communication file was changed. - A communication error between the keypad and drive occurred during a log communication.	Set $o 5-01=0[$ Log Start/Stop Selection $=$ OFF] .
Note: If the drive detects this error, the terminal set to H2-01 to H2-03 $=6$ A [MFDO Function Selection $=$ Data Logger Error] will activate.			
Code	Name	Causes	Possible Solutions
LOP	Loss of Prime	The pump load that measured based on the Y1-18 [Prime Loss Detection Method] setting is less than the level set in Y1-19 [Prime Loss Level] for the time set in Y1-20 [Prime Loss Time], and the output frequency is Y1-21 [Prime Loss Activation Freq] or more.	- Examine a dry well, air in the system, or no water in the system. Use preferred priming method suggested by the pump manufacturer to restart the pump. - When there is resistance in the pump, allow the system to pump water again. - Set Y1-18 to Y1-21 correctly.
Note: - If the drive detects this error, the terminal set to H2-01 to H2-03 $=10$ [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this fault, it will respond as specified by the setting of Y1-22 [Prime Loss Selection].			

5.6 Minor Faults/Alarms

Code	Name	Causes	Possible Solutions
LOW_SUCT	Low Suction Detected	The bypass detected a Low Suction condition.	- Check the digital input programmed for Low Suction Switch (Z2-0x = 42). - Check the connected device for continuity. - Check Bypass Digital Input Invert Settings in Z2-09 to Z2-16.
Code	Name	Causes	Possible Solutions
LSP	Low Suction Pressure	An external input has indicated that an insufficient suction pressure condition exists in these conditions: - Y4-24 $=1$ [Low City Alarm Text $=$ Low Suction Pressure] - The terminal set for H1-xx = B8 or 1B8 [MFDI Function Selection = Low City Pressure or !Low City Pressure] activates	- Examine the pressure switch contact for correct operation. - Make sure that control wiring to drive terminal strip from pressure switch contact. - Make sure that suction pressure is present with an isolated measuring device. - Increase the system pressure. - Set Y4-22 [Low City On-Delay Time] and Y4-23 [Low City OffDelay Time] correctly. - Deactivate the digital input terminals set to $H 1-x x=B 8$ or $1 B 8$.
Note: - If the drive detects this error, the terminal set to $\mathrm{H2}-01$ to $\mathrm{H2}-03=10$ [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this error during run, it coasts to stop and does not operate until the digital input has deactivated for the time set in Y4-22.			
Code	Name	Causes	Possible Solutions
LT-1	Cooling Fan Maintenance Time	The cooling fan is at 90% of its performance life estimate.	1. Replace the cooling fan. 2. Set $04-03=0$ [Fan Operation Time Setting $=0 h]$ to reset the cooling fan operation time.
Note: When the performance life estimate is expired, the terminal set to $\mathrm{H} 2-01$ to $H 2-03=2 F$ [MFDO Function Selection $=$ Maintenance Notification] will activate.			
Code	Name	Causes	Possible Solutions
LT-2	Capacitor Maintenance Time	The capacitors for the main circuit and control circuit are at 90% of their performance life estimate.	Replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: When the performance life estimate is expired, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=2 F$ [MFDO Function Selection $=$ Maintenance Notification] will activate.			
Code	Name	Causes	Possible Solutions
LT-3	SoftChargeBypassRelay MainteTime	The soft charge bypass relay is at 90% of its performance life estimate.	Replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Note: When the performance life estimate is expired, the terminal set to $H 2-01$ to $H 2-03=2 F$ [MFDO Function Selection $=$ Maintenance Notification] will activate.			
Code	Name	Causes	Possible Solutions
LT-4	IGBT Maintenance Time (50\%)	The IGBT is at 50% of its performance life estimate.	Check the load, carrier frequency, and output frequency.
Note: When the performance life estimate is expired, the terminal set to $\mathrm{H2}-01$ to $\mathrm{H} 2-03=2 F$ [MFDO Function Selection $=$ Maintenance Notification] will activate.			
Code	Name	Causes	Possible Solutions
LWT	Low Water In Tank	An external input has indicated that the water level in the tank is too low in these conditions: - Y4-24 $=2$ [Low City Alarm Text $=$ Low Water in Tank] - The terminal set for H1-xx = B8 or 1 B8 [MFDI Function Selection = Low City Pressure or !Low City Pressure] activates	- Examine the pressure switch contact for correct operation. - Make sure that control wiring to drive terminal strip from pressure switch contact. - Make sure that suction pressure is present with an isolated measuring device. - Increase the water level. - Set Y4-22 [Low City On-Delay Time] and Y4-23 [Low City OffDelay Time] correctly. - Deactivate the digital input terminals set to $H 1-x x=B 8$ or $1 B 8$.

Note:

- If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10[M F D O$ Function Selection $=$ Alarm $]$ will activate.
- If the drive detects this error during run, it coasts to stop and does not operate until the digital input has deactivated for the time set in Y4-22.

Code
NMS
Name
Setpoint Not Met

Code	Name	Causes	Possible Solutions
OD	Output Disconnect	The output circuit between the drive and the motor is open, and the drive output current is less than 5% of E2-01 [Motor Rated Current (FLA)].	- Close the disconnected output circuit between the drive and the motor. - If you do not use a motor disconnect, set $Y 4-42=0$ [Disabled].
Note: - If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this error, it will respond as specified by the setting of Y4-42 [Output Disconnect Detection Sel].			
Code	Name	Causes	Possible Solutions
oH	Heatsink Overheat	The ambient temperature is high and the heatsink temperature is more than the L8-02 [Overheat Alarm Level].	- Measure the ambient temperature. - Increase the airflow around the drive. - Install a cooling device (cooling fan or air conditioner) to decrease the ambient temperature. - Remove objects near the drive that are producing too much heat.
		There is not sufficient airflow around the drive.	- Give the drive the correct installation space as shown in the manual. - Make sure that there is sufficient circulation around the control panel. - Examine the drive for dust or other unwanted materials that could clog the cooling fan. - Remove unwanted materials that prevent air circulation.
		The internal cooling fan or fans stopped.	1. Replace the cooling fan. 2. Set $o 4-03=0$ [Fan Operation Time Setting $=0 h]$ to reset the cooling fan operation time.
Note: - The drive detects this error if the heatsink temperature of the drive is more than $L 8-02$. - If the drive detects this error, the terminal set to H2-01 to H2-03 $=10$ [MFDO Function Selection $=$ Alarm] will activate. - Use L8-03 [Overheat Pre-Alarm Selection] to the stopping method for this fault.			
Code	Name	Causes	Possible Solutions
oH2	External Overheat (H1-XX=B)	An external device sent an oH 2 alarm.	1. Find the external device that output the overheat alarm. 2. Remove the cause of the problem. 3. Clear the Overheat Alarm (oH2) [H1-xx $=B]$ in MFDI terminals S1 to S7.
Note: If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
oH3	Motor Overheat (PTC Input)	The thermistor wiring that detects motor temperature is defective.	Correct wiring errors.
		A fault occurred on the machine. Example: The machine is locked.	Examine the machine and remove the cause of the fault
		The motor has overheated.	- Check the load level, acceleration/deceleration time, and motor start/stop frequency (cycle time). - Decrease the load. - Increase the values set in C1-01 to C1-04 [Acceleration/ Deceleration Times]. - Set E2-01 [Motor Rated Current (FLA)] correctly to the value specified by the motor nameplate. - Make sure that the motor cooling system is operating correctly, and repair or replace it if it is damaged. - Adjust E1-04 to E1-10 [V/f Pattern Parameters]. Decrease the values set in E1-08 [Mid Point A Voltage] and E1-10 [Minimum Output Voltage]. Note: If the values set in E1-08 and E1-10 are too low, the overload tolerance will decrease at low speeds.
Note: - When H3-02 or H3-10 = E [MFAI Function Selection = Motor Temperature (PTC Input)], the drive detects this fault if the motor overheat signal entered to analog input terminals A1 and A2 is more than the alarm detection level. - If the drive detects this error, the terminal set to H2-01 to H2-03 = 10 [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this error, it will operate the motor as specified by the stopping method set in L1-03 [Motor Thermistor oH Alarm Select].			

5.6 Minor Faults/Alarms

Code	Name	Causes	Possible Solutions
oL3	Overtorque 1	A fault occurred on the machine. Example: The machine is locked.	Examine the machine and remove the cause of the fault.
		The parameters are incorrect for the load.	Adjust L6-02 [Torque Detection Level 1] and L6-03 [Torque Detection Time 1] settings.

Note:

- The drive detects this fault if the drive output current is more than the level set in $L 6-02$ for longer than $L 6-03$.
- If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.
- Use L6-01 [Torque Detection Selection 1] to set the conditions that trigger the minor fault.

Code	Name	Causes	Possible Solutions
oL4	Overtorque 2	A fault occurred on the machine. Example: The machine is locked.	Examine the machine and remove the cause of the fault.
		The parameters are incorrect for the load.	Adjust L6-05 [Torque Detection Level 2] and L6-06 [Torque Detection Time 2] settings.
Note: - The drive detects this error if the drive output current is more than the level set in L6-05 for longer than L6-06. - If the drive detects this error, the terminal set to H2-01 to H2-03 $=10$ [MFDO Function Selection $=$ Alarm] will activate. - Use L6-04 [Torque Detection Selection 2] to set the conditions that trigger the minor fault.			
Code	Name	Causes	Possible Solutions
ov	DC Bus Overvoltage	The drive output cable or motor is shorted to ground (the current short to ground is charging the main circuit capacitor of the drive through the power supply).	1. Examine the motor main circuit cable, terminals, and motor terminal box, and then remove ground faults. 2. Re-energize the drive.
		The power supply voltage is too high.	Decrease the power supply voltage to align with the drive rated voltage.
		Electrical interference caused a drive malfunction.	- Examine the control circuit lines, main circuit lines, and ground wiring, and minimize the effects of noise. - Find the source of the noise. If a magnetic contactor is the source, use Surge Protective Device if necessary. - Set $L 5-01 \neq 0$ [Number of Auto-Restart Attempts $\neq 0$ times].

Note:

- The drive detects this error if the DC bus voltage is more than the $o v$ detection level when the Run command has not been input (while the drive is stopped).
- The $o v$ detection level is approximately 410 V for $208 / 240 \mathrm{~V}$ bypasses. The detection level is approximately 820 V for 480 V bypasses.
- If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H2}-03=10$ [MFDO Function Selection $=$ Alarm] will activate.

Code	Name	Causes	Possible Solutions
ovEr	Too Many Parameters Changed	You tried to change more than 150 parameters.	Make sure that parameters that do not have an effect on drive operation are at their default settings. Note: - You can change 150 parameters maximum. - If you change parameters that have dependencies, the drive can detect $o v E r$ when the number of changed parameters is fewer than 150 .
Code	Name	Causes	Possible Solutions
OV_PRESS	Over Pressure Detected	The bypass detected an Over Pressure condition.	- Check the digital input programmed for Over Pressure Switch ($\mathrm{Z} 2-0 \mathrm{x}=41$). - Check the connected device for continuity. - Check Bypass Digital Input Invert Settings in Z2-09 to Z2-16.
Code	Name	Causes	Possible Solutions
PA1	PLC Error 1	The network speed on one port does not align with the network speed on the other port.	Make sure that the network speeds on both ports are the same.
Code	Name	Causes	Possible Solutions
PASS	Serial Communication Test	The serial communications test is complete.	The PASS display will turn off after communications test mode is cleared.
Code	Name	Causes	Possible Solutions
PF	Input Phase Loss	There is a phase loss in the drive input power.	Correct errors with the wiring for main circuit drive input power.
		Loose wiring in the input power terminals.	Tighten the terminal screws to the correct tightening torque.
		The drive input power voltage is changing too much.	- Examine the input power for problems. - Make the drive input power stable.
		Unsatisfactory balance between voltage phases.	- Examine the input power for problems. - Make the drive input power stable. - If the input power supply is good, examine the magnetic contactor on the main circuit side for problems.

Code	Name	Causes	Possible Solutions
		The main circuit capacitors are unserviceable.	- Examine the capacitor maintenance time in monitor U4-05 [CapacitorMaintenance]. - If $U 4-05$ is more than 90%, replace the capacitor. Contact Yaskawa or your nearest sales representative for more information.
			- Examine the input power for problems. - Re-energize the drive. - If the alarm stays, replace the circuit board or the drive. Contact Yaskawa or your nearest sales representative for more information.
Note: - The drive detects this error if the DC bus voltage changes irregularly without regeneration. - If the drive detects this error, the terminal set to H2-01 to H2-03 $=10$ [MFDO Function Selection $=$ Alarm] will activate. - Use L8-05 [Input Phase Loss Protection Sel] to enable and disable PF detection.			
Code	Name	Causes	Possible Solutions
SAFE	Safety Open	The bypass detected a Open Safety condition.	- Check the digital input programmed for Run Enable - Safety (NC) $Z 2-0 x=22$. - Check the connected device for continuity. - Check the Bypass Digital Input Invert settings in Z2-09 to Z2-16.
Code	Name	Causes	Possible Solutions
SE	Modbus Test Mode Error	Serial Hardware communications self-diagnostics $[Z 2-x x=45]$ was done while the drive was running.	Stop the drive and do MEMOBUS/Modbus communications selfdiagnostics.
Note: If drive detects this error, the terminal set to $H 2-01$ to $H 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
SMK_ALRM	Smoke Alarm Active	The bypass detected a Smoke Alarm condition.	- Check the digital input programmed for Smoke Alarm (Z2-0x $=$ 40). - Check the connected device for continuity. - Check Bypass Digital Input Invert Settings in Z2-09 to Z2-16.
Code	Name	Causes	Possible Solutions
STo	Safe Torque OFF	Safe Disable inputs H1-HC and H2-HC are open.	- Make sure that the Safe Disable signal is input from an external source to terminal $\mathrm{H} 1-\mathrm{HC}$ and $\mathrm{H} 2-\mathrm{HC}$. - When the Safe Disable function is not in use, use a jumper to connect terminals $\mathrm{H} 1-\mathrm{HC}$ and $\mathrm{H} 2-\mathrm{HC}$.
		There is internal damage to the two Safe Disable channels.	Replace the board or the drive. Contact Yaskawa or your nearest sales representative to replace the board.
Note: - The drive will not output an alarm signal for this alarm. - If the drive detects this error, the terminal set to H2-01 to H2-03 = 21 [MFDO Function Selection $=$ Safe Torque OFF] will activate.			
Code	Name	Causes	Possible Solutions
SToF	Safe Torque OFF Hardware	One of the two terminals $\mathrm{H} 1-\mathrm{HC}$ or $\mathrm{H} 2-\mathrm{HC}$ received the Safe Disable input signal. The Safe Disable input signal is wired incorrectly.	- Make sure that the Safe Disable signal is input from an external source to terminals $\mathrm{H} 1-\mathrm{HC}$ or $\mathrm{H} 2-\mathrm{HC}$. - When the Safe Disable function is not in use, use a jumper to connect terminals $\mathrm{H} 1-\mathrm{HC}$ and $\mathrm{H} 2-\mathrm{HC}$.
		There is internal damage to one Safe Disable channel.	Replace the board or the drive. Contact Yaskawa or your nearest sales representative to replace the board.
Note: If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10[M F D O$ Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
TiM	Keypad Time Not Set	There is a battery in the keypad, but you have not set the date and time.	Use the keypad to set the date and time.
Note: - Parameter o4-24 [bAT Detection selection] enables and disables TiM detection. - If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
TrPC	IGBT Maintenance Time (90\%)	The IGBT is at 90% of its performance life estimate.	Replace the IGBT or the drive. For more information, contact Yaskawa or your nearest sales representative.
Note: If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate.			

5.6 Minor Faults/Alarms

Code	Name	Causes	Possible Solutions
UL3	Undertorque Detection 1	A fault occurred on the machine. Example: There is a broken pulley belt.	Examine the machine and remove the cause of the fault.
		The parameters are incorrect for the load.	Adjust L6-02 [Torque Detection Level 1] and L6-03 [Torque Detection Time 1] settings.
Note: - The drive detects this error if the drive output current is less than the level set in $L 6-02$ for longer than $L 6-03$. - If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H2}-03=10$ [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this error, it will operate the motor as specified by the Stopping Method set in L6-01 [Torque Detection Selection 1].			
Code	Name	Causes	Possible Solutions
UL4	Undertorque Detection 2	A fault occurred on the machine. Example: There is a broken pulley belt.	Examine the machine and remove the cause of the fault.
		The parameters are incorrect for the load.	Adjust L6-05 [Torque Detection Level 2] and L6-06 [Torque Detection Time 2] settings.
Note: - The drive detects this error if the drive output current is less than the level set in $L 6-05$ for longer than $L 6-06$. - If detected, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm] will activate. - If the drive detects this error, it will operate the motor as specified by the Stopping Method set in L6-04 [Torque Detection Selection 2].			
Code	Name	Causes	Possible Solutions
UL6	Underload or Belt Break Detected	The output current decreased less than the motor underload curve set in L6-14 [Motor Underload Level @ Min Freq] for longer than the time set in L6-03 [Torque Detection Time 1]. The belt has broken disconnecting the motor from the load.	Examine parameters L6-13 [Motor Underload Curve Select] and L6-14.
Note: If the drive detects this error, the terminal set to H2-01 to H2-03 $=10$ [MFDO Function Selection $=$ Alarm] will activate.			
Code	Name	Causes	Possible Solutions
Uv	Undervoltage	The drive input power voltage is changing too much.	- Examine the input power for problems. - Make the drive input power stable. - If the input power supply is good, examine the magnetic contactor on the main circuit side for problems.
		There is a phase loss in the drive input power.	Correct errors with the wiring for main circuit drive input power.
		There is loose wiring in the drive input power terminals.	Tighten the terminal screws to the correct tightening torque.
		There was a loss of power.	Use a better power supply.
		The main circuit capacitors have become unserviceable.	Examine the capacitor maintenance time in monitor U4-05 [CapacitorMaintenance]. If $U 4-05$ is more than 90%, replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
		The drive input power transformer is too small and voltage drops when the power is switched on.	- Check for an alarm when a molded-case circuit breaker, Leakage Breaker (ELCB or GFCI) (with overcurrent protective function), or magnetic contactor is ON. - Check the capacity of the drive power supply transformer.
Note: - The drive detects this error if one of these conditions is correct when the Run command has not been input (while the drive is stopped). - The DC bus voltage $<L 2-05$ [Undervoltage Detection Lvl (Uv1)]. -The Contactor that prevents inrush current in the drive was opened. - If the drive detects this error, the terminal set to $\mathrm{H} 2-01$ to $\mathrm{H} 2-03=10$ [MFDO Function Selection $=$ Alarm $]$ will activate.			
Code	Name	Causes	Possible Solutions
VBRATION	Vibration Detected	The bypass detected a Vibration condition.	- Check the digital input programmed for Vibration Switch (Z2-0x $=43$). - Check the connected device for continuity. - Check Bypass Digital Input Invert Settings in Z2-09 to Z2-16.

5.7 Parameter Setting Errors

Parameter setting errors occur when multiple parameter settings do not agree, or when parameter setting values are not correct. Refer to the table in this section, examine the parameter setting that caused the error, and remove the cause of the error. You must first correct the parameter setting errors before you can operate the drive. The drive will not send notification signals for the faults and alarms when these parameter setting errors occur.

Code	Name	Causes	Possible Solutions
oPE01	Drive Capacity Setting Error	The value set in o2-04 [Drive Model (KVA) Selection] does not agree with the drive model.	Consult Yaskawa technical support.
Code	Name	Causes	Possible Solutions
oPE02	Parameter Range Setting Error	Parameters settings are not in the applicable setting range.	1. Push to show U1-18 [oPE Fault Parameter], and find parameters that are not in the applicable setting range. 2. Correct the parameter settings. Note: If more than one error occurs at the same time, other oPExx errors have priority over oPE02.
		You set E2-01 \leq E2-03 [Motor Rated Current (FLA) \leq Motor No-Load Current].	Make sure that $E 2-01>E 2-03$. Note: If it is necessary to set $E 2-01<E 2-03$, first lower the value set in E2-03, and then set E2-01.
		You set S3-09 < S3-10 [PI2 Control Output Upper Limit < PI2 Control Output Lower Limit].	Make sure that $53-09>S 3-10$ at all times.
		You set S3-13 > S3-15 [PI2 Control Low Feedback Lvl > PI2 Control High Feedback Lvl].	Make sure that $53-13<53-15$ at all times.
Code	Name	Causes	Possible Solutions
oPE03	Multi-Function Input Setting Err	The settings for these parameters do not agree: - Z2-01 to Z2-08 [Digital Input 1 Function (TB2-1) to Digital Input 8 Function (TB2-8)] - H1-01 to H1-07 [Terminals Sl to S7 Function Selection]	Correct the parameter settings.
		The settings for the bypass MFDIs Z2-01 to Z2-08 overlap and/or the setting for the drive MFDIs H1-01 to H1-07 overlap Note: This does not include $H 1-x x=20$ to $2 F$ [MFDI Function Selection $=$ External Fault $]$.	Check the settings and make sure that you did not program two or more MFDIs to the same value.
		A minimum of two of these MFDI combinations are set to Digital Inputs (H1-xx and H7-01 to H7-04) at the same time: - Setting value $1 E$ [Reference Sample Hold] - Setting values 44 to 46 [Add Offset Frequency 1 to 3 (d7-01 to d7-03)]	Remove the function settings that are not in use.
		These commands are set in Digital Inputs (H1-xx and H7-01 to H7-04) at the same time: - Setting values 61 [Speed Search from Fmax] and 62 [Speed Search from Fref]	Remove the function settings that are not in use.
		These groups of MFDI functions are not set to Digital Inputs (H1-xx and H7-01 to H7-04) at the same time: - Setting values $3 E$ [PID Setpoint Selection 1] and $3 F$ [PID Setpoint Selection 2] - Setting values 83 [Dedicated Multi-Setpoint YA02], 84 [Dedicated Multi-Setpoint YA-03], and 85 [Dedicated Multi-Setpoint YA-04]	Set the MFDI groups correctly.
		Settings for N.C. and N.O. input [HI-xx] for these functions were selected at the same time: - Setting value 15 [Fast Stop (N.O.)] - Setting value 17 [Fast Stop (N.C.)]	Remove one of the function settings.
		These MFDI functions are set at the same time: - H1-xx $=6 A$ [Drive Enable] - H1-xx = 70 [Drive Enable 2]	Remove one of the function settings.

5.7 Parameter Setting Errors

Code	Name	Causes	Possible Solutions
		These parameters are set at the same time: - H1-xx $=62$ [Speed Search from Fref] - H5-22 $=1$ [Speed Search from MODBUS = Enabled]	Remove one of the function settings.
		Parameter S3-01 $\neq 0$ [PI2 Control Enable Selection \neq Disabled] and MFDI set for H1-xx =AD [Select PI2 Control PI Parameters] is ON or MFDI set for H1-xx $=1$ AD ['Select PI2 Control PI Parameters] is OFF.	- Set $S 3-01=0$ to use $H 1-x x=A D$ or $1 A D$ for the adjustments of S3-06 [PI2 Control Proportional Gain] and S3-07 [PI2 Control Integral Time] instead of the primary PI controller Proportional and Integral adjustments. - When PI2 Control is necessary, remove the MFDI function setting.
Code	Name	Causes	Possible Solutions
oPE05	Run Cmd/Freq Ref Source Sel Err	There is an option card installed on the drive.	Remove the option card from the drive. If it is compatible, install the option card on the bypass control board.
		The setting to assign the Run command or frequency reference to an option card is incorrect.	Correct the parameter settings.
		Z1-39 $=3$ [Drive/Bypass Source Select $=$ Option $P C B]$ is set, but there is no option card connected.	Connect an option card.
		b1-01 $=3$ [Frequency Reference Selection $1=$ Option PCB] is set, but there is no option card connected.	
		b1-02 $=3$ [Run Command Selection $1=$ Option $P C B]$ is set, but there is no option card connected.	
Code	Name	Causes	Possible Solutions
oPE07	Analog Input Selection Error	The settings for H3-02 and H3-10 [MFAI Function Selection] and H7-30 [Virtual Analog Input Selection] overlap.	Set H3-02, H3-10, and H7-30 correctly to prevent overlap. Note: It is possible to set these functions to multiple analog input terminals at the same time: - Setting value 0 [Frequency Reference] - Setting values F and $1 F$ [Not Used]
Code	Name	Causes	Possible Solutions
oPE08	Parameter Selection Error	You set these parameters: - S1-01 = 1 [Dynamic Noise Control $=$ Enabled] - Y4-42 $\neq 0$ [Output Disconnect Detection Sel \neq Disabled]	Set S1-01 $=0$ or $Y 4-42=0$.
		You set L6-02 [Torque Detection Level 1] < L6-14 [Motor Underload Level @ Min Freq].	Set parameters to be L6-02 \geq L6-14.
Code	Name	Causes	Possible Solutions
oPE09	PID Control Selection Fault	These parameters are set at the same time: - $b 5-01=1$ - $b 5-11=1$ [PID Output Reverse Selection $=$ Negative Output Accepted] And one of these parameters is set: - $d 2-02 \neq 0.0$ [Frequency Reference Lower Limit \neq 0.0\%] - Y1-06 $\neq 0.0$ [Minimum Speed $\neq 0.0 \%$] - $Y 4-12 \neq 0.0$ [Thrust Frequency $\neq 0.0 \%$] - YF-01 $\neq 0$ [PI Aux Control Selection \neq Disabled]	Correct the parameter settings.
		Parameter $b 5-01=3$ and one of these parameters is set at the same time: - $d 2-02 \neq 0.0$ - $Y 1-06 \neq 0.0$ - $Y 4-12 \neq 0.0$ - $Y F-01 \neq 0$	Correct the parameter settings.
Note: The drive detects this error if the PID control function selection is incorrect. (When b5-01 = 1 or 3 [PID Mode Setting = Standard or Fref + PID Trim])			
Code	Name	Causes	Possible Solutions
oPE10	V/f Data Setting Error	The parameters that set the V / f pattern do not satisfy these conditions: - E1-09 \leq E1-07 < E1-06 $\leq E 1-11 \leq E 1-04$ [Minimum Output Frequency \leq Mid Point A Frequency < Base Frequency \leq Mid Point B Frequency \leq Maximum Output Frequency]	Set the parameters correctly to satisfy the conditions.

Code	Name	Causes	Possible Solutions
oPE11	Carrier Frequency Setting Error	These parameters are set at the same time: - C6-05 > 6 [Carrier Freq Proportional Gain >6] - C6-04 > C6-03 [Carrier Frequency Lower Limit $>$ Carrier Frequency Upper Limit] Note: When C6-05 < 7, C6-04 becomes disabled. C603 stays active. C6-02 to C6-05 settings are not in the applicable setting range.	Set C6-02 to C6-05 correctly.
Code	Name	Causes	Possible Solutions
oPE16	Energy Saving Constants Error	These parameters are set at the same time: - b8-01 = 1 [Energy Saving Control Selection $=$ Enabled] - Sl-01 = 1 [Dynamic Noise Control $=$ Enabled]	Disable Energy Saving Control or Dynamic Noise Control.
Code	Name	Causes	Possible Solutions
oPE20	No Motor Overload Set	L1-01 $=0$ [Motor Overload (oL1) Protection $=$ Disabled] and Z2-0x $\neq 29$ or 30 [Digital Input x Function (TB2-x) \neq External Overload Motor 1 (NC) or External Overload Motor 1 (NC)].	- Set L1-01 = 1 [Motor Overload (oLl) Protection = Enabled $]$. - Set one digital input to motor overload $Z 2-0 x=29$ or 30 and connect a thermal motor overload relay to that input.
Code	Name	Causes	Possible Solutions
oPE29	Baud Rate Setting Error	The baud rate setting [H5-02] does not align with the currently selected protocol [H5-08]. One of these contradictory settings is true: - H5-08 $=1$ and H5-02 $\neq 3$ [Communication Protocol Selection $=$ Metasys/N2 and Communication Speed Selection $\neq 9600 \mathrm{bps}]$ - H5-08 $=2$ and $H 5-02 \neq 2,3$ [Communication Protocol Selection $=$ Apogee/P1 and Communication Speed Selection $\neq 4800$ bps, 9600 bps] - H5-08 $=3$ and H5-02 $\neq 3,4,5,7$ [Communication Protocol Selection $=$ BACnet and Communication Speed Selection $\neq 9600 \mathrm{bps}, 19.2 \mathrm{kbps}, 38.4 \mathrm{kbps}$, $76.8 \mathrm{kbps}]$	Correct the parameter settings.
Code	Name	Causes	Possible Solutions
oPE34	HAND/OFF/AUTO Input Setting	Parameter $b 1-02=7$ to 9 and only HAND or AUTO MFDI [Z2-0x $=31$ or 32] is programmed.	Program HAND and AUTO MFDIs [Z2-0x $=31$ and 32].
			Un-program HAND and AUTO MFDIs, so neither are selected.
		Parameter b1-02 = 1 to 3 and the AUTO MFDI [Z2$0 x=32]$ is programmed	Un-program the AUTO MFDI.
		Parameter $b 1-02=0$ and either HAND or AUTO MFDI [Z2-0x = 31 or 32] are programmed.	Un-program the HAND and AUTO MFDIs.
Code	Name	Causes	Possible Solutions
oPE36	Bypass Energy Savings Setting Err	These parameters are set at the same time: - Z1-16 $=0$ [Energy Savings Mode \neq Disabled] - Y4-42 $\neq 0$ [Output Disconnect Detection Sel \neq Disabled]	Set $Z 1-16$ or $Y 4-42=0$.

5.8 Auto-Tuning Errors

This table gives information about errors detected during Auto-Tuning. If the drive detects an Auto-Tuning error, the keypad will show the error and the motor will coast to stop. The drive will not send notification signals for faults and alarms when Auto-Tuning errors occur.
Two types of Auto-Tuning errors are: Endx and Erx. Endx identifies that Auto-Tuning has successfully completed with calculation errors. Find and repair the cause of the error and do Auto-Tuning again, or set the motor parameters manually. You can use the drive in the application if you cannot find the cause of the Endx error.
Erx identifies that Auto-Tuning was not successful. Find and repair the cause of the error and do Auto-Tuning again.

Code	Name	Causes	Possible Solutions
End1	Excessive Rated Voltage Setting	The torque reference was more than 20% during Auto-Tuning or the no-load current that was measured after Auto-Tuning is more than 80%.	- Make sure that the input motor nameplate data is correct. - Do Auto-Tuning again and correctly set the motor nameplate data. - If you can uncouple the motor and load, remove the motor from the machine and do Rotational Auto-Tuning again. - If you cannot uncouple the motor and load, use the results from Auto-Tuning.
Code	Name	Causes	Possible Solutions
End2	Iron Core Saturation Coefficient	The motor nameplate data entered during AutoTuning is incorrect.	- Make sure that the input motor nameplate data is correct. - Do Auto-Tuning again and correctly set the motor nameplate data.
Code	Name	Causes	Possible Solutions
End3	Rated Current Setting Alarm	The rated current value is incorrect.	Do Auto-Tuning again and set the correct rated current shown on the motor nameplate.
Code	Name	Causes	Possible Solutions
End4	Adjusted Slip Calculation Error	The Auto-Tuning results were not in the applicable parameter setting range.	- Make sure the input motor nameplate data is correct. - Do Rotational Auto-Tuning again and correctly set the motor nameplate data. - If you cannot uncouple the motor and load, do Stationary AutoTuning 2.
		The motor rated slip that was measured after Stationary Auto-Tuning was 0.2 Hz or lower.	
		The secondary resistor measurement results were not in the applicable range.	
Code	Name	Causes	Possible Solutions
End5	Resistance Tuning Error	The Auto-Tuning results of the Line-to-Line Resistance were not in the applicable range.	- Make sure that the input motor nameplate data is correct. - Examine and repair damaged motor wiring.
Code	Name	Causes	Possible Solutions
End6	Leakage Inductance Alarm	The Auto-Tuning results were not in the applicable parameter setting range.	Make sure that the input motor nameplate data is correct, and do Auto-Tuning again.
Code	Name	Causes	Possible Solutions
End7	No-Load Current Alarm	The Auto-Tuning results of the motor no-load current value were not in the applicable range.	Examine and repair damaged motor wiring.
		Auto-Tuning results were less than 5% of the motor rated current.	Make sure that the input motor nameplate data is correct, and do Auto-Tuning again.
Code	Name	Causes	Possible Solutions
Er-01	Motor Data Error	The motor nameplate data entered during AutoTuning is incorrect.	- Make sure that the motor nameplate data is correct. - Do Auto-Tuning again and correctly set the motor nameplate data.
		The combination of the motor rated power and motor rated current do not match.	- Examine the combination of drive capacity and motor output. - Do Auto-Tuning again, and correctly set the motor rated power and motor rated current.
		The combination of the motor rated current that was entered during Auto-Tuning and E2-03 [Motor NoLoad Current] do not match.	- Examine the motor rated current and the no-load current. - Set E2-03 correctly. - Do Auto-Tuning again, and correctly set the motor rated current.
		The combination of the setting values of Motor Base Frequency and Motor Base Speed do not match.	Do Auto-Tuning again, and correctly set the Motor Base Frequency and Motor Base Speed.

Code	Name	Causes	Possible Solutions
Er-02	Drive in an Alarm State	The motor nameplate data entered during AutoTuning is incorrect.	- Make sure that the motor nameplate data entered in Auto-Tuning is correct. - Do Auto-Tuning again and correctly set the motor nameplate data.
		You did Auto-Tuning while the drive had a minor fault or alarm.	Clear the minor fault or alarm and do Auto-Tuning again.
		There is a defective motor cable or cable connection.	Examine and repair motor wiring.
		The load is too large.	- Decrease the load. - Examine the machine area to see if, for example, the motor shaft is locked.
		The drive detected a minor fault during Auto-Tuning.	1. Stop Auto-Tuning. 2. Examine the minor fault code and remove the cause of the problem. 3. Do Auto-Tuning again.
Code	Name	Causes	Possible Solutions
Er-03	OFF Button was Pressed	You pushed OFF during Auto-Tuning.	Auto-Tuning did not complete correctly. Do Auto-Tuning again.
Code	Name	Causes	Possible Solutions
Er-04	Line-to-Line Resistance Error	The Auto-Tuning results were not in the applicable parameter setting range.	- Examine and repair motor wiring. - Disconnect the machine from the motor and do Rotational AutoTuning again.
		Auto-Tuning did not complete in a pre-set length of time.	
		There is a defective motor cable or cable connection.	
		The motor nameplate data entered during AutoTuning is incorrect.	- Make sure that the input motor nameplate data is correct. - Do Auto-Tuning again and correctly set the motor nameplate data.
Code	Name	Causes	Possible Solutions
Er-05	No-Load Current Error	The Auto-Tuning results were not in the applicable parameter setting range.	- Examine and repair motor wiring. - Disconnect the machine from the motor and do Rotational AutoTuning again.
		Auto-Tuning did not complete in a pre-set length of time.	
		The motor nameplate data entered during AutoTuning is incorrect.	- Make sure that the input motor nameplate data is correct. - Do Auto-Tuning again and correctly set the motor nameplate data.
		Rotational Auto-Tuning was done with a load that was more than 30% of the rating connected to the motor.	- Disconnect the machine from the motor and do Rotational AutoTuning again. - If you cannot uncouple the motor and load, make sure that the load is less than 30% of the motor rating. If a mechanical brake is installed in the motor, release the brake during Rotational Auto-Tuning.
Code	Name	Causes	Possible Solutions
Er-08	Rated Slip Error	The motor nameplate data entered during AutoTuning is incorrect.	- Make sure that the input motor nameplate data is correct. - Do Auto-Tuning again and correctly set the motor nameplate data.
		Auto-Tuning did not complete in a pre-set length of time.	- Examine and repair the motor wiring. - If the motor and machine are connected during Rotational AutoTuning, decouple the motor from the machinery.
		The Auto-Tuning results were not in the applicable parameter setting range.	
		Rotational Auto-Tuning was done with a load that was more than 30% of the rating connected to the motor.	- Disconnect the machine from the motor and do Rotational AutoTuning again. - If you cannot uncouple the motor and load, make sure that the load is less than 30% of the motor rating. If a mechanical brake is installed in the motor, release the brake during Rotational Auto-Tuning.

5.8 Auto-Tuning Errors

Code	Name	Causes	Possible Solutions
Er-09	Acceleration Error	The motor did not accelerate for the specified acceleration time.	1. Increase the value set in C1-01 [Acceleration Time 1]. 2. Disconnect the machine from the motor and do Rotational Auto-Tuning again.
		Rotational Auto-Tuning was done with a load that was more than 30% of the rating connected to the motor.	- Disconnect the machine from the motor and do Rotational AutoTuning again. - If you cannot uncouple the motor and load, make sure that the load is less than 30% of the motor rating. If a mechanical brake is installed in the motor, release the brake during Rotational Auto-Tuning.
Code	Name	Causes	Possible Solutions
Er-12	Current Detection Error	There is a phase loss in the wiring between the output terminal block (or motor overload) and the motor.	Examine and repair wiring.
		The current exceeded the current rating of the drive.	- Check the motor wiring for any short circuits between the wires.
		The output current is too low.	- Check and turn ON any magnetic contactors used between motors. - Replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
		You tried Auto-Tuning without a motor connected to the drive.	Connect the motor and do Auto-Tuning.
		There was a current detection signal error.	Replace the control board or the drive. For information about replacing the control board, contact Yaskawa or your nearest sales representative.
Code	Name	Causes	Possible Solutions
Er-13	Leakage Inductance Error	The motor rated current value is incorrect.	Correctly set the rated current indicated on the motor nameplate and do Auto-Tuning again.
		The drive could not complete tuning for leakage inductance in fewer than 300 s .	Examine and repair motor wiring.
Code	Name	Causes	Possible Solutions
Er-18	Back EMF Error	The result of the induced voltage tuning was not in the applicable range.	1. Make sure that the input motor nameplate data is correct. 2. Do Auto-Tuning again and correctly set the motor nameplate data.
Code	Name	Causes	Possible Solutions
Er-25	HighFreq Inject Param Tuning Err	The motor data is incorrect.	Do Stationary Auto-Tuning again. Note: If the drive detects Er-25 after you do Stationary Auto-Tuning, it is possible that the motor cannot use high frequency injection. For more information, contact Yaskawa or your nearest sales representative.

5.9 Backup Function Operating Mode Display and Errors

- Operating Mode Display

When the drive does backup function tasks with the HOA keypad, the keypad will show the current task. These indicators do not show that an error has occurred.

Keypad Display	Name	Display	State
Drive and Keypad mismatch. Should the parameters be restored?	Detection of inconsistency between the drive and keypad	Normally displayed	The drive detected the connection of a keypad from a different drive. Select [Yes] to copy parameters backed up in the keypad to the connected drive.
Restore Restore from keypad	Restoring parameters	Flashing	The parameters stored in the keypad have been restored to the drive.
End	Backup/restore/verify operation ended normally	Normally displayed	The parameter backup, restore, or verify operation ended normally.
Backup Backup from Drive	Backing up parameters	Flashing	The parameters stored in the drive are being backed up to the keypad.
Verify Keypad \& Drive	Verifying parameters	The parameter settings stored in the keypad and the parameter settings in the drive align or are being compared.	

- Backup Function Runtime Errors

When an error occurs, the keypad shows a code to identify the error.
The table in this section shows the error codes. Refer to this table to remove the cause of the errors.
Note:
Push any key on the keypad to clear an error.

Code	Name	Causes	Possible Solutions
CPyE	Error Writing Data	Parameter restore did not end correctly.	Restore the parameters.
Code	Name	Causes	Possible Solutions
CSEr	Control Mode Mismatch	The keypad is broken.	Replace the keypad.
Code	Name	Causes	Possible Solutions
dFPS	Drive Model Mismatch	You tried to restore parameters to a different drive model than the one that you backed up.	1. Examine the drive model that you used to back up the parameters. 2. Restore the parameters.
Code	Name	Causes	Possible Solutions
iFEr	Keypad Communication Error	There was a communications error between the keypad and the drive.	Examine the connector or cable connection.
Code	Name	Causes	Possible Solutions
ndAT	Error Received Data	The parameter settings for model and specifications (power supply voltage and capacity) are different between the keypad and the drive.	1. Make sure that drive model and the value set in o2-04 [Drive Model (KVA) Selection] agree. 2. Restore the parameters.
		The parameters are not stored in the keypad.	1. Connect a keypad that has the correct parameters. 2. Restore the parameters.
Code	Name	Causes	Possible Solutions
rdEr	Error Reading Data	You tried to back up the data when o3-02 $=0$ [Copy Allowed Selection $=$ Disabled] .	Set $o 3-02=1$ [Enabled $]$ and back up again.
Code	Name	Causes	Possible Solutions
vAEr	Voltage Class, Capacity Mismatch	The power supply specifications or drive capacity parameter settings are different between the keypad and the drive.	1. Make sure that drive model and the value set in o2-04 [Drive Model (KVA) Selection] agree. 2. Restore the parameters.
Code	Name	Causes	Possible Solutions
vFyE	Parameters do not Match	The parameters that are backed up in the keypad and the parameters in the drive are not the same.	1. Restore or backup the parameter again. 2. Verify the parameters.

5.10 Bypass Status Messages

The bypass HOA keypad will show these status messages on line 1 of the keypad display during the conditions listed below. These are not faults or alarms.

Keypad Display	Description
Powering Up	Shown on initial power up of the bypass system. This message goes away when the power up initialization is complete and communication is established to the drive, or when the bypass determines that the drive is not connected or energized.
Idle	The bypass is in an Idle state with no active Run command. There are no active faults or alarms.
Drive Not Ready	The drive is not in a ready state. The drive will not run if a Run command is asserted. You can run the system in Bypass Mode.
Safety Open	A safety programmed to a bypass digital input is not closed and there is no active Run command. This message will change to an alarm when there is an active Run command.
Fire Stat Open	A Fire Stat safety programmed to a bypass digital input is not closed and there is no active Run command. This message will change to an alarm when there is an active Run command.
Freeze Stat Open	A Freeze Stat safety programmed to a bypass digital input is not closed and there is no active Run command. This message will change to an alarm when there is an active Run command.
Smoke Alarm active	A Smoke Alarm safety programmed to a bypass digital input is not closed and there is no active Run command. This message will change to an alarm when there is an active Run command.
Over Pressure Detected	An Over Pressure safety programmed to a bypass digital input is not closed and there is no active Run command. This message will change to an alarm when there is an active Run command.
Low Suction Detected	A Low Suction safety programmed to a bypass digital input is not closed and there is no active Run command. This message will change to an alarm when there is an active Run command.
Vibration Detected	A Vibration safety programmed to a bypass digital input is not closed and there is no active Run command. This message will change to an alarm when there is an active Run command.
Interlock Open	Programmed BAS Interlock is not closed. The unit will not run when it receives a Run command.
Drive Pre Running	The drive received a Run command and the drive is entering the programmed pre-run. When the pre-run conditions are finished, the drive will enter drive run.
Drive Run Commanded	The bypass has commanded the drive to run, but it has not yet detected t that the drive is running.
Restart Delay Active	There is an active Run Command, but the programmed restart delay is active and the drive cannot run. The keypad shows this display on power-up or when there is a brief power loss to the bypass unit.
Drive Running	The unit is running in Drive Mode.
Drive Stopping	The Run command to the drive was removed, and the drive is ramping to stop.
Running in Bypass	The unit is running in Bypass Mode.
Entering Energy Savings	Energy savings conditions have been detected. This functionality is programmed using parameters Z1-16 through Z1-23. When entering energy savings, the unit is running at the energy savings bump frequency and when it is finished, it will switch into the bypass run state.
Energy Savings Active	Energy Savings Mode is active and the unit is running in Bypass Mode.
Exiting Energy Savings	Energy Savings conditions are no longer present and the unit is leaving Energy Savings and returning to Drive Mode. The exit conditions are when the frequency reference changes from the programmed Energy Savings frequency reference in Z117.
Auto Transfer Active	Auto transfer was enabled in Z1-05 and the unit detected a drive fault during an active drive run. The unit will run in Bypass Mode.
Remote Transfer Active	A Remote Transfer was asserted and the unit is currently running in Bypass Mode.
Emergency Override Drive FWD	An Emergency Override Drive FWD was asserted by a bypass digital input or through serial or option board communications to the bypass board.
Emergency Override Drive REV	An Emergency Override Drive REV was asserted by a bypass digital input or through serial or option board communications to the bypass board.
Emergency Override Bypass	An Emergency Override Bypass was asserted by a bypass digital input or through serial or option board communications to the bypass board. This message also appears when Emergency Override Drive was active, there was a drive fault, and Z1-10 $=1$ [Transfer to Bypass].
Faulted	The unit is in Drive Mode it detected a drive fault or bypass fault, or the unit is in Bypass Mode and it detected a bypassspecific fault.
Soft Start On Delay	There is a Run command and the unit is waiting for the programmed on delay time in Z1-43 before asserting the soft starter run.
Soft Starter Ramping down	Parameter Z1-42 $=2$ [Ramp to Stop] and the Run command was removed. The soft starter will ramp to stop.

5.11 Diagnosing and Resetting Faults

When a fault occurs and the drive stops, do the procedures in this section to remove the cause of the fault, then reenergize the drive.

Fault and Power Loss Occur at the Same Time

WARNING! Crush Hazard. Wear eye protection when you do work on the bypass. If you do not use correct safety equipment, it can cause serious injury or death.
WARNING! Electrical Shock Hazard. After the bypass blows a fuse or trips a GFCI, do not immediately energize the bypass or operate peripheral devices. Wait for the time specified on the warning label at a minimum and make sure that all indicators are OFF. Then check the wiring and peripheral device ratings to find the cause of the problem. If you do not know the cause of the problem, contact Yaskawa before you energize the bypass or peripheral devices. If you do not fix the problem before you operate the bypass or peripheral devices, it can cause serious injury or death.

1. Connect to the USB connector on the bypass PCB and use DriveWizard HVAC software.
2. Connect to the drive, then select "Status \& Fault History" to show fault codes and operating status of the bypass immediately before the fault occurred.
3. Use the information in the Troubleshooting tables to remove the fault.

Note:

1. To find the faults that were triggered, check the fault history in $U 2-02$ [Previous Fault]. To find information about drive status (such as frequency, current, and voltage) when the faults were triggered, check U2-03 to U2-20.
2. If the fault display stays after you re-energize the drive, remove the cause of the fault and reset.

- Fault Occurs Without Power Loss

1. Examine the fault code shown on the keypad.
2. Use the information in the Troubleshooting tables to remove the fault.
3. Do a fault reset.

Fault Reset

If a fault occurs, you must remove the cause of the fault and re-energize the drive. Table 5.5 lists the different methods to reset the drive after a fault.

Note:

You must remove the Run command or make sure that the bypass is in the OFF state before you can do a fault reset.
Table 5.5 Fault Reset Methods

Methods	Description
Method 1	While the keypad is showing the fault or alarm code, push F1 (Reset) or $>$ on the keypad.
Method 2	Switch ON the MFDI Terminal set to Z2-0x = 34 [Bypass MFDI Function Select $=$ Fault Reset].
Method 3	1. De-energize the drive main circuit power supply. 2. Energize the drive again after the keypad display goes out. (2) ON (1) OFF

Note:

If the drive receives a Run command from a communication option or control circuit terminal, the drive will not reset the fault. Remove the Run command then try to clear the fault. If you do a fault reset when the drive has a Run command, the keypad will show minor fault CrST [Remove RUN Command to Reset].

Specifications

6.1 Section Safety 150
6.2 208 V Narrow Model Specifications 151
6.3 480 V Narrow Model Specifications 153
6.4 Common Bypass Specifications 155
6.5 Drive Watt Loss and Derating 157
6.6 Peripheral Devices and Options 158
6.7 Periodic Inspection and Maintenance 163

6.1 Section Safety

6.1 Section Safety

! DANGER

Do not ignore the safety messages in this manual.
If you ignore the safety messages in this manual, it will cause serious injury or death. The manufacturer is not responsible for injuries or damage to equipment.

6.2 208 V Narrow Model Specifications

Table 6.1 208 V Narrow Ratings

Model		D002	D003	D004	D007	D010	D016
Maximum Applicable Motor Output (HP) *2		0.5	0.75	1	2	3	5
Input	Rated Input Current (A)	2.9	4.0	5.1	8.0	11.1	17.2
	Rated Voltage Rated Frequency	Three-Phase 208 Vac 50/60 Hz					
	Allowable Voltage Fluctuation	-15 to 10\%					
	Allowable Frequency Fluctuation	$\pm 5 \%$					
Output	Rated Output Current (A)	$2.4 * 3$	3.5 *3	4.6 *3	7.5 *3	10.6 *3	16.7 *3
	Minimum Applicable Motor Current (A)	1.5	1.5	1.5	1.5	1.5	3.75
	Overload Tolerance	110% of rated output current for 60 s 150% peak					
	Carrier Frequency	User adjustable between 1 and 12.5 kHz (Maximum Frequency varies with Rated Output Capacity)					
	Maximum Output Voltage (V)	Three-Phase 208 Vac					
	Maximum Output Frequency (Hz)	240 Hz					
Harmonics Reduction	Input Power (kVA)	Built-in					
EMC	Filter (IEC/EN 61800-3 Category 2)	Built-in					

*1 The maximum applicable motor output is based on 4-pole, general-purpose 220 V motor ratings. The rated output current of the drive output amps must be equal to or more than the motor rated current.
*2 The maximum applicable motor output complies with 208 V motor ratings as specified in NEC Table 430.250. The rated output current of the drive output amps must be equal to or more than the motor rated current.
*3 Carrier frequency is 5 kHz . You must derate the current to increase the carrier frequency.
Table 6.2 208 V Narrow Ratings

Model		D024	D030	D046	D059	D074
Maximum Applicable Motor Output (HP) *2		7.5	10	15	20	25
Input	Rated Input Current (A)	24.7	31.3	46.7	59.9	75.3
	Rated Voltage Rated Frequency	Three-Phase 208 Vac 50/60 Hz				
	Allowable Voltage Fluctuation	-15 to 10\%				
	Allowable Frequency Fluctuation	$\pm 5 \%$				
Output	Rated Output Current (A)	24.2 *3	30.8 *3	46.2 *3	59.4 *3	74.8 *3
	Minimum Applicable Motor Current (A)	3.75	3.75	7.5	7.5	15
	Overload Tolerance	110% of rated output current for 60 s 150% peak				
	Carrier Frequency	User adjustable between 1 and 12.5 kHz (Maximum Frequency varies with Rated Output Capacity)				
	Maximum Output Voltage (V)	Three-Phase 208 Vac				
	Maximum Output Frequency (Hz)	240 Hz				
Harmonics Reduction	Input Power (kVA)	Built-in				
EMC	Filter (IEC/EN 61800-3 Category 2)	Built-in				

*1 The maximum applicable motor output is based on 4-pole, general-purpose 220 V motor ratings. The rated output current of the drive output amps must be equal to or more than the motor rated current.

6.2 208 V Narrow Model Specifications

*2 The maximum applicable motor output complies with 208 V motor ratings as specified in NEC Table 430.250. The rated output current of the drive output amps must be equal to or more than the motor rated current.
*3 Carrier frequency is 5 kHz . You must derate the current to increase the carrier frequency.

6.3 480 V Narrow Model Specifications

Table 6.3 480 V Narrow Ratings

Model		B1P1	B001	B002	B003	B004	B007	B011	B014
Maximum Applicable Motor Output (HP) *2		0.5	0.75	1	2	3	5	7.5	10
Input	Rated Input Current (A)	1.3	1.8	2.3	3.6	5.0	7.8	11.2	14.2
	Rated Voltage Rated Frequency	Three-Phase $480 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$							
	Allowable Voltage Fluctuation	-15 to 10\%							
	Allowable Frequency Fluctuation	$\pm 5 \%$							
Output	Rated Output Current (A)	1.1 *3	1.6 *3	2.1 *	$3.4 * 3$	4.8 *	7.6 *	11.0 *3	14.0 *3
	Minimum Applicable Motor Current (A)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	3.75
	Overload Tolerance	110% of rated output current for 60 s 150% peak							
	Carrier Frequency	User adjustable between 1 and 12.5 kHz (Maximum Frequency varies with Rated Output Capacity)							
	Maximum Output Voltage (V)	Three-Phase 480 Vac							
	Maximum Output Frequency (Hz)	240 Hz							
Harmonics Reduction	Input Power (kVA)	Built-in							
EMC	Filter (IEC/EN 61800-3 Category 2)	Built-in							

*1 The maximum applicable motor output is based on 4-pole, general-purpose 220 V motor ratings. The rated output current of the drive output amps must be equal to or more than the motor rated current.
*2 The maximum applicable motor output complies with 208 V motor ratings as specified in NEC Table 430.250. The rated output current of the drive output amps must be equal to or more than the motor rated current.
*3 Carrier frequency is 5 kHz . You must derate the current to increase the carrier frequency.
Table 6.4 480 V Narrow Ratings

Model		B021	B027	B034	B040	B052	B065	B077
Maximum Applicable Motor Output (HP) *2		15	20	25	30	40	50	60
Input	Rated Input Current (A)	21.2	27.2	34.2	40.2	52.2	65.2	77.2
	Rated Voltage Rated Frequency	Three-Phase 480 Vac 50/60 Hz						
	Allowable Voltage Fluctuation	-15 to 10\%						
	Allowable Frequency Fluctuation	$\pm 5 \%$						
Output	Rated Output Current (A)	21.0 *3	27.0 *3	34.0 *3	40.0 *3	52.0 *3	65.0 *3	77.0 *3
	Minimum Applicable Motor Current (A)	3.75	3.75	7.5	7.5	7.5	7.5	15
	Overload Tolerance	110% of rated output current for 60 s 150% peak						
	Carrier Frequency	User adjustable between 1 and 12.5 kHz (Maximum Frequency varies with Rated Output Capacity)						
	Maximum Output Voltage (V)	Three-Phase 480 Vac						
	Maximum Output Frequency (Hz)	240 Hz						

\left.| Model | | B021 | B027 | B034 | B040 | B052 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |$\right]$ B065 | Built-in |
| :--- |
| Harmonics
 Reduction |
| Input Power (kVA) |

*1 The maximum applicable motor output is based on 4-pole, general-purpose 220 V motor ratings. The rated output current of the drive output amps must be equal to or more than the motor rated current.
*2 The maximum applicable motor output complies with 208 V motor ratings as specified in NEC Table 430.250. The rated output current of the drive output amps must be equal to or more than the motor rated current.
*3 Carrier frequency is 5 kHz . You must derate the current to increase the carrier frequency.

6.4 Common Bypass Specifications

Note:

To get the longest product life, install the bypass in an environment that meets the necessary specifications.
Table 6.5 Control Characteristics

Item	Specification
Control Method	V/f Control (V/f)
Frequency Control Range	0.01 Hz to 400 Hz
Frequency Accuracy (Temperature Fluctuation)	Digital inputs: Within $\pm 0.01 \%$ of the maximum output frequency $\left(-10^{\circ} \mathrm{C}\right.$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.\left.104{ }^{\circ} \mathrm{F}\right)\right)$ Analog inputs: Within $\pm 0.4 \%$ of the maximum output frequency $\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F} \pm 18^{\circ} \mathrm{F}\right)\right)$
Frequency Setting Resolution	Digital inputs: 0.01 Hz Analog inputs: $1 / 2048$ of the maximum output frequency (11-bit)
Output Frequency Resolution	0.001 Hz
Frequency Setting Signal	Main speed frequency reference: 0 Vdc to $10 \mathrm{Vdc}(20 \mathrm{k} \Omega), 4 \mathrm{~mA}$ to $20 \mathrm{~mA}(250 \Omega), 0 \mathrm{~mA}$ to $20 \mathrm{~mA}(250 \Omega)$
Starting Torque	$140 \% / 3 \mathrm{~Hz}$
Speed Control Range	1:40
Accel/Decel Time	0.1 s to 6000.0 s The bypass can set two pairs of different acceleration and deceleration times.
V/f Characteristics	Select from 15 pre-defined V/f patterns, or a user-set V/f pattern.
Main Control Functions	Restart After Momentary Power Loss, Speed Search, Overtorque/Undertorque Detection, 8 Step Speed (max.), Accel/Decel Switch, S-curve Acceleration/ Deceleration, Auto-Tuning (Rotational and Stationary), Cooling Fan ON/OFF Switch, Slip Compensation, Torque Compensation, Jump Frequency, Upper/ Lower Limits for Frequency Reference, DC Injection Braking at Start and Stop, Overexcitation Braking, High Slip Braking, PID Control (with Sleep Function), Energy Saving Control, APOGEE FLN Communication (RS-485 4.8 or 9.6 kbps), BACnet Communication (RS-485 max. 76.8 kbps), MEMOBUS/ Modbus Communication (RS-485 max. 115.2 kbps), Metasys N2 Communication (RS-485 9.6 kbps), Auto Restart, Application Presets, Overexcitation Deceleration, Overvoltage Suppression

Table 6.6 Protection Functions

Item	Specification
Motor Protection (Drive and Bypass Modes)	Electronic thermal overload protection
Momentary Overcurrent Protection (Drive Mode)	Bypass stops when the output current is more than 175% of the rated output current.
Overload Protection (Drive Mode)	Bypass stops when the output current is more than these overload tolerances: - 110% of the rated output current for 60 seconds - 140% of the rated output current for 2.5 seconds when the bypass output frequency is 3 Hz The permitted frequency of overload is one time each 10 minutes. Note: If output frequency $<6 \mathrm{~Hz}$, the bypass can trigger the overload protection function when the output current is in the overload tolerance range.
Overvoltage Protection (Drive Mode)	208/240 V: Stops when the DC bus voltage is more than approximately 410 V 480 V : Stops when the DC bus voltage is more than approximately 820 V
Undervoltage Protection (Drive Mode)	208/240 V: Stops when the DC bus voltage decreases to less than approximately 190 V 480 V : - Stops when the DC bus voltage decreases to less than approximately 350 V when you use an input voltage less than 400 V - Stops when the DC bus voltage decreases to less than approximately 380 V when you use an input voltage less than 460 V - Stops when the DC bus voltage decreases to less than approximately 440 V when you use an input voltage of 460 V or more
Brownout Protection (Drive and Bypass Modes)	
Momentary Power Loss Ride-thru (Drive and Bypass Modes)	Immediately stops when power loss is 15 ms or longer. Will automatically restart after power is restored. (depending on parameter settings)

6.4 Common Bypass Specifications

Item	Specification
Heatsink Overheat Protection (Drive Mode)	The bypass stops when the thermistor detects an IGBT temperature more than approximately $100^{\circ} \mathrm{C}\left(212{ }^{\circ} \mathrm{F}\right)$. The trip temperature level is different for different models.
Stall Prevention (Drive Mode)	Stall prevention is available during acceleration, deceleration, and during run.
Ground Fault Protection (Drive Mode)	Electronic circuit protection Note: This protection detects ground faults during run. The bypass will not provide protection when: • There is a low-resistance ground fault for the motor cable or terminal block
DC Bus Charge LED (Drive Mode)	Charge LED illuminates when DC bus voltage is more than 50 V.

Table 6.7 Environment

Item	Specification
Area of Use	Indoors
Ambient Temperature Setting	IP20/UL Type 1: $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ IP55/UL Type 12: $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ - Do not let the bypass freeze.
Humidity	95% RH or less Do not let condensation form on the bypass.
Storage Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+158{ }^{\circ} \mathrm{F}\right)$ (short-term temperature during transportation)
Surrounding Area	Pollution degree 2 or less Install the bypass in an area without: - Oil mist, corrosive or flammable gas, or dust - Metal powder, oil, water, or other unwanted materials - Radioactive materials or flammable materials, including wood - Harmful gas or fluids - Salt - Direct sunlight
Altitude	$1000 \mathrm{~m}(3281 \mathrm{ft})$ maximum Note: Derate the output current by 1% for each $100 \mathrm{~m}(328 \mathrm{ft})$ to install the bypass in altitudes between 1000 m to $4000 \mathrm{~m}(3281 \mathrm{ft} \mathrm{to} 13123 \mathrm{ft}$). It is not necessary to derate the rated voltage in these conditions: - When you install the bypass at $2000 \mathrm{~m}(6562 \mathrm{ft})$ or lower - When you install the bypass between 2000 m to $4000 \mathrm{~m}(6562 \mathrm{ft}$ to 13123 ft$)$ and ground the neutral point on the power supply.
Vibration	- 10 Hz to $20 \mathrm{~Hz}: 1 \mathrm{G}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}, 32.15 \mathrm{ft} / \mathrm{s}^{2}\right)$ - 20 Hz to $55 \mathrm{~Hz}:$ H6BPD002 to D030, H6BPB1P1, B001 to B034: $0.6 \mathrm{G}\left(5.9 \mathrm{~m} / \mathrm{s}^{2}, 19.36 \mathrm{ft} / \mathrm{s}^{2}\right)$ H6BPD046 to H6BPD074, H6BPB040 to B077: $0.2 \mathrm{G}\left(1.96 \mathrm{~m} / \mathrm{s}^{2}, 6.43 \mathrm{ft} / \mathrm{s}^{2}\right)$ - 20 Hz to 55 Hz : H6B1D002 to D030, H6B1A002 to A028, H6B1B1P1, B001 to B034: 0.6 G (5.9 m/s $\left.{ }^{2}, 19.36 \mathrm{ft} / \mathrm{s}^{2}\right)$ H6B1D046 to D273, H6B1A042 to A248, H6B1B040 to B302: $0.2 \mathrm{G}\left(1.96 \mathrm{~m} / \mathrm{s}^{2}, 6.43 \mathrm{ft} / \mathrm{s}^{2}\right)$
Installation Orientation	Install the bypass vertically for sufficient airflow to cool the bypass.

Table 6.8 Certifications and Standard Compliance

Item	Specification
c-UL-us	UL 508A
Seismic Certification	- CBC, IBC, ASCE7, ICC-ES 156
	HCAI (Special Seismic Certification Preapproval OSP-0687)

Table 6.9 Enclosure Ratings

Item	
Protection Design	IP20/UL Type 1 IP55/UL Type 12

6.5 Drive Watt Loss and Derating

For drive watt loss and drive derating data, refer to the HV600 Bypass Technical Reference (SIEPYAIHB601).

6.6 Peripheral Devices and Options

Bypass Communication Options

There are many available peripheral devices and options for the bypass.
Refer to the HV600 catalog (CA.HV600.01) for information about available options, including:

- Main circuit options
- Frequency settings and monitor options
- Keypad options
- Attachment options
- Engineering tools

Contact Yaskawa or your nearest sales representative to make an order.
Refer to the instruction manual for each option for wiring information.

Tools Required for Option Installation

- A Phillips screwdriver (M3 metric or \#1, \#2 U.S. standard) to install the option and remove the bypass front cover. Screw sizes vary by capacity. Select a screwdriver appropriate for the capacity.

Note:

Use a short-shaft, magnetic screwdriver when installing the option card into the narrow enclosure models H6BPD002 to D074 and B1P1, B001 to B077.

- A straight-edge screwdriver (blade depth: 0.4 mm , width: 2.5 mm) to wire the option terminal block when installing the SI-W3 LonWorks option.
Note:
This manual does not list the tools required to prepare the option cables for wiring.

Bypass Options

These configurations are available for the bypass:

■ Option B

Three-contactor bypass: Isolates the drive circuit by adding a separate drive input contactor.

- Option D

Ethernet/IP option.

Option G

Drive Input Disconnect Switch: Provides a disconnect means for the input side of the Drive, for Drive isolation capability during bypass operation. This disconnect is located inside the enclosure with an integral operating handle.

- Option L

Serial Communication, Echelon LonWorks: An isolated circuit board provides LonTalk protocol for network communication to a BAS. This option plugs into the CN5 connection on the bypass control circuit board.

- Option M

Lockable Circuit Breaker SCCR panel rating of 100 kA (no external customer fuses or internal fuses are necessary)

Option W

Custom Nameplate: Provides a custom nameplate for placement on the front of the bypass.

Option Installation Procedure

Before You Install the Option

NOTICE: Install communications options on the bypass control PCB. Do not install communications options on the drive PCB. Improperly connected communications options will cause erroneous operation.

Verify Bypass Operation

Verify that the bypass functions normally without the option installed. Refer to Electrical Installation for information on wiring and connecting the bypass.

Prepare Network Cables for SI-W3 LonWorks Options

Use only LonWorks network cables.
Refer to the Echelon website for more information on network cabling (www.echelon.com). The performance cannot be guaranteed if you use non-LonWorks network cables.
Separate the LonWorks cables from the wiring to the main circuit and other lines.
Determine the length of cable required to connect from the option to a network device and attach all connectors to network cables.
The communication terminal is a pluggable terminal block that serves as the connection point of the LonWorks network cable to the option.

Terminal	Terminal No.	Name	Description
1 -	1	A	Signal Line A
2 - Q \quad 回	2	SLD	Shield
$3-\mathbb{P}$	3	B	Signal Line B

NOTICE: Heat shrink tubing or electrical tape may be required to ensure that cable shielding does not touch contact with other wiring. Insufficient insulation may cause a short circuit that can damage the option or the bypass.

Note:

- Use shielded wires and shielded twisted-pair wires. If the grounding is not correct, electrical interference can cause the drive or devices around it to malfunction.
- Do not use wiring that is longer than $50 \mathrm{~m}(164 \mathrm{ft})$ to supply the frequency reference with an analog signal from a remote source. Wiring that is too long can cause unsatisfactory system performance.

> A - Loosen the screws and put the wire into the opening on the terminal block.
> B - Wire with a crimp ferrule
> attached, or use wire that is not
> soldered with the core wires lightly twisted.
> C - Pull back the shielding and
> lightly twist the end with your fingers to keep the ends from fraying.

D - If you do not use crimp ferrules, remove approximately 5.5 mm end of the wire.

- Blade width of 2.5 mm (0.1 in) or less

WARNING! Fire Hazard. Tighten all terminal screws to the correct tightening torque. Connections that are too loose or too tight can cause incorrect operation and damage to the bypass. Incorrect connections can also cause death or serious injury from fire.
NOTICE: Do not tin stranded wire with solder. Soldered wire connections can become loose over time and cause unsatisfactory system performance.

Figure 6.1 Prepare the Ends of Shielded Wire

Prepare Network Cables for Ethernet-based Options

Determine the length of cable required to connect from the option to a network device and attach all connectors to network cables before you install the option.
The Ethernet-based option options will have one or two RJ45 ports available for connections. The user must supply the mating RJ45 modular connector and cable.

Table 6.10 8-Way Modular Connector (Customer-Supplied)

Male 8-Way Modular Connector	Pin	Description
C-	1 (Pair 2)	Transmit data (TXD) +
	2 (Pair 2)	Transmit data (TXD) -
	3 (Pair 3)	Receive data (RXD) +
	4 (Pair 1)	Not used for 10 Mbps and 100 Mbps networks
	5 (Pair 1)	Not used for 10 Mbps and 100 Mbps networks
	6 (Pair 3)	Receive data (RXD) -
	7 (Pair 4)	Not used for 10 Mbps and 100 Mbps networks
	8 (Pair 4)	Not used for 10 Mbps and 100 Mbps networks

Communication Protocol	
EtherNet/IP	Only use cable recommended for EtherNet/Industrial Protocol (EtherNet/IPTM). Using a cable not specifically recommended may cause the option or bypass to malfunction. Refer to the ODVA website for more information on network cabling (www.odva.org).
Modbus TCP/IP	Only use cable recommended for Modbus TCP/IP. Using a cable not specifically recommended may cause the option or bypass to malfunction. Refer to the Modbus-IDA website for more information on network cabling (www.modbus.org).
PROFINET	Only use cable recommended for PROFINET. Using a cable not specifically recommended may cause the option or bypass to malfunction. Refer to the PROFIBUS and PROFINET International (PI) website for more information (www.profibus.com).
BACnet/IP	Only use shielded Cat5e cable or better. Using a cable not specifically recommended may cause the option or bypass to malfunction.

Install the Option

1. De-energize the system at the power source. Observe correct lockout/tagout safety procedures and wait for the CHARGE light to completely go out on the drive unit.
2. Remove the bypass cover or open the cabinet door to access the bypass PCB A2.
3. Install the option to bypass PCB A2.
4. Use the two screws included in the option kit to fasten the option card to the metal standoffs on the bypass PCB A2. Use a short-shaft, magnetic screwdriver for narrow enclosure models H6BPxxxx. Tighten each screw to 0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$ (4.4 to 5.3 in lbs).

Figure 6.2 Insert Option into Bypass PCB CN5 Connector Port
5. Firmly insert the end of the customer-supplied network cable into the CN1 connection port on the option board. When you have a dual-port option, connect two network cables to the two RJ45 ports. Available connection topologies are different for different options. Refer to the option manual for your communication protocol for more information.

Figure 6.3 Connect Network Cable to Option (SI-W3 LonWorks Example)

NOTICE: Separate the communication wiring from the input power, motor, and 120 Vac control wiring. Electrical interference can cause communication data errors.
6. Make sure that you did not pinch cables between the front cover and the bypass enclosure, then replace and secure the front cover or cabinet door.
7. Set the bypass parameters for option functionality. Refer to the option manual for your communication protocol for programming information.

6.7 Periodic Inspection and Maintenance

For detailed information about:

- Recommended inspections
- Replacement of parts, including the keypad battery
- Drive cooling fan and circulation fan replacement procedures
- Storage guidelines

Refer to the HV600 Bypass Technical Reference (SIEPYAIHB601).

Parameter List

7.1 How to Read the Parameter List 166
7.2 A: Initialization Parameters 168
7.3 b: Application 171
7.4 C: Tuning 178
7.5 d: Reference Settings 180
7.6 E: Motor Parameters 182
7.7 F: Options 184
7.8 H: Terminal Functions 189
7.9 L: Protection Functions 206
7.10 n: Special Adjustment 213
7.11 o: Keypad-Related Settings 214
7.12 S: Special Applications 220
7.13 Y: Application Features 229
7.14 Z: Bypass Parameters 237
7.15 U: Monitors 245

7.1 How to Read the Parameter List

Terms that Identify Parameters

Icon	Description
Hex.	Hexadecimal numbers that represent MEMOBUS addresses to change parameters over network communication.
RUN	You can change the parameter setting during Run.
Expert	The parameter is available in Expert Mode only. ${ }^{*} 1$

*1 Set A1-01 $=3$ [Access Level Selection $=$ Expert Level] to show and set Expert Mode parameters on the keypad.

Parameter Groups

Parameter Group	Name
A1	Initialization
A2	User Parameters
b1	Operation Mode Selection
b2	DC Injection Braking
b3	Speed Search
b4	Timer Function
b5	PID Control
b8	Energy Saving
C1	Accel \& Decel Time
C2	S-Curve Characteristics
C3	Slip Compensation
C4	Torque Compensation
C6	Carrier Frequency
d1	Frequency Reference
d2	Reference Limits
d3	Jump Frequency
d4	Frequency Ref Up/Down \& Hold
d6	Field Weakening
d7	Offset Frequency
E1	V/f Pattern for Motor 1
E2	Motor Parameters
F6	Communication Options
F7	Ethernet Options
H1	Digital Inputs
H2	Digital Outputs
H3	Analog Inputs
H4	Analog Outputs
H5	Serial Communication
H7	Virtual Inputs / Outputs
L1	Motor Protection
L2	Power Loss Ride Through

Parameter Group	Name
L3	Stall Prevention
L4	Speed Detection
L5	Fault Restart
L6	Torque Detection
L8	Drive Protection
L9	Drive Protection 2
n1	Hunting Prevention
n3	High Slip/Overexcite Braking
ol	Keypad Display
o2	Keypad Operation
o3	Copy Keypad Function
o4	Maintenance Monitors
o5	Log Function
S1	Dynamic Noise Control
S2	Sequence Run Timers
S3	PI2 Control
S5	HAND/OFF/AUTO Operation
S6	Protection
Y1	Application Basics
Y2	PID Sleep and Protection
Y4	Application Advanced
YA	Preset Setpoint
YC	Foldback Features
YF	PI Auxiliary Control
Z1	Bypass Control System
Z2	Bypass Digital Inputs/Outputs
Z3	Bypass Serial Communications
U1	Operation Status Monitors
U2	Fault Trace
U3	Fault History
U4	Maintenance Monitors

Parameter Group	Name		
U5	PID Monitors		
U6	Operation Status Monitors	\quad	Name
:---:	:---		

7.2 A: Initialization Parameters

- A1: Initialization

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \text { A1-00 } \\ (0100) \\ \text { RUN } \end{gathered}$	Language Selection	Sets the language for the HOA keypad. Note: When you use A1-03 [Initialize Parameters] to initialize the drive, the drive will not reset this parameter. 0 : English 5 : Spanish	$\begin{gathered} 0 \\ (0,5) \end{gathered}$
A1-01 (0101) RUN	Access Level Selection	Sets user access to parameters. The access level controls which parameters the keypad will display and which parameters you can set. 0 : Operation Only 1 : User Parameters 2 : Advanced Level 3 : Expert Level 4 : Lock Parameters	$\begin{gathered} 2 \\ (0-4) \end{gathered}$
$\begin{aligned} & \text { A1-03 } \\ & (0103) \end{aligned}$	Initialize Parameters	Sets parameters to default values. 0 : No Initialization 1110 : User Initialization 2220 : 2-Wire Initialization	$\begin{gathered} 0 \\ (0,1110,2220) \end{gathered}$
$\begin{aligned} & \text { A1-04 } \\ & (0104) \end{aligned}$	Password	Entry point for the password set in A1-05 [Password Setting]. The user can view the settings of parameters that are locked without entering the password. Enter the correct password in this parameter to change parameter settings.	$\begin{gathered} 0000 \\ (0000-9999) \end{gathered}$
$\begin{aligned} & \text { A1-05 } \\ & (0105) \end{aligned}$	Password Setting	Sets a password to lock parameters and prevent changes to parameter settings. Enter the correct password in A1-04 [Password] to unlock parameters and accept changes.	$\begin{gathered} 0000 \\ (0000-9999) \end{gathered}$
$\begin{aligned} & \text { A1-06 } \\ & (0127) \end{aligned}$	Application Preset	Sets the drive to operate in selected application conditions. 0 : No Preset Selected 1 : General Purpose Fan 2 : Fan w/ PID Control 3 : Return Fan w/ PID Control 4 : Cooling Tower Fan 5 : Cooling Tower Fan w/ PID 6 : Secondary Pump 7 : Pump w/ PID Control	$\begin{gathered} 0 \\ (0-7) \end{gathered}$
A1-11 (111D) Expert	Firmware Update Lock	Protects the drive firmware. When you enable the protection, you cannot update the bypass controller firmware. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \mathrm{A} 1-12 \\ & (1564) \end{aligned}$	Bluetooth ID	Sets the password necessary to use Bluetooth to control the drive with a smartphone or tablet.	(0000-9999)

- A2: User Parameters

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { A2-01 } \\ & (0106) \end{aligned}$	User Parameter 1	Sets the parameter number to be shown for number 1 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters A201 to A2-32.	$\begin{gathered} \mathrm{b} 1-01 \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-02 } \\ & (0107) \end{aligned}$	User Parameter 2	Sets the parameter number to be shown for number 2 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \mathrm{b} 1-02 \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-03 } \\ & (0108) \end{aligned}$	User Parameter 3	Sets the parameter number to be shown for number 3 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \mathrm{b} 1-03 \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-04 } \\ & (0109) \end{aligned}$	User Parameter 4	Sets the parameter number to be shown for number 4 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters A201 to A2-32.	$\begin{gathered} \mathrm{C} 1-01 \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-05 } \\ & (010 \mathrm{~A}) \end{aligned}$	User Parameter 5	Sets the parameter number to be shown for number 5 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \mathrm{C} 1-02 \\ \text { (A1-00-Z3-16) } \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { A2-06 } \\ & (010 \mathrm{~B}) \end{aligned}$	User Parameter 6	Sets the parameter number to be shown for number 6 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \mathrm{C} 6-02 \\ (\mathrm{~A} 1-00-\mathrm{Z3}-16) \end{gathered}$
$\begin{aligned} & \text { A2-07 } \\ & (010 \mathrm{C}) \end{aligned}$	User Parameter 7	Sets the parameter number to be shown for number 7 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \mathrm{d} 1-01 \\ (\mathrm{~A} 1-00-\mathrm{Z} 3-16) \end{gathered}$
$\begin{aligned} & \text { A2-08 } \\ & \text { (010D) } \end{aligned}$	User Parameter 8	Sets the parameter number to be shown for number 8 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \mathrm{d} 1-02 \\ (\mathrm{~A} 1-00-\mathrm{Z3}-16) \end{gathered}$
$\begin{aligned} & \text { A2-09 } \\ & (010 \mathrm{E}) \end{aligned}$	User Parameter 9	Sets the parameter number to be shown for number 9 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \mathrm{d} 1-03 \\ (\mathrm{~A} 1-00-\mathrm{Z} 3-16) \end{gathered}$
$\begin{aligned} & \text { A2-10 } \\ & (010 \mathrm{~F}) \end{aligned}$	User Parameter 10	Sets the parameter number to be shown for number 10 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \mathrm{d} 1-04 \\ (\mathrm{~A} 1-00-\mathrm{Z3}-16) \end{gathered}$
$\begin{aligned} & \text { A2-11 } \\ & (0110) \end{aligned}$	User Parameter 11	Sets the parameter number to be shown for number 11 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \mathrm{d} 1-17 \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-12 } \\ & (0111) \end{aligned}$	User Parameter 12	Sets the parameter number to be shown for number 12 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \text { E1-01 } \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-13 } \\ & (0112) \end{aligned}$	User Parameter 13	Sets the parameter number to be shown for number 13 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \text { E1-03 } \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-14 } \\ & (0113) \end{aligned}$	User Parameter 14	Sets the parameter number to be shown for number 14 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to $A 2-32$.	$\begin{gathered} \mathrm{E} 1-04 \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-15 } \\ & (0114) \end{aligned}$	User Parameter 15	Sets the parameter number to be shown for number 15 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \text { E1-05 } \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-16 } \\ & (0115) \end{aligned}$	User Parameter 16	Sets the parameter number to be shown for number 16 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32.	$\begin{gathered} \text { E1-06 } \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-17 } \\ & (0116) \end{aligned}$	User Parameter 17	Sets the parameter number to be shown for number 17 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	$\begin{gathered} \text { E1-09 } \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-18 } \\ & (0117) \end{aligned}$	User Parameter 18	Sets the parameter number to be shown for number 18 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to $A 2-32$. You can set $A 2-17$ to $A 2-32$ when $A 2-33=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	$\begin{gathered} \mathrm{E} 1-13 \\ (\mathrm{~A} 1-00-\mathrm{Z3}-16) \end{gathered}$
$\begin{aligned} & \text { A2-19 } \\ & (0118) \end{aligned}$	User Parameter 19	Sets the parameter number to be shown for number 19 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	$\begin{gathered} \text { E2-01 } \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-20 } \\ & (0119) \end{aligned}$	User Parameter 20	Sets the parameter number to be shown for number 20 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters A201 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	$\begin{gathered} \text { E2-04 } \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-21 } \\ & (011 \mathrm{~A}) \end{aligned}$	User Parameter 21	Sets the parameter number to be shown for number 21 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	$\begin{gathered} \mathrm{E} 2-11 \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-22 } \\ & (011 \mathrm{~B}) \end{aligned}$	User Parameter 22	Sets the parameter number to be shown for number 22 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	$\begin{gathered} \mathrm{H} 4-02 \\ (\mathrm{~A} 1-00-\mathrm{Z3}-16) \end{gathered}$
$\begin{aligned} & \text { A2-23 } \\ & (011 C) \end{aligned}$	User Parameter 23	Sets the parameter number to be shown for number 23 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	$\begin{gathered} \text { L1-01 } \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-24 } \\ & \text { (011D) } \end{aligned}$	User Parameter 24	Sets the parameter number to be shown for number 24 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	$\begin{gathered} \text { L3-04 } \\ \text { (A1-00-Z3-16) } \end{gathered}$
$\begin{aligned} & \text { A2-25 } \\ & (011 \mathrm{E}) \end{aligned}$	User Parameter 25	Sets the parameter number to be shown for number 25 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters A201 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	(A1-00-Z3-16)

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { A2-26 } \\ & (011 \mathrm{~F}) \end{aligned}$	User Parameter 26	Sets the parameter number to be shown for number 26 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	(A1-00 - Z3-16)
$\begin{aligned} & \text { A2-27 } \\ & (0120) \end{aligned}$	User Parameter 27	Sets the parameter number to be shown for number 27 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	(A1-00 - Z3-16)
$\begin{aligned} & \mathrm{A} 2-28 \\ & (0121) \end{aligned}$	User Parameter 28	Sets the parameter number to be shown for number 28 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	(A1-00 - Z3-16)
$\begin{aligned} & \text { A2-29 } \\ & (0122) \end{aligned}$	User Parameter 29	Sets the parameter number to be shown for number 29 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	(A1-00-Z3-16)
$\begin{aligned} & \text { A2-30 } \\ & (0123) \end{aligned}$	User Parameter 30	Sets the parameter number to be shown for number 30 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters A201 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	(A1-00 - Z3-16)
$\begin{aligned} & \text { A2-31 } \\ & (0124) \end{aligned}$	User Parameter 31	Sets the parameter number to be shown for number 31 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set A2-17 to A2-32 when A2-33 $=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	(A1-00 - Z3-16)
$\begin{aligned} & \mathrm{A} 2-32 \\ & (0125) \end{aligned}$	User Parameter 32	Sets the parameter number to be shown for number 32 of the [User Custom Parameters] under the main menu. You can select a maximum of 32 parameters for the drive and set them to parameters $A 2$ 01 to A2-32. You can set $A 2-17$ to $A 2-32$ when $A 2-33=0$ [User Parameter Auto Selection $=$ Disabled: Manual Entry Required].	(A1-00-Z3-16)
$\begin{aligned} & \text { A2-33 } \\ & (0126) \end{aligned}$	User Parameter Auto Selection	Sets the automatic save feature for changes to parameters A2-17 to A2-32 [User Parameters 17 to 32]. 0 : Disabled: Manual Entry Required 1 : Enabled: Auto Save Recent Parms	Determined by A1-06 $(0,1)$

7.3 b: Application

- b1: Operation Mode Selection

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { b1-01 } \\ & (0180) \end{aligned}$	Frequency Reference Selection 1	Sets the input method for the frequency reference. 0 : Keypad 1 : Analog Input 2 : Serial Communications 3 : Option PCB	$\begin{gathered} 1 \\ (0-3) \end{gathered}$
$\begin{aligned} & \text { b1-02 } \\ & (0181) \end{aligned}$	Run Command Selection 1	Sets the input method for the Run command. 0 : Keypad 1 : Digital Input 2 : Serial Communications 3 : Option PCB 7 : AUTO Command + Term Run 8 : AUTO Command + Serial Run 9 : AUTO Command + Option Run	$\begin{gathered} 7 \\ (0-9) \end{gathered}$
$\begin{aligned} & \text { b1-03 } \\ & (0182) \end{aligned}$	Stopping Method Selection	Sets the method to stop the motor after removing a Run command or entering a Stop command. 0 : Ramp to Stop 1 : Coast to Stop 2 : DC Injection Braking to Stop 3 : Coast to Stop with Timer	$\begin{gathered} 1 \\ (0-3) \end{gathered}$
$\begin{gathered} \text { b1-04 } \\ (0183) \end{gathered}$	Reverse Operation Selection	Sets the reverse operation function. Disable reverse operation in fan or pump applications where reverse rotation is dangerous. 0 : Reverse Enabled 1 : Reverse Disabled	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { b1-08 } \\ & (0187) \end{aligned}$	Run Command Select in PRG Mode	Sets the conditions for the drive to accept a Run command entered from an external source when using the keypad to set parameters. 0 : Disregard RUN while Programming 1 : Accept RUN while Programming 2 : Allow Programming Only at Stop	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { b1-11 } \\ \text { (01DF) } \end{gathered}$	Run Delay @ Stop	Sets the amount of time that the drive will not accept the Run command again after the Run command is lost. Note: - This parameter will operate for both AUTO Mode and HAND Mode. - This parameter will operate when the drive goes to sleep then wakes up. - The time set in this parameter does not apply for faults or Auto-Restarts. - When there is an active Run command while the time set in $b 1-11$ is active, the keypad will show a [Start Delay] message as specified by the ol-82 [Message Screen Display] display format.	$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0-6000.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { b1-12 } \\ (01 \mathrm{E} 0) \end{gathered}$	Run Delay Memory Selection	Sets how the drive saves the Run Delay Timer to the EEPROM during power loss. 0 : Disabled 1 : Only at Stop 2 : Running \& Stop	$\begin{gathered} 2 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { b1-17 } \\ (01 \mathrm{C} 6) \end{gathered}$	Run Command at Power Up	Sets drive response when you apply power to drive that has an external Run command. Set this parameter in applications where energizing or de-energizing the drive enables the Run command. 0 : Disregard Existing RUN Command 1 : Accept Existing RUN Command	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { b1-40 } \\ (3 \mathrm{BCF}) \end{gathered}$	Deceleration Abort Time	Sets the maximum time until the drive shuts off the output to decelerate to stop. Note: Set this parameter to 0.0 s to disable this function.	$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0-6000.0 \mathrm{~s}) \end{gathered}$

b2: DC Injection Braking

$\begin{aligned} & \text { No. } \\ & \text { (Hex.) } \end{aligned}$	Name	Description	Default (Range)
$\begin{aligned} & \text { b2-01 } \\ & (0189) \end{aligned}$	DC Injection/Zero SpeedThreshold	Sets the frequency to start DC Injection Braking. Note: This parameter is available when $b 1-03=0$ [Stopping Method Selection $=$ Ramp to Stop].	$\begin{gathered} 0.5 \mathrm{~Hz} \\ (0.0-10.0 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { b2-02 } \\ (018 \mathrm{~A}) \end{gathered}$	DC Injection Braking Current	Sets the DC Injection Braking current as a percentage of the drive rated current.	$\begin{gathered} 50 \% \\ (0-100 \%) \end{gathered}$
$\begin{gathered} \text { b2-03 } \\ (018 \mathrm{~B}) \end{gathered}$	DC Inject Braking Time at Start	Sets the DC Injection Braking Time at stop.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-10.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { b2-04 } \\ (018 \mathrm{C}) \end{gathered}$	DC Inject Braking Time at Stop	Sets the DC Injection Braking Time at stop.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-10.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { b2-09 } \\ (01 \mathrm{E} 1) \end{gathered}$	Pre-heat Current 2	Sets the percentage of motor rated output current used for the motor pre-heat function.	$\begin{gathered} 5 \% \\ (0-100 \%) \end{gathered}$

b3: Speed Search

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { b3-01 } \\ & (0191) \end{aligned}$	Speed Search at Start Selection	Sets the Speed Search at Start function where the drive will perform Speed Search with each Run command. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { b3-02 } \\ & (0192) \end{aligned}$	SpeedSearch Deactivation Current	Sets the current level that stops Speed Search as a percentage of the drive rated output current. Usually it is not necessary to change this setting.	$\begin{gathered} 120 \% \\ (0-200 \%) \end{gathered}$
$\begin{aligned} & \text { b3-03 } \\ & (0193) \end{aligned}$	Speed Search Deceleration Time	Sets the deceleration time during Speed Search operation. Set the length of time to decelerate from the maximum output frequency to the minimum output frequency.	$\begin{gathered} 2.0 \mathrm{~s} \\ (0.1-10.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { b3-04 } \\ & (0194) \end{aligned}$	V/f Gain during Speed Search	Sets the ratio used to reduce the V / f during searches to reduce the output current during speed searches.	Determined by o2-04 $(10-100)$
$\begin{aligned} & \text { b3-05 } \\ & (0195) \end{aligned}$	Speed Search Delay Time	Sets the Speed Search delay time to activate a magnetic contactor installed between the drive and motor.	$\begin{gathered} 0.2 \mathrm{~s} \\ (0.0-100.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { b3-06 } \\ & (0196) \\ & \text { Expert } \end{aligned}$	Speed Estimation Current Level 1	Sets the level of current that flows to the motor during Speed Estimation Speed Search as a coefficient of the motor rated current. Usually it is not necessary to change this setting.	Determined by o2-04 (0.0-2.0)
$\begin{aligned} & \text { b3-07 } \\ & (0197) \\ & \text { Expert } \end{aligned}$	Speed Estimation Current Level 2	Sets the level of current that flows to the motor during Speed Estimation Speed Search as a coefficient of E2-03 [Motor No-Load Current]. Usually it is not necessary to change this setting.	$\begin{gathered} 1.0 \\ (0.0-3.0) \end{gathered}$
$\begin{gathered} \text { b3-08 } \\ (0198) \end{gathered}$	Speed Estimation ACR P Gain	Sets the proportional gain for the automatic current regulator during Speed Estimation Speed Search. Also adjusts speed search responsiveness. Usually it is not necessary to change this setting.	Determined by o2-04 $(0.00-6.00)$
$\begin{aligned} & \text { b3-09 } \\ & (0199) \end{aligned}$	Speed Estimation ACR I Time	Sets the integral time for the automatic current regulator during Speed Estimation Speed Search. Also adjusts speed search responsiveness. Usually it is not necessary to change this setting.	$\begin{gathered} 2.0 \mathrm{~ms} \\ (0.0-1000.0 \mathrm{~ms}) \end{gathered}$
$\begin{gathered} \text { b3-10 } \\ (019 \mathrm{~A}) \\ \text { Expert } \end{gathered}$	Speed Estimation Detection Gain	Sets the gain to correct estimated frequencies from Speed Estimation Speed Search.	$\begin{gathered} 1.05 \\ (1.00-1.20) \end{gathered}$
b3-11 (019B) Expert	Spd Est Method Switch-over Level	Uses the quantity of voltage in the motor to automatically switch the search method within the type of speed measurement. Note: -208/240 V at $100 \%=200 \mathrm{~V}$ - 480 V at $100 \%=400 \mathrm{~V}$	$\begin{gathered} 5.0 \% \\ (0.5-100.0 \%) \end{gathered}$
$\begin{gathered} \text { b3-12 } \\ (019 \mathrm{C}) \\ \text { Expert } \end{gathered}$	Speed Search Current Deadband	Sets the minimum current detection level during Speed Search. If the drive does not do Speed Estimation, increase this setting in 0.1 -unit increments.	$\begin{aligned} & \text { determined by o2-04 } \\ & \quad(2.0-10.0) \end{aligned}$
$\begin{gathered} \text { b3-14 } \\ (019 \mathrm{E}) \end{gathered}$	Bi-directional Speed Search	Sets the direction of Speed Search to the direction of the frequency reference or in the motor rotation direction as detected by the drive. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
b3-17 (01F0) Expert	Speed Est Retry Current Level	Sets the current level for the search retry function in Speed Estimation Speed Search as a percentage where drive rated current is a setting value of 100%.	$\begin{gathered} 110 \% \\ (0-200 \%) \end{gathered}$
$\begin{gathered} \text { b3-18 } \\ (01 F 1) \\ \text { Expert } \end{gathered}$	Speed Est Retry Detection Time	Sets the length of time that the drive will wait to retry Speed Estimation Speed Search when too much current flow stopped the Speed Search.	$\begin{gathered} 0.10 \mathrm{~s} \\ (0.00-1.00 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { b3-19 } \\ & (01 F 2) \end{aligned}$	Speed Search Restart Attempts	Sets the number of times to restart Speed Search if Speed Search does not complete.	$\begin{gathered} 3 \text { times } \\ (0-10 \text { times }) \end{gathered}$
$\begin{gathered} \text { b3-24 } \\ (01 \mathrm{C} 0) \end{gathered}$	Speed Search Method Selection	Sets the Speed Search method when you start the motor or when you return power after a momentary power loss. Note: Set $b 3-24=1$. If b3-24 $=2$, the drive will detect oPE08 [Parameter Selection Error]. 1 : Speed Estimation 2 : Current Detection 2	$\begin{gathered} 2 \\ (1,2) \end{gathered}$
b3-25 (01C8) Expert	Speed Search Wait Time	Sets the length of time the drive will wait to start the Speed Search Retry function.	$\begin{gathered} 0.5 \mathrm{~s} \\ (0.0-30.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { b3-26 } \\ (01 \mathrm{C} 7) \\ \text { Expert } \end{gathered}$	Direction Determination Level	Sets the level to find the motor rotation direction. Increase the value if the drive cannot find the direction.	$\begin{gathered} 1000 \\ (40 \text { to } 60000) \end{gathered}$
b3-27 (01C9) Expert	Speed Search RUN/BB Priority	Sets the conditions necessary to start Speed Search. 0 : SS Only if RUN Applied Before BB 1 : SS Regardless of RUN/BB Sequence	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
b3-31 (0BC0) Expert	Spd Search Current Reference Lvl	Sets the current level that decreases the output current during Current Detection Speed Search.	$\begin{gathered} 1.50 \\ (1.50-3.50) \end{gathered}$
b3-32 (0BC1) Expert	Spd Search Current Complete Lvl	Sets the current level that completes Speed Search.	$\begin{gathered} 1.20 \\ (0.00-1.49) \end{gathered}$
b3-39 (1B8F) Expert	Regen Judgement LV of Spd Search	Regen Judgement LV of Spd Search. Note: Available in HV600 Bypass software versions 00443 and later and HV600 drive software versions 1013 and later.	$\begin{gathered} 15 \% \\ (0-50 \%) \end{gathered}$
$\begin{aligned} & \text { b3-56 } \\ & (3126) \end{aligned}$	InverseRotationSearch WaitTime	Sets the wait time until the drive starts inverse rotation search after it completes forward search when you do inverse rotation search during Current Detection Speed Search.	Determined by o2-04 $(0.1-5.0 \mathrm{~s})$

b4: Timer Function

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \mathrm{b} 4-01 \\ (01 \mathrm{~A} 3) \end{gathered}$	Timer Function ON-Delay Time	Sets the ON-delay time for the timer input.	$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0-3000.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \mathrm{b} 4-02 \\ (01 \mathrm{~A} 4) \end{gathered}$	Timer Function OFF-Delay Time	Sets the OFF-delay time for the timer input.	$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0-3000.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { b4-03 } \\ (0 \mathrm{~B} 30) \\ \text { Expert } \\ \hline \end{gathered}$	Terminal M1-M2 ON-Delay Time	Sets the delay time to activate the contact after the function set in $\mathrm{H} 2-01$ activates.	$\begin{gathered} 0 \mathrm{~ms} \\ (0-65000 \mathrm{~ms}) \end{gathered}$
$\begin{gathered} \text { b4-04 } \\ (0 \mathrm{~B} 31) \\ \text { Expert } \\ \hline \end{gathered}$	Terminal M1-M2 OFF-Delay Time	Sets the delay time to deactivate the contact after the function set in $\mathrm{H2}-01$ deactivates.	$\begin{gathered} 0 \mathrm{~ms} \\ (0-65000 \mathrm{~ms}) \end{gathered}$
$\begin{gathered} \text { b4-05 } \\ \text { (0B32) } \\ \text { Expert } \end{gathered}$	Terminal M3-M4 ON-Delay Time	Sets the delay time to activate the contact after the function set in $\mathrm{H} 2-02$ activates.	$\begin{gathered} 0 \mathrm{~ms} \\ (0-65000 \mathrm{~ms}) \end{gathered}$
$\begin{gathered} \text { b4-06 } \\ \text { (0B33) } \\ \text { Expert } \\ \hline \end{gathered}$	Terminal M3-M4 OFF-Delay Time	Sets the delay time to deactivate the contact after the function set in $\mathrm{H} 2-02$ deactivates.	$\begin{gathered} 0 \mathrm{~ms} \\ (0-65000 \mathrm{~ms}) \end{gathered}$

7.3 b: Application

No. (Hex.)	Name	Description	Default (Range)
b4-07 $(0 \mathrm{~B} 34)$ Expert	Terminal M5-M6 ON-Delay Time	Sets the delay time to activate the contact after the function set in $H 2-03$ activates.	0 ms
b4-08 $(0 \mathrm{~B} 35)$ Expert	Terminal M5-M6 OFF-Delay Time	Sets the delay time to deactivate the contact after the function set in $H 2-03$ deactivates.	

- b5: PID Control

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \text { b5-01 } \\ (01 \mathrm{~A} 5) \end{gathered}$	PID Mode Setting	Sets the type of PID control. 0 : Disabled 1 : Standard 3 : Fref + PID Trim	$\begin{gathered} 0 \\ (0-3) \end{gathered}$
b5-02 (01A6) RUN	Proportional Gain (P)	Sets the proportional gain (P) that is applied to PID input.	$\begin{gathered} 2.00 \\ (0.00-25.00) \end{gathered}$
$\begin{gathered} \text { b5-03 } \\ (01 \mathrm{~A} 7) \\ \text { RUN } \\ \hline \end{gathered}$	Integral Time (I)	Sets the integral time (I) that is applied to PID input.	$\begin{gathered} 0.5 \mathrm{~s} \\ (0.0-360.0 \mathrm{~s}) \end{gathered}$
b5-04 (01A8) RUN	Integral Limit	Sets the upper limit for integral control (I) as a percentage of the Maximum Output Frequency.	$\begin{gathered} 100.0 \% \\ (0.0-100.0 \%) \end{gathered}$
b5-05 (01A9) RUN	Derivative Time (D)	Sets the derivative time (D) for PID control. This parameter adjusts system responsiveness.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-10.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { b5-06 } \\ (01 \mathrm{AA}) \\ \text { RUN } \end{gathered}$	PID Output Limit	Sets the maximum possible output from the PID controller as a percentage of the Maximum Output Frequency.	$\begin{gathered} 100.0 \% \\ (0.0-100.0 \%) \end{gathered}$
b5-07 (01AB) RUN	PID Offset Adjustment	Sets the offset for the PID control output as a percentage of the Maximum Output Frequency.	$\begin{gathered} 0.0 \% \\ (-100.0-+100.0 \%) \end{gathered}$
b5-08 (01AC) RUN Expert	PID Primary Delay Time Constant	Sets the primary delay time constant for the PID control output. Usually it is not necessary to change this setting.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-10.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \mathrm{b} 5-09 \\ (01 \mathrm{AD}) \end{gathered}$	PID Output Level Selection	Sets the polarity of the PID output. 0 : Normal Output (Direct Acting) 1 : Reverse Output (Reverse Acting)	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { b5-10 } \\ (01 \mathrm{AE}) \\ \text { RUN } \end{gathered}$	PID Output Gain Setting	Sets the amount of gain to apply to the PID output.	$\begin{gathered} 1.00 \\ (0.00-25.00) \end{gathered}$
$\begin{gathered} \text { b5-11 } \\ (01 \mathrm{AF}) \end{gathered}$	PID Output Reverse Selection	Sets the function that enables and disables reverse motor rotation for negative PID control output. 0 : Lower Limit is Zero 1 : Negative Output Accepted	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
b5-17 (01B5) RUN	PID Accel/Decel Time	Raises or lowers the PID setpoint using the acceleration and deceleration times set to the drive. This is a soft-starter for the PID setpoint.	$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0-6000.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { b5-28 } \\ (01 \mathrm{EA}) \end{gathered}$	PID Feedback Square Root Sel	Enables and disables the square root of the PID Feedback compared to the PID Setpoint to set an appropriate drive output for the correct system regulation. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { b5-29 } \\ (01 \mathrm{~EB}) \end{gathered}$	PID Feedback Square Root Gain	Sets the multiplier applied to the square root of the feedback.	$\begin{gathered} 0.00 \\ (0.00-2.00) \end{gathered}$
$\begin{gathered} \mathrm{b} 5-30 \\ (01 \mathrm{EC}) \end{gathered}$	PID Feedback Offset	Sets PID feedback Offset as a percentage of maximum frequency.	$\begin{gathered} 0.00 \% \\ (0.00-100.00 \%) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
b5-34 (019F) RUN	PID Output Lower Limit Level	Sets the output lower limit for the PID control as a percentage of the Maximum Output Frequency.	$\begin{gathered} 0.0 \% \\ (-100.0-+100.0 \%) \end{gathered}$
b5-35 (01A0) RUN	PID Input Limit Level	Sets the output upper limit for the PID control as a percentage of the Maximum Output Frequency.	$\begin{gathered} 1000.0 \% \\ (0.0-1000.0 \%) \end{gathered}$
$\begin{gathered} \text { b5-38 } \\ (01 \mathrm{FE}) \end{gathered}$	PID User Unit Display Scaling	Sets the value that the drive sets or shows as the PID setpoint when at the maximum output frequency.	$\begin{gathered} 100.00 \% \\ (0.01-600.00 \%) \end{gathered}$
$\begin{aligned} & \text { b5-39 } \\ & (01 \mathrm{FF}) \end{aligned}$	PID User Unit Display Digits	Sets the number of digits to set and show the PID setpoint. 0 : No Decimal Places (XXXXX) 1 : One Decimal Places (XXXX.X) 2 : Two Decimal Places (XXX.XX) 3 : Three Decimal Places (XX.XXX)	$\begin{gathered} 2 \\ (0-3) \end{gathered}$
$\begin{aligned} & b 5-41 \\ & (0160) \end{aligned}$	PID Output 2 Unit	Sets the display units in U5-14 [PID Out2 Upr4 Digits] and U5-15 [PID Out2 Lwr4 Digits]. 0 : "WC: inches of water column 1 : PSI: pounds per square inch 2 : GPM: gallons/min 3: ${ }^{\circ} \mathrm{F}$: Fahrenheit $4: \mathrm{ft} 3 / \mathrm{min}$: cubic feet $/ \mathrm{min}$ $5: \mathrm{m}^{3} / \mathrm{h}$: cubic meters/hour 6 : L/h: liters/hour 7 : L/s: liters/sec 8 : bar: bar 9 : Pa: Pascal $10:{ }^{\circ} \mathrm{C}$: Celsius 11 : m: meters 12 : ft: feet 13 : L/min: liters/min $14: \mathrm{m}^{3} / \mathrm{min}$: cubic meters/min 15 : " Hg : Inch Mercury 16 : kPa: kilopascal 48 : \%: Percent 49 : Custom(b5-68~70) 50 : None	$\begin{gathered} 0 \\ (0-50) \end{gathered}$
b5-42 (0161) RUN	PID Output 2 Calc Mode	Sets how to calculate the original PID output. 0 : Linear 1 : Square Root 2 : Quadratic 3 : Cubic Note: Used for U5-14 [PID Out2 Upr4 Digits] and U5-15 [PID Out2 Lwr4 Digits] only.	$\begin{gathered} 0 \\ (0-3) \end{gathered}$
b5-43 (0162) RUN	PID Out2 Monitor MAX Upper4 Dig	Sets the upper 4 digits of the maximum monitor value. Used with b5-44 [PID Out2 Monitor MAX Lower 4 Dig] to set maximum monitor value of U5-14 [PID Out2 Upr4 Digits] and U5-15 [PID Out 2 Lwr4 Digits] at maximum frequency. Note: Used for U5-14 [PID Out2 Upr4 Digits] and U5-15 [PID Out2 Lwr4 Digits] only.	$\begin{gathered} 0 \\ (0-9999) \end{gathered}$
b5-44 (0163) RUN	PID Out2 Monitor MAX Lower4 Dig	Sets the lower 4 digits of the maximum monitor value. Used with b5-43 [PID Out2 Monitor MAX Upper4 Dig] to set maximum monitor value of U5-14 [PID Out2 Upr4 Digits] and U5-15 [PID Out 2 Lwr 4 Digits] at maximum frequency. Note: Used for U5-14 [PID Out2 Upr4 Digits] and U5-15 [PID Out2 Lwr4 Digits] only.	$\begin{gathered} 0.00 \\ (0.00-99.99) \end{gathered}$
$\begin{gathered} \text { b5-45 } \\ (0164) \\ \text { RUN } \end{gathered}$	PID Out2 Monitor MIN for Linear	Sets the minimum display value to show when at zero speed. Only effective when $b 5-42=0[P I D$ Output 2 Calc Mode $=$ Linear]. Note: Used for U5-14 [PID Out2 Upr4 Digits] and U5-15 [PID Out2 Lwr4 Digits] only.	$\begin{gathered} 0.0 \\ (0.0-999.9) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { b5-46 } \\ & (0165) \end{aligned}$	PID Unit Display Selection	Sets the units-text for the PID Display. 0 : "WC: inches of water column 1 : PSI: pounds per square inch 2 : GPM: gallons/min 3 : ${ }^{\circ} \mathrm{F}$: Fahrenheit 4 : $\mathrm{ft}^{3} / \mathrm{min}$: cubic feet $/ \mathrm{min}$ $5: \mathrm{m}^{3} / \mathrm{h}$: cubic meters/hour 6 : L/h: liters/hour 7 : L/s: liters/sec 8 : bar: bar 9 : Pa: Pascal 10 : ${ }^{\circ} \mathrm{C}$: Celsius 11 : m: meters 12 : ft: feet 13 : L/min: liters $/ \mathrm{min}$ $14: \mathrm{m}^{3} / \mathrm{min}$: cubic meters $/ \mathrm{min}$ 15 : "Hg: Inch Mercury 16 : kPa: kilopascal 48 : \%: Percent 49 : Custom(b5-68~70) 50 : None	$\begin{gathered} 48 \\ (0-50) \end{gathered}$
b5-53 (0B8F) RUN	PID Integrator Ramp Limit	Sets the responsiveness of PID control when the PID feedback changes quickly.	$\begin{gathered} 0.0 \mathrm{~Hz} \\ (0.0-10.0 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { b5-61 } \\ (119 \mathrm{~A}) \end{gathered}$	PID Trim Mode Lower Limit Sel	Sets the function that adjusts the PID output in relation to the frequency reference. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { b5-62 } \\ (119 \mathrm{~B}) \end{gathered}$	PID Trim Mode Lower Limit Value	Sets the PID Trim Mode Lower Limit Value as a percentage of the maximum output frequency.	$\begin{gathered} 0.00 \% \\ (0.00-100.00 \%) \end{gathered}$
$\begin{gathered} \mathrm{b} 5-68 \\ (3 \mathrm{C} 1 \mathrm{~F}) \end{gathered}$	System Unit Custom Character 1	Sets the first character of the custom unit display when $b 5-46=49$ [PID Unit Display Selection $=$ Custom (B5-68~70)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$
$\begin{gathered} b 5-69 \\ (3 \mathrm{C} 20) \end{gathered}$	System Unit Custom Character 2	Sets the second character of the custom unit display when b5-46 $=49$ [PID Unit Display Selection $=$ Custom (B5-68~70)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$
$\begin{gathered} \mathrm{b} 5-70 \\ (3 \mathrm{C} 21) \end{gathered}$	System Unit Custom Character 3	Sets the third character of the custom unit display when b5-46 $=49$ [PID Unit Display Selection $=$ Custom (B5-68~70)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$
$\begin{gathered} b 5-71 \\ (3 \mathrm{C} 22) \end{gathered}$	Min PID Transducer Scaling	Sets the minimum PID level corresponding to the lowest analog input signal level. Note: - To enable this parameter, you must set b5-71 < b5-38 [PID User Unit Display Scaling]. If you set $b 5-71>b 5-38$, the drive will disable all PID analog inputs. - Parameters b5-46 [PID Unit Display Selection], b5-38, and b5-39 [PID User Unit Display Digits] set the unit, range, and resolution.	$\begin{gathered} 0.00 \\ (-99.99-+99.99) \end{gathered}$
$\begin{gathered} \text { b5-82 } \\ (31 \mathrm{~B} 0) \end{gathered}$	Feedback Loss 4 ~ 20mA Detect Sel	Sets the drive to do a 4 to 20 mA wire-break detection on the analog input set for PID feedback. 0 : Disabled 1: Alarm Only 2 : Fault 3 : Run At b5-83	$\begin{gathered} 2 \\ (0-3) \end{gathered}$
b5-83 (31B1) RUN	Feedback Loss GoTo Frequency	Sets the speed at which the drive will run if the drive detects a 4 to 20 mA wire-break on the PID Feedback and b5-82 $=3$ [Feedback Loss 4~20mA Detect Sel $=$ Run At b5-83].	$\begin{gathered} 0.0 \mathrm{~Hz} \\ (0.0-400.0 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { b5-84 } \\ \text { (31B2) } \\ \text { RUN } \end{gathered}$	Feedback Loss Loss Of Prime Lvl	Sets the level at which the drive will detect Loss of Prime in the pump. Note: - Loss of Prime condition occurs when the measured quantity set by Y1-18 [Prime Loss Detection Method] decreases to this level for the time set in Y1-20 [Loss of Prime Time] and the output frequency is at the Y4-02 [Pre-Charge Frequency] level. The drive will respond to the Loss of Prime condition as specified by Y1-22 [Loss of Prime Selection]. - Display unit and scaling are dependent on System Units.	$\begin{gathered} 0.0 \mathrm{~A} \\ (0.0-1000.0 \mathrm{~A}) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
b5-85 (31B3) RUN	Feedback Loss GoTo Freq Timeout	When b5-82 = 3 [Feedback Loss 4~20mA Detect Sel $=$ Run At b5-83] and the Feedback signal is lost, the drive will run at the b5-83 [Feedback Loss Goto Frequency] speed for this length of time, after which the drive will fault on FDBKL [WIRE Break]. Note: Set this parameter to 0.0 s to disable the function.	0 s $(0-6000$ s)
b5-86 $(31 B 4)$ RUN	Feedback Loss Start Delay	When you initiate an AUTO Run command, the drive will wait for this length of time before it will fault on FDBKL [WIRE Break] or use parameter b5-83 [Feedback Loss Goto Frequency].	0.0 s $(0.0-120.0 ~ s)$

- b8: Energy Saving

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \mathrm{b} 8-01 \\ (01 \mathrm{CC}) \end{gathered}$	Energy Saving Control Selection	Sets the Energy-saving control function. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { b8-04 } \\ (01 \mathrm{CF}) \\ \text { Expert } \end{gathered}$	Energy Saving Coefficient Value	Sets the Energy-saving control coefficient to maintain maximum motor efficiency. The default setting is for Yaskawa motors. Note: - When you do Rotational Auto-Tuning, the drive will automatically set the energy-saving coefficient. - The minimum values and the maximum values are different for different drive models: - 2011 to 2024, 4005 to 4008: 0.0-2000.0 - 2031 to 2273, 4011 to 4302: 0.00-655.00	$\begin{gathered} \text { Determined by E2-11 and } \\ \text { o2-04 } \\ (0.00-655.00) \end{gathered}$
b8-05 (01D0) Expert	Power Detection Filter Time	Sets the time constant to measure output power.	$\begin{gathered} 20 \mathrm{~ms} \\ (0-2000 \mathrm{~ms}) \end{gathered}$
$\begin{gathered} \text { b8-06 } \\ (01 \mathrm{D} 1) \\ \text { Expert } \end{gathered}$	Search Operation Voltage Limit	Sets the voltage limit for Search Operation as a percentage of the motor rated voltage.	$\begin{gathered} 0 \% \\ (0-100 \%) \end{gathered}$

7.4 C: Tuning

C1: Accel \& Decel Time

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{gathered} \text { C1-01 } \\ (0200) \\ \text { RUN } \end{gathered}$	Acceleration Time 1	Sets the length of time to accelerate from zero to maximum output frequency.	$\begin{gathered} 30.0 \mathrm{~s} \\ (0.1-6000.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { C1-02 } \\ (0201) \\ \text { RUN } \\ \hline \end{gathered}$	Deceleration Time 1	Sets the length of time to decelerate from maximum output frequency to zero.	$\begin{gathered} 30.0 \mathrm{~s} \\ (0.1-6000.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { C1-03 } \\ (0202) \\ \text { RUN } \\ \hline \end{gathered}$	Acceleration Time 2	Sets the length of time to accelerate from zero to maximum output frequency.	$\begin{gathered} 30.0 \mathrm{~s} \\ (0.1-6000.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { C1-04 } \\ (0203) \\ \text { RUN } \end{gathered}$	Deceleration Time 2	Sets the length of time to decelerate from maximum output frequency to zero.	$\begin{gathered} 30.0 \mathrm{~s} \\ (0.1-6000.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { C1-09 } \\ (0208) \\ \text { RUN } \end{gathered}$	Fast Stop Time	Sets the length of time that the drive will decelerate to zero for a Fast Stop. Note: Decelerating too quickly can cause an ov [Overvoltage] fault that shuts off the drive while the motor to coasts to a stop. Set a Fast Stop time in C1-09 that prevents motor coasting and makes sure that the motor stops quickly and safely.	$\begin{gathered} 10.0 \mathrm{~s} \\ (0.1-6000.0 \mathrm{~s}) \end{gathered}$

- C2: S-Curve Characteristics

No. (Hex.)	Name	Description (Range)	
C2-01 $(020 \mathrm{~B})$	S-Curve Time @ Start of Accel	Sets the S-curve acceleration time at start.	0.20 s $(0.00-10.00 \mathrm{~s})$
C2-02 $(020 \mathrm{C})$	S-Curve Time @ End of Accel	Sets the S-curve acceleration time at completion.	0.20 s
C2-03 $(020 \mathrm{D})$	S-Curve Time @ Start of Decel	Sets the S-curve deceleration time at start.	$(0.00-10.00 \mathrm{~s})$
C2-04 $(020 \mathrm{E})$	S-Curve Time @ End of Decel	Sets the S-curve deceleration time at completion.	0.20 s
$(0.00-10.00 \mathrm{~s})$			

C3: Slip Compensation

No. (Hex.)	Name	Description	Default (Range)
C3-01 (020F) RUN	Slip Compensation Gain	Sets the gain for the slip compensation function. Usually it is not necessary to change this setting. Note: Correctly set these parameters before you change the slip compensation gain: - E2-01 [Motor Rated Current (FLA)] - E2-02 [Motor Rated Slip] - E2-03 [Motor No-Load Current]	$\begin{gathered} 0.0 \\ (0.0-2.5) \end{gathered}$
$\begin{gathered} \text { C3-02 } \\ (0210) \\ \text { RUN } \end{gathered}$	Slip Compensation Delay Time	Sets the slip compensation delay time when speed is unstable or when the slip compensation response is too slow. Usually it is not necessary to change this setting.	$\begin{gathered} 2000 \mathrm{~ms} \\ (0-10000 \mathrm{~ms}) \end{gathered}$

C4: Torque Compensation

No. (Hex.)	Name	Description	Default (Range)
C4-01 (0215) RUN	Torque Compensation Gain	Sets the gain for the torque compensation function. Use this parameter value for motor 1 when you operate multiple motors.	1.00 $(0.00-2.50)$
C4-02 (0216) RUN	Torque Compensation Delay Time	Sets the torque compensation delay time. Usually it is not necessary to change this setting.	

C6: Carrier Frequency

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{aligned} & \mathrm{C} 6-02 \\ & (0224) \end{aligned}$	Carrier Frequency Selection	Sets the carrier frequency for the transistors in the drive. $\begin{aligned} & 1: 2.0 \mathrm{kHz} \\ & 2: 5.0 \mathrm{kHz} \\ & 3: 8.0 \mathrm{kHz} \\ & 4: 10.0 \mathrm{kHz} \\ & 5: 12.5 \mathrm{kHz} \end{aligned}$ 7 : Swing PWM1 (Audible Sound 1) 8 : Swing PWM2 (Audible Sound 2) 9 : Swing PWM3 (Audible Sound 3) A : Swing PWM4 (Audible Sound 4) B : Leakage Current Rejection PWM F : User Defined (C6-03 to C6-05) Note: - The carrier frequency for Swing PWM 1 to 4 is equivalent to 2.0 kHz . Swing PWM applies a special PWM pattern to decrease the audible noise. - Setting B uses a PWM pattern that decreases the leakage current that the drive detects over long wiring distances. This can help decrease alarm detection and decrease problems with the current monitor from leakage current over long wiring distances.	Determined by o2-04 $(1-F)$
$\begin{aligned} & \text { C6-03 } \\ & (0225) \end{aligned}$	Carrier Frequency Upper Limit	Sets the upper limit of the carrier frequency. Set C6-02 $=F$ [Carrier Frequency Selection $=$ User Defined (C6-03 to C6-05)] to set this parameter.	$\begin{gathered} \text { Determined by C6-02 } \\ (1.0-12.5 \mathrm{kHz}) \end{gathered}$
$\begin{aligned} & \text { C6-04 } \\ & (0226) \end{aligned}$	Carrier Frequency Lower Limit	Sets the lower limit of the carrier frequency. Set C6-02 $=$ F [Carrier Frequency Selection $=$ User Defined (C6-03 to C6-05)] to set this parameter.	$\begin{aligned} & \text { Determined by C6-02 } \\ & (1.0-12.5 \mathrm{kHz}) \end{aligned}$
$\begin{aligned} & \mathrm{C} 6-05 \\ & (0227) \end{aligned}$	Carrier Freq Proportional Gain	Sets the proportional gain for the carrier frequency. Set C6-02 $=F$ [Carrier Frequency Selection $=$ User Defined (C6-03 to C6-05)] to set this parameter.	Determined by C6-02 $(0-99)$

7.5 d: Reference Settings

d1: Frequency Reference

No. (Hex.)	Name	Description	Default (Range)
d1-01 (0280) RUN	Reference 1	Sets the frequency reference in the units from ol-03 [Frequency Display Unit Selection.	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \mathrm{d} 1-02 \\ (0281) \\ \text { RUN } \end{gathered}$	Reference 2	Sets the frequency reference in the units from ol-03 [Frequency Display Unit Selection].	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { d1-03 } \\ (0282) \\ \text { RUN } \end{gathered}$	Reference 3	Sets the frequency reference in the units from ol-03 [Frequency Display Unit Selection].	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \mathrm{d} 1-04 \\ (0283) \\ \text { RUN } \end{gathered}$	Reference 4	Sets the frequency reference in the units from ol-03 [Frequency Display Unit Selection].	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \mathrm{d} 1-05 \\ (0284) \\ \text { RUN } \end{gathered}$	Reference 5	Sets the frequency reference in the units from ol-03 [Frequency Display Unit Selection].	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { d1-06 } \\ (0285) \\ \text { RUN } \end{gathered}$	Reference 6	Sets the frequency reference in the units from ol-03 [Frequency Display Unit Selection].	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { d1-07 } \\ (0286) \\ \text { RUN } \end{gathered}$	Reference 7	Sets the frequency reference in the units from ol-03 [Frequency Display Unit Selection].	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \mathrm{d} 1-08 \\ (0287) \\ \text { RUN } \end{gathered}$	Reference 8	Sets the frequency reference in the units from ol-03 [Frequency Display Unit Selection].	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { d1-17 } \\ (0292) \\ \text { RUN } \end{gathered}$	Jog Reference	Sets the Jog frequency reference in the units from ol-03 [Frequency Display Unit Selection]. Set H1$x x=6[$ MFDI Function Selection $=$ Jog Reference Selection] to use the Jog frequency reference.	$\begin{gathered} 6.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$

- d2: Reference Limits

No. (Hex.)	Name	Description	Default (Range)
d2-01 (0289)	Frequency Reference Upper Limit	Sets maximum limit for all frequency references. The maximum output frequency is 100%.	
d2-02 $(028 \mathrm{~A})$	Frequency Reference Lower Limit	Sets minimum limit for all frequency references. The maximum output frequency is 100%.	100.0%
d2-03 (0293)	Analog Frequency Ref Lower Limit	Sets the lower limit for the master frequency reference (the first frequency of the multi-step speed reference) as a percentage. The maximum output frequency is 100%.	0.0%

d3: Jump Frequency

No. (Hex.)	Name	Description	Default (Range)
d3-01 (0294)	Jump Frequency 1	Sets the median value of the frequency band that the drive will avoid.	0.0 Hz $(0.0-400.0 \mathrm{~Hz})$
d3-02 (0295)	Jump Frequency 2	Sets the median value of the frequency band that the drive will avoid.	0.0 Hz $(0.0-400.0 \mathrm{~Hz})$
d3-03 (0296)	Jump Frequency 3	Sets the median value of the frequency band that the drive will avoid.	0.0 Hz d3-04 (0297) Jump Frequency Width

d4: Frequency Ref Up/Down \& Hold

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \mathrm{d} 4-01 \\ (0298) \end{gathered}$	Freq Reference Hold Selection	Sets the function that saves the frequency reference after a Stop command or when de-energizing the drive. Set H1-xx [MFDI Function Selection] to one of these values to enable this parameter: - A [Accel/Decel Ramp Hold] - 10/11 [Up/Down Command] 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \mathrm{d} 4-10 \\ (02 \mathrm{~B} 6) \end{gathered}$	Up/Down Freq Lower Limit Select	Sets the lower frequency limit for the Up/Down function. 0 : Greater of d2-02 or Analog 1: d2-02	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

d d6: Field Weakening

No. (Hex.)	Name	Description	Default (Range)
d6-01 $(02 \mathrm{~A} 0)$	Field Weakening Level	Sets the drive output voltage as a percentage of E1-05 [Maximum Output Voltage] when H1-xx $=63$ [Field Weakening] is activated.	80% $(0-100 \%)$
d6-02 $(02 \mathrm{~A} 1)$	Field Weakening Frequency Limit	Sets the minimum output frequency to start field weakening.	0.0 Hz
$(0.0-400.0 \mathrm{~Hz})$			

d7: Offset Frequency

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{gathered} \text { d7-01 } \\ (02 \mathrm{~B} 2) \\ \text { RUN } \end{gathered}$	Offset Frequency 1	Uses H1-xx $=44$ [MFDI Function Select $=$ Add Offset Frequency $1(d 7-01)]$ as a percentage of the Maximum Output Frequency to add or subtract the set frequency to/from the frequency reference.	$\begin{gathered} 0.0 \% \\ (-100.0-+100.0 \%) \end{gathered}$
$\begin{gathered} \text { d7-02 } \\ (02 \mathrm{~B} 3) \\ \text { RUN } \end{gathered}$	Offset Frequency 2	Uses H1-xx $=45$ [MFDI Function Select $=$ Add Offset Frequency 2 (d7-02)] as a percentage of the Maximum Output Frequency to add or subtract the set frequency to/from the frequency reference.	$\begin{gathered} 0.0 \% \\ (-100.0-+100.0 \%) \end{gathered}$
$\begin{gathered} \text { d7-03 } \\ \text { (02B4) } \\ \text { RUNN } \end{gathered}$	Offset Frequency 3	Uses H1-xx $=46$ [MFDI Function Select $=$ Add Offset Frequency 3 (d7-03)] as a percentage of the Maximum Output Frequency to add or subtract the set frequency to/from the frequency reference.	$\begin{gathered} 0.0 \% \\ (-100.0-+100.0 \%) \end{gathered}$

7.6 E: Motor Parameters

E1: V/f Pattern for Motor 1

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { E1-01 } \\ & (0300) \end{aligned}$	Input AC Supply Voltage	Sets the drive input voltage.	$\begin{gathered} 208 / 240 \mathrm{~V}: 240 \mathrm{~V}, \\ 480 \mathrm{~V}: 480 \mathrm{~V} \\ (208 / 240 \mathrm{~V}: 155-255 \mathrm{~V}, \\ 480 \mathrm{~V}: 310-510 \mathrm{~V}) \end{gathered}$
$\begin{aligned} & \text { E1-03 } \\ & (0302) \end{aligned}$	V/f Pattern Selection	Sets the V/f pattern for the drive and motor. You can use one of the preset patterns or you can make a custom pattern. 0 : Const Trq, 50 Hz base, 50 Hz max 1 : Const Trq, 60 Hz base, 60 Hz max 2 : Const Trq, 50 Hz base, 60 Hz max 3 : Const Trq, 60 Hz base, 72 Hz max 4 : VT, $50 \mathrm{~Hz}, 65 \%$ Vmid reduction 5 : VT, $50 \mathrm{~Hz}, 50 \%$ Vmid reduction 6 : VT, $60 \mathrm{~Hz}, 65 \%$ Vmid reduction 7 : VT, $60 \mathrm{~Hz}, 50 \%$ Vmid reduction 8 : High Trq, $50 \mathrm{~Hz}, 25 \%$ Vmin boost 9 : High Trq, $50 \mathrm{~Hz}, 65 \%$ Vmin boost A : High Trq, $60 \mathrm{~Hz}, 25 \%$ Vmin boost B : High Trq, $60 \mathrm{~Hz}, 65 \%$ Vmin boost C : High Freq, 60 Hz base, 90 Hz max D : High Freq, 60 Hz base, 120 Hz max E : High Freq, 60 Hz base, 180 Hz max F: Custom Note: - Set the correct V / f pattern for the application and operation area. An incorrect V / f pattern can decrease motor torque and increase current from overexcitation. - Parameter A1-03 [Initialize Parameters] will not initialize the value of E1-03.	$\begin{gathered} F \\ (0-F) \end{gathered}$
$\begin{aligned} & \text { E1-04 } \\ & (0303) \end{aligned}$	Maximum Output Frequency	Sets the maximum output frequency for the V/f pattern.	$\begin{gathered} 60.0 \mathrm{~Hz} \\ (40.0 \text { to } 400.0 \mathrm{~Hz}) \end{gathered}$
$\begin{aligned} & \text { E1-05 } \\ & (0304) \end{aligned}$	Maximum Output Voltage	Sets the maximum output voltage for the V/f pattern.	$\begin{gathered} 208 / 240 \mathrm{~V}: 230.0 \mathrm{~V}, \\ 480 \mathrm{~V}: 460.0 \mathrm{~V} \\ (208 / 240 \mathrm{~V}: 0.0-255.0 \mathrm{~V}, \\ 480 \mathrm{~V}: 0.0-510.0 \mathrm{~V}) \end{gathered}$
$\begin{aligned} & \text { E1-06 } \\ & (0305) \end{aligned}$	Base Frequency	Sets the base frequency for the V/f pattern.	$\begin{gathered} 60.0 \mathrm{~Hz} \\ (0.0-\mathrm{E} 1-04) \end{gathered}$
$\begin{aligned} & \text { E1-07 } \\ & (0306) \end{aligned}$	Mid Point A Frequency	Sets a middle output frequency for the V/f pattern.	$\begin{gathered} 30.0 \mathrm{~Hz} \\ (0.0-\mathrm{E} 1-04) \end{gathered}$
$\begin{gathered} \text { E1-08 } \\ (0307) \end{gathered}$	Mid Point A Voltage	Sets a middle output voltage for the V/f pattern.	$\begin{gathered} \text { Determined by o2-04 } \\ (208 / 240 \mathrm{~V}: 0.0-255.0 \mathrm{~V}, \\ 480 \mathrm{~V}: 0.0-510.0 \mathrm{~V}) \end{gathered}$
$\begin{aligned} & \text { E1-09 } \\ & (0308) \end{aligned}$	Minimum Output Frequency	Sets the minimum output frequency for the V/f pattern.	$\begin{gathered} 1.5 \mathrm{~Hz} \\ \text { (Determined by E1-04) } \end{gathered}$
$\begin{aligned} & \text { E1-10 } \\ & (0309) \end{aligned}$	Minimum Output Voltage	Sets the minimum output voltage for the V/f pattern.	$\begin{gathered} 10.2 \mathrm{~V} \\ (208 / 240 \mathrm{~V}: 0.0-255.0 \mathrm{~V} \\ 480 \mathrm{~V}: 0.0-510.0 \mathrm{~V}) \end{gathered}$
$\begin{gathered} \text { E1-11 } \\ (030 \mathrm{~A}) \\ \text { Expert } \end{gathered}$	Mid Point B Frequency	Sets a middle output frequency for the V/f pattern.	$\begin{gathered} 0.0 \mathrm{~Hz} \\ (0.0-\mathrm{E} 1-04) \end{gathered}$
$\begin{aligned} & \text { E1-12 } \\ & \text { (030B) } \\ & \text { Expert } \end{aligned}$	Mid Point B Voltage	Sets a middle point voltage for the V/f pattern.	$\begin{gathered} 0.0 \mathrm{~V} \\ (208 / 240 \mathrm{~V}: 0.0-255.0 \mathrm{~V}, \\ 480 \mathrm{~V}: 0.0-510.0 \mathrm{~V}) \end{gathered}$
$\begin{gathered} \text { E1-13 } \\ (030 \mathrm{C}) \\ \text { Expert } \end{gathered}$	Base Voltage	Sets the base voltage for the V/f pattern.	$\begin{gathered} 0.0 \mathrm{~V} \\ (208 / 240 \mathrm{~V}: 0.0-255.0 \mathrm{~V}, \\ 480 \mathrm{~V}: 0.0-510.0 \mathrm{~V}) \end{gathered}$

- E2: Motor Parameters

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{gathered} \text { E2-01 } \\ (030 \mathrm{E}) \end{gathered}$	Motor Rated Current (FLA)	Sets the motor rated current in amps.	$\begin{aligned} & \text { Determined by o2-04 } \\ & (10 \% \text { to } 200 \% \text { of the drive } \\ & \text { rated current }) \end{aligned}$
$\begin{gathered} \text { E2-02 } \\ (030 \mathrm{~F}) \end{gathered}$	Motor Rated Slip	Sets motor rated slip.	$\begin{gathered} \text { Determined by o2-04 } \\ (0.000-20.000 \mathrm{~Hz}) \end{gathered}$
$\begin{aligned} & \text { E2-03 } \\ & (0310) \end{aligned}$	Motor No-Load Current	Sets the no-load current for the motor in amps when operating at the rated frequency and the no-load voltage.	Determined by o2-04 (0 to E2-01)
$\begin{aligned} & \text { E2-04 } \\ & (0311) \end{aligned}$	Motor Pole Count	Sets the number of motor poles.	$\begin{gathered} 4 \\ (2-120) \end{gathered}$
$\begin{aligned} & \text { E2-05 } \\ & (0312) \end{aligned}$	Motor Line-to-Line Resistance	Sets the line-to-line resistance for the motor stator windings.	$\begin{gathered} \text { Determined by o2-04 } \\ (0.000-65.000 \Omega) \end{gathered}$
$\begin{aligned} & \text { E2-06 } \\ & (0313) \end{aligned}$	Motor Leakage Inductance	Sets the voltage drop from motor leakage inductance when the motor is operating at the rated frequency and rated current. This value is a percentage of Motor Rated Voltage.	$\begin{aligned} & \text { Determined by o2-04 } \\ & \quad(0.0-60.0 \%) \end{aligned}$
$\begin{aligned} & \text { E2-10 } \\ & (0317) \end{aligned}$	Motor Iron Loss	Sets the motor iron loss.	$\begin{aligned} & \text { Determined by o2-04 } \\ & \quad(0-65535 \mathrm{~W}) \end{aligned}$
$\begin{aligned} & \text { E2-11 } \\ & (0318) \end{aligned}$	Motor Rated Power	Sets the motor rated output in the units from ol-58 [Motor Power Unit Selection].	$\begin{gathered} \text { Determined by o2-04 } \\ (0.00-650.00 \mathrm{HP}) \end{gathered}$

7.7 F: Options

F6: Communication Options

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{aligned} & \text { F6-01 } \\ & (03 \mathrm{~A} 2) \end{aligned}$	Communication Error Selection	Sets the method to stop the motor or let the motor continue operating when the drive detects bUS [Option Communication Error]. 0 : Ramp to Stop 1 : Coast to Stop 2 : Fast Stop (Use C1-09) 3 : Alarm Only 4 : Alarm (Run at d1-04) 5 : Alarm - Ramp Stop	$\begin{gathered} 1 \\ (0-5) \end{gathered}$
$\begin{aligned} & \text { F6-02 } \\ & (03 \mathrm{~A} 3) \end{aligned}$	Comm External Fault (EF0) Detect	Sets the conditions at which EFO [Option Card External Fault] is detected. 0 : Always Detected 1 : Detected during RUN Only	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { F6-03 } \\ & (03 \mathrm{~A} 4) \end{aligned}$	Comm External Fault (EF0) Select	Sets the method to stop the motor or let the motor continue operating when the drive detects an $E F 0$ [Option Card External Fault]. 0 : Ramp to Stop 1 : Coast to Stop 2 : Fast Stop (Use C1-09) 3 : Alarm Only	$\begin{gathered} 1 \\ (0-3) \end{gathered}$
$\begin{aligned} & \text { F6-04 } \\ & (03 \mathrm{~A} 5) \end{aligned}$	bUS Error Detection Time	Sets the delay time for the drive to detect bUS [Option Communication Error]. Note: When you install an option card in the drive, the parameter value changes to 0.0 s .	$\begin{gathered} 2.0 \mathrm{~s} \\ (0.0-5.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { F6-07 } \\ & (03 A 8) \end{aligned}$	Multi-Step Ref @ NetRef/ ComRef	Sets the function that enables and disables the multi-step speed reference when the frequency reference source is NetRef or ComRef (communication option card or serial communications). 0 : Disable Multi-Step References 1 : Enable Multi-Step References	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { F6-08 } \\ & (036 \mathrm{~A}) \end{aligned}$	Comm Parameter Reset @Initialize	Sets the function to initialize $F 6$-xx and $F 7$-xx parameters when the drive is initialized with A1-03 [Initialize Parameters]. 0 : No Reset - Parameters Retained 1 : Reset Back to Factory Default	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { F6-14 } \\ & (03 B B) \end{aligned}$	BUS Error Auto Reset	Sets the automatic reset function for bUS [Option Communication Errors]. 0 : Disabled 1: Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { F6-15 } \\ & \text { (0B5B) } \end{aligned}$	Comm. Option Parameters Reload	Sets the update method when you change F6-xx, F7-xx [Communication Options]. 0 : Reload at Next Power Cycle 1 : Reload Now 2 : Cancel Reload Request	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{aligned} & \text { F6-48 } \\ & (02 \mathrm{FE}) \end{aligned}$	BACnet Device Object Identifier 0	Sets the Instance Identifier of the BACnet Device Object, where the F6-48 value is the least significant word. Available in bypass software versions 00446 and later. Note: This parameter and F6-49 set the Instance Identifier of the BACnet Device Object. Example 1: Set the Device Object Instance Identifier to 1234.1234 decimal is equal to 4D2H (hexadecimal). Set $F 6-48=4 D 2 H$ and $F 6-49=0$. Example 2: Set the Device Object Instance Identifier to 1234567. 1234567 decimal is equal to 12D687H. Set $F 6-48=D 687 H$ and $F 6-49=12 H$.	$\begin{gathered} 1 \\ (0-\text { FFFFH }) \end{gathered}$
$\begin{aligned} & \text { F6-49 } \\ & (02 \mathrm{FF}) \end{aligned}$	BACnet Device Object Identifier 1	Sets the Instance Identifier of the BACnet Device Object, where the F6-49 value is the most significant word. Available in bypass software versions 00446 and later. Note: This parameter and F6-48 set the Instance Identifier of the BACnet Device Object. Example 1: Set the Device Object Instance Identifier to 1234.1234 decimal is equal to 4D2H (hexadecimal). Set $F 6-48=4 D 2 H$ and $F 6-49=0$. Example 2: Set the Device Object Instance Identifier to 1234567. 1234567 decimal is equal to 12D687H. Set $F 6-48=D 687 H$ and $F 6-49=12 H$.	$\begin{gathered} 0 \\ (0-3 \mathrm{FH}) \end{gathered}$
$\begin{aligned} & \text { F6-54 } \\ & (03 \mathrm{C} 5) \end{aligned}$	Net Idle Fault Detection	Sets the function to detect EF0 [Option Card External Fault] when the drive does not receive data from the DeviceNet or EtherNet/IP master. 0 : Enabled 1 : Disabled, No Fault Detection 2 : Vendor Specific 3 : RUN Forward 4 : RUN Reverse	$\begin{gathered} 0 \\ (0-4) \end{gathered}$

- F7: Ethernet Options

Note:

You must cycle power or set $F 6-15=1$ [Comm. Option Parameters Reload $=$ Reload Now] for $F 7$-xx parameters to take effect.

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { F7-01 } \\ & \text { (03E5) } \end{aligned}$	IP Address 1	Sets the first octet of the IP Address for the device that is connecting to the network. Restart the drive after you change this parameter. Note: When $F 7-13=0$ [Address Mode at Startup $=$ Static]: - Use parameters F7-01 to F7-04 [IP Address 4] to set the IP Address. Be sure to set a different IP address for each drive on the network. - Also set parameters F7-01 to F7-12.	$\begin{gathered} 192 \\ (0-255) \end{gathered}$
$\begin{aligned} & \text { F7-02 } \\ & (03 \mathrm{E} 6) \end{aligned}$	IP Address 2	Sets the second octet of the IP Address for the device that is connecting to the network. Restart the drive after you change this parameter. Note: When F7-13 $=0$ [Address Mode at Startup $=$ Static]: - Use parameters F7-01 to F7-04 [IP Address 4] to set the IP Address. Be sure to set a different IP address for each drive on the network. - Also set parameters F7-01 to F7-12.	$\begin{gathered} 168 \\ (0-255) \end{gathered}$
$\begin{aligned} & \text { F7-03 } \\ & (03 \mathrm{E} 7) \end{aligned}$	IP Address 3	Sets the third octet of the IP Address for the device that is connecting to the network. Restart the drive after you change this parameter. Note: When $F 7-13=0$ [Address Mode at Startup $=$ Static]: - Use parameters F7-01 to F7-04 [IP Address 4] to set the IP Address. Be sure to set a different IP address for each drive on the network. - Also set parameters F7-01 to F7-12.	$\begin{gathered} 1 \\ (0-255) \end{gathered}$
$\begin{gathered} \text { F7-04 } \\ (03 \mathrm{E} 8) \end{gathered}$	IP Address 4	Sets the fourth octet of the IP Address for the device that is connecting to the network. Restart the drive after you change this parameter. Note: When $F 7-13=0$ [Address Mode at Startup $=$ Static]: - Use parameters F7-01 to F7-04 [IP Address 4] to set the IP Address. Be sure to set a different IP address for each drive on the network. - Also set parameters F7-01 to F7-12.	$\begin{gathered} 20 \\ (0-255) \end{gathered}$
$\begin{aligned} & \text { F7-05 } \\ & \text { (03E9) } \end{aligned}$	Subnet Mask 1	Sets the first octet of the subnet mask of the connected network. Note: Set this parameter when $F 7-13=0$ [Address Mode at Startup $=$ Static] .	$\begin{gathered} 255 \\ (0-255) \end{gathered}$
$\begin{gathered} \text { F7-06 } \\ \text { (03EA) } \end{gathered}$	Subnet Mask 2	Sets the second octet of the subnet mask of the connected network. Note: Set this parameter when $F 7-13=0$ [Address Mode at Startup $=$ Static].	$\begin{gathered} 255 \\ (0-255) \end{gathered}$
$\begin{aligned} & \text { F7-07 } \\ & (03 \mathrm{~EB}) \end{aligned}$	Subnet Mask 3	Sets the third octet of the subnet mask of the connected network. Note: Set this parameter when F7-13 $=0$ [Address Mode at Startup $=$ Static].	$\begin{gathered} 255 \\ (0-255) \end{gathered}$
$\begin{aligned} & \text { F7-08 } \\ & (03 \mathrm{EC}) \end{aligned}$	Subnet Mask 4	Sets the fourth octet of the subnet mask of the connected network. Note: Set this parameter when $F 7-13=0$ [Address Mode at Startup $=$ Static].	$\begin{gathered} 0 \\ (0-255) \end{gathered}$
$\begin{aligned} & \text { F7-09 } \\ & \text { (03ED) } \end{aligned}$	Gateway Address 1	Sets the first octet of the gateway address of the connected network. Note: Set this parameter when F7-13 $=0$ [Address Mode at Startup $=$ Static .	$\begin{gathered} 192 \\ (0-255) \end{gathered}$
$\begin{aligned} & \text { F7-10 } \\ & (03 \mathrm{EE}) \end{aligned}$	Gateway Address 2	Sets the second octet of the gateway address of the connected network. Note: Set this parameter when F7-13 $=0$ [Address Mode at Startup $=$ Static .	$\begin{gathered} 168 \\ (0-255) \end{gathered}$
$\begin{aligned} & \text { F7-11 } \\ & (03 E F) \end{aligned}$	Gateway Address 3	Sets the third octet of the gateway address of the connected network. Note: Set this parameter when F7-13 $=0$ [Address Mode at Startup $=$ Static .	$\begin{gathered} 1 \\ (0-255) \end{gathered}$
$\begin{aligned} & \text { F7-12 } \\ & (03 F 0) \end{aligned}$	Gateway Address 4	Sets the fourth octet of the gateway address of the connected network. Note: Set this parameter when $F 7-13=0$ [Address Mode at Startup $=$ Static $]$.	$\begin{gathered} 1 \\ (0-255) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { F7-13 } \\ & (03 F 1) \end{aligned}$	Address Mode at Startup	Sets the method to set option card IP addresses. 0 : Static 1 : BOOTP 2 : DHCP Note: - The following setting values are available when using the PROFINET communication option card (SI-EP3). -0 : Static (It is possible for the PLC to override this setting, if so configured) -1 : BOOTP (In PROFINET, this setting does NOT use BOOTP. It uses a PROFINET-specific method, DCP) (In BACnet/IP, this setting is the same as DHCP). -2: DHCP (In PROFINET, this setting does NOT use DHCP. It uses a PROFINET-specific method, DCP) - When F7-13 $=0$, set parameters $F 7-01$ to F7-12 [IP Address 1 to Gateway Address 4] to set the IP Address. Be sure to set a different IP address for each drive on the network.	$\begin{gathered} 2 \\ (0-2) \end{gathered}$
$\begin{aligned} & \text { F7-14 } \\ & (03 \mathrm{~F} 2) \end{aligned}$	Duplex Mode Selection	Sets the duplex mode setting method. 0 : Half/Half 1 : Auto/Auto 2 : Full/Full 3 : Half/Auto 4 : Half/Full 5 : Auto/Half 6 : Auto/Full 7 : Full/Half 8 : Full/Auto	$\begin{gathered} 1 \\ (0-8) \end{gathered}$
$\begin{aligned} & \text { F7-15 } \\ & (03 F 3) \end{aligned}$	Communication Speed Selection	Sets the communications speed. $10: 10 / 10 \mathrm{Mbps}$ 100: 100/100 Mbps 101: 10/100 Mbps 102: 100/10 Mbps Note: You must set $F 7-14=0,2,4$, or 7 for this parameter to have an effect.	$\begin{gathered} 10 \\ (10,100-102) \end{gathered}$
$\begin{aligned} & \text { F7-16 } \\ & (03 \mathrm{~F} 4) \end{aligned}$	Timeout Value	Sets the detection time for a communications timeout. Note: Set this parameter to 0.0 to disable the connection timeout function.	$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0-30.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { F7-17 } \\ & \text { (03F5) } \end{aligned}$	EtherNet/IP Speed Scaling Factor	Sets the scaling factor for the speed monitor in the EtherNet/IP Class ID 2AH Object.	$\begin{gathered} 0 \\ (-15-+15) \end{gathered}$
$\begin{aligned} & \text { F7-18 } \\ & (03 \mathrm{~F} 6) \end{aligned}$	EtherNet/IP Current Scale Factor	Sets the scaling factor for the output current monitor in the EtherNet/IP Class ID 2AH Object.	$\begin{gathered} 0 \\ (-15-+15) \end{gathered}$
$\begin{aligned} & \text { F7-19 } \\ & (03 F 7) \end{aligned}$	EtherNet/IP Torque Scale Factor	Sets the scaling factor for the torque monitor in the EtherNet/IP Class ID 2AH Object.	$\begin{gathered} 0 \\ (-15-+15) \end{gathered}$
$\begin{aligned} & \text { F7-20 } \\ & (03 F 8) \end{aligned}$	EtherNet/IP Power Scaling Factor	Sets the scaling factor for the power monitor in the EtherNet/IP Class ID 2AH Object.	$\begin{gathered} 0 \\ (-15-+15) \end{gathered}$
$\begin{aligned} & \text { F7-21 } \\ & (03 \mathrm{~F} 9) \end{aligned}$	EtherNet/IP Voltage Scale Factor	Sets the scaling factor for the voltage monitor in the EtherNet/IP Class ID 2AH Object.	$\begin{gathered} 0 \\ (-15-+15) \end{gathered}$
$\begin{gathered} \text { F7-22 } \\ (03 \mathrm{FA}) \end{gathered}$	EtherNet/IP Time Scaling	Sets the scaling factor for the time monitor in the EtherNet/IP Class ID 2AH Object.	$\begin{gathered} 0 \\ (-15-+15) \end{gathered}$
$\begin{gathered} \text { F7-23 } \\ (03 \mathrm{FB}) \end{gathered}$	Dynamic Out Param 1 for CommCard	Sets Output Assembly 116 when you use an Ethernet/IP option. The drive writes the values from Output Assembly 116 to the MEMOBUS/Modbus address register that is stored for each parameter. The drive will not write the values from Output Assembly 116 to the registers when the MEMOBUS/ Modbus address is 0 . When you use a ProfiNet option, set this parameter to set to configurable output 1.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-24 } \\ & (03 \mathrm{FC}) \end{aligned}$	Dynamic Out Param 2 for CommCard	Sets Output Assembly 116 when you use an Ethernet/IP option. The drive writes the values from Output Assembly 116 to the MEMOBUS/Modbus address register that is stored for each parameter. The drive will not write the values from Output Assembly 116 to the registers when the MEMOBUS/ Modbus address is 0 . When you use a ProfiNet option, set this parameter to set to configurable output 2.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-25 } \\ & (03 \mathrm{FD}) \end{aligned}$	Dynamic Out Param 3 for CommCard	Sets Output Assembly 116 when you use an Ethernet/IP option. The drive writes the values from Output Assembly 116 to the MEMOBUS/Modbus address register that is stored for each parameter. The drive will not write the values from Output Assembly 116 to the registers when the MEMOBUS/ Modbus address is 0 . When you use a ProfiNet option, set this parameter to set to configurable output 3.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-26 } \\ & (03 \mathrm{FE}) \end{aligned}$	Dynamic Out Param 4 for CommCard	Sets Output Assembly 116 when you use an Ethernet/IP option. The drive writes the values from Output Assembly 116 to the MEMOBUS/Modbus address register that is stored for each parameter. The drive will not write the values from Output Assembly 116 to the registers when the MEMOBUS/ Modbus address is 0 . When you use a ProfiNet option, set this parameter to set to configurable output 4.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { F7-27 } \\ & (03 \mathrm{FF}) \end{aligned}$	Dynamic Out Param 5 for CommCard	Sets Output Assembly 116 when you use an Ethernet/IP option. The drive writes the values from Output Assembly 116 to the MEMOBUS/Modbus address register that is stored for each parameter. The drive will not write the values from Output Assembly 116 to the registers when the MEMOBUS/ Modbus address is 0 . When you use a ProfiNet option, set this parameter to set to configurable output 5.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-28 } \\ & (0370) \end{aligned}$	Dynamic Out Param 6 for CommCard	Sets Output Assembly 116 when you use an Ethernet/IP option. The drive writes the values from Output Assembly 116 to the MEMOBUS/Modbus address register that is stored for each parameter. The drive will not write the values from Output Assembly 116 to the registers when the MEMOBUS/ Modbus address is 0 .	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-29 } \\ & (0371) \end{aligned}$	Dynamic Out Param 7 for CommCard	Sets Output Assembly 116 when you use an Ethernet/IP option. The drive writes the values from Output Assembly 116 to the MEMOBUS/Modbus address register that is stored for each parameter. The drive will not write the values from Output Assembly 116 to the registers when the MEMOBUS/ Modbus address is 0 .	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-30 } \\ & (0372) \end{aligned}$	Dynamic Out Param 8 for CommCard	Sets Output Assembly 116 when you use an Ethernet/IP option. The drive writes the values from Output Assembly 116 to the MEMOBUS/Modbus address register that is stored for each parameter. The drive will not write the values from Output Assembly 116 to the registers when the MEMOBUS/ Modbus address is 0 .	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-31 } \\ & (0373) \end{aligned}$	Dynamic Out Param 9 for CommCard	Sets Output Assembly 116 when you use an Ethernet/IP option. The drive writes the values from Output Assembly 116 to the MEMOBUS/Modbus address register that is stored for each parameter. The drive will not write the values from Output Assembly 116 to the registers when the MEMOBUS/ Modbus address is 0 .	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \mathrm{F} 7-32 \\ & (0374) \end{aligned}$	Dynamic Out Param 10 for CommCard	Sets Output Assembly 116 when you use an Ethernet/IP option. The drive writes the values from Output Assembly 116 to the MEMOBUS/Modbus address register that is stored for each parameter. The drive will not write the values from Output Assembly 116 to the registers when the MEMOBUS/ Modbus address is 0 .	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-33 } \\ & (0375) \end{aligned}$	Dynamic In Param 1 for CommCard	Sets Input Assembly 166 when you use an Ethernet/IP option. The drive sends the values from the MEMOBUS/Modbus address registers stored for each parameter to Input Assembly 166. The drive returns the default register value for the option card when the MEMOBUS/Modbus address is 0 and the value sent to Input Assembly 166 is not defined. When you use a ProfiNet option, set this parameter to set to configurable input 1.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-34 } \\ & (0376) \end{aligned}$	Dynamic In Param 2 for CommCard	Sets Input Assembly 166 when you use an Ethernet/IP option. The drive sends the values from the MEMOBUS/Modbus address registers stored for each parameter to Input Assembly 166. The drive returns the default register value for the option card when the MEMOBUS/Modbus address is 0 and the value sent to Input Assembly 166 is not defined. When you use a ProfiNet option, set this parameter to set to configurable input 2.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-35 } \\ & (0377) \end{aligned}$	Dynamic In Param 3 for CommCard	Sets Input Assembly 166 when you use an Ethernet/IP option. The drive sends the values from the MEMOBUS/Modbus address registers stored for each parameter to Input Assembly 166. The drive returns the default register value for the option card when the MEMOBUS/Modbus address is 0 and the value sent to Input Assembly 166 is not defined. When you use a ProfiNet option, set this parameter to set to configurable input 3 .	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-36 } \\ & (0378) \end{aligned}$	Dynamic In Param 4 for CommCard	Sets Input Assembly 166 when you use an Ethernet/IP option. The drive sends the values from the MEMOBUS/Modbus address registers stored for each parameter to Input Assembly 166. The drive returns the default register value for the option card when the MEMOBUS/Modbus address is 0 and the value sent to Input Assembly 166 is not defined. When you use a ProfiNet option, set this parameter to set to configurable input 4.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-37 } \\ & (0379) \end{aligned}$	Dynamic In Param 5 for CommCard	Sets Input Assembly 166 when you use an Ethernet/IP option. The drive sends the values from the MEMOBUS/Modbus address registers stored for each parameter to Input Assembly 166. The drive returns the default register value for the option card when the MEMOBUS/Modbus address is 0 and the value sent to Input Assembly 166 is not defined. When you use a ProfiNet option, set this parameter to set to configurable input 5.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-38 } \\ & (037 \mathrm{~A}) \end{aligned}$	Dynamic In Param 6 for CommCard	Sets Input Assembly 166 when you use an Ethernet/IP option. The drive sends the values from the MEMOBUS/Modbus address registers stored for each parameter to Input Assembly 166. The drive returns the default register value for the option card when the MEMOBUS/Modbus address is 0 and the value sent to Input Assembly 166 is not defined.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-39 } \\ & (037 B) \end{aligned}$	Dynamic In Param 7 for CommCard	Sets Input Assembly 166 when you use an Ethernet/IP option. The drive sends the values from the MEMOBUS/Modbus address registers stored for each parameter to Input Assembly 166. The drive returns the default register value for the option card when the MEMOBUS/Modbus address is 0 and the value sent to Input Assembly 166 is not defined.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-40 } \\ & (037 \mathrm{C}) \end{aligned}$	Dynamic In Param 8 for CommCard	Sets Input Assembly 166 when you use an Ethernet/IP option. The drive sends the values from the MEMOBUS/Modbus address registers stored for each parameter to Input Assembly 166. The drive returns the default register value for the option card when the MEMOBUS/Modbus address is 0 and the value sent to Input Assembly 166 is not defined.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-41 } \\ & (037 D) \end{aligned}$	Dynamic In Param 9 for CommCard	Sets Input Assembly 166 when you use an Ethernet/IP option. The drive sends the values from the MEMOBUS/Modbus address registers stored for each parameter to Input Assembly 166. The drive returns the default register value for the option card when the MEMOBUS/Modbus address is 0 and the value sent to Input Assembly 166 is not defined.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-42 } \\ & (037 \mathrm{E}) \end{aligned}$	Dynamic In Param 10 for CommCard	Sets Input Assembly 166 when you use an Ethernet/IP option. The drive sends the values from the MEMOBUS/Modbus address registers stored for each parameter to Input Assembly 166. The drive returns the default register value for the option card when the MEMOBUS/Modbus address is 0 and the value sent to Input Assembly 166 is not defined.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { F7-43 } \\ & (1 \mathrm{BCE}) \end{aligned}$	PLC Cnxn Close Behavior@Run	Sets the drive response when a PLC closes a connection while the drive has an active Run command from the network. 0 : Continue 1 : Clear Run Command 2 : Fault	$\begin{gathered} 0 \\ (0-2) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { F7-50 } \\ & (1 \mathrm{BC} 1) \end{aligned}$	BACnet/IP Port	Sets the UDP port on which the drive will receive incoming BACnet messages. Available in bypass software versions 00446 and later.	$\begin{gathered} 47808 \\ (1024-65535) \end{gathered}$
$\begin{gathered} \text { F7-51 } \\ \text { (1BE9) } \end{gathered}$	BBMD Foreign Register Addr 1	Sets the first octet of the IP Address of the BACnet Broadcast Management Device (BBMD) to which the drive will register as a foreign device. Available in bypass software versions 00446 and later.	$\begin{gathered} 0 \\ (0-255) \end{gathered}$
$\begin{gathered} \text { F7-52 } \\ \text { (1BEA) } \end{gathered}$	BBMD Foreign Register Addr 2	Sets the second octet of the IP Address of the BACnet Broadcast Management Device (BBMD) to which the drive will register as a foreign device. Available in bypass software versions 00446 and later.	$\begin{gathered} 0 \\ (0-255) \end{gathered}$
$\begin{gathered} \text { F7-53 } \\ \text { (1BEB) } \end{gathered}$	BBMD Foreign Register Addr 3	Sets the third octet of the IP Address of the BACnet Broadcast Management Device (BBMD) to which the drive will register as a foreign device. Available in bypass software versions 00446 and later.	$\begin{gathered} 0 \\ (0-255) \end{gathered}$
$\begin{gathered} \text { F7-54 } \\ \text { (1BEC) } \end{gathered}$	BBMD Foreign Register Addr 4	Sets the fourth octet of the IP Address of the BACnet Broadcast Management Device (BBMD) to which the drive will register as a foreign device. Available in bypass software versions 00446 and later.	$\begin{gathered} 0 \\ (0-255) \end{gathered}$
$\begin{gathered} \text { F7-55 } \\ \text { (1BED) } \end{gathered}$	BBMD Foreign Register Port	Sets the UDP port of the BBMD device to which the drive will register. Available in bypass software versions 00446 and later.	$\begin{gathered} 47808 \\ (1024-65535) \end{gathered}$
$\begin{gathered} \text { F7-56 } \\ (1 \mathrm{BEE}) \end{gathered}$	BBMD Foreign Register Time	Sets the time interval in which the drive will repeat BBMD foreign registration. Available in bypass software versions 00446 and later.	$\begin{gathered} 3600 \mathrm{~s} \\ (0-65535 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { F7-57 } \\ (1 \mathrm{BEF}) \end{gathered}$	BACnet/IP BUS Timeout Value	Sets the length of time that the drive will wait after it receives a Run command or frequency reference command before it detects a $b U S$ fault. Available in bypass software versions 00446 and later.	$\begin{gathered} 3600 \mathrm{~s} \\ (0-65535 \mathrm{~s}) \end{gathered}$

7.8 H: Terminal Functions

- H1: Digital Inputs

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \mathrm{H} 1-01 \\ & (0438) \end{aligned}$	Terminal S1 Function Selection	Sets the function for MFDI terminal S1.	$\begin{gathered} 40 \\ (3 \text { to } 1 \mathrm{~A} 8) \end{gathered}$
$\begin{aligned} & \text { H1-02 } \\ & (0439) \end{aligned}$	Terminal S2 Function Selection	Sets the function for MFDI terminal S2.	$\begin{gathered} F \\ (3 \text { to } 1 \mathrm{~A} 8) \end{gathered}$
$\begin{aligned} & \mathrm{H} 1-03 \\ & (0400) \end{aligned}$	Terminal S3 Function Selection	Sets the function for MFDI terminal S3.	$\begin{gathered} 24 \\ (3 \text { to } 1 \mathrm{~A} 8) \end{gathered}$
$\begin{aligned} & \mathrm{H} 1-04 \\ & (0401) \end{aligned}$	Terminal S4 Function Selection	Sets the function for MFDI terminal S4.	$\begin{gathered} 14 \\ (3 \text { to } 1 \mathrm{~A} 8) \end{gathered}$
$\begin{aligned} & \mathrm{H} 1-05 \\ & (0402) \end{aligned}$	Terminal S5 Function Selection	Sets the function for MFDI terminal S5.	$\begin{gathered} 3 \\ (3 \text { to } 1 \mathrm{~A} 8) \end{gathered}$
$\begin{aligned} & \mathrm{H} 1-06 \\ & (0403) \end{aligned}$	Terminal S6 Function Selection	Sets the function for MFDI terminal S6.	$\begin{gathered} 4 \\ (3 \text { to } 1 \mathrm{~A} 8) \end{gathered}$
$\begin{aligned} & \text { H1-07 } \\ & (0404) \end{aligned}$	Terminal S7 Function Selection	Sets the function for MFDI terminal S7.	$\begin{gathered} 6 \\ (3 \text { to } 1 \mathrm{~A} 8) \end{gathered}$
H1-61 (39E1) RUN	Terminal S1 On-Delay Time	Sets the length of time necessary for Terminal S1 to be closed before the drive does the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { H1-62 } \\ \text { (39E2) } \\ \text { RUN } \\ \hline \end{gathered}$	Terminal S2 On-Delay Time	Sets the length of time necessary for Terminal S2 to be closed before the drive does the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { H1-63 } \\ \text { (39E3) } \\ \text { RUN } \\ \hline \end{gathered}$	Terminal S3 On-Delay Time	Sets the length of time necessary for Terminal S3 to be closed before the drive does the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { H1-64 } \\ \text { (39E4) } \\ \text { RUN } \end{gathered}$	Terminal S4 On-Delay Time	Sets the length of time necessary for Terminal S4 to be closed before the drive does the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { H1-65 } \\ \text { (39E5) } \\ \text { RUN } \\ \hline \end{gathered}$	Terminal S5 On-Delay Time	Sets the length of time necessary for Terminal S5 to be closed before the drive does the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { H1-66 } \\ (39 \mathrm{E} 6) \\ \text { RUN } \end{gathered}$	Terminal S6 On-Delay Time	Sets the length of time necessary for Terminal S6 to be closed before the drive does the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { H1-67 } \\ \text { (39E7) } \\ \text { RUN } \end{gathered}$	Terminal S7 On-Delay Time	Sets the length of time necessary for Terminal S7 to be closed before the drive does the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { H1-71 } \\ (39 \mathrm{~EB}) \\ \text { RUN } \end{gathered}$	Terminal S1 Off-Delay Time	Sets the length of time necessary for Terminal S1 to be open before the drive removes the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { H1-72 } \\ \text { (39EC) } \\ \text { RUN } \\ \hline \end{gathered}$	Terminal S2 Off-Delay Time	Sets the length of time necessary for Terminal S2 to be open before the drive removes the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { H1-73 } \\ (39 \mathrm{ED}) \\ \text { RUN } \end{gathered}$	Terminal S3 Off-Delay Time	Sets the length of time necessary for Terminal S3 to be open before the drive removes the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$
	Terminal S4 Off-Delay Time	Sets the length of time necessary for Terminal S4 to be open before the drive removes the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \mathrm{H} 1-75 \\ & (39 \mathrm{EF}) \\ & \text { RUN } \end{aligned}$	Terminal S5 Off-Delay Time	Sets the length of time necessary for Terminal S 5 to be open before the drive removes the programmed function.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-300.00 \mathrm{~s}) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
H1-76 $(39 \mathrm{F0})$ RUN	Terminal S6 Off-Delay Time	Sets the length of time necessary for Terminal S6 to be open before the drive removes the programmed function.	0.00 s $(0.00-300.00 \mathrm{~s})$
H1-77 $(39 \mathrm{~F} 1)$ RUN	Terminal S7 Off-Delay Time	Sets the length of time necessary for Terminal S7 to be open before the drive removes the programmed function.	0.00 s $(0.00-300.00 \mathrm{~s})$

H1-xx: MFDI Setting Values

Setting Value	Function	Description
3	Multi-Step Speed Reference 1	Uses speed references $d 1-01$ to $d 1-08$ to set a multi-step speed reference.
4	Multi-Step Speed Reference 2	Uses speed references $d 1$-01 to $d 1-08$ to set a multi-step speed reference.
5	Multi-Step Speed Reference 3	Uses speed references $d 1-01$ to $d 1-08$ to set a multi-step speed reference.
6	Jog Reference Selection	Sets the drive to use the JOG Frequency Reference (JOG command) set in d1-17 [Jog Reference]. The JOG Frequency Reference (JOG command) overrides the dl -01 to d1-08 [References 1 to 8] settings.
7	Accel/Decel Time Selection 1	Sets the drive to use Acceleration/Deceleration Time 1 [C1-01, C1-02] or Acceleration/Deceleration Time 2 [C1-03, C1-04].
8	Baseblock Command (N.O.)	Sets the command that stops drive output and coasts the motor to stop when the input is ON. ON : Baseblock (drive output stop) OFF : Normal operation
9	Baseblock Command (N.C.)	Sets the command that stops drive output and coasts the motor to stop when the input terminal is OFF. ON : Normal operation OFF : Baseblock (drive output stop)
A	Accel/Decel Ramp Hold	Momentarily pauses motor acceleration and deceleration when the terminal is turned ON, retains the output frequency that was stored in the drive at the time of the pause, and restarts motor operation.
B	Overheat Alarm (oH2)	Sets the drive to display an oH2 [Drive Overheat Warning] alarm when the input terminal is ON. The alarm does not have an effect on drive operation.
C	Analog Terminal Enable Selection	Sets the command that enables or disables the terminals selected in H3-14 [Analog Input Terminal Enable Sel]. ON : Input to the terminal selected with $\mathrm{H} 3-14$ is enabled OFF : Input to the terminal selected with H3-14 is disabled
F	Not Used	Use this setting for unused terminals or to use terminals in through mode.
14	Fault Reset	Sets the command to reset the current fault when the Run command is inactive. Note: - The drive ignores the fault reset command when the Run command is active. Remove the Run command before trying to reset a fault. - This will only reset drive-specific faults. It will not reset bypass ($F B x x$) faults. Set $Z 2-0 x=34$ and a bypass digital input to reset ALL faults.
15	Fast Stop (N.O.)	Sets the command to ramp to stop in the deceleration time set in Cl-09 [Fast Stop Time] when the input terminal is activated while the drive is operating.
17	Fast Stop (N.C.)	Sets the command to ramp to stop in the deceleration time set in Cl-09 [Fast Stop Time] when the input terminal is activated while the drive is operating.
18	Timer Function	Sets the command to start the timer function. Use this setting with Timer Output [H2-xx = 12].
19	PID Disable	Sets the command to disable PID control when $b 5-01=1$ or 3 [PID Mode Setting = Standard or Fref + PID Trim]. ON : PID control disabled OFF : PID control enabled
1B	Programming Lockout	Sets the command to prevent parameter changes when the terminal is OFF. ON : Programming Lockout OFF : Parameter Write Prohibit
1E	Reference Sample Hold	Sets the command to sample the frequency reference at terminals A1 or A2 and hold the frequency reference at that frequency.
20	External Fault (NO-AlwaysRamp)	When the terminal activates, the drive ramps to stop in the selected deceleration time. Fault relay output terminal MA-MC will turn ON, and MB-MC will turn OFF. The drive always detects external faults whether the drive is stopped or running.
21	External Fault (NC-AlwaysRamp)	When the terminal deactivates, the drive ramps to stop in the selected deceleration time. Fault relay output terminal MA-MC will turn ON, and MB-MC will turn OFF. The drive always detects external faults whether the drive is stopped or running.
22	External Fault (NO-@RunRamp)	When the terminal activates during run, the drive ramps to stop in the selected deceleration time. Fault relay output terminal MAMC will turn ON, and MB-MC will turn OFF. The drive does not detect external faults while the drive is stopped.

Setting Value	Function	Description
23	External Fault (NC-@RunRamp)	When the terminal deactivates during run, the drive ramps to stop in the selected deceleration time. Fault relay output terminal MAMC will turn ON, and MB-MC will turn OFF. The drive does not detect external faults while the drive is stopped.
24	External Fault (NO-AlwaysCoast)	When the terminal activates, the drive shuts off the output and the motor coasts to stop. Fault relay output terminal MA-MC will turn ON, and MB-MC will turn OFF. The drive always detects external faults whether the drive is stopped or running.
25	External Fault (NC-AlwaysCoast)	When the terminal deactivates, the drive shuts off the output and the motor coasts to stop. Fault relay output terminal MA-MC will turn ON, and MB-MC will turn OFF. The drive always detects external faults whether the drive is stopped or running.
26	External Fault (NO-@RunCoast)	When the terminal activates during run, the drive shuts off the output and the motor coasts to stop. Fault relay output terminal MAMC will turn ON, and MB-MC will turn OFF. The drive does not detect external faults while the drive is stopped.
27	External Fault (NC-@RunCoast)	When the terminal deactivates during run, the drive shuts off the output and the motor coasts to stop. Fault relay output terminal MA-MC will turn ON, and MB-MC will turn OFF. The drive does not detect external faults while the drive is stopped.
28	External Fault (NO-AlwaysFStop)	When the terminal activates, the drive stops the motor in the deceleration time set to C1-09 [Fast Stop Time]. Fault relay output terminal MA-MC will turn ON, and MB-MC will turn OFF. The drive always detects external faults whether the drive is stopped or running.
29	External Fault (NC-AlwaysFStop)	When the terminal deactivates, the drive stops the motor in the deceleration time set to C1-09 [Fast Stop Time]. Fault relay output terminal MA-MC will turn ON, and MB-MC will turn OFF. The drive always detects external faults whether the drive is stopped or running.
2A	External Fault (NO-@RunFStop)	When the terminal activates during run, the drive stops the motor in the deceleration time set to C1-09 [Fast Stop Time]. Fault relay output terminal MA-MC will turn ON, and MB-MC will turn OFF. The drive does not detect external faults while the drive is stopped.
2B	External Fault (NC-@RunFStop)	When the terminal deactivates during run, the drive stops the motor in the deceleration time set to C1-09 [Fast Stop Time]. Fault relay output terminal MA-MC will turn ON, and MB-MC will turn OFF. The drive does not detect external faults while the drive is stopped.
2 C	External Fault (NO-AlwaysAlarm)	When the terminal activates, the keypad shows EFx [External Fault (Terminal Sx)] and the output terminal set for Alarm [H2-01 to $H 2-03=10]$ activates. The drive continues operation. The drive always detects external faults whether the drive is stopped or running.
2D	External Fault (NC-AlwaysAlarm)	When the terminal deactivates, the keypad shows EFx [External Fault (Terminal Sx)] and the output terminal set for Alarm [H2-01 to $\mathrm{H} 2-03=10]$ activates. The drive continues operation. The drive always detects external faults whether the drive is stopped or running.
2E	External Fault (NO-@RunAlarm)	When the terminal activates during run, the keypad shows EFx [External Fault (Terminal Sx)] and the output terminal set for Alarm [H2-01 to H2-03 = 10] activates. The drive continues operation. The drive does not detect external faults while the drive is stopped.
2F	External Fault (NC-@)RunAlarm)	When the terminal deactivates during run, the keypad shows EFx [External Fault (Terminal Sx)] and the output terminal set for Alarm [H2-01 to H2-03 = 10] activates. The drive continues operation. The drive does not detect external faults while the drive is stopped.
30	PID Integrator Reset	Sets the command to reset and hold the PID control integral to 0 when the terminal is ON.
31	PID Integrator Hold	Sets the command to hold the integral value of the PID control while the terminal is activated.
34	PID Soft Starter Disable	Sets the PID soft starter function. ON : No OFF: Yes
35	PID Input (Error) Invert	Sets the command to turn the terminal ON and OFF to switch the PID input level (polarity).
3E	PID Setpoint Selection 1	Sets the function to switch the PID setpoint to YA-02 [Setpoint 2] or YA-04 [Setpoint 4]. Set this function and H1-xx = 3F [PID Setpoint Selection 2] at the same time. Note: If you use this function and one of $H 1-x x=83$ to 85 [Dedicated Multi-Setpoint YA-02 to YA-04] at the same time, the drive will detect an oPE03 [Multi-Function Input Setting Err]. ON : YA-02 or YA-04 is PID setpoint. OFF : The frequency reference, YA-01 [Setpoint 1], or YA-03 [Setpoint 3] is PID setpoint.
3F	PID Setpoint Selection 2	Sets the function to switch the PID setpoint to YA-03 [Setpoint 3] or YA-04 [Setpoint 4]. Set this function and H1-xx = 3E [PID Setpoint Selection 1] at the same time. Note: If you use this function and one of $H 1-x x=83$ to 85 [Dedicated Multi-Setpoint YA-02 to YA-04] at the same time, the drive will detect an oPE03 [Multi-Function Input Setting Err]. ON : YA-03 or YA-04 is PID setpoint. OFF : The frequency reference, YA-01 [Setpoint 1], or YA-02 [Setpoint 2] is PID setpoint.
40	Forward RUN (2-Wire)	Terminals assigned to this value will have no effect. Set $Z 2-0 x=21$ and use a bypass digital input instead.
44	Add Offset Frequency 1 (d7- 01)	Sets the function to add the offset frequency set in $d 7$-01 [Offset Frequency 1] to the frequency reference when the terminal activates.
45	Add Offset Frequency 2 (d702)	Sets the function to add the offset frequency set in $d 7-02$ [Offset Frequency 2] to the frequency reference when the terminal activates.
46	Add Offset Frequency 3 (d703)	Sets the function to add the offset frequency set in $d 7-03$ [Offset Frequency 3] to the frequency reference when the terminal activates.
51	Sequence Timer Disable	Sets the command to disable Sequence Timers. ON : Sequence Timer is Disabled
52	Sequence Timer Cancel	Sets the command to cancel the currently active Sequence Timer. ON : Cancel Active Sequence Timer

7.8 H : Terminal Functions

Setting Value	Function	Description
61	Speed Search from Fmax	Sets the function to start speed search using an external reference although $b 3-01=0[$ Speed Search Selection at Start $=$ Disabled] . Note: The drive will detect oPE03 [Multi-Function Input Setting Err] when H1-xx $=61$ and 62 are set at the same time.
62	Speed Search from Fref	Sets the function to use an external reference to start speed search although b3-01 $=0$ [Speed Search Selection at Start $=$ Disabled $]$. Note: The drive will detect oPE03 [Multi-Function Input Setting Err] when H1-xx $=61$ and 62 are set at the same time.
63	Field Weakening	Sets the function to send the Field Weakening Level and Field Weakening Frequency Limit commands set in d6-01 [Field Weakening Level] and d6-02 [Field Weakening Frequency Limit] when the input terminal is activated.
68	High Slip Braking (HSB) Activate	Sets the command to use high-slip braking to stop the motor.
6A	Drive Enable	This will only function in Drive Mode. Sets the function to show dnE [Drive Enabled] on the keypad and ignore Run commands when the terminal is OFF.
70	Drive Enable 2	This will only function in Drive Mode. Sets the function to show dnE [Drive Enabled] on the keypad and ignore Run commands when the terminal is OFF. ON : Run command is accepted. OFF : Run command is disabled. When the drive is running, it stops according to $b 1-03$ setting.
82	PI Switch to Aux	Sets YF-xx [PI Auxiliary Control] parameters as primary PI loop parameters and disables b5-xx [PID Control]. Note: When this input is active, YF-xx [PI Auxiliary Control] parameters will always be the primary PI loop parameters. Parameter YF-20 [PI Aux Main PI Speed Control] does not have an effect.
83	Dedicated Multi-Setpoint YA-02	Sets the function to set the PID setpoint to YA-02 [Setpoint 2]. Note: If you use this function and one of $H 1-x x=3 E$ or $3 F$ [PID Setpoint Selection 1 or 2] at the same time, the drive will detect an oPE03 [Multi-Function Input Setting Err]. ON : YA-02 is PID setpoint. OFF : YA-01 [Setpoint 1], YA-03 [Setpoint 3], or YA-04 [Setpoint 4] is PID setpoint.
84	Dedicated Multi-Setpoint YA-03	Sets the function to set the PID setpoint to YA-03 [Setpoint 3]. Set this function and H1-xx $=83$ [Dedicated Multi-Setpoint YA-02] at the same time. Note: If you use this function and one of $H 1-x x=3 E$ or $3 F$ [PID Setpoint Selection 1 or 2] at the same time, the drive will detect an oPE03 [Multi-Function Input Setting Err]. ON : YA-03 is PID setpoint. OFF : YA-01 [Setpoint 1], YA-02 [Setpoint 2], or YA-04 [Setpoint 4] is PID setpoint.
85	Dedicated Multi-Setpoint YA-04	Sets the function to set the PID setpoint to YA-04 [Setpoint 4]. Set this function, H1-xx $=83$ [Dedicated Multi-Setpoint YA-02], and H1-xx $=84$ [Dedicated Multi-Setpoint YA-03] at the same time. Note: If you use this function and one of $H 1-x x=3 E$ or $3 F$ [PID Setpoint Selection 1 or 2] at the same time, the drive will detect an oPE03 [Multi-Function Input Setting Err]. ON : YA-04 is PID setpoint. OFF : YA-01 [Setpoint 1], YA-02 [Setpoint 2], or YA-03 [Setpoint 3] is PID setpoint.
88	Thermostat Fault	Sets the drive to show the VLTS [Thermostat Fault] when the input terminal is ON. Note: This function is active when the drive is running.
A8	PI2 Control Disable	Sets the command to disable the PI2 Control function. Parameter S3-12 [PI2 Control Disable Mode Sel] sets the output performance. ON : Enabled OFF: Disabled
AA	PI2 Control Inverse Operation	Sets the command to change the sign of the PI2 Control input.
AB	PI2 Control Integral Reset	Sets the command to reset the PI2 Control integral value. Note: This input has priority over H1-xx $=A C$ [MFDI Function Selection $=$ PI2 Control Integral Hold].
AC	PI2 Control Integral Hold	Sets the command to lock the PI2 Control integral value.
AD	Select PI2 Control PI Parameters	Sets the command to use the S3-06 [PI2 Control Proportional Gain] and S3-07 [PI2 Control Integral Time] values instead of the b5-02 [Proportional Gain (P)] and b5-03 [Integral Time (I)] values. Set S3-01 $=0$ [PI2 Control Enable Selection $=$ Disabled] to enable this function. Note: This multi-function input does not have an effect on PI2 Control. Use this input for the primary PI controller (b5-xx).
B9	Disable Pre-charge	Sets the command to disable the Pre-charge function. ON : Pre-charge function is disabled

Setting Value	Function	Description
188	$!$ Thermostat Fault	Sets the drive to show the VLTS [Thermostat Fault] when the input terminal is OFF. Note: This function is active when the drive is running.
1 A8	!PI2 Control Disable	Sets the command to disable the PI2 Control function. Parameter S3-12 [PI2 Control Disable Mode Sel] sets the output performance. ON : Disabled OFF : Enabled

- H2: Digital Outputs

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { H2-01 } \\ & (040 \mathrm{~B}) \end{aligned}$	Term M1-M2 Function Selection	Sets the function for MFDO terminal M1-M2. Note: Set this parameter to F when the terminal is not being used or to use the terminal in through mode.	$\begin{gathered} 0 \\ (0-1 \mathrm{FF}) \end{gathered}$
$\begin{aligned} & \mathrm{H} 2-02 \\ & (040 \mathrm{C}) \end{aligned}$	Term M3-M4 Function Selection	Sets the function for MFDO terminal M3-M4. Note: Set this parameter to F when the terminal is not being used or to use the terminal in through mode.	$\begin{gathered} 1 \\ (0-1 \mathrm{FF}) \end{gathered}$
$\begin{aligned} & \text { H2-03 } \\ & \text { (040D) } \end{aligned}$	Term M5-M6 Function Selection	Sets the function for MFDO terminal M5-M6. Note: When you do not use this terminal, or when you will use the terminal in through mode, set this parameter to F.	$\begin{gathered} 2 \\ (0-1 \mathrm{FF}) \end{gathered}$
$\begin{aligned} & \mathrm{H} 2-06 \\ & (0437) \end{aligned}$	Watt Hour Output Unit Selection	Sets the unit for the output signal when H2-01 to H2-03 $=39$ [MFDO Function Selection $=$ Watt Hour Pulse Output]. $0: 0.1 \mathrm{kWh}$ units 1:1 kWh units 2: 10 kWh units $3: 100 \mathrm{kWh}$ units $4: 1000 \mathrm{kWh}$ units	$\begin{gathered} 0 \\ (0-4) \end{gathered}$
$\begin{gathered} \text { H2-07 } \\ (0 \mathrm{~B} 3 \mathrm{~A}) \end{gathered}$	Modbus Register 1 Address Select	Sets the address of the MEMOBUS/Modbus register output to the MFDO terminal.	$\begin{gathered} 0001 \\ (0001-1 \text { FFF }) \end{gathered}$
$\begin{gathered} \text { H2-08 } \\ \text { (0B3B) } \end{gathered}$	Modbus Register 1 Bit Select	Sets the bit of the MEMOBUS/Modbus register output to the MFDO terminal.	$\begin{gathered} 0000 \\ (0000-\text { FFFF }) \end{gathered}$
$\begin{gathered} \mathrm{H} 2-09 \\ (0 \mathrm{~B} 3 \mathrm{C}) \end{gathered}$	Modbus Register 2 Address Select	Sets the address of the MEMOBUS/Modbus register output to the MFDO terminal.	$\begin{gathered} 0001 \\ (0001-1 \text { FFF }) \end{gathered}$
$\begin{aligned} & \text { H2-10 } \\ & \text { (0B3D) } \end{aligned}$	Modbus Register 2 Bit Select	Sets the bit of the MEMOBUS/Modbus register output to the MFDO terminal.	$\begin{gathered} 0000 \\ (0000-\text { FFFF }) \end{gathered}$
$\begin{aligned} & \text { H2-40 } \\ & \text { (0B58) } \end{aligned}$	Mbus Reg 15E0h bit0 Output Func	Sets the MFDO for bit 0 of MEMOBUS register 15E0 (Hex.).	$\begin{gathered} F \\ (0-1 F F) \end{gathered}$
$\begin{aligned} & \text { H2-41 } \\ & \text { (0B59) } \end{aligned}$	Mbus Reg 15E0h bit1 Output Func	Sets the MFDO for bit 1 of MEMOBUS register 15E0 (Hex.).	$\begin{gathered} F \\ (0-1 \mathrm{FF}) \end{gathered}$
$\begin{gathered} \mathrm{H} 2-42 \\ (0 \mathrm{~B} 5 \mathrm{~A}) \end{gathered}$	Mbus Reg 15E0h bit2 Output Func	Sets the MFDO for bit 2 of MEMOBUS register 15E0 (Hex.).	$\begin{gathered} F \\ (0-1 \mathrm{FF}) \end{gathered}$
H2-60 (1B46) Expert	Term M1-M2 Secondary Function	Sets the second function for terminal M1-M2. Outputs the logical calculation results of the terminals assigned to functions by H2-01 [Term M1-M2 Function Selection].	$\begin{gathered} \text { F } \\ (0-\mathrm{FF}) \end{gathered}$
H2-61 (1B47) Expert	Terminal M1-M2 Logical Operation	Sets the logical operation for the functions set in H2-01 [Term M1-M2 Function Selection] and H260 [Term M1-M2 Secondary Function].	$\begin{gathered} 0 \\ (0-8) \end{gathered}$
H2-62 (1B48) Expert	Terminal M1-M2 Delay Time	Sets the minimum on time used to output the logical calculation results from terminal M1-M2.	$\begin{gathered} 0.1 \mathrm{~s} \\ (0.0-25.0 \mathrm{~s}) \end{gathered}$
H2-63 (1B49) Expert	Term M3-M4 Secondary Function	Sets the second function for terminal M3-M4. Outputs the logical calculation results of the terminals assigned to functions by H2-02 [Term M3-M4 Function Selection].	$\begin{gathered} \text { F } \\ (0-\mathrm{FF}) \end{gathered}$

7.8 H: Terminal Functions

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
	Terminal M3-M4 Logical Operation	Sets the logical operation for the functions set in H2-02 [Term M3-M4 Function Selection] and H263 [Term M3-M4 Secondary Function].	$\begin{gathered} 0 \\ (0-8) \end{gathered}$
$\begin{gathered} \mathrm{H} 2-65 \\ (1 \mathrm{~B} 4 \mathrm{~B}) \\ \text { Expert } \end{gathered}$	Terminal M3-M4 Delay Time	Sets the minimum on time used to output the logical calculation results from terminal M3-M4.	$\begin{gathered} 0.1 \mathrm{~s} \\ (0.0-25.0 \mathrm{~s}) \end{gathered}$
H2-66 (1B4C) Expert	Term M5-M6 Secondary Function	Sets the second function for terminal M5-M6. Outputs the logical calculation results of the terminals assigned to functions by H2-03 [Terminal M5-M6 Function Select].	$\begin{gathered} \text { F } \\ (0-\mathrm{FF}) \end{gathered}$
H2-67 (1B4D) Expert	Terminal M5-M6 Logical Operation	Sets the logical operation for the functions set in H2-03 [Term M5-M6 Function Selection] and H266 [Term M5-M6 Secondary Function].	$\begin{gathered} 0 \\ (0-8) \end{gathered}$
H2-68 (1B4E) Expert	Terminal M5-M6 Delay Time	Sets the minimum on time used to output the logical calculation results from terminal M5-M6.	$\begin{gathered} 0.1 \mathrm{~s} \\ (0.0-25.0 \mathrm{~s}) \end{gathered}$

- H2-xx: MFDO Setting Values

Setting Value	Function	Description
0	During Run	The terminal activates when you input a Run command and when the drive is outputting voltage. ON: Drive is running OFF : Drive is stopped
1	Zero Speed	The terminal activates when the output frequency < E1-09 [Minimum Output Frequency]. ON : Output frequency < E1-09. OFF : Output frequency \geq E1-09.
2	Speed Agree 1	The terminal activates when the output frequency is in the range of the frequency reference \pm L4-02 [Speed Agree Detection Width]. Note: The detection function operates in the two motor rotation directions. ON : The output frequency is in the range of "frequency reference $\pm L 4-02$ ". OFF : The output frequency does not align with the frequency reference although the drive is running.
3	User-Set Speed Agree 1	The terminal activates when the output frequency is in the range of L4-01 [Speed Agree Detection Level] \pm L4-02 [Speed Agree Detection Width] and in the range of the frequency reference $\pm L 4-02$. Note: The detection function operates in the two motor rotation directions. The drive uses the $L 4-01$ value as the forward/reverse detection level. ON : The output frequency is in the range of " $L 4-01 \pm L 4-02$ " and the range of frequency reference $\pm L 4-02$. OFF : The output frequency is not in the range of " $L 4-01 \pm L 4-02$ " or the range of frequency reference $\pm L 4-02$.
4	Frequency Detection 1	The terminal deactivates when the output frequency > "L4-01 [Speed Agree Detection Level] + L4-02 [Speed Agree Detection Width $]^{\prime \prime}$. After the terminal deactivates, the terminal stays deactivated until the output frequency is at the value of L4-01. Note: The detection function operates in the two motor rotation directions. The drive uses the $L 4-01$ value as the forward/reverse detection level. ON : The output frequency $<L 4-01$, or the output frequency \leq " $L 4-01+L 4-02$ " OFF : The output frequency > "L4-01 + L4-02"
5	Frequency Detection 2	The terminal activates when the output frequency > L4-01 [Speed Agree Detection Level]. After the terminal activates, the terminal stays activated until the output frequency is at the value of "L4-01-L4-02 [Speed Agree Detection Width]". Note: The detection function operates in the two motor rotation directions. The drive uses the $L 4-01$ value as the forward/reverse detection level. ON : The output frequency > L4-01 OFF : The output frequency < "L4-01-L4-02", or the output frequency $\leq L 4-01$
6	Drive Ready	The terminal activates when the drive is ready and running.
7	DC Bus Undervoltage	The terminal activates when the DC bus voltage or control circuit power supply is at the voltage set in L2-05 [Undervoltage Detection Lvl (Uv1)] or less. The terminal also activates when there is a fault with the DC bus voltage. ON : The DC bus voltage $\leq L 2-05$ OFF : The DC bus voltage > L2-05
8	During Baseblock (N.O.)	The terminal activates during baseblock. When the drive is in baseblock, the drive output transistor stops switching and does not make DC bus voltage. ON : During baseblock OFF : The drive is not in baseblock.
9	Frequency Reference from Keypad	Shows the selected frequency reference source. This terminal has no function when part of a bypass configuration.

Setting Value	Function	Description
B	Torque Detection 1 (N.O.)	The terminal activates when the drive detects overtorque or undertorque. ON : The output current/torque $>$ L6-02 [Torque Detection Level 1], or the output current/torque $<L 6-02$ for longer than the time set in L6-03 [Torque Detection Time 1].
C	Frequency Reference Loss	The terminal activates when the drive detects a loss of frequency reference. This terminal has no function when part of a bypass configuration.
E	Fault	The terminal activates when the drive detects a fault. Note: The terminal will not activate for CPF00 and CPF01 [Control Circuit Error] faults.
F	Not Used	Use this setting for unused terminals or to use terminals in through mode. Also use this setting as the PLC contact output via serial communication or the communication option. This signal does not function if signals from the PLC are not configured.
10	Alarm	The terminal activates when the drive detects a minor fault. The terminal will not activate for bypass-specific alarms.
11	Fault Reset Command Active	The terminal activates when the drive receives the Reset command from the control circuit terminal, serial communications, or the communication option.
12	Timer Output	Use this setting when the drive uses the timer function as an output terminal.
13	Speed Agree 2	The terminal activates when the output frequency is in the range of the frequency reference \pm L4-04 [Speed Agree Detection Width (+/-)]. Note: The detection function operates in the two motor rotation directions. ON : The output frequency is in the range of "frequency reference $\pm L 4-04$ ". OFF : The output frequency is not in the range of "frequency reference $\pm L 4-04$ ".
14	User-Set Speed Agree 2	The terminal activates when the output frequency is in the range of L4-03 [Speed Agree Detection Level ($+/-)$] $\pm L 4-04$ [Speed Agree Detection Width ($+/-)]$ and in the range of the frequency reference $\pm L 4-04$. Note: The detection level set in L4-03 is a signed value. The drive will only detect in one direction. ON : The output frequency is in the range of " $L 4-03 \pm L 4-04$ " and the range of frequency reference $\pm L 4-04$. OFF : The output frequency is not in the range of " $L 4-03 \pm L 4-04$ " or the range of frequency reference $\pm L 4-04$.
15	Frequency Detection 3	The terminal deactivates when the output frequency > "L4-03 [Speed Agree Detection Level ($+/-$)] + L4-04 [Speed Agree Detection Width $(+/-)]^{\prime \prime}$. After the terminal deactivates, the terminal stays deactivated until the output frequency is at the value of $L 4-03$. Note: The detection level set in L4-03 is a signed value. The drive will only detect in one direction. ON : The output frequency $<L 4-03$, or the output frequency $\leq L 4-03+L 4-04$. OFF : The output frequency > "L4-03 + L4-04".
16	Frequency Detection 4	The terminal activates when the output frequency > L4-03 [Speed Agree Detection Level ($+/-$)]. After the terminal activates, the terminal stays activated until the output frequency is at the value of "L4-03-L4-04". Note: The detection level set in L4-03 is a signed value. The drive will only detect in one direction. ON : The output frequency $>L 4-03$. OFF : The output frequency $<$ "L4-03-L4-04", or the output frequency $\leq L 4-03$.
17	Torque Detection 1 (N.C.)	The terminal deactivates when the drive detects overtorque or undertorque. OFF : The output current/torque $>L 6-02$ [Torque Detection Level 1], or the output current/torque $<L 6-02$ for longer than the time set in L6-03 [Torque Detection Time 1].
18	Torque Detection 2 (N.O.)	The terminal activates when the drive detects overtorque or undertorque. ON : The output current/torque $>L 6$-05 [Torque Detection Level 2], or the output current/torque $<L 6-05$ for longer than the time set in L6-06 [Torque Detection Time 2].
19	Torque Detection 2 (N.C.)	The terminal deactivates when the drive detects overtorque or undertorque. OFF : The output current/torque $>$ L6-05 [Torque Detection Level 2], or the output current/torque $<L 6-05$ for longer than the time set in L6-06 [Torque Detection Time 2].
1A	During Reverse	The terminal activates when the motor operates in the reverse direction. ON : The motor is operating in the reverse direction. OFF : The motor is operating in the forward direction or the motor stopped.
1B	During Baseblock (N.C.)	The terminal deactivates during baseblock. When the drive is in baseblock, the drive output transistor stops switching and does not make DC bus voltage. ON : The drive is not in baseblock. OFF : During baseblock
1E	Executing Auto-Restart	The terminal activates when the Auto Restart function is trying to restart after a fault.
1F	Motor Overload Alarm (oL1)	The terminal activates when the electronic thermal protection value of the motor overload protective function is a minimum of 90% of the detection level.
20	Drive Overheat Pre-Alarm (oH)	The terminal activates when the drive heatsink temperature is at the level set with L8-02 [Overheat Alarm Level].
21	Safe Torque OFF	The terminal activates (safety stop state) when the safety circuit and safety diagnosis circuit are operating correctly and when terminals $\mathrm{H} 1-\mathrm{HC}$ and $\mathrm{H} 2-\mathrm{HC}$ are OFF (Open). ON : Safety stop state OFF : Safety circuit fault or RUN/READY

7.8 H : Terminal Functions

Setting Value	Function	Description
2 F	Maintenance Notification	The terminal activates when drive components are at their estimated maintenance period. Tells the user about the maintenance period for these items: - IGBT - Cooling fan - Capacitor - Soft charge bypass relay
37	During Frequency Output	The terminal activates when the drive outputs frequency. ON : The drive outputs frequency. OFF : The drive does not output frequency.
38	Drive Enabled	This terminal activates when the H1-xx $=6$ [[Drive Enable] terminal activates.
39	Watt Hour Pulse Output	Outputs the pulse that shows the watt hours.
3A	Drive Overheat Alarm	The terminal activates when the drive heatsink temperature is at the $L 8-02$ [Overheat Alarm Level] setting while $L 8-03=4$ [Overheat Pre-Alarm Selection = Operate at Reduced Speed (L8-19)] and the drive is running.
3D	During Speed Search	The terminal activates when the drive is doing speed search.
42	Pressure Reached	The terminal activates when the drive is at the Pressure Setpoint.
4C	During Fast Stop	The terminal activates when the fast stop is in operation.
4D	oH Pre-Alarm Reduction Limit	The terminal activates when L8-03 $=4$ [Overheat Pre-Alarm Selection $=$ Operate at Reduced Speed (L8-19)] and oH [Heatsink Overheat] does not clear after the drive decreases the frequency for 10 cycles.
51	Sequence Timer 1	The terminal activates when Sequence Timer 1 is active.
52	Sequence Timer 2	The terminal activates when Sequence Timer 2 is active.
53	Sequence Timer 3	The terminal activates when Sequence Timer 3 is active.
54	Sequence Timer 4	The terminal activates when Sequence Timer 4 is active.
58	UL6 Underload Detected	The terminal activates when the drive detected UL6 [Underload or Belt Break Detected].
60	Internal Cooling Fan Failure	The terminal activates when the drive detects a cooling fan failure in the drive.
62	Modbus Reg 1 Status Satisfied	The terminal activates when the bit specified by H2-08 [Modbus Register 1 Bit Select] for the MEMOBUS register address set with H2-07 [Modbus Register 1 Address Select] activates.
63	Modbus Reg 2 Status Satisfied	The terminal activates when the bit specified by H2-10 [Modbus Register 2 Bit Select] for the MEMOBUS register address set with H2-09 [Modbus Register 2 Address Select] activates.
69	External Power 24V Supply	The terminal activates when there is an external 24 V power supply between terminals PS-AC. ON : An external 24 V power supply supplies power. OFF : An external 24 V power supply does not supply power.
6A	Data Logger Error	The terminal activates when the drive detects LoG [Com Error / Abnormal SD card].
71	Low PI2 Control Feedback Level	The terminal activates when the PI2 Control Feedback Level is less than S3-13 [PI2 Control Low Feedback Lvl].
72	High PI2 Control Feedback Level	The terminal activates when the PI2 Control Feedback Level is more than S3-15 [PI2 Control High Feedback Lvl].
89	Output Current Lim	The terminal activates when the output current limit is limiting the drive output speed.
94	Loss of Prime	The terminal activates when the drive is in an LOP [Loss of Prime] condition.
95	Thermostat Fault	The terminal activates when the terminal set for H1-xx $=88$ [MFDI Function Selection $=$ Thermostat Fault] is active.
96	High Feedback	The terminal activates when the drive is in a High Feedback Condition as specified by Y1-11 [High Feedback Level] and Y1-12 [High Feedback Lvl Fault Dly Time] and when the drive detects an HFB [High Feedback Sensed] fault or an HIFB [High Feedback Sensed] alarm.
97	Low Feedback	The terminal activates when the drive is in a Low Feedback Condition as specified by Y1-08 [Low Feedback Level] and Y1-09 [Low Feedback Lvl Fault Dly Time] and when the drive detects an LFB [Low Feedback Sensed] fault or an LOFB [High Feedback Sensed] alarm.
9E	Low PI Auxiliary Control Level	The terminal activates when the PI Aux Feedback Level is less than YF-09 [PI Aux Control Low Level Detect] or if the drive detects an LOAUX [Low PI Aux Feedback Level] fault.
9F	High PI Auxiliary Control Level	The terminal activates when the PI Aux Feedback Level is more than YF-12 [PI Aux Control High Level Detect] or if the drive detects an HIAUX [High PI Aux Feedback Level] fault.
A9	RELAY Operator Control	The terminal changes to OFF or ON when you push the RELAY (F3) button. When the terminal is ON, push F3 to turn it OFF. When the terminal is OFF, push F3 to turn in ON.
AB	Thrust Mode	The terminal activates when the output frequency is between 0.0 Hz and the value set in $Y 4-12$ [Thrust Frequency] and the Thrust Bearing function is active.
AC	Setpoint Not Maintained	The terminal activates when the drive detects $N M S$ [Setpoint Not Met] condition.

Setting Value	Function	Description
B2	BAS Interlock	The terminal activates when the Run command is active or the drive is outputting the voltage. The drive will use this as an actuation signal for an external damper.
B8	Pump Fault	The terminal activates when one of these faults is active: LFB [Low Feedback Sensed], HFB [High Feedback Sensed], NMS [Setpoint Not Met], or EFx [External Fault (Terminal Sx)].
B9	Transducer Loss	The terminal activates when the current into the analog input associated with PID feedback is more than 21 mA or less than 3 mA , or an FDBKL [WIRE Break] Fault or an FDBKL [Feedback Loss Wire Break] Alarm is active.
BA	PI Auxiliary Control Active	The terminal activates when the PI Auxiliary Controller has an effect on the output speed.
BB	Differential Feedback Exceeded	The terminal activates when the difference between the PID Feedback and the value from the terminal set for $H 3-x x=2 D$ [Differential Feedback] is more than Y4-18 [Differential Level] for the time set in Y4-19 [Differential Lvl Detection Time].
BC	Sleep Active	The terminal activates when the Sleep function is active and the drive is not operating. Note: The terminal will not activate for Sleep Boost function.
BD	Start Delay	The terminal activates when the Feedback is more than the start level or the Feedback is less than the Inverse PID and the start timer is timing. Note: You must set Y1-04 [Sleep Wake-up Level] $\neq 0$ and Y1-05 [Sleep Wake-up Level Delay Time] $\neq 0$ to use this function.
BE	Pre-Charge	The terminal activates when the drive is in Pre-Charge Mode.
C0	HAND Mode	The terminal activates when the drive is in HAND Mode operation.
C1	AUTO Mode	The terminal activates when the drive is in AUTO Mode operation.
C2	OFF Mode	The terminal activates when the drive is in OFF Mode operation.
C3	Main Feedback Lost	The terminal activates when the drive loses the main PID feedback.
C4	Backup Feedback Lost	The terminal activates when the drive loses the backup PID feedback.
100	!During Run	The terminal deactivates when you input a Run command and when the drive is outputting voltage. ON : Drive is stopping OFF : Drive is running
101	!Zero Speed	The terminal deactivates when the output frequency < E1-09 [Minimum Output Frequency]. ON : Output frequency \geq value of $E 1-09$. OFF : Output frequency < value of E1-09.
102	!Speed Agree 1	The terminal deactivates when the output frequency is in the range of the frequency reference $\pm L 4-02$ [Speed Agree Detection Width]. Note: The detection function operates in the two motor rotation directions. ON : The output frequency does not align with the frequency reference although the drive is running. OFF : The output frequency is in the range of "frequency reference $\pm L 4-02$ ".
103	!User-Set Speed Agree 1	The terminal deactivates when the output frequency is in the range of L4-01 [Speed Agree Detection Level] \pm L4-02 [Speed Agree Detection Width] and in the range of the frequency reference $\pm L 4-02$. Note: The detection function operates in the two motor rotation directions. The drive uses the $L 4-01$ value as the forward/reverse detection level. ON : The output frequency is not in the range of " $L 4-01 \pm L 4-02$ " or the range of frequency reference $\pm L 4-02$. OFF : The output frequency is in the range of " $L 4-01 \pm L 4-02$ " and the range of frequency reference $\pm L 4-02$.
104	!Frequency Detection 1	The terminal activates when the output frequency > "L4-01 [Speed Agree Detection Level] + L4-02 [Speed Agree Detection Width]". After the terminal activates, the terminal stays activated until the output frequency is at the value of $L 4-01$. Note: The detection function operates in the two motor rotation directions. The drive uses the $L 4-01$ value as the forward/reverse detection level. ON : The output frequency > "L4-01 + L4-02". OFF : The output frequency $<L 4-01$, or the output frequency \leq " $L 4-01+L 4-02$ "
105	!Frequency Detection 2	The terminal deactivates when the output frequency >L4-01 [Speed Agree Detection Level]. After the terminal deactivates, the terminal stays deactivated until the output frequency is at the value of "L4-01-L4-02 [Speed Agree Detection Width]". Note: The detection function operates in the two motor rotation directions. The drive uses the $L 4-01$ value as the forward/reverse detection level. ON : The output frequency < "L4-01-L4-02", or the output frequency $\leq L 4-01$ OFF : The output frequency > L4-01
106	!Drive Ready	The terminal deactivates when the drive is ready and running.
107	!DC Bus Undervoltage	The terminal deactivates when the DC bus voltage or control circuit power supply is at the voltage set in L2-05 [Undervoltage Detection Lvl (Uv1)] or less. The terminal also deactivates when there is a fault with the DC bus voltage. ON : The DC bus voltage > L2-05 OFF : The DC bus voltage $\leq L 2-05$

7.8 H : Terminal Functions

Setting Value	Function	Description
108	!During Baseblock (N.O.)	The terminal deactivates during baseblock. When the drive is in baseblock, the drive output transistor stops switching and does not make DC bus voltage. ON : The drive is not in baseblock. OFF : During baseblock.
109	!Frequency Reference from Keypad	Shows the selected frequency reference source. ON : Parameter bl-01 [Frequency Reference Selection 1] is the frequency reference source. OFF : The keypad is the frequency reference source.
10B	!Torque Detection 1 (N.O.)	The terminal deactivates when the drive detects overtorque or undertorque. OFF : The output current/torque > L6-02 [Torque Detection Level 1], or < L6-02 for longer than the time set with L6-03 [Torque Detection Time 1].
10C	!Frequency Reference Loss	The terminal deactivates when the drive detects a loss of frequency reference.
10E	!Fault	The terminal deactivates when the drive detects a fault. Note: The terminal will not deactivate for CPF00 and CPF01 [Control Circuit Error] faults.
110	! Alarm	The terminal deactivates when the drive detects a minor fault.
111	!Fault Reset Command Active	The terminal deactivates when the drive receives the Reset command from the control circuit terminal, serial communications, or the communication option.
112	!Timer Output	Use this setting when the drive uses the timer function as an output terminal.
113	!Speed Agree 2	The terminal deactivates when the output frequency is in the range of the frequency reference $\pm L 4$ - 04 [Speed Agree Detection Width (+/-)]. Note: The detection function operates in the two motor rotation directions. ON : The output frequency is not in the range of "frequency reference $\pm L 4-04$ ". OFF : The output frequency is in the range of "frequency reference $\pm L 4-04$ ".
114	!User-Set Speed Agree 2	The terminal deactivates when the output frequency is in the range of L4-03 [Speed Agree Detection Level ($+/-$-)] \pm L4-04 [Speed Agree Detection Width ($+/-)]$ and in the range of the frequency reference $\pm L 4-04$. Note: The detection level set in $L 4-03$ is a signed value. The drive will only detect in one direction. ON : The output frequency is not in the range of " $L 4-03 \pm L 4-04$ " or the range of frequency reference $\pm L 4-04$. OFF : The output frequency is in the range of " $L 4-03 \pm L 4-04$ " and the range of frequency reference $\pm L 4-04$.
115	!Frequency Detection 3	The terminal activates when the output frequency > "L4-03 [Speed Agree Detection Level ($+/-$)] + L4-04 [Speed Agree Detection Width $(+/-)]^{\prime \prime}$. After the terminal activates, the terminal stays activated until the output frequency is at the value of $L 4-03$. Note: The detection level set in $L 4-03$ is a signed value. The drive will only detect in one direction. ON : The output frequency > "L4-03 + L4-04" OFF : The output frequency $<L 4-03$, or the output frequency \leq " $L 4-03+L 4-04$ "
116	!Frequency Detection 4	The terminal deactivates when the output frequency > L4-03 [Speed Agree Detection Level ($+/-)$]. After the terminal deactivates, the terminal stays deactivated until the output frequency is at the value of "L4-03-L4-04". Note: The detection level set in $L 4-03$ is a signed value. The drive will only detect in one direction. ON : The output frequency < "L4-03-L4-04", or the output frequency $\leq L 4-03$ OFF: The output frequency > L4-03
117	!Torque Detection 1 (N.C.)	The terminal activates when the drive detects overtorque or undertorque. ON : The output current/torque $>$ L6-02 [Torque Detection Level 1], or the output current/torque $<L 6-02$ for longer than the time set in L6-03 [Torque Detection Time 1].
118	!Torque Detection 2 (N.O.)	The terminal deactivates when the drive detects overtorque or undertorque. OFF : The output current/torque $>L 6-05$ [Torque Detection Level 2], or the output current/torque $<L 6-05$ for longer than the time set in L6-06 [Torque Detection Time 2].
119	!Torque Detection 2 (N.C.)	The terminal activates when the drive detects overtorque or undertorque. ON : The output current/torque $>L 6$-05 [Torque Detection Level 2], or the output current/torque $<L 6-05$ for longer than the time set in L6-06 [Torque Detection Time 2].
11A	!During Reverse	The terminal deactivates when the motor operates in the reverse direction. ON : The motor is operating in the forward direction or the motor stopped. OFF : The motor is operating in the reverse direction.
11B	!During Baseblock (N.C.)	The terminal activates during baseblock. When the drive is in baseblock, the drive output transistor stops switching and does not make DC bus voltage. ON : During baseblock. OFF : The drive is not in baseblock.
11 E	!Executing Auto-Restart	The terminal deactivates when the Auto Restart function is trying to restart after a fault.
11F	!Motor Overload Alarm (oL1)	The terminal deactivates when the electronic thermal protection value of the motor overload protective function is a minimum of 90% of the detection level.
120	!Drive Overheat Pre-Alarm (oH)	The terminal deactivates when the drive heatsink temperature is at the level set with L8-02 [Overheat Alarm Level].

Setting Value	Function	Description
121	!Safe Torque OFF	The terminal deactivates (safety stop state) when the safety circuit and safety diagnosis circuit are operating correctly and when terminals $\mathrm{H} 1-\mathrm{HC}$ and $\mathrm{H} 2-\mathrm{HC}$ are OFF (Open). ON : Safety circuit fault or RUN/READY OFF : Safety stop state
12F	!Maintenance Notification	The terminal deactivates when drive components are at their estimated maintenance period. Tells the user about the maintenance period for these items: - IGBT - Cooling fan - Capacitor - Soft charge bypass relay
137	!During Frequency Output	The terminal deactivates when the drive outputs frequency. ON : The drive does not output frequency. OFF : The drive outputs frequency.
138	!Drive Enabled	This terminal deactivates when the H1-xx $=6$ [[Drive Enable] terminal deactivates.
139	!Watt Hour Pulse Output	Outputs the pulse that shows the watt hours.
13A	!Drive Overheat Alarm	The terminal deactivates when the drive heatsink temperature is at the L8-02 [Overheat Alarm Level] setting while $L 8-03=4$ [Overheat Pre-Alarm Selection $=$ Operate at Reduced Speed (L8-19)] and the drive is running.
13D	!During Speed Search	The terminal deactivates when the drive is doing speed search.
142	!Pressure Reached	The terminal deactivates when the drive is at the Pressure Setpoint.
14C	!During Fast Stop	The terminal deactivates when the fast stop is in operation.
14D	!oH Pre-Alarm Reduction Limit	The terminal deactivates when $L 8-03=4$ [Overheat Pre-Alarm Selection $=$ Operate at Reduced Speed (L8-19)] and oH [Heatsink Overheat] does not clear after the drive decreases the frequency for 10 cycles.
151	!Sequence Timer 1	The terminal deactivates when Sequence Timer 1 is active.
152	!Sequence Timer 2	The terminal deactivates when Sequence Timer 2 is active.
153	!Sequence Timer 3	The terminal deactivates when Sequence Timer 3 is active.
154	!Sequence Timer 4	The terminal deactivates when Sequence Timer 4 is active.
158	!UL6 Underload Detected	The terminal deactivates when the drive detected UL6 [Underload or Belt Break Detected].
160	!Internal Cooling Fan Failure	The terminal deactivates when the drive detects a cooling fan failure in the drive.
162	!Modbus Reg 1 Status Satisfied	The terminal deactivates when the bit specified by H2-08 [Modbus Register 1 Bit Select] for the MEMOBUS register address set with H2-07 [Modbus Register 1 Address Select] activates.
163	!Modbus Reg 2 Status Satisfied	The terminal deactivates when the bit specified by H2-10 [Modbus Register 2 Bit Select] for the MEMOBUS register address set with H2-09 [Modbus Register 2 Address Select] activates.
169	!External Power 24V Supply	The terminal deactivates when there is an external 24 V power supply between terminals PS-AC. ON : An external 24 V power supply does not supply power. OFF : An external 24 V power supply supplies power.
16A	!Data Logger Error	The terminal deactivates when the drive detects LoG [Com Error / Abnormal SD card].
171	!Low PI2 Control Feedback Level	The terminal deactivates when the PI2 Control Feedback Level is less than S3-13 [PI2 Control Low Feedback Lvl].
172	!High PI2 Control Feedback Level	The terminal deactivates when the PI2 Control Feedback Level is more than S3-15 [PI2 Control High Feedback Lvl].
189	! Output Current Lim	The terminal deactivates when the output current limit is limiting the drive output speed.
194	!Loss of Prime	The terminal deactivates when the drive is in an LOP [Loss of Prime] condition.
195	!Thermostat Fault	The terminal deactivates when the terminal set for H1-xx $=88$ [MFDI Function Selection $=$ Thermostat Fault] is active.
196	!High Feedback	The terminal deactivates when the drive is in a High Feedback Condition as specified by Y1-11 [High Feedback Level] and Y1-12 [High Feedback Lvl Fault Dly Time] and when the drive detects an HFB [High Feedback Sensed] fault or an HIFB [High Feedback Sensed] alarm.
197	!Low Feedback	The terminal deactivates when the drive is in a Low Feedback Condition as specified by Y1-08 [Low Feedback Level] and Y1-09 [Low Feedback Lvl Fault Dly Time] and when the drive detects an LFB [Low Feedback Sensed] fault or an LOFB [High Feedback Sensed] alarm.
19E	!Low PI Auxiliary Control Level	The terminal deactivates when the PI Aux Feedback Level is less than YF-09 [PI Aux Control Low Level Detect] or if the drive detects an LOAUX [Low PI Aux Feedback Level] fault.
19F	!High PI Auxiliary Control Level	The terminal deactivates when the PI Aux Feedback Level is more than YF-12 [PI Aux Control High Level Detect] or if the drive detects an HIAUX [High PI Aux Feedback Level] fault.
1A9	!RELAY Operator Control	The terminal changes to OFF or ON when you push the RELAY (F3 button. When the terminal is ON, push F3 to turn it OFF. When the terminal is OFF, push F3 to turn in ON.

7.8 H : Terminal Functions

Setting Value	Function	Description
1 AB	!Thrust Mode	The terminal deactivates when the output frequency is between 0.0 Hz and the value set in Y4-12 [Thrust Frequency] and the Thrust Bearing function is active.
1AC	!Setpoint Not Maintained	The terminal deactivates when the drive detects NMS [Setpoint Not Met] condition.
1B2	!BAS Interlock	The terminal deactivates when the Run command is active or the drive is outputting the voltage. The drive will use this as an actuation signal for an external damper.
188	!Pump Fault	The terminal deactivates when one of these faults is active: LFB [Low Feedback Sensed], HFB [High Feedback Sensed], NMS [Setpoint Not Met], or EFx [External Fault (Terminal Sx)].
1B9	!Transducer Loss	The terminal deactivates when the current into the analog input associated with PID feedback is more than 21 mA or less than 3 mA, or an FDBKL [WIRE Break] Fault or an FDBKL [Feedback Loss Wire Break] Alarm is active.
1BA	!PI Auxiliary Control Active	The terminal deactivates when the PI Auxiliary Controller has an effect on the output speed.
1BB	!Differential Feedback Exceeded	The terminal deactivates when the difference between the PID Feedback and the value from the terminal set for $H 3-x x=2 D$ [Differential Feedback] is more than Y4-18 [Differential Level] for the time set in Y4-19 [Differential Lvl Detection Time].
1BC	!Sleep Active	The terminal deactivates when the Sleep function is active and the drive is not operating. Note: The terminal will not deactivate for Sleep Boost function.
1BD	!Start Delay	The terminal deactivates when the Feedback is more than the start level or the Feedback is less than the Inverse PID and the start timer is timing. Note: You must set Y1-04 [Sleep Wake-up Level] $\neq 0$ and Y1-05 [Sleep Wake-up Level Delay Time] $\neq 0$ to use this function.
1BE	!Pre-Charge	The terminal deactivates when the drive is in Pre-Charge Mode.
1 C 0	!HAND Mode	The terminal deactivates when the drive is in HAND Mode operation.
1C1	!AUTO Mode	The terminal deactivates when the drive is in AUTO Mode operation.
1-2	! OFF Mode	The terminal deactivates when the drive is in OFF Mode operation.
1 C 3	!Main Feedback Lost	The terminal deactivates when the drive loses the main PID feedback.
1C4	!Backup Feedback Lost	The terminal deactivates when the drive loses the backup PID feedback.

- H3: Analog Inputs

$\begin{aligned} & \text { No. } \\ & \text { (Hex.) } \end{aligned}$	Name	Description	Default (Range)
$\begin{aligned} & \text { H3-01 } \\ & (0410) \end{aligned}$	Terminal A1 Signal Level Select	Sets the input signal level for MFAI terminal A1. $0: 0 \text { to } 10 \mathrm{~V} \text { (Lower Limit at } 0 \text {) }$ $2: 4$ to 20 mA $3: 0$ to 20 mA	$\begin{gathered} 0 \\ (0-3) \end{gathered}$
$\begin{aligned} & \text { H3-02 } \\ & (0434) \end{aligned}$	Terminal A1 Function Selection	Sets the function for MFAI terminal A1.	$\begin{gathered} 0 \\ (0-31) \end{gathered}$
$\begin{gathered} \text { H3-03 } \\ (0411) \\ \text { RUN } \end{gathered}$	Terminal A1 Gain Setting	Sets the gain of the analog signal input to MFAI terminal A1.	$\begin{gathered} 100.0 \% \\ (-999.9-+999.9 \%) \end{gathered}$
H3-04 (0412) RUN	Terminal A1 Bias Setting	Sets the bias of the analog signal input to MFAI terminal A1.	$\begin{gathered} 0.0 \% \\ (-999.9-+999.9 \%) \end{gathered}$
$\begin{aligned} & \mathrm{H} 3-09 \\ & (0417) \end{aligned}$	Terminal A2 Signal Level Select	Sets the input signal level for MFAI terminal A2. $\begin{aligned} & 0: 0-10 \mathrm{~V}(\text { LowLim }=0) \\ & 2: 4 \text { to } 20 \mathrm{~mA} \\ & 3: 0 \text { to } 20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2 \\ (0-3) \end{gathered}$
$\begin{aligned} & \text { H3-10 } \\ & (0418) \end{aligned}$	Terminal A2 Function Selection	Sets the function for MFAI terminal A2. Note: The default setting for H3-10 changes when b5-01 [PID Mode Setting] changes: -b5-01 $=0$ [Disabled]: 0 - $b 5-01 \neq 0$: B	Determined by b5-01 $(0-31)$
H3-11 (0419) RUN	Terminal A2 Gain Setting	Sets the gain of the analog signal input to MFAI terminal A2.	$\begin{gathered} 100.0 \% \\ (-999.9-+999.9 \%) \end{gathered}$
$\begin{gathered} \text { H3-12 } \\ (041 \mathrm{~A}) \\ \text { RUN } \\ \hline \end{gathered}$	Terminal A2 Bias Setting	Sets the bias of the analog signal input to MFAI terminal A2.	$\begin{gathered} 0.0 \% \\ (-999.9-+999.9 \%) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { H3-13 } \\ & \text { (041B) } \end{aligned}$	Analog Input FilterTime Constant	Sets the time constant for primary delay filters on MFAI terminals.	$\begin{gathered} 0.03 \mathrm{~s} \\ (0.00-2.00 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { H3-14 } \\ & (041 \mathrm{C}) \end{aligned}$	Analog Input Terminal Enable Sel	Sets which terminal or terminals to enable when H1-xx $=C$ [MFDI Function Selection $=$ Analog Terminal Enable Selection] is activated. 1: Terminal A1 only 2 : Terminal A2 only 3 : Terminals A1 and A2	$\begin{gathered} 2 \\ (1-3) \end{gathered}$
$\begin{aligned} & \mathrm{H} 3-16 \\ & (02 \mathrm{~F} 0) \end{aligned}$	Terminal A1 Offset	Sets the offset level for analog signals input to terminal A1. Usually it is not necessary to change this setting.	$\begin{gathered} 0 \\ (-500-+500) \end{gathered}$
$\begin{aligned} & \mathrm{H} 3-17 \\ & (02 \mathrm{~F} 1) \end{aligned}$	Terminal A2 Offset	Sets the offset level for analog signals input to terminal A2. Usually it is not necessary to change this setting.	$\begin{gathered} 0 \\ (-500-+500) \end{gathered}$
$\begin{aligned} & \mathrm{H} 3-40 \\ & (0 \mathrm{~B} 5 \mathrm{C}) \end{aligned}$	Mbus Reg 15C1h Input Function	Sets the MEMOBUS AII function.	$\begin{gathered} F \\ (4-2 E) \end{gathered}$
$\begin{aligned} & \text { H3-41 } \\ & (0 \mathrm{~B} 5 \mathrm{~F}) \end{aligned}$	Mbus Reg 15C2h Input Function	Sets the MEMOBUS AI2 function.	$\begin{gathered} F \\ (4-2 E) \end{gathered}$
$\begin{aligned} & \mathrm{H} 3-42 \\ & (0 \mathrm{~B} 62) \end{aligned}$	Mbus Reg 15C3h Input Function	Sets the MEMOBUS AI3 function.	$\begin{gathered} F \\ (4-2 E) \end{gathered}$
$\begin{aligned} & \mathrm{H} 3-43 \\ & (117 \mathrm{~F}) \end{aligned}$	Mbus Reg Inputs FilterTime Const	Sets the time constant to apply a primary delay filter to the MEMOBUS analog input register values.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-2.00 \mathrm{~s}) \end{gathered}$

- H3-xx: MFAI Setting Values

Setting Value	Function	
0	Frequency Reference	This selection has no effect. Use bypass analog input (TB4-2) as the frequency reference. Refer to the Bypass Controller section on page 48 for more information.
1	Frequency Gain	The drive multiplies the analog frequency reference with the input value from the MFAI set with this function.
2	Auxiliary Frequency Reference 1	Sets Reference 2 through multi-step speed reference to enable the command reference (Auxiliary Frequency Reference 1) from the analog input terminal set here. This value is a percentage where the Maximum Output Frequency setting is a setting value of 100\%.
3	Auxiliary Frequency Reference 2	Sets Reference 3 through multi-step speed reference to enable the command reference (Auxiliary Frequency Reference 2) from the analog input terminal set here. This value is a percentage where the Maximum Output Frequency setting is a setting value of 100\%.
4	Output Voltage Bias	Set this parameter to input a bias signal and amplify the output voltage.

7.8 H : Terminal Functions

Setting Value	Function	Description
25	PI2 Control Setpoint	Enters the PI2 Control setpoint level as a percentage of the S3-02 [PI2 Control Transducer Scale] value. Note: Parameters S3-03 [PI2 Control Decimal Place Pos] and S3-04 [PI2 Control Unit Selection] set the resolution and unit.
26	PI2 Control Feedback	Enters the PI2 Control feedback level as a percentage of the S3-02 [PI2 Control Transducer Scale] value. Note: Parameters S3-03 [PI2 Control Decimal Place Pos] and S3-04 [PI2 Control Unit Selection] set the resolution and unit.
27	PI Auxiliary Control Feedback	Enters the PI Auxiliary Control feedback value when YF-01 $=1$ [PI Aux Control Selection $=$ Enabled $]$. Note: - The full-scale of the analog signal goes from 0\% to YF-02 [PI Aux Control Transducer Scale]. - Parameter YF-22 [PI Aux Level Decimal Place Pos] sets the resolution.
2B	Emergency Override PID Feedback	This input is the PID Feedback source when Emergency Override is running in PID mode (S6-02 $=2$ or 3 [Emergency Override Ref Selection = System PID Mode or Independent PID Mode]). Note: - When S6-02 = 2 [Emergency Override Ref Selection = System PID Mode], the full-scale of the analog signal goes from b5-71 [Min PID Transducer Scaling] to b5-38 [PID User Unit Display Scaling]. - When S6-02 $=3$ [Independent PID Mode], the full-scale of the analog signal goes from b5-71 to S6-03 [EMOVR Independent PID Scale]. - When you set MEMOBUS register 3A93h bit 4, register 3A95h becomes the Emergency Override Feedback source.
2 C	Emergency Override PID Setpoint	This input is the PID Setpoint source when Emergency Override is running in PID mode (S6-02 $=2$ or 3 [Emergency Override Ref Selection = System PID Mode or Independent PID ModeJ). Note: - When S6-02 = 2 [Emergency Override Ref Selection = System PID Mode], the full-scale of the analog signal goes from b5-71 [Min PID Transducer Scaling] to b5-38 [PID User Unit Display Scaling]. - When S6-02 $=3$ [Independent PID Mode], the full-scale of the analog signal goes from b5-71 to S6-03 [EMOVR Independent PID Scale]. - When you set MEMOBUS register 3A93h bit 5, register 3A96h becomes the Emergency Override Setpoint source.
2D	Differential Level Source	Enters a feedback value to calculate the Differential Level between the Differential Level Source feedback and the primary PID Feedback $[H 3-x x=B]$. Note: The full-scale of the analog signal goes from b5-71 [Min PID Transducer Scaling] to b5-38 [PID User Unit Display Scaling].
2E	HAND Frequency Ref or Setpoint	Enters the S5-05 [HAND Frequency Reference] value or the S5-06 [HAND Setpoint] value. When S5-01 $=0$ [HAND Frequency Reference Source $=$ HAND Analog Input] and S5-03 $=0$ [HAND Mode PI Selection $=$ Disabled], the drive enters HAND Frequency Reference. When $b 5-01 \neq 0, S 5-01=0$, and $S 5-03=1$ [Enabled], the drive enters HAND Setpoint. Note: - When PID is enabled, the full-scale of the analog signal goes from b5-71 [Min PID Transducer Scaling] to b5-38 [PID User Unit Display Scaling]. - When PID is disabled, the drive enters this analog signal as the percentage of the E1-04 [Maximum Output Frequency] value.

- H4: Analog Outputs

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { H4-01 } \\ & (041 \mathrm{D}) \end{aligned}$	Terminal FM Analog Output Select	Sets the monitor number to send from MFAO terminal FM. Set the x-xx part of the $U x-x x$ [Monitor]. For example, set $H 4-01=102$ to monitor $U 1-02$ [Output Frequency].	$\begin{gathered} 102 \\ (000-999) \end{gathered}$
H4-02 (041E) RUN	Terminal FM Analog Output Gain	Sets the gain of the monitor signal that is sent from MFAO terminal FM. Sets the analog signal output level from the terminal FM at 10 V or 20 mA as 100% when an output for monitoring items is 100%.	$\begin{gathered} 100.0 \% \\ (-999.9-+999.9 \%) \end{gathered}$
H4-03 (041F) RUN	Terminal FM Analog Output Bias	Sets the bias of the monitor signal that is sent from MFAO terminal FM. Set the level of the analog signal sent from terminal FM at 10 V or 20 mA as 100% when an output for monitoring items is 0%.	$\begin{gathered} 0.0 \% \\ (-999.9-+999.9 \%) \end{gathered}$
$\begin{aligned} & \mathrm{H} 4-04 \\ & (0420) \end{aligned}$	Terminal AM Analog Output Select	Sets the monitoring number to be output from the MFAO terminal AM. Set the x-xx part of the $U x$-xx [Monitor]. For example, set $H 4-04=103$ to monitor U1-03 [Output Current].	$\begin{gathered} 103 \\ (000-999) \end{gathered}$
H4-05 (0421) RUN	Terminal AM Analog Output Gain	Sets the gain of the monitor signal that is sent from MFAO terminal AM. When an output for monitoring items is 0%, this parameter sets the analog signal output level from the AM terminal at 10 V or 20 mA as 100%.	$\begin{gathered} 50.0 \% \\ (-999.9-+999.9 \%) \end{gathered}$
H4-06 (0422) RUN	Terminal AM Analog Output Bias	Sets the bias of the monitor signal that is sent from MFAO terminal AM. When an output for monitoring items is 0%, this parameter sets the analog signal output level from the AM terminal at 10 V or 20 mA as 0%.	$\begin{gathered} 0.0 \% \\ (-999.9-+999.9 \%) \end{gathered}$
$\begin{aligned} & \mathrm{H} 4-07 \\ & (0423) \end{aligned}$	Terminal FM Signal Level Select	Sets the MFAO terminal FM output signal level. Note: Set jumper S 5 on the control circuit terminal block accordingly when you change this parameter. $0: 0 \text { to } 10 \mathrm{Vdc}$ $2: 4$ to 20 mA	$\begin{gathered} 0 \\ (0,2) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
H4-08 (0424)	Terminal AM Signal Level Select	Sets the MFAO terminal AM output signal level. Note: Set jumper S5 on the control circuit terminal block accordingly when you change this parameter. $0: 0$ to 10 Vdc $2: 4$ to 20 mA	0
$(0,2)$			
H4-20 $(0 \mathrm{~B} 53)$	Analog Power Monitor 100% Level	Sets the level at 10 V when you set $U 1-08$ [Output Power] for analog output.	0.00 kW
$(0.00-650.00 \mathrm{~kW})$			

- H5: Serial Communication

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \mathrm{H} 5-01 \\ & (0425) \end{aligned}$	Drive Node Address	Sets the communication slave address for drives. Note: - Restart the drive after you change the parameter setting. - Setting 0 will not let the drive respond to serial communications.	1 FH (Determined by protocol)
$\begin{aligned} & \mathrm{H} 5-02 \\ & (0426) \end{aligned}$	Communication Speed Selection	Sets the communications speed for serial communications. Note: Re-energize the drive or set $H 5-20=1$ [Communication Parameters Reload $=$ Reload Now] after you change the parameter setting. $0: 1200 \mathrm{bps}$ $1: 2400 \mathrm{bps}$ 2 : 4800 bps 3: 9600 bps 4: 19.2 kbps $5: 38.4 \mathrm{kbps}$ $6: 57.6 \mathrm{kbps}$ 7 : 76.8 kbps $8: 115.2 \mathrm{kbps}$	3 (Determined by protocol)
$\begin{aligned} & \mathrm{H} 5-03 \\ & (0427) \end{aligned}$	Communication Parity Selection	Sets the communications parity used for serial communications. Note: Re-energize the drive or set $H 5-20=1$ [Communication Parameters Reload $=$ Reload Now] after you change the parameter setting. 0 : No parity 1 : Even parity 2 : Odd parity	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{aligned} & \mathrm{H} 5-04 \\ & (0428) \end{aligned}$	Communication Error Stop Method	Sets the motor Stopping Method when the drive detects a serial communication Error condition. 0 : Ramp to Stop : Coast to Stop 2 : Fast Stop (Use C1-09) 3 : Alarm Only 4 : Run at H5-34 (CE Go-To-Freq)	$\begin{gathered} 3 \\ (0-4) \end{gathered}$
$\begin{aligned} & \mathrm{H} 5-05 \\ & (0429) \end{aligned}$	Comm Fault Detection Selection	Sets the function that detects $C E$ [Serial Communication Error] issues during serial communications. $\begin{aligned} & 0: \text { Disabled } \\ & 1: \text { Enabled } \end{aligned}$	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { H5-06 } \\ & (042 \mathrm{~A}) \end{aligned}$	Drive Transmit Wait Time	Sets the time to wait to send a response message after the drive receives a command message from the master. Note: Restart the drive after changing the parameter setting.	$\begin{gathered} 5 \mathrm{~ms} \\ (0-65 \mathrm{~ms}) \end{gathered}$
$\begin{aligned} & \text { H5-08 } \\ & \text { (062D) } \end{aligned}$	Communication Protocol Selection	Selects the communication protocol. 0 : Modbus/MEMOBUS 1 : Metasys/N2 2 : Apogee/P1 3 : BACnet	$\begin{gathered} 3 \\ (0-3) \end{gathered}$
$\begin{aligned} & \mathrm{H} 5-09 \\ & (0435) \end{aligned}$	CE Detection Time	Sets the detection time for CE [Serial Communication Error] issues when communication stops.	$\begin{gathered} 2.0 \mathrm{~s} \\ (0.0-10.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \mathrm{H} 5-10 \\ & (0436) \end{aligned}$	Modbus Register 0025H Unit Sel	Sets the unit of measure used for the serial communications monitor register 0025 H (output voltage reference monitor). $0: 0.1 \mathrm{~V}$ units $1: 1 \mathrm{~V}$ units	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{aligned} & \mathrm{H} 5-11 \\ & (043 \mathrm{C}) \end{aligned}$	Comm ENTER Command Mode	Sets the function to make the Enter command necessary to change parameters through serial communications. 0 : ENTER Command Required 1 : ENTER Command Not Required	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { H5-14 } \\ & \text { (310D) } \end{aligned}$	BACnet Device Obj ID LOW BITS	Sets the lower bits of the BACnet device object ID as a 4-digit hexadecimal number.	$\begin{gathered} 0001 \\ (0000-\text { FFFF }) \end{gathered}$
$\begin{aligned} & \mathrm{H} 5-15 \\ & (310 \mathrm{E}) \end{aligned}$	BACnet Device Obj ID HIGH BITS	Sets the upper bits of the BACnet device object ID as a 4-digit hexadecimal number.	$\begin{gathered} 0000 \\ (0000-003 \mathrm{~F}) \end{gathered}$
$\begin{aligned} & \mathrm{H} 5-18 \\ & (11 \mathrm{~A} 2) \end{aligned}$	Motor Speed Filter over Comms	Sets the filter time constant used when monitoring motor speed during serial communications or with a communication option.	$\begin{gathered} 0 \mathrm{~ms} \\ (0-100 \mathrm{~ms}) \end{gathered}$
$\begin{aligned} & \text { H5-20 } \\ & \text { (0B57) } \end{aligned}$	Communication Parameters Reload	Sets the function to immediately enable updated serial communications parameters. 0 : Reload at Next Power Cycle 1 : Reload Now	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \mathrm{H} 5-22 \\ & (11 \mathrm{CF}) \end{aligned}$	Speed Search from MODBUS	Enables the serial communication register Speed Search function (bit 0 of 15DFH). 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { H5-23 } \\ & \text { (158D) } \end{aligned}$	BACnet Max Master	Sets the maximum number of master MAC ID to scan to when the drive polls for the next node (Poll for Master).	$\begin{gathered} 7 \mathrm{~F} \\ (1-7 \mathrm{~F}) \end{gathered}$
$\begin{gathered} \mathrm{H} 5-24 \\ (3 \mathrm{DA} 0) \end{gathered}$	BACnet Max Info Frames	Sets the maximum number of information frames that the bypass will send per token cycle in BACnet.	$\begin{gathered} 3 \\ (1-255) \end{gathered}$
$\begin{gathered} \text { H5-25 } \\ (1589) \\ \text { RUN } \end{gathered}$	Function 5A Register 1 Selection	Returns the contents of the specified serial communications register when responding to the master device.	$\begin{gathered} 0044 \mathrm{H} \text { (U1-05) } \\ (0000 \mathrm{H}-\mathrm{FFFFH}) \end{gathered}$
$\begin{gathered} \text { H5-26 } \\ (158 \mathrm{~A}) \\ \text { RUN } \end{gathered}$	Function 5A Register 2 Selection	Returns the contents of the specified serial communications register when responding to the master device.	$\begin{gathered} 0045 \mathrm{H} \text { (U1-06) } \\ (0000 \mathrm{H}-\mathrm{FFFFH}) \end{gathered}$
H5-27 (158B) RUN	Function 5A Register 3 Selection	Returns the contents of the specified serial communications register when responding to the master device.	$\begin{gathered} 0042 \mathrm{H}(\mathrm{U} 1-03) \\ (0000 \mathrm{H}-\mathrm{FFFFH}) \end{gathered}$
$\begin{gathered} \text { H5-28 } \\ (158 \mathrm{C}) \\ \text { RUN } \end{gathered}$	Function 5A Register 4 Selection	Returns the contents of the specified serial communications register when responding to the master device.	$\begin{gathered} 0049 \mathrm{H} \text { (U1-10) } \\ (0000 \mathrm{H}-\mathrm{FFFFH}) \end{gathered}$
$\begin{aligned} & \text { H5-33 } \\ & \text { (3FB3) } \end{aligned}$	Power-up CALL Alarm	Enables and disables CALL [Serial Comm Transmission Error] alarm detection. 0 : Disabled 1 : Enabled	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
H5-34 (3FB4) RUN	Comm Error (CE) Go-ToFrequency	Sets the speed at which the drive will run when H5-04 $=4$ [Communication Error Stop Method $=$ Run at H5-34] and there is a CE.	$\begin{gathered} 0.0 \mathrm{~Hz} \\ (0.0-400.0 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { H5-35 } \\ \text { (3FB5) } \\ \text { RUN } \end{gathered}$	Comm Error (CE) Go-To- Timeout	When $H 5-04=4$ [Communication Error Stop Method $=$ Run at H5-34] and a CE is present, the drive will run at the H5-34 [Comm Error (CE) Go-To-Frequency] speed for this length of time before it triggers a $C E$ fault. Note: Set this parameter to 0 s to disable the time-out.	$\begin{gathered} 0 \mathrm{~s} \\ (0-6000 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { H5-36 } \\ & \text { (3FB6) } \end{aligned}$	CE Fault Restart Select	Sets the drive to restart (L5-01 [Number of Auto-Restart Attempts]) after a $C E$ fault. 0 : No Retry 1 : Retry	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

- H7: Virtual MFIO selection

No. (Hex.)	Name	Description	Default (Range)
H7-00 $(116 \mathrm{~F})$ Expert	Virtual MFIO selection	Sets the function to enable and disable the virtual I/O function. Set this parameter to 1 to operate the virtual I/O function. $0:$ Disabled $1:$ Enabled	0 $(0,1)$
H7-01 (1185) Expert	1	Virtual Multi-Function Input	Sets the function that enters the virtual input set in $H 7-10$ [Virtual Multi-Function Output 1$].$

$\begin{aligned} & \text { No. } \\ & \text { (Hex.) } \end{aligned}$	Name	Description	Default (Range)
$\begin{aligned} & \text { H7-02 } \\ & (1186) \\ & \text { Expert } \end{aligned}$	Virtual Multi-Function Input 2	Sets the function that enters the virtual input set in H7-12 [Virtual Multi-Function Output 2].	$\begin{gathered} F \\ (3-1 \mathrm{~A} 8) \end{gathered}$
$\begin{aligned} & \text { H7-03 } \\ & (1187) \\ & \text { Expert } \end{aligned}$	Virtual Multi-Function Input 3	Sets the function that enters the virtual input set in H7-14 [Virtual Multi-Function Output 3].	$\begin{gathered} F \\ (3-1 \mathrm{~A} 8) \end{gathered}$
$\begin{aligned} & \text { H7-04 } \\ & (1188) \\ & \text { Expert } \end{aligned}$	Virtual Multi-Function Input 4	Sets the function that enters the virtual input set in H7-16 [Virtual Multi-Function Output 4].	$\begin{gathered} F \\ (3-1 \mathrm{~A} 8) \end{gathered}$
H7-10 (11A4) Expert	Virtual Multi-Function Output 1	Sets the function for virtual digital output 1.	$\begin{gathered} F \\ (0-1 \mathrm{C} 4) \end{gathered}$
H7-11 (11A5) Expert	Virtual Output 1 Delay Time	Sets the minimum ON time for virtual digital output 1.	$\begin{gathered} 0.1 \mathrm{~s} \\ (0.0-25.0 \mathrm{~s}) \end{gathered}$
H7-12 (11A6) Expert	Virtual Multi-Function Output 2	Sets the function for virtual digital output 2 .	$\begin{gathered} F \\ (0-1 \mathrm{C} 4) \end{gathered}$
H7-13 (11A7) Expert	Virtual Output 2 Delay Time	Sets the minimum ON time for virtual digital output 2 .	$\begin{gathered} 0.1 \mathrm{~s} \\ (0.0-25.0 \mathrm{~s}) \end{gathered}$
H7-14 (11A8) Expert	Virtual Multi-Function Output 3	Sets the function for virtual digital output 3 .	$\begin{gathered} F \\ (0-1 \mathrm{C} 4) \end{gathered}$
H7-15 (11A9) Expert	Virtual Output 3 Delay Time	Sets the minimum ON time for virtual digital output 3 .	$\begin{gathered} 0.1 \mathrm{~s} \\ (0.0-25.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { H7-16 } \\ (11 \mathrm{AA}) \\ \text { Expert } \end{gathered}$	Virtual Multi-Function Output 4	Sets the function for virtual digital output 4.	$\begin{gathered} F \\ (0-1 \mathrm{C} 4) \end{gathered}$
$\begin{gathered} \text { H7-17 } \\ (11 \mathrm{AB}) \\ \text { Expert } \end{gathered}$	Virtual Output 4 Delay Time	Sets the minimum ON time for virtual digital output 4.	$\begin{gathered} 0.1 \mathrm{~s} \\ (0.0-25.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { H7-30 } \\ & \text { (1177) } \\ & \text { Expert } \end{aligned}$	Virtual Analog Input Selection	Sets the virtual analog input function.	$\begin{gathered} F \\ (0-2 E) \end{gathered}$
$\begin{gathered} \text { H7-31 } \\ (1178) \\ \text { RUN } \\ \text { Expert } \end{gathered}$	Virtual Analog Input Gain	Sets the virtual analog input gain.	$\begin{gathered} 100.0 \% \\ (-999.9-999.9 \%) \end{gathered}$
$\begin{gathered} \text { H7-32 } \\ (1179) \\ \text { RUN } \\ \text { Expert } \end{gathered}$	Virtual Analog Input Bias	Sets the virtual analog input bias.	$\begin{gathered} 0.0 \% \\ (-999.9-999.9 \%) \end{gathered}$
$\begin{aligned} & \mathrm{H} 7-40 \\ & (1163) \end{aligned}$	Virtual Analog Out Signal Select	Sets the signal level of the virtual analog output. $0: 0$ to 100% (Absolute Value) 1:-100 to 100\% 2 : 0 to 100% (Lower Limit at 0)	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{aligned} & \mathrm{H} 7-41 \\ & (1164) \end{aligned}$	Virtual Analog Output Function	Sets the monitor to be output from the virtual analog output. Set the $x-x x$ part of the $U x$ - $x x$ [Monitor]. For example, set $H 7-41=102$ to monitor U1-02 [Output Frequency].	$\begin{gathered} 102 \\ (0-631) \end{gathered}$
$\begin{aligned} & \mathrm{H} 7-42 \\ & (1165) \end{aligned}$	Virtual Analog Output FilterTime	Sets the time constant for a primary filter of the virtual analog output.	$\begin{gathered} 0.00 \mathrm{~s} \\ (0.00-2.00 \mathrm{~s}) \end{gathered}$

7.9 L: Protection Functions

- L1: Motor Protection

$\begin{aligned} & \text { No. } \\ & \text { (Hex.) } \end{aligned}$	Name	Description	Default (Range)
$\begin{aligned} & \text { L1-01 } \\ & (0480) \end{aligned}$	Motor Overload (oL1) Protection	Sets the motor overload protection with electronic thermal protectors. 0 : Disabled 1 : Variable Torque Note: When you connect only one motor to a drive, set $11-01=1$ [Variable Torque]. External thermal relays are not necessary in these conditions.	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { L1-02 } \\ & (0481) \end{aligned}$	Motor Overload Protection Time	Sets the operation time for the electronic thermal protector of the drive to prevent damage to the motor. Usually it is not necessary to change this setting.	$\begin{gathered} 1.0 \mathrm{~min} \\ (0.1-5.0 \mathrm{~min}) \end{gathered}$
$\begin{aligned} & \text { L1-03 } \\ & (0482) \end{aligned}$	Motor Thermistor oH Alarm Select	Sets drive operation when the PTC input signal entered into the drive is at the oH3 [Motor Overheat Alarm] detection level. 0 : Ramp to Stop 1 : Coast to Stop 2 : Fast Stop (Use C1-09) 3 : Alarm Only	$\begin{gathered} 3 \\ (0-3) \end{gathered}$
$\begin{aligned} & \text { L1-04 } \\ & (0483) \end{aligned}$	Motor Thermistor oH Fault Select	Sets the drive operation when the PTC input signal to the drive is at the oH 4 [Motor Overheat Fault (PTC Input)] detection level. 0 : Ramp to Stop 1 : Coast to Stop 2 : Fast Stop (Use C1-09)	$\begin{gathered} 1 \\ (0-2) \end{gathered}$
$\begin{aligned} & \text { L1-05 } \\ & (0484) \end{aligned}$	Motor Thermistor Filter Time	Sets the primary delay time constant for the PTC input signal entered to the drive. This parameter prevents accidental motor overheat faults.	$\begin{gathered} 0.20 \mathrm{~s} \\ (0.00-10.00 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { L1-08 } \\ & (1103) \end{aligned}$	oL1 Current Level	Sets the reference current for the motor 1 thermal overload detection. When the current level $>0.0 \mathrm{~A}$, you cannot set this value $<10 \%$ of drive rated current.	$\begin{gathered} 0.0 \mathrm{~A} \\ \text { (0.0 A or } 10 \% \text { to } 150 \% \text { of } \\ \text { the drive rated current) } \end{gathered}$
$\begin{gathered} \text { L1-13 } \\ (046 \mathrm{D}) \end{gathered}$	Motor Overload Memory Selection	Sets the function that keeps the current electronic thermal protector value after power loss. 0 : Disabled 1 : Enabled 2 : Enabled, using RTC	$\begin{gathered} 2 \\ (0-2) \end{gathered}$

- L2: Power Loss Ride Through

$\begin{aligned} & \text { No. } \\ & \text { (Hex.) } \end{aligned}$	Name	Description	Default (Range)
$\begin{aligned} & \text { L2-01 } \\ & (0485) \end{aligned}$	Power Loss Ride Through Select	Sets the drive operation after a momentary power loss. 0 : Disabled 1 : Enabled for L2-02 Time 2 : Enabled while CPU Power Active	$\begin{gathered} 2 \\ (0-2) \end{gathered}$
$\begin{aligned} & \text { L2-02 } \\ & (0486) \end{aligned}$	Power Loss Ride Through Time	Sets the maximum time that the drive will wait until it tries to restart after power loss.	Determined by o2-04 ($0.0-25.5 \mathrm{~s}$)
$\begin{aligned} & \text { L2-03 } \\ & (0487) \end{aligned}$	Minimum Baseblock Time	Sets the minimum time to continue the drive output block (baseblock) after a baseblock.	$\begin{aligned} & \text { Determined by o2-04 } \\ & \quad(0.1-5.0 \mathrm{~s}) \end{aligned}$
$\begin{aligned} & \text { L2-04 } \\ & (0488) \end{aligned}$	Powerloss V/f Recovery Ramp Time	Sets the time for the drive output voltage to go back to the correct voltage after it completes speed searches.	Determined by o2-04 $(0.0-5.0 \mathrm{~s})$
$\begin{gathered} \text { L2-05 } \\ (0489) \end{gathered}$	Undervoltage Detection Lvl (Uv1)	Sets the voltage at which the drive triggers a Uv1 [DC Bus Undervoltage] fault. Usually it is not necessary to change this setting.	$\begin{aligned} & \text { Determined by o2-04 and } \\ & \text { E1-01 } \\ & (208 / 240 \mathrm{~V}: 150-220 \mathrm{~V}, \\ & 480 \mathrm{~V}: 300-440 \mathrm{~V}) \end{aligned}$

L3: Stall Prevention

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{aligned} & \text { L3-01 } \\ & (048 \mathrm{~F}) \end{aligned}$	Stall Prevention during Accel	Sets the method of Stall Prevention During Acceleration. 0 : Disabled 1 : Enabled 2 : Intelligent (Ignore Decel Ramp)	$\begin{gathered} 1 \\ (0-2) \end{gathered}$
$\begin{aligned} & \text { L3-02 } \\ & (0490) \end{aligned}$	Stall Prevent Level during Accel	Sets the output current level to activate the Stall Prevention function during acceleration as a percentage of the drive rated output current.	Determined by L8-38 $(0-120 \%)$
$\begin{gathered} \text { L3-03 } \\ (0491) \end{gathered}$	Stall Prevent Limit during Accel	Sets the lower limit for the stall prevention level used in the constant output range as a percentage of the drive rated output current.	$\begin{gathered} 50 \% \\ (0-100 \%) \end{gathered}$
$\begin{aligned} & \text { L3-04 } \\ & (0492) \end{aligned}$	Stall Prevention during Decel	Sets the method that the drive will use to prevent overvoltage faults when decelerating. 0 : Disabled 1 : General Purpose 2 : Intelligent (Ignore Decel Ramp) 4 : Overexcitation/High Flux	$\begin{gathered} 1 \\ (0-4) \end{gathered}$
$\begin{aligned} & \text { L3-05 } \\ & (0493) \end{aligned}$	Stall Prevention during RUN	Sets the function to enable and disable Stall Prevention During Run. Note: An output frequency lower than 6 Hz will disable Stall Prevention during Run. The L3-05 and L3-06 [Stall Prevent Level during Run] settings do not have an effect. 0 : Disabled 1 : Deceleration Time 1 (C1-02) 2 : Deceleration Time 2 (C1-04)	$\begin{gathered} 2 \\ (0-2) \end{gathered}$
$\begin{aligned} & \text { L3-06 } \\ & (0494) \end{aligned}$	Stall Prevent Level during Run	Sets the output current level to enable the Stall Prevention function during operation as a percentage of the drive rated output current. Note: This parameter is applicable when $L 3-05=1,2$ [Stall Prevention during $R U N=$ Deceleration Time 1 (C1-02), Deceleration Time 2 (C1-04)].	$\begin{aligned} & \text { Determined by L8-38 } \\ & \quad(5-120 \%) \end{aligned}$
$\begin{aligned} & \text { L3-11 } \\ & (04 \mathrm{C} 7) \end{aligned}$	Overvoltage Suppression Select	Sets the overvoltage suppression function. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { L3-17 } \\ & (0462) \end{aligned}$	DC Bus Regulation Level	Sets the target value for the DC bus voltage when the overvoltage suppression function and the Decel Stall Prevention function (Intelligent Stall Prevention) are active.	$\begin{gathered} \text { 208/240 V: } 375 \mathrm{~V}, \\ 480 \mathrm{~V}: 750 \mathrm{~V} \\ (208 / 240 \mathrm{~V}: 150-400 \mathrm{~V}, \\ 480 \mathrm{~V}: 300-800 \mathrm{~V}) \end{gathered}$
L3-20 (0465) Expert	DC Bus Voltage Adjustment Gain	Sets the proportional gain used to control the DC bus voltage.	$\begin{gathered} 1.00 \\ (0.00-5.00) \end{gathered}$
L3-2 1 (0466) Expert	OVSuppression Accel/Decel P Gain	Sets the proportional gain to calculate acceleration and deceleration rates.	$\begin{gathered} 1.00 \\ (0.10-10.00) \end{gathered}$
$\begin{gathered} \text { L3-23 } \\ (04 \mathrm{FD}) \end{gathered}$	Stall P Reduction at Constant HP	Sets the function to automatically decrease the Stall Prevention Level during Run for constant output ranges. 0 : Use L3-06 for Entire Speed Range 1 : Automatic Reduction @ CHP Region	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
L3-24 (046E) Expert	Motor Accel Time @ Rated Torque	Sets the motor acceleration time to reach the maximum frequency at the motor rated torque for stopped single-drive motors.	$\begin{aligned} & \text { Determined by o2-04, E2-11 } \\ & \quad(0.001-10.000 \mathrm{~s}) \end{aligned}$
L3-25 (046F) Expert	Load Inertia Ratio	Sets the ratio between motor inertia and machine inertia.	$\begin{gathered} 1.0 \\ (0.1-1000.0) \end{gathered}$
$\begin{aligned} & \text { L3-26 } \\ & (0455) \\ & \text { Expert } \end{aligned}$	Additional DC Bus Capacitors	Sets the capacity for external main circuit capacitors. Usually it is not necessary to change this setting.	$\begin{gathered} 0 \mu \mathrm{~F} \\ (0 \text { to } 65000 \mu \mathrm{~F}) \end{gathered}$
$\begin{aligned} & \text { L3-27 } \\ & (0456) \end{aligned}$	Stall Prevention Detection Time	Sets a delay time between reaching the Stall Prevention level and starting the Stall Prevention function.	$\begin{gathered} 50 \mathrm{~ms} \\ (0-5000 \mathrm{~ms}) \end{gathered}$
$\begin{aligned} & \text { L3-35 } \\ & (0747) \\ & \text { Expert } \\ & \hline \end{aligned}$	Speed Agree Width for Auto Decel	Sets the width for speed agreement when $L 3-04=2$ [Decel Stall Prevention Selection $=$ Automatic Decel Reduction]. Usually it is not necessary to change this setting.	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-1.00 \mathrm{~Hz}) \end{gathered}$

L4: Speed Detection

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { L4-01 } \\ & (0499) \end{aligned}$	Speed Agree Detection Level	Sets the level to detect speed agree or motor speed when $H 2-01$ to $H 2-03=2,3,4,5$ [MFDO Function Selection $=$ Speed Agree 1, User-set Speed Agree 1, Frequency Detection 1, Frequency Detection 2].	$\begin{gathered} 0.0 \mathrm{~Hz} \\ (0.0-400.0 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { L4-02 } \\ (049 \mathrm{~A}) \end{gathered}$	Speed Agree Detection Width	Sets the width to detect speed agree or motor speed when $H 2-01$ to $H 2-03=2,3,4,5$ [MFDO Function Selection $=$ Speed Agree 1, User-set Speed Agree 1, Frequency Detection 1, Frequency Detection 2].	$\begin{gathered} 2.0 \mathrm{~Hz} \\ (0.0-20.0 \mathrm{~Hz}) \end{gathered}$
$\begin{aligned} & \text { L4-03 } \\ & (049 \mathrm{~B}) \end{aligned}$	Speed Agree Detection Level (+/-)	Sets the speed agree detection level or motor speed detection level when $H 2-01$ to $H 2-03=13,14$, 15, 16 [MFDO Function Selection $=$ Speed Agree 2, User-set Speed Agree 2, Frequency Detection 3, Frequency Detection 4].	$\begin{gathered} 0.0 \mathrm{~Hz} \\ (-400.0-+400.0 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { L4-04 } \\ (049 \mathrm{C}) \end{gathered}$	Speed Agree Detection Width (+/-)	Sets the width to detect speed agree or motor speed when $\mathrm{H2}$-01 to $\mathrm{H} 2-03=13,14,15,16$ [MFDO Function Selection $=$ Speed Agree 2, User-set Speed Agree 2, Frequency Detection 3, Frequency Detection 4].	$\begin{gathered} 2.0 \mathrm{~Hz} \\ (0.0-20.0 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { L4-05 } \\ \text { (049D) } \end{gathered}$	Fref Loss Detection Selection	Sets the operation when the drive detects a loss of frequency reference. $\begin{array}{\|l\|} \hline 0 \text { : Stop } \\ 1 \text { : Run at (L4-06 x Last Reference) } \end{array}$	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { L4-06 } \\ & (04 \mathrm{C} 2) \end{aligned}$	Frequency Reference @Loss of Ref	Sets the frequency reference as a percentage to continue drive operation after it detects a frequency reference loss. The value is a percentage of the frequency reference before the drive detected the loss.	$\begin{gathered} 80.0 \% \\ (0.0-100.0 \%) \end{gathered}$
$\begin{aligned} & \text { L4-07 } \\ & (0470) \end{aligned}$	Speed Agree Detection Selection	Sets the condition that activates speed detection. 0 : No Detection during Baseblock 1 : Detection Always Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

L5: Fault Restart

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{gathered} \text { L5-01 } \\ (049 \mathrm{E}) \end{gathered}$	Number of Auto-Restart Attempts	Sets the number of times that the drive will try to restart.	$\begin{gathered} 0 \\ (0-10 \text { times }) \end{gathered}$
$\begin{aligned} & \text { L5-02 } \\ & (049 \mathrm{~F}) \end{aligned}$	Fault Contact at Restart Select	Sets the function that sends signals to the MFDO terminal set for Fault $[H 2-x x=E]$ while the drive is automatically restarting. 0 : Active Only when Not Restarting 1 : Always Active	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { L5-04 } \\ (046 \mathrm{C}) \end{gathered}$	Interval Method Restart Time	Sets the time interval between each Auto Restart attempt.	$\begin{gathered} 10.0 \mathrm{~s} \\ (0.5-3600.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { L5-07 } \\ (0 \mathrm{~B} 2 \mathrm{~A}) \end{gathered}$	Fault Reset Enable Select Grp1	Use these 4 digits to set the Auto Restart function for $o L 1$ to $o L 4$. From left to right, the digits set $o L 1, o L 2, o L 3$, and $o L 4$, in order. 0000 : Disabled 0001 : Enabled (—/—/-/oL4) 0010 : Enabled (—/—/oL3/—) 0011 : Enabled (—/-/oL3/oL4) 0100 : Enabled (—/oL2/—/—) 0101 : Enabled (—/oL2/—oL4) 0110 : Enabled (—/oL2/oL3/—) 0111 : Enabled (—/oL2/oL3/oL4) 1000 : Enabled (oL1/—/—/ 1001 : Enabled (oL1/—/—oL4) 1010 : Enabled (oL1/—/oL3/—) 1011 : Enabled (oL1/—/oL3/oL4) 1100 : Enabled (oL1/oL2/—/—) 1101 : Enabled (oL1/oL2/—/oL4) 1110 : Enabled (oL1/oL2/oL3/—) 1111 : Enabled (oL1/oL2/oL3/oL4)	$\begin{gathered} 1111 \\ (0000-1111) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \text { L5-08 } \\ (0 \mathrm{~B} 2 \mathrm{~B}) \end{gathered}$	Fault Reset Enable Select Grp2	Use these 4 digits to set the Auto Restart function for $U v 1$, $o v, o H 1$, and $G F$. From left to right, the digits set $U v 1$, ov, oH1, and $G F$, in order. 0000 : Disabled 0001 : Enabled (—/-/—/GF) 0010 : Enabled (—/-/oH1/-) 0011 : Enabled (-/-/oH1/GF) 0100 : Enabled (—/ov/-/-) 0101 : Enabled (—/ov/—/GF) 0110 : Enabled (—/ov/oH1/-) 0111 : Enabled (—/ov/oH1/GF) 1000 : Enabled (Uv1/-/-/-) 1001 : Enabled (Uv1/-/—/GF) 1010 : Enabled (Uv1/-/oH1/-) 1011 : Enabled (Uv1/-/oH1/GF) 1100 : Enabled (Uv1/ov/-/-) 1101 : Enabled (Uv1/ov/—/GF) 1110 : Enabled (Uv1/ov/oH1/-) 1111 : Enabled (Uv1/ov/oH1/GF)	$\begin{gathered} 1111 \\ (0000-1111) \end{gathered}$
$\begin{aligned} & \text { L5-40 } \\ & (3670) \end{aligned}$	Low Feedback Flt Retry Selection	Sets the drive to do an Auto Restart when the drive detects an LFB [Low Feedback Sensed] fault. 1 : Retry	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { L5-41 } \\ & (3671) \end{aligned}$	Hi Feedback Flt Retry Selection	Sets the drive to do an Auto Restart when the drive detects an HFB [High Feedback Sensed] fault. 0 : No Retry 1 : Retry	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { L5-42 } \\ & (3672) \end{aligned}$	Feedback Loss Fault Retry Select	Sets the drive to try an Auto Restart when it drive detects an FDBKL [WIRE Break] fault. 0 : No Retry 1 : Retry	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { L5-49 } \\ & (3679) \end{aligned}$	Fault Retry Speed Search Select	Sets the drive to do a speed search at the start of a Fault Retry. 0 : Disabled 1 : Enabled	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { L5-50 } \\ & (367 \mathrm{~A}) \end{aligned}$	Setpoint Not Met Fault Retry Sel	Sets the drive to try an Auto Restart when it detects an NMS [SetPoint Not Met] fault. $\begin{array}{\|l\|} \hline 0 \text { : No Retry } \\ 1: \text { Retry } \\ \hline \end{array}$	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { L5-51 } \\ & (367 B) \end{aligned}$	Loss of Prime Fault Retry Select	Sets the drive to try an Auto Restart if it detects an LOP [Loss Of Prime] fault. $\begin{aligned} & 0 \text { : No Retry } \\ & 1 \text { : Retry } \end{aligned}$	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { L5-53 } \\ & (3251) \end{aligned}$	Thermostat Fault Retry Selection	Sets the drive to try an Auto Restart if it detects a VLTS [Thermostat Fault] fault. Note: - To use this function, set $S 5-01 \neq 0$ [HAND Frequency Reference Source \neq HAND Analog Input $]$ - The drive will only restart after the Thermostat digital input de-activates and the L5-04 [Interval Method Restart Time] timer is expired. 0 : No Retry 1 : Retry	$\begin{gathered} 1 \\ (0,1) \end{gathered}$

- L6: Torque Detection

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \text { L6-01 } \\ (04 \mathrm{~A} 1) \end{gathered}$	Torque Detection Selection 1	Sets the speed range that detects overtorque and undertorque and the operation of drives (operation status) after detection. 0 : Disabled 1: oL @ Speed Agree - Alarm only 2: oL @ RUN - Alarm only 3: oL @ Speed Agree - Fault 4: oL @ RUN - Fault 5 : UL @ Speed Agree - Alarm only 6: UL @ RUN - Alarm only 7 : UL @ Speed Agree - Fault 8 : UL @ RUN - Fault 9 : UL6 @ Speed Agree - Alarm only 10 : UL6 @ RUN - Alarm only 11: UL6@ Speed Agree - Fault 12 : UL6@ RUN - Fault	$\begin{gathered} 0 \\ (0-12) \end{gathered}$
$\begin{gathered} \text { L6-02 } \\ (04 \mathrm{~A} 2) \end{gathered}$	Torque Detection Level 1	Sets the detection level for Overtorque/Undertorque Detection 1. In V/f control, drive rated output current $=100 \%$ value.	$\begin{gathered} 15 \% \\ (0-300 \%) \end{gathered}$
$\begin{gathered} \text { L6-03 } \\ (04 \mathrm{~A} 3) \end{gathered}$	Torque Detection Time 1	Sets the detection time for Overtorque/Undertorque Detection 1.	$\begin{gathered} 10.0 \mathrm{~s} \\ (0.0-10.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { L6-04 } \\ (04 \mathrm{~A} 4) \end{gathered}$	Torque Detection Selection 2	Sets the speed range that detects overtorque and undertorque and the operation of drives (operation status) after detection. 0 : Disabled 1: oL @ Speed Agree - Alarm only 2: oL @ RUN - Alarm only 3: oL @ Speed Agree - Fault 4: oL @ RUN - Fault 5 : UL @ Speed Agree - Alarm only 6: UL @ RUN - Alarm only 7: UL @ Speed Agree - Fault 8 : UL @ RUN - Fault	$\begin{gathered} 0 \\ (0-8) \end{gathered}$
$\begin{aligned} & \text { L6-05 } \\ & (04 \mathrm{~A} 5) \end{aligned}$	Torque Detection Level 2	Sets the detection level for Overtorque/Undertorque Detection 2. In V/f control, drive rated output current $=100 \%$ value.	$\begin{gathered} 150 \% \\ (0-300 \%) \end{gathered}$
$\begin{gathered} \text { L6-06 } \\ (04 \mathrm{~A} 6) \end{gathered}$	Torque Detection Time 2	Sets the detection time for Overtorque/Undertorque Detection 2.	$\begin{gathered} 0.1 \mathrm{~s} \\ (0.0-10.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { L6-13 } \\ (062 \mathrm{E}) \end{gathered}$	Motor Underload Curve Select	Sets the motor underload protection (UL6 [Undertorque Detection 6]) based on motor load and sets the level of L6-02 [Torque Detection Level 1] to refer to Fbase or Fmax. 0 : Base Frequency Enable 1: Max Frequency Enable	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { L6-14 } \\ & (062 \mathrm{~F}) \end{aligned}$	Motor Underload Level @ Min Freq	Sets the UL6 [Undertorque Detection 6] detection level at minimum frequency by percentage of drive rated current.	$\begin{gathered} 15 \% \\ (0-300 \%) \end{gathered}$

L8: Drive Protection

No. (Hex.)	Name	Description	Default (Range)
L8-02 $(04 \mathrm{AE})$	Overheat Alarm Level	Sets the $o H$ detection level temperature.	Determined by o2-04 $\left(50-150{ }^{\circ} \mathrm{C}\right)$
L8-03 $(04 \mathrm{AF})$	Overheat Pre-Alarm Selection	Sets drive operation if it detects an $o H$ alarm. $0:$ Ramp to Stop $1:$ Coast to Stop $2:$ Fast Stop (Use C1-09) $3:$ Alarm Only $4:$ Operate at Reduced Speed (L8-19)	4

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \text { L8-07 } \\ (04 \mathrm{~B} 3) \end{gathered}$	Output Phase Loss Protection Sel	Sets the function to enable and disable output phase loss detection. The drive starts output phase loss detection when the output current decreases to less than 5% of the drive rated current. Note: - The drive can incorrectly start output phase loss detection when the motor rated current is very small compared to the drive rating. - This parameter only affects operation in Drive Mode. 0 : Disabled 1 : Fault when one phase is lost 2 : Fault when two phases are lost	1
$\begin{gathered} \text { L8-09 } \\ \text { (04B5) } \end{gathered}$	Output Ground Fault Detection	Sets the function to enable and disable ground fault protection. 0 : Disabled 1 : Enabled Note: This parameter only affects operation in Drive Mode.	Determined by o2-04 $(0,1)$
$\begin{aligned} & \text { L8-10 } \\ & \text { (04B6) } \end{aligned}$	Heatsink Fan Operation Selection	Sets operation of the heatsink cooling fan. 0 : During Run, w/ L8-11 Off-Delay 1 : Always On 2 : On when Drive Temp Reaches L8-64	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { L8-11 } \\ (04 \mathrm{~B} 7) \end{gathered}$	Heatsink Fan Off-Delay Time	Sets the length of time that the drive will wait before it stops the cooling fan after it cancels the Run command when L8-10 $=0$ [Heatsink Fan Operation Selection $=$ During Run, w/ L8-11 Off-Delay].	$\begin{gathered} 300 \mathrm{~s} \\ (0-300 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { L8-12 } \\ (04 \mathrm{~B} 8) \end{gathered}$	Ambient Temperature Setting	Sets the ambient temperature of the drive installation area. Note: The setting range changes when the $L 8-35$ [Installation Method Selection] setting changes. - When $L 8-35=0$ or 2 [IP20/UL Open Type or IP20/UL Type 1]: $-10^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$ - When L8-35 = 1 or 3 [Side-by-Side Mounting or IP55/UL Type 12]: $-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$	$\begin{gathered} 40^{\circ} \mathrm{C} \\ \text { (Determined by L8-35) } \end{gathered}$
$\begin{gathered} \text { L8-15 } \\ (04 \mathrm{BB}) \end{gathered}$	Drive oL2 @ Low Speed Protection	Sets the function to decrease drive overload at low speeds to prevent damage to the main circuit transistor during low speed operation (at 6 Hz or slower) to prevent oL2 [Drive Overloaded]. Note: Contact Yaskawa or your nearest sales representative before disabling this function at low speeds. If you frequently operate drives with high output current in low speed ranges, it can cause heat stress and decrease the life span of drive IGBTs. 0 : Disabled (No Additional Derate) 1 : Enabled (Reduced oL2 Level)	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { L8-18 } \\ (04 \mathrm{BE}) \end{gathered}$	Software Current Limit Selection	Set the software current limit selection function to prevent damage to the main circuit transistor caused by too much current. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { L8-19 } \\ (04 \mathrm{BF}) \end{gathered}$	Freq Reduction @ oH PreAlarm	Sets the ratio at which the drive derates the frequency reference during an oH alarm.	$\begin{gathered} 20.0 \% \\ (10.0-100.0 \%) \end{gathered}$
$\begin{gathered} \text { L8-35 } \\ (04 \mathrm{EC}) \end{gathered}$	Installation Method Selection	Sets the type of drive installation. 0 : IP20/UL Open Type 1 : Side-by-Side Mounting 2 : IP20/UL Type 1 3 : IP55/UL Type 12	$\begin{gathered} 2 \\ (0-3) \end{gathered}$
$\begin{gathered} \mathrm{L} 8-38 \\ (04 \mathrm{EF}) \end{gathered}$	Carrier Frequency Reduction	Sets the carrier frequency reduction function. The drive decreases the carrier frequency when the output current is more than a specified level. 1 : Enabled below 6 Hz 2 : Enabled for All Speeds 3 : Enable at Overload	Determined by o2-04 $(1-3)$
$\begin{aligned} & \text { L8-41 } \\ & (04 \mathrm{~F} 2) \end{aligned}$	High Current Alarm Selection	Sets the function to cause an HCA [High Current Alarm] when the output current is more than 150% of the drive rated current. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { L8-97 } \\ & (3104) \end{aligned}$	Carrier Freq Reduce during OH	Sets the function to decrease carrier frequency during oH pre-alarm. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

L9: Drive Protection 2

No. (Hex.)	Name	Description	Default (Range)
L9-16 $(11 \mathrm{DC})$ Expert	FAn1 Detect Time	Sets the detection time for FAn1 change this parameter value.	4.0 s $(0.0-30.0$ s)

7.10 n : Special Adjustment

- n1: Hunting Prevention

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { n1-01 } \\ & (0580) \end{aligned}$	Hunting Prevention Selection	Sets the function to prevent hunting. 0 : Disabled 1 : Enabled (Normal)	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { n1-02 } \\ & (0581) \\ & \text { Expert } \end{aligned}$	Hunting Prevention Gain Setting	Sets the performance of the hunting prevention function. Usually it is not necessary to change this parameter.	$\begin{gathered} 1.00 \\ (0.00-2.50) \end{gathered}$
$\begin{aligned} & \text { n1-03 } \\ & (0582) \\ & \text { Expert } \end{aligned}$	Hunting Prevention Time Constant	Sets the primary delay time constant of the hunting prevention function. Usually it is not necessary to change this parameter.	Determined by o2-04 $(0-500 \mathrm{~ms})$
$\begin{aligned} & \text { nl-05 } \\ & (0530) \\ & \text { Expert } \end{aligned}$	Hunting Prevent Gain in Reverse	Sets the performance of the hunting prevention function. This parameter adjusts Reverse run. Usually it is not necessary to change this parameter.	$\begin{gathered} 0.00 \\ (0.00-2.50) \end{gathered}$
$\begin{gathered} \text { n1-13 } \\ \text { (1B59) } \\ \text { Expert } \end{gathered}$	DC Bus Stabilization Control	Sets the oscillation suppression function for the DC bus voltage. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \mathrm{n} 1-14 \\ (1 \mathrm{~B} 5 \mathrm{~A}) \\ \text { Expert } \end{gathered}$	DC Bus Stabilization Time	Adjusts the responsiveness of the oscillation suppression function for the DC bus voltage. Set n1-13 $=1$ [DC Bus Stabilization Control $=$ Enabled $]$ to enable this parameter.	$\begin{gathered} 100.0 \mathrm{~ms} \\ (0.0-500.0 \mathrm{~ms}) \end{gathered}$

n3: High Slip/Overexcite Braking

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { n3-01 } \\ & (0588) \\ & \text { Expert } \end{aligned}$	HSB Deceleration Frequency Width	Sets the amount by which the output frequency is to be lowered during high-slip braking, as a percentage of E1-04 [Maximum Output Frequency], which represents the 100% value.	$\begin{gathered} 5 \% \\ (1-20 \%) \end{gathered}$
$\begin{aligned} & \text { n3-02 } \\ & (0589) \\ & \text { Expert } \end{aligned}$	HSB Current Limit Level	Sets the maximum current output during high-slip braking as a percentage, where E2-01 [Motor Rated Current (FLA)] is 100%. Also sets the current suppression to prevent exceeding drive overload tolerance.	Determined by L8-38 (0-200\%)
$\begin{gathered} \text { n3-03 } \\ (058 \mathrm{~A}) \\ \text { Expert } \end{gathered}$	HSB Dwell Time at Stop	Sets the dwell time, a length of time when high-slip braking is ending and during which the motor speed decreases and runs at a stable speed. For a set length of time, the drive will hold the actual output frequency at the minimum output frequency set in E1-09.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0-10.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { n3-04 } \\ (058 \mathrm{~B}) \\ \text { Expert } \end{gathered}$	HSB Overload Time	Sets the time used to detect oL7 [High Slip Braking Overload], which occurs when the output frequency does not change during high-slip braking. Usually it is not necessary to change this parameter.	$\begin{gathered} 40 \mathrm{~s} \\ (30-1200 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { n3-13 } \\ (0531) \end{gathered}$	OverexcitationBraking (OEB) Gain	Sets the gain value that the drive multiplies by the V / f pattern output value during overexcitation deceleration to calculate the overexcitation level.	$\begin{gathered} 1.10 \\ (1.00-1.40) \end{gathered}$
$\begin{aligned} & \text { n3-21 } \\ & (0579) \end{aligned}$	HSB Current Suppression Level	Sets the upper limit of the current that is suppressed at the time of overexcitation deceleration as a percentage of the drive rated current.	$\begin{gathered} 100 \% \\ (0-150 \%) \end{gathered}$
$\begin{gathered} \text { n3-23 } \\ (057 \mathrm{~B}) \end{gathered}$	Overexcitation Braking Operation	Sets the direction of motor rotation where the drive will enable overexcitation. 0 : Disabled 1 : Enabled Only when Rotating FWD 2 : Enabled Only when Rotating REV	$\begin{gathered} 0 \\ (0-2) \end{gathered}$

7.11 o: Keypad-Related Settings

01: Keypad Display

	Name	Description	Default (Range)
$\begin{gathered} \text { o1-03 } \\ (0502) \end{gathered}$	Frequency Display Unit Selection	Sets the display units for the frequency reference and output frequency. $\begin{aligned} & 0: 0.01 \mathrm{~Hz} \text { units } \\ & 1: 0.01 \% \text { units } \end{aligned}$ 2 : $\mathrm{min}^{-1}(\mathrm{r} / \mathrm{min})$ unit 3 : User Units (o1-09 -o1-11)	$\begin{gathered} 0 \\ (0-3) \end{gathered}$
$\begin{gathered} \text { ol-05 } \\ (0504) \\ \text { RUN } \end{gathered}$	LCD Contrast Adjustment	Sets the contrast of the LCD display on the keypad.	$\begin{gathered} 5 \\ (0-10) \end{gathered}$
$\begin{gathered} \text { o1-09 } \\ (051 \mathrm{C}) \end{gathered}$	Freq. Reference Display Units	Sets the unit of display for the frequency reference parameters and frequency-related monitors when o1-03 $=3$ [Frequency Display Unit Selection $=$ User Units (o1-09~o1-11)]. 0 : "WC: inches of water column 1 : PSI: pounds per square inch 2 : GPM: gallons/min 3 : ${ }^{\circ} \mathrm{F}$: Fahrenheit $4: \mathrm{ft}^{3} / \mathrm{min}$: cubic feet $/ \mathrm{min}$ $5: \mathrm{m}^{3} / \mathrm{h}$: cubic meters/hour 6 : L/h: liters/hour 7 : L/s: liters/sec 8 : bar: bar 9 : Pa: Pascal 10 : ${ }^{\circ} \mathrm{C}$: Celsius 11 : m: meters 12 : ft: feet 13 : L/min: liters/min $14: \mathrm{m}^{3} / \mathrm{min}$: cubic meters $/ \mathrm{min}$ 15 : "Hg: Inch Mercury 16 : kPa: kilopascal 48 : \%: Percent 49 : Custom(o1-13~15) 50 : None	$\begin{gathered} 50 \\ (0-50) \end{gathered}$
$\begin{gathered} \text { ol-10 } \\ (0520) \end{gathered}$	User Units Maximum Value	Sets the value that the drive shows as the maximum output frequency.	Determined by o1-03 $(1-60000)$
$\begin{aligned} & \text { o1-11 } \\ & (0521) \end{aligned}$	User Units Decimal Position	Sets the number of decimal places for frequency reference and monitor values. 0 : No Decimal Places (XXXXX) 1 : One Decimal Places (XXXX.X) 2 : Two Decimal Places (XXX.XX) 3 : Three Decimal Places (XX.XXX)	Determined by o1-03 $(0-3)$
$\begin{gathered} \text { ol-13 } \\ (3105) \end{gathered}$	Freq. Reference Custom Unit 1	Sets the first character of the custom unit display when ol-03 $=3$ [Frequency Display Unit Selection $=$ User Units] and ol-09 $=49$ [Freq. Reference Display Units $=$ Custom (oi-13~15)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$
$\begin{gathered} \text { ol-14 } \\ (3106) \end{gathered}$	Freq. Reference Custom Unit 2	Sets the second character of the custom unit display when ol-03 $=3$ [Frequency Display Unit Selection $=$ User Units] and ol-09 $=49$ [Freq. Reference Display Units $=$ Custom (ol-13~15)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$
$\begin{gathered} \text { o1-15 } \\ (3107) \end{gathered}$	Freq. Reference Custom Unit 3	Sets the third character of the custom unit display when ol-03 $=3$ [Frequency Display Unit Selection $=$ User Units] and o1-09 $=49$ [Freq. Reference Display Units $=$ Custom (o1-13~15)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$
$\begin{gathered} \text { o1-18 } \\ (310 \mathrm{~A}) \end{gathered}$	User Defined Parameter 1	Lets you set values to use as reference information.	$\begin{gathered} 0 \\ (0-999) \end{gathered}$
$\begin{gathered} \text { o1-19 } \\ \text { (310B) } \end{gathered}$	User Defined Parameter 2	Lets you set values to use as reference information.	$\begin{gathered} 0 \\ (0-999) \end{gathered}$
$\begin{gathered} \text { o1-24 } \\ (11 \mathrm{AD}) \\ \text { RUN } \end{gathered}$	Custom Monitor 1	Sets Custom Monitor 1. You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad.	$\begin{gathered} 101 \\ (0,31,101-1201) \end{gathered}$
$\begin{gathered} \text { o1-25 } \\ (11 \mathrm{AE}) \\ \text { RUN } \end{gathered}$	Custom Monitor 2	Sets Custom Monitor 2. You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad.	$\begin{gathered} 102 \\ (0,31,101-1201) \end{gathered}$

$\begin{aligned} & \text { No. } \\ & \text { (Hex.) } \end{aligned}$	Name	Description	Default (Range)
o1-26 (11AF) RUN	Custom Monitor 3	Sets Custom Monitor 3. You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad. Note: The default setting changes when b5-01 [PID Mode Setting] changes: -b5-01 $=0$ [Disabled]: 103 - $b 5-01 \neq 0$: 501	$\begin{aligned} & \text { Determined by b5-01 } \\ & (0,31,101-1201) \end{aligned}$
o1-27 (11B0) RUN	Custom Monitor 4	Sets Custom Monitor 4. You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad.	$\begin{gathered} 0 \\ (0,101-1212) \end{gathered}$
$\begin{gathered} \text { o1-28 } \\ (11 \mathrm{~B} 1) \\ \text { RUN } \end{gathered}$	Custom Monitor 5	Sets Custom Monitor 5. You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad.	$\begin{gathered} 0 \\ (0,101-1212) \end{gathered}$
$\begin{gathered} \text { o1-29 } \\ \text { (11B2) } \\ \text { RUN } \end{gathered}$	Custom Monitor 6	Sets Custom Monitor 6. You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad.	$\begin{gathered} 0 \\ (0,101-1212) \end{gathered}$
$\begin{gathered} \text { o1-30 } \\ \text { (11B3) } \\ \text { RUN } \end{gathered}$	Custom Monitor 7	Sets Custom Monitor 7. You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad.	$\begin{gathered} 0 \\ (0,101-1212) \end{gathered}$
$\begin{gathered} \text { o1-31 } \\ \text { (11B4) } \\ \text { RUN } \end{gathered}$	Custom Monitor 8	Sets Custom Monitor 8. You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad.	$\begin{gathered} 0 \\ (0,101-1212) \end{gathered}$
$\begin{gathered} \text { o1-32 } \\ \text { (11B5) } \\ \text { RUN } \end{gathered}$	Custom Monitor 9	Sets Custom Monitor 9 . You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad.	$\begin{gathered} 0 \\ (0,101-1212) \end{gathered}$
$\begin{gathered} \text { o1-33 } \\ (11 \mathrm{~B} 6) \\ \text { RUN } \end{gathered}$	Custom Monitor 10	Sets Custom Monitor 10. You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad.	$\begin{gathered} 0 \\ (0,101-1212) \end{gathered}$
$\begin{gathered} \text { o1-34 } \\ (11 \mathrm{~B} 7) \\ \text { RUN } \end{gathered}$	Custom Monitor 11	Sets Custom Monitor 11. You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad.	$\begin{gathered} 0 \\ (0,101-1212) \end{gathered}$
$\begin{gathered} \text { o1-35 } \\ \text { (11B8) } \\ \text { RUN } \end{gathered}$	Custom Monitor 12	Sets Custom Monitor 12. You can set a maximum of 12 monitors as user monitors. This parameter is only available on an HOA keypad.	$\begin{gathered} 0 \\ (0,101-1212) \end{gathered}$
$\begin{gathered} \text { o1-36 } \\ (11 \mathrm{~B} 9) \\ \text { RUN } \end{gathered}$	LCD Backlight Brightness	Sets the intensity of the HOA keypad backlight.	$\begin{gathered} 5 \\ (1-5) \end{gathered}$
$\begin{gathered} \text { o1-37 } \\ (11 \mathrm{BA}) \\ \text { RUN } \end{gathered}$	LCD Backlight ON/OFF Selection	Sets the automatic shut off function for the LCD backlight. $\begin{aligned} & 0: \text { OFF } \\ & 1: \text { ON } \end{aligned}$	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o1-38 } \\ \text { (11BB) } \\ \text { RUN } \end{gathered}$	LCD Backlight Off-Delay	Sets the time until the LCD backlight automatically turns off.	$\begin{gathered} 60 \mathrm{~s} \\ (10-300 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { o1-39 } \\ (11 \mathrm{BC}) \\ \text { RUN } \end{gathered}$	Show Initial Setup Screen	Sets the function to show the HOA keypad initial setup screen each time you energize the drive. This parameter is only available on an HOA keypad. $\begin{aligned} & 0: \text { No } \\ & 1: \text { Yes } \end{aligned}$	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o1-40 } \\ (11 \mathrm{BD}) \\ \text { RUN } \end{gathered}$	Home Screen Display Selection	Sets the monitor display mode for the Home screen. This parameter is only available on an HOA keypad. 0 : Custom Monitor 1 : Bar Graph 2 : Analog Gauge 3 : Trend Plot	$\begin{gathered} 0 \\ (0-3) \end{gathered}$
o1-41 (11C1) RUN	1st Monitor Area Selection	Sets the horizontal range used to display the monitor set in ol-24 [Custom Monitor 1] as a bar graph. This parameter is only available on an HOA keypad. $\begin{aligned} & 0:+/-\operatorname{Area}(-\mathrm{ol}-42 \sim \mathrm{ol}-42) \\ & 1:+ \text { Area }(0 \sim \text { ol-42 }) \end{aligned}$	$\begin{gathered} 0 \\ (0-1) \end{gathered}$
o1-42 (11C2) RUN	1st Monitor Area Setting	Sets the horizontal axis value used to display the monitor set in ol-24 [Custom Monitor 1] as a bar graph. This parameter is only available on an HOA keypad.	$\begin{gathered} 100.0 \% \\ (0.0-100.0 \%) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
o1-43 (11C3) RUN	2nd Monitor Area Selection	Selects the horizontal range used to display the monitor set in ol-25 [Custom Monitor 2] as a bar graph. This parameter is only available on an HOA keypad. $\begin{aligned} & 0:+/- \text { Area }(- \text { ol-44~ol-44) } \\ & 1:+ \text { Area }(0 \sim \text { o1-44 }) \end{aligned}$	$\begin{gathered} 0 \\ (0-1) \end{gathered}$
o1-44 (11C4) RUN	2nd Monitor Area Setting	Sets the horizontal axis value used to display the monitor set in ol-25 [Custom Monitor 2] as a bar graph. This parameter is only available on an HOA keypad.	$\begin{gathered} 100.0 \% \\ (0.0-100.0 \%) \end{gathered}$
$\begin{gathered} \text { ol-45 } \\ (11 \mathrm{C} 5) \\ \text { RUN } \end{gathered}$	3rd Monitor Area Selection	Sets the horizontal range used to display the monitor set in ol-26 [Custom Monitor 3] as a bar graph. This parameter is only available on an HOA keypad. $\begin{aligned} & 0:+/-\operatorname{Area}(- \text { ol-46~ol-46 }) \\ & 1:+ \text { Area }(0 \sim \text { ol-46 }) \end{aligned}$	$\begin{gathered} 0 \\ (0-1) \end{gathered}$
$\begin{gathered} \text { ol-46 } \\ (11 \mathrm{C} 6) \\ \text { RUN } \end{gathered}$	3rd Monitor Area Setting	Sets the horizontal axis value used to display the monitor set in ol-26 [Custom Monitor 3] as a bar graph. This parameter is only available on an HOA keypad.	$\begin{gathered} 100.0 \% \\ (0.0-100.0 \%) \end{gathered}$
$\begin{gathered} \text { o1-47 } \\ (11 \mathrm{C} 7) \\ \text { RUN } \end{gathered}$	Trend Plot 1 Scale Minimum Value	Sets the horizontal axis minimum value used to display the monitor set in ol-24 [Custom Monitor 1] as a trend plot. This parameter is only available on an HOA keypad.	$\begin{gathered} -100.0 \% \\ (-300.0-+300.0 \%) \end{gathered}$
$\begin{gathered} \text { o1-48 } \\ (11 \mathrm{C} 8) \\ \text { RUN } \end{gathered}$	Trend Plot 1 Scale Maximum Value	Sets the horizontal axis maximum value used to display the monitor set in ol-24 [Custom Monitor 1] as a trend plot. This parameter is only available on an HOA keypad.	$\begin{gathered} 100.0 \% \\ (-300.0-+300.0 \%) \end{gathered}$
$\begin{gathered} \text { o1-49 } \\ (11 \mathrm{C} 9) \\ \text { RUN } \end{gathered}$	Trend Plot 2 Scale Minimum Value	Sets the horizontal axis minimum value used to display the monitor set in ol-25 [Custom Monitor 2] as a trend plot. This parameter is only available on an HOA keypad.	$\begin{gathered} -100.0 \% \\ (-300.0-+300.0 \%) \end{gathered}$
$\begin{gathered} \text { o1-50 } \\ (11 \mathrm{CA}) \\ \text { RUN } \end{gathered}$	Trend Plot 2 Scale Maximum Value	Sets the horizontal axis maximum value used to display the monitor set in ol-25 [Custom Monitor 2] as a trend plot. This parameter is only available on an HOA keypad.	$\begin{gathered} 100.0 \% \\ (-300.0-+300.0 \%) \end{gathered}$
$\begin{gathered} \text { o1-51 } \\ \text { (11CB) } \\ \text { RUN } \end{gathered}$	Trend Plot Time Scale Setting	Sets the time scale (horizontal axis) to display the trend plot. When you change this setting, the drive automatically adjusts the data sampling time. This parameter is only available on an HOA keypad.	$\begin{gathered} 300 \mathrm{~s} \\ (1-3600 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { ol-55 } \\ (11 \mathrm{EE}) \\ \text { RUN } \end{gathered}$	Analog Gauge Area Selection	Sets the range used to display the monitor set in ol-24 [Custom Monitor 1] as an analog gauge. This parameter is only available on an HOA keypad. $\begin{aligned} & 0:+/- \text { Area }(- \text { ol-56~ol-56 }) \\ & 1:+ \text { Area }(0 \sim \text { ol-56 }) \end{aligned}$	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o1-56 } \\ (11 \mathrm{EF}) \\ \text { RUN } \end{gathered}$	Analog Gauge Area Setting	Sets the value used to display the monitor set in ol-24 [Custom Monitor 1] as an analog meter. This parameter is only available on an HOA keypad.	$\begin{gathered} 100.0 \% \\ (0.0-100.0 \%) \end{gathered}$
$\begin{gathered} \text { o1-58 } \\ (3125) \end{gathered}$	Motor Power Unit Selection	Sets the setting unit for parameters that set the motor rated power. $\begin{aligned} & 0: \mathrm{kW} \\ & 1: \mathrm{HP} \end{aligned}$	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o1-80 } \\ (31 \mathrm{BA}) \end{gathered}$	Fault Screen Display	Sets a full-screen display message to show on the keypad when a fault or CPF occurs. $\begin{aligned} & 0: \text { OFF } \\ & 1: \text { ON } \end{aligned}$	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o1-81 } \\ (31 \mathrm{BB}) \end{gathered}$	Alarm Screen Display	Sets a full-screen display message to show on the keypad when an alarm occurs. $\begin{aligned} & 0: \text { OFF } \\ & 1: \text { ON } \end{aligned}$	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o1-82 } \\ (31 \mathrm{BC}) \end{gathered}$	Message Screen Display	Sets a full-screen display message to show on the keypad when a status message is active. $\begin{aligned} & 0: \text { OFF } \\ & 1: \text { ON } \end{aligned}$	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

02: Keypad Operation

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{gathered} \mathrm{o} 2-02 \\ (0506) \end{gathered}$	OFF Key Function Selection	Sets the function to use \square OFF on the keypad to stop the drive when the Run command source for the drive is REMOTE (external) and not assigned to the keypad. 0 : Disabled 1 : Enabled	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o2-03 } \\ (0507) \end{gathered}$	User Parameter Default Value	Sets the function to keep the settings of changed parameters as user parameter defaults to use during initialization. 0 : No change 1 : Set defaults 2 : Clear all	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { o2-04 } \\ (0508) \end{gathered}$	Drive Model (KVA) Selection	This parameter is automatically read from the connected drive. Do not change this parameter.	Determined by the drive (-)
$\begin{gathered} \text { o2-05 } \\ (0509) \end{gathered}$	Home Mode Freq Ref Entry Mode	Sets the function that makes it necessary to push to use the keypad to change the frequency reference value while in Drive Mode. 0 : ENTER Key Required 1 : Immediate / MOP-style	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o2-06 } \\ (050 \mathrm{~A}) \end{gathered}$	Keypad Disconnect Detection	Sets the function that stops the drive if you disconnect the keypad connection cable from the drive or if you damage the cable while the keypad is the Run command source. 0 : Disabled 1 : Enabled	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o2-09 } \\ (050 \mathrm{D}) \end{gathered}$	Region Code	This parameter is read-only	$\begin{gathered} 1 \\ (1) \end{gathered}$
$\begin{gathered} \text { o2-19 } \\ (061 \mathrm{~F}) \end{gathered}$	Parameter Write during Uv	Enables and disables the function to change parameter settings during a $U v$ [DC Bus Undervoltage] condition. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o2-24 } \\ (11 \mathrm{FE}) \end{gathered}$	LED Light Function Selection	Sets the function to show the LED status rings and keypad LED lamps. Note: When you use A1-03 [Initialize Parameters] to initialize the drive, the drive will not reset this parameter. 0 : Enable Status Ring \& Keypad LED 1 : LED Status Ring Disable 2 : Keypad LED Light Disable	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \mathrm{o} 2-27 \\ (1565) \end{gathered}$	bCE Detection Selection	Sets drive operation if the Bluetooth device is disconnected when you operate the drive in Bluetooth Mode. 0 : Ramp to Stop 1 : Coast to Stop 2 : Fast Stop (Use C1-09) 3 : Alarm Only 4 : No Alarm Display	$\begin{gathered} 3 \\ (0-4) \end{gathered}$

- 03: Copy Keypad Function

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{gathered} \text { o3-01 } \\ (0515) \end{gathered}$	Copy Keypad Function Selection	Sets the function that saves and copies drive parameters to a different drive with the keypad. 0 : Copy Select 1 : Backup (drive \rightarrow keypad) $2:$ Restore (keypad \rightarrow drive) 3 : Verify (check for mismatch) 4 : Erase (backup data of keypad)	$\begin{gathered} 0 \\ (0-4) \end{gathered}$
$\begin{gathered} \text { o3-02 } \\ (0516) \end{gathered}$	Copy Allowed Selection	Sets the copy function when o3-01 $=1$ [Copy Keypad Function Selection $=$ Backup $($ drive \rightarrow keypad)]. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

7.11 o: Keypad-Related Settings

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \text { o3-04 } \\ (0 \mathrm{~B} 3 \mathrm{E}) \end{gathered}$	Select Backup/Restore Location	Sets the storage location for drive parameters when you back up and restore parameters. This parameter is only available on an HOA keypad. 0 : Memory Location 1 1 : Memory Location 2 2 : Memory Location 3 3 : Memory Location 4	$\begin{gathered} 0 \\ (0-3) \end{gathered}$
$\begin{gathered} \text { o3-06 } \\ \text { (0BDE) } \end{gathered}$	Auto Parameter Backup Selection	Sets the function that automatically backs up parameters. This parameter is only available on an HOA keypad. 0 : Disabled 1 : Enabled	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o3-07 } \\ \text { (0BDF) } \end{gathered}$	Auto Parameter Backup Interval	Sets the interval at which the automatic parameter backup function saves parameters from the drive to the keypad. Note: This parameter is only available when using an LCD keypad. 0 : Every 10 minutes 1 : Every 30 minutes 2 : Every 60 minutes 3 : Every 12 hours	$\begin{gathered} 1 \\ (0-3) \end{gathered}$

04: Maintenance Monitors

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{gathered} \text { o4-01 } \\ (050 \mathrm{~B}) \end{gathered}$	Elapsed Operating Time Setting	Sets the initial value of the cumulative drive operation time in 10-hour units.	$\begin{gathered} 0 \mathrm{~h} \\ (0-9999 \mathrm{~h}) \end{gathered}$
$\begin{gathered} \text { o4-02 } \\ (050 \mathrm{C}) \end{gathered}$	Elapsed Operating Time Selection	Sets the condition that counts the cumulative operation time. 0 : U4-01 Shows Total Power-up Time 1 : U4-01 Shows Total RUN Time	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o4-03 } \\ (050 \mathrm{E}) \end{gathered}$	Fan Operation Time Setting	Sets the value from which to start the cumulative drive cooling fan operation time in 10-hour units.	$\begin{gathered} 0 \mathrm{~h} \\ (0-9999 \mathrm{~h}) \end{gathered}$
$\begin{gathered} \text { o4-05 } \\ (051 \mathrm{D}) \end{gathered}$	Capacitor Maintenance Setting	Sets the U4-05 [CapacitorMaintenance] monitor value.	$\begin{gathered} 0 \% \\ (0-150 \%) \end{gathered}$
$\begin{gathered} \text { o4-07 } \\ (0523) \end{gathered}$	Softcharge Relay Maintenance Set	Sets the U4-06 [PreChargeRelayMainte] monitor value.	$\begin{gathered} 0 \% \\ (0-150 \%) \end{gathered}$
$\begin{gathered} \text { o4-09 } \\ (0525) \end{gathered}$	IGBT Maintenance Setting	Sets the U4-07 [IGBT Maintenance] monitor value.	$\begin{gathered} 0 \% \\ (0-150 \%) \end{gathered}$
$\begin{gathered} \text { o4-11 } \\ (0510) \end{gathered}$	$\begin{array}{\|l} \text { Fault Trace/History Init (U2/ } \\ \text { U3) } \end{array}$	Resets the records of Monitors U2-xx [Fault Trace] and U3-xx [Fault History]. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} o 4-12 \\ (0512) \end{gathered}$	kWh Monitor Initialization	Resets the monitor values for U4-10 [kWh, Lower 4 Digits] and U4-11 [kWh, Upper 5 Digits]. 0 : No Reset 1 : Reset	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { o4-13 } \\ (0528) \end{gathered}$	RUN Command Counter @ Initialize	Resets the monitor values for U4-02 [Num of Run Commands], U4-24 [Number of Runs (Low)], and U4-25 [Number of Runs (High)]. 0 : No Reset 1 : Reset	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
04-22 (154F) RUN	Time Format	Sets the time display format. This parameter is only available on an HOA keypad. $0: 24$ Hour Clock 1: 12 Hour Clock 2 : 12 Hour JP Clock	$\begin{gathered} 1 \\ (0-2) \end{gathered}$
$\begin{gathered} 04-23 \\ (1550) \\ \text { RUN } \end{gathered}$	Date Format	Sets the date display format. This parameter is only available on an HOA keypad. $\begin{aligned} & 0: \text { YYYY/MM/DD } \\ & 1: \mathrm{DD} / \mathrm{MM} / \mathrm{YYYY} \\ & 2: \mathrm{MM} / \mathrm{DD} / \mathrm{YYYY} \end{aligned}$	$\begin{gathered} 2 \\ (0-2) \end{gathered}$
04-24 (310F) RUN	bAT Detection Selection	Sets operation when the drive detects bAT [Keypad Battery Low Voltage] and TiM [Keypad Time Not Set]. 0 : Disable 1 : Enable (Alarm Detected) 2 : Enable (Fault Detected)	$\begin{gathered} 0 \\ (0-2) \end{gathered}$

05: Log Function

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
o5-01 (1551) RUN	Log Start/Stop Selection	Sets the data \log function. This parameter is only available on an HOA keypad. $\begin{aligned} & 0: \text { OFF } \\ & 1: \text { ON } \end{aligned}$ Note: You must insert a compatible SD cart into the keypad before you enable this parameter.	$\begin{gathered} 0 \\ (0-1) \end{gathered}$
o5-02 (1552) RUN	Log Sampling Interval	Sets the data log sampling cycle. This parameter is only available on an HOA keypad.	$\begin{gathered} 100 \mathrm{~ms} \\ (100-60000 \mathrm{~ms}) \end{gathered}$
$\begin{gathered} \text { o5-03 } \\ \text { (1553) } \\ \text { RUN } \\ \hline \end{gathered}$	Log Monitor Data 1	Sets the data log monitor. This parameter is only available on an HOA keypad.	$\begin{gathered} 101 \\ (000,101-1212) \end{gathered}$
$\begin{gathered} \text { o5-04 } \\ (1554) \\ \text { RUN } \end{gathered}$	Log Monitor Data 2	Sets the data log monitor. This parameter is only available on an HOA keypad.	$\begin{gathered} 102 \\ (000,101-1212) \end{gathered}$
$\begin{gathered} \text { o5-05 } \\ \text { (1555) } \\ \text { RUN } \\ \hline \end{gathered}$	Log Monitor Data 3	Sets the data log monitor. This parameter is only available on an HOA keypad.	$\begin{gathered} 103 \\ (000,101-1212) \end{gathered}$
$\begin{gathered} \text { o5-06 } \\ (1556) \\ \text { RUN } \end{gathered}$	Log Monitor Data 4	Sets the data log monitor. This parameter is only available on an HOA keypad.	$\begin{gathered} 107 \\ (000,101-1212) \end{gathered}$
$\begin{gathered} \text { o5-07 } \\ (1557) \\ \text { RUN } \end{gathered}$	Log Monitor Data 5	Sets the data log monitor. This parameter is only available on an HOA keypad.	$\begin{gathered} 108 \\ (000,101-1212) \end{gathered}$
$\begin{gathered} 05-08 \\ (1558) \\ \text { RUN } \end{gathered}$	Log Monitor Data 6	Sets the data log monitor. This parameter is only available on an HOA keypad.	$\begin{gathered} 0 \\ (000,101-1212) \end{gathered}$
$\begin{gathered} \text { o5-09 } \\ (1559) \\ \text { RUN } \end{gathered}$	Log Monitor Data 7	Sets the data log monitor. This parameter is only available on an HOA keypad.	$\begin{gathered} 000 \\ (000,101-1212) \end{gathered}$
$\begin{gathered} \text { o5-10 } \\ (155 \mathrm{~A}) \\ \text { RUN } \end{gathered}$	Log Monitor Data 8	Sets the data log monitor. This parameter is only available on an HOA keypad.	$\begin{gathered} 000 \\ (000,101-1212) \end{gathered}$
o5-11 (155B) RUN	Log Monitor Data 9	Sets the data log monitor. This parameter is only available on an HOA keypad.	$\begin{gathered} 000 \\ (000,101-1212) \end{gathered}$
$\begin{gathered} 05-12 \\ (155 \mathrm{C}) \\ \text { RUN } \end{gathered}$	Log Monitor Data 10	Sets the data log monitor. This parameter is only available on an HOA keypad.	$\begin{gathered} 000 \\ (000,101-1212) \end{gathered}$

7.12 S: Special Applications

S1: Dynamic Noise Control

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{aligned} & \text { S1-01 } \\ & (3200) \end{aligned}$	Dynamic Noise Control	Sets the function that decreases the output voltage in variable torque applications to decrease audible noise. 0 : Disabled 1 : Enabled	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { S1-02 } \\ & (3201) \end{aligned}$	Voltage Reduction Rate	Sets the rate at which the drive will decrease the output voltage as a percentage of the V / f pattern when operating with no load.	$\begin{gathered} 50.0 \% \\ (50.0-100.0 \%) \end{gathered}$
$\begin{aligned} & \text { S1-03 } \\ & (3202) \end{aligned}$	Voltage Restoration Level	Sets the level at which the drive will start to restore the voltage as a percentage of the drive rated torque.	$\begin{gathered} 20.0 \% \\ (0.0-90.0 \%) \end{gathered}$
$\begin{aligned} & \text { S1-04 } \\ & (3203) \end{aligned}$	Voltage Restoration Off Level	Sets the level at which voltage restoration for the V/f pattern is complete as a percentage of the drive rated torque. If the output is more than S1-04, the drive will control the voltage as specified by the V/ f pattern setting. Note: The lower limit of this parameter is the value of S1-03 [Voltage Restoration Level] $+10.0 \%$.	$\begin{gathered} 50.0 \% \\ (10.0-100.0 \%) \end{gathered}$
$\begin{aligned} & \text { S1-05 } \\ & (3204) \end{aligned}$	Volt Restore Sensitivity Time K	Sets the level of sensitivity of the output torque and LPF time constant for the voltage reduction rate. You can adjust the level of sensitivity with the load response.	$\begin{gathered} 1.000 \mathrm{~s} \\ (0.000-3.000 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { S1-06 } \\ & (3205) \end{aligned}$	Volt Restore Impact Load Time K	Sets the voltage restoration time constant when you add an impact load.	$\begin{gathered} 0.050 \mathrm{~s} \\ (0.000-1.000 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { S1-07 } \\ & (324 \mathrm{C}) \end{aligned}$	Output Phase Loss Level	Decreases the output phase loss level when Dynamic Noise control is active.	$\begin{gathered} 100.0 \% \\ (10.0-100.0 \%) \end{gathered}$

- S2: Sequence Run Timers

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{aligned} & \text { S2-01 } \\ & (3206) \end{aligned}$	Timer 1 Start Time	Sets the start time for timer 1 . Note: - Default is when o4-22 = 1 [Time Format $=12$ Hour Clock]. When o4-22 $=0$ [24 Hour Clock], default is 00:00. When $o 4-22=2$ [12 Hour JP Clock], default is 00:00 AM. - Range is when $o 4-22=1$. When $o 4-22=0$, range is $00: 00$ to $24: 00$. When $o 4-22=2$, range is 00:00 AM to 11:59 PM.	$\begin{gathered} 12: 00 \\ (12: 00 \mathrm{AM}-11: 59 \mathrm{PM}) \end{gathered}$
$\begin{aligned} & \text { S2-02 } \\ & (3207) \end{aligned}$	Timer 1 Stop Time	Sets the stop time for timer 1. Note: - Default is when o4-22 = 1 [Time Format $=12$ Hour Clock]. When $04-22=0$ [24 Hour Clock], default is 00:00. When o4-22 $=2$ [12 Hour JP Clock], default is 00:00 AM. - Range is when $04-22=1$. When $04-22=0$, range is $00: 00$ to $24: 00$. When $04-22=2$, range is 00:00 AM to 11:59 PM.	$\begin{gathered} 12: 00 \\ (12: 00 \mathrm{AM}-11: 59 \mathrm{PM}) \end{gathered}$
$\begin{aligned} & \text { S2-03 } \\ & (3208) \end{aligned}$	Timer 1 Day Selection	Sets the days for which sequence timer 1 is active. 0 : Timer Disabled 1 : Daily 2 : Mon - Fri 3: Sat - Sun 4 : Monday 5 : Tuesday 6 : Wednesday 7 : Thursday 8 : Friday 9 : Saturday 10 : Sunday	$\begin{gathered} 0 \\ (0-10) \end{gathered}$
$\begin{gathered} \text { S2-04 } \\ (3209) \end{gathered}$	Timer 1 Sequence Selection	Sets the drive response when sequence timer 1 is active. 0 : Digital Out Only 1 : Run 2 : Run - PID Disable	$\begin{gathered} 0 \\ (0-2) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \text { S2-05 } \\ (320 \mathrm{~A}) \end{gathered}$	Timer 1 Reference Source	Selects the frequency reference source to run the drive when sequence timer 1 is active (only applicable when $S 2-04>0$ [Timer 1 Sequence Selection \neq Digital Out Only]). 0 : Operator (d1-01/YA-01) 1 : Operator (d1-02/YA-02) 2 : Operator (d1-03/YA-03) 3 : Operator (d1-04/YA-04) 4 : Terminals 5 : Serial Com 6 : Option PCB 8 : Set by bl-01 Note: For reference source 0 to 3 , the drive will use $d 1-x x$ frequency reference when PID mode is disabled and $Y A-x x$ setpoint when PID is enabled.	$\begin{gathered} 0 \\ (0-8) \end{gathered}$
$\begin{gathered} \text { S2-06 } \\ (320 \mathrm{~B}) \end{gathered}$	Timer 2 Start Time	Sets the start time for timer 2. Note: - Default is when o4-22 $=1$ [Time Format $=12$ Hour Clock]. When $o 4-22=0$ [24 Hour Clock], default is 00:00. When $04-22=2$ [12 Hour JP Clock], default is 00:00 AM. - Range is when $o 4-22=1$. When $o 4-22=0$, range is $00: 00$ to $24: 00$. When $04-22=2$, range is 00:00 AM to 11:59 PM.	$\begin{gathered} 12: 00 \\ (12: 00 \mathrm{AM}-11: 59 \mathrm{PM}) \end{gathered}$
$\begin{aligned} & \text { S2-07 } \\ & (320 \mathrm{C}) \end{aligned}$	Timer 2 Stop Time	Sets the stop time for timer 2. Note: - Default is when o4-22 = 1 [Time Format $=12$ Hour Clock]. When $04-22=0$ [24 Hour Clock], default is $00: 00$. When $o 4-22=2[12$ Hour JP Clock], default is 00:00 AM. - Range is when $o 4-22=1$. When $o 4-22=0$, range is $00: 00$ to $24: 00$. When $o 4-22=2$, range is 00:00 AM to 11:59 PM.	$\begin{gathered} 12: 00 \\ (12: 00 \mathrm{AM}-11: 59 \mathrm{PM}) \end{gathered}$
$\begin{gathered} \text { S2-08 } \\ \text { (320D) } \end{gathered}$	Timer 2 Day Selection	Sets the days for which sequence timer 2 is active. 0 : Timer disabled 1 : Daily 2 : Mon - Fri 3 : Sat - Sun 4 : Monday 5 : Tuesday 6 : Wednesday 7 : Thursday 8 : Friday 9 : Saturday 10 : Sunday	$\begin{gathered} 0 \\ (0-10) \end{gathered}$
$\begin{gathered} \text { S2-09 } \\ (320 \mathrm{E}) \end{gathered}$	Timer 2 Sequence Selection	Sets the drive response when sequence timer 2 is active. $0 \text { : Digital Out Only }$ 1 : Run 2 : Run - PID Disable	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{aligned} & \text { S2-10 } \\ & (320 \mathrm{~F}) \end{aligned}$	Timer 2 Reference Source	Selects the frequency reference source to run the drive when sequence timer 2 is active (only applicable when $S 2-09>0$ [Timer 2 Sequence Selection $\neq 0]$]. 0 : Operator (d1-01/YA-01) 1 : Operator (d1-02/YA-02) 2 : Operator (d1-03/YA-03) 3 : Operator (d1-04/YA-04) 4 : Terminals 5 : Serial Com 6 : Option PCB 8 : Set by b1-01 Note: For reference source 0 to 3 , the drive will use $d l-x x$ frequency reference when PID mode is disabled and $Y A-x x$ setpoint when PID is enabled.	$\begin{gathered} 0 \\ (0-8) \end{gathered}$
$\begin{aligned} & \text { S2-11 } \\ & (3210) \end{aligned}$	Timer 3 Start Time	Sets the start time for timer 3. Note: - Default is when $04-22=1$ [Time Format $=12$ Hour Clock]. When $04-22=0$ [24 Hour Clock], default is 00:00. When $o 4-22=2[12$ Hour JP Clock], default is 00:00 AM. - Range is when $o 4-22=1$. When $o 4-22=0$, range is $00: 00$ to $24: 00$. When $o 4-22=2$, range is 00:00 AM to 11:59 PM.	$\begin{gathered} 12: 00 \\ (12: 00 \mathrm{AM}-11: 59 \mathrm{PM}) \end{gathered}$
$\begin{gathered} \mathrm{S} 2-12 \\ (3211) \end{gathered}$	Timer 3 Stop Time	Sets the stop time for timer 3. Note: - Default is when $o 4-22=1$ [Time Format $=12$ Hour Clock]. When $o 4-22=0$ [24 Hour Clock], default is $00: 00$. When $o 4-22=2$ [12 Hour JP Clock], default is 00:00 AM. - Range is when $o 4-22=1$. When $o 4-22=0$, range is $00: 00$ to $24: 00$. When $o 4-22=2$, range is 00:00 AM to 11:59 PM.	$\begin{gathered} 12: 00 \\ (12: 00 \mathrm{AM}-11: 59 \mathrm{PM}) \end{gathered}$

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{aligned} & \text { S2-13 } \\ & (3212) \end{aligned}$	Timer 3 Day Selection	Sets the days for which sequence timer 3 is active. 0 : Timer Disabled 1 : Daily 2 : Mon - Fri 3 : Sat - Sun 4 : Monday 5 : Tuesday 6 : Wednesday 7 : Thursday 8 : Friday 9 : Saturday 10 : Sunday	$\begin{gathered} 0 \\ (0-10) \end{gathered}$
$\begin{aligned} & \text { S2-14 } \\ & (3213) \end{aligned}$	Timer 3 Sequence Selection	Sets the drive response when sequence timer 3 is active. 0 : Digital Out Only 1 : Run 2 : Run - PID Disable	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { S2-15 } \\ (3214) \end{gathered}$	Timer 3 Reference Source	Selects the frequency reference source to run the drive when sequence timer 3 is active (only applicable when $S 2-14>0$ [Timer 3 Sequence Selection \neq Digital Out Only]). 0 : Operator (d1-01/YA-01) 1 : Operator (d1-02/YA-02) 2 : Operator (d1-03/YA-03) 3 : Operator (d1-04/YA-04) 4 : Terminals 5 : Serial Com 6 : Option PCB 8: Set by bl-01 Note: For reference source 0 to 3 , the drive will use $d 1-x x$ frequency reference when PID mode is disabled and $Y A-x x$ setpoint when PID is enabled.	$\begin{gathered} 0 \\ (0-8) \end{gathered}$
$\begin{aligned} & \text { S2-16 } \\ & (3215) \end{aligned}$	Timer 4 Start Time	Sets the start time for timer 4. Note: - Default is when o4-22 = 1 [Time Format $=12$ Hour Clock]. When o4-22 $=0$ [24 Hour Clock], default is 00:00. When o4-22 $=2$ [12 Hour JP Clock], default is 00:00 AM. - Range is when $o 4-22=1$. When $o 4-22=0$, range is $00: 00$ to $24: 00$. When $o 4-22=2$, range is 00:00 AM to 11:59 PM.	$\begin{gathered} 12: 00 \\ (12: 00 \mathrm{AM}-11: 59 \mathrm{PM}) \end{gathered}$
$\begin{aligned} & \text { S2-17 } \\ & (3216) \end{aligned}$	Timer 4 Stop Time	Sets the stop time for timer 4. Note: - Default is when $04-22=1$ [Time Format $=12$ Hour Clock]. When o4-22 $=0$ [24 Hour Clock], default is 00:00. When $o 4-22=2$ [12 Hour JP Clock], default is 00:00 AM. - Range is when $o 4-22=1$. When $o 4-22=0$, range is $00: 00$ to $24: 00$. When $o 4-22=2$, range is 00:00 AM to 11:59 PM.	$\begin{gathered} 12: 00 \\ (12: 00 \mathrm{AM}-11: 59 \mathrm{PM}) \end{gathered}$
$\begin{aligned} & \text { S2-18 } \\ & (3217) \end{aligned}$	Timer 4 Day Selection	Sets the days for which sequence timer 4 is active. 0 : Timer disabled 1 : Daily 2 : Mon - Fri 3 : Sat - Sun 4 : Monday 5 : Tuesday 6 : Wednesday 7 : Thursday 8 : Friday 9 : Saturday 10 : Sunday	$\begin{gathered} 0 \\ (0-10) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \text { S2-19 } \\ (3218) \end{gathered}$	Timer 4 Sequence Selection	Sets the drive response when sequence timer 4 is active. 0 : Digital Out Only 1 : Run 2 : Run - PID Disable	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{aligned} & \text { S2-20 } \\ & (3219) \end{aligned}$	Timer 4 Reference Source	Selects the frequency reference source to run the drive when sequence timer 4 is active (only applicable when $S 2-19>0$ [Timer 4 Sequence Selection \neq Digital Out Only]). 0 : Operator (d1-01/YA-01) 1 : Operator (d1-02/YA-02) : Operator (d1-03/YA-03) : Operator (d1-04/YA-04) : Terminals Serial Com : Option PCB 8 : Set by b1-01 Note: For reference source 0 to 3 , the drive will use $d 1-x x$ frequency reference when PID mode is disabled and $Y A-x x$ setpoint when PID is enabled.	$\begin{gathered} 0 \\ (0-8) \end{gathered}$

S3: PI2 Control

| No.
 (Hex.) | Name | Description |
| :---: | :--- | :--- | :--- |
| S3-01
 (321A) | PI2 Control Enable Selection | Sets when the PI2 Control function is enabled:
 $0:$ Disabled
 (Range) |

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{gathered} \text { S3-06 } \\ \text { (321F) } \\ \text { RUN } \\ \hline \end{gathered}$	PI2 Control Proportional Gain	Sets the proportional gain of the PI2 Control. Set this parameter to 0.00 to disable proportional control.	$\begin{gathered} 1.00 \\ (0.00-25.00) \end{gathered}$
$\begin{gathered} \text { S3-07 } \\ (3220) \\ \text { RUN } \end{gathered}$	PI2 Control Integral Time	Sets the integral time for the suction pressure control. Set this parameter to 0.00 to disable the integrator.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0-360.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { S3-08 } \\ (3221) \\ \text { RUN } \\ \hline \end{gathered}$	PI2 Control Integral Max Limit	Sets the maximum output possible from the integrator.	$\begin{gathered} 100.0 \% \\ (0.0-100.0 \%) \end{gathered}$
$\begin{gathered} \text { S3-09 } \\ (3222) \\ \text { RUN } \end{gathered}$	PI2 Control Output Upper Limit	Sets the maximum output possible from the PI Auxiliary Control function.	$\begin{gathered} 100.0 \% \\ (0.0-100.0 \%) \end{gathered}$
$\begin{gathered} \text { S3-10 } \\ (3223) \\ \text { RUN } \end{gathered}$	PI2 Control Output Lower Limit	Sets the minimum output possible from the PI Auxiliary Control function.	$\begin{gathered} 0.0 \% \\ (-100.0-+100.0 \%) \end{gathered}$
$\begin{aligned} & \text { S3-11 } \\ & (3224) \end{aligned}$	PI2 Control Output Level Sel	Sets the PI2 controller output direction. 0 : Direct Acting (Normal Output) 1 : Inverse Acting (Reverse Output)	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { S3-12 } \\ (3225) \\ \text { RUN } \end{gathered}$	PI2 Control Disable Mode Sel	Sets what U5-20 [PI2 Control Output] will output when disabled. 0 : No Output (0\%) 1 : Lower Limit (S3-10) 2 : Setpoint	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
S3-13 (3226) RUN	PI2 Control Low Feedback Lvl	Sets the secondary PI low feedback detection level. Note: Parameters S3-04 [PI2 Control Unit Selection], S3-03 [PI2 Control Decimal Place Pos], and S302 [PI2 Control Transducer Scale] set the unit, resolution, and upper limit.	$\begin{gathered} 0.00 \\ (0.00-600.00) \end{gathered}$
$\begin{gathered} \text { S3-14 } \\ (3227) \\ \text { RUN } \end{gathered}$	PI2 Control Low Feedback Time	Sets the secondary PI low feedback detection delay time in seconds.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0-25.5 \mathrm{~s}) \end{gathered}$
S3-15 (3228) RUN	PI2 Control High Feedback Lvl	Sets the secondary PI high feedback detection level. Note: Parameters S3-04 [PI2 Control Unit Selection], S3-03 [PI2 Control Decimal Place Pos], and S302 [PI2 Control Transducer Scale] set the unit, resolution, and upper limit.	$\begin{gathered} 100.00 \\ (0.00-600.00) \end{gathered}$
$\begin{gathered} \text { S3-16 } \\ (3229) \\ \text { RUN } \end{gathered}$	PI2 Control High Feedback Time	Sets the secondary PI high feedback detection delay time in seconds.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0-25.5 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { S3-17 } \\ (322 \mathrm{~A}) \\ \text { RUN } \end{gathered}$	PI2 Control Feedback Det Sel	Sets when the low and high feedback detection multifunction outputs (71h and 72h) for PI2 Control are active. 0 : While PI2 Control Enabled 1 : Always Note: Feedback level detection compares PI2 Control Feedback from analog input $H 3-x x=26$ [MFAI Function Selection = PI2 Control Feedback] to these parameters: - S3-13 [PI2 Control Low Feedback Lvl] for low feedback level detection - S3-15 [PI2 Control High Feedback Lvl] for high feedback level detection	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { S3-18 } \\ \text { (322B) } \\ \text { RUN } \end{gathered}$	PI2 Control Custom Unit 1	Sets the first character of the PI2 Control custom unit display when S3-04 = 49 [PI2 Control Unit Selection $=$ Custom(S3-18~20)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$
$\begin{gathered} \text { S3-19 } \\ (322 \mathrm{C}) \\ \text { RUN } \end{gathered}$	PI2 Control Custom Unit 2	Sets the second character of the PI2 Control custom unit display when S3-04 = 49 [PI2 Control Unit Selection $=$ Custom(S3-18~20)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$
$\begin{gathered} \text { S3-20 } \\ (322 \mathrm{D}) \\ \text { RUN } \end{gathered}$	PI2 Control Custom Unit 3	Sets the third character of the PI2 Control custom unit display when S3-04 $=49$ [PI2 Control Unit Selection $=$ Custom(S3-18~20)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$

S5: Hand/Off/Auto Operation

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{gathered} \mathrm{S} 5-01 \\ (322 \mathrm{~F}) \end{gathered}$	HAND Frequency Reference Source	Sets the frequency reference source when HAND Mode is active. 0 : HAND Analog Input 1 : HAND Ref S5-05 or PID SP S5-06 2 : Set by b1-01	$\begin{gathered} 1 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { S5-02 } \\ (3230) \end{gathered}$	HAND/AUTO Switchover During Run	Sets the function to enable or disable switching between HAND and AUTO Mode during run. 0 : Disabled 1 : Enabled	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { S5-03 } \\ (3231) \\ \text { RUN } \end{gathered}$	HAND Mode PID Selection	Sets the function to enable or disable PI function when HAND mode is active. 0 : Disabled 1 : Enabled Note: If $b 5-01=0[P I D$ Mode Setting $=$ Disabled $]$, the drive disables Hand Mode PID.	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
S5-05 (3233) RUN	HAND Frequency Reference	Sets the frequency reference when HAND Mode is active, PID is disabled and S5-01 $=1$ [HAND Frequency Reference Source $=$ HAND Ref S5-05 or PID SP S5-06].	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$
S5-06 (3234) RUN	HAND Setpoint	Sets the System Setpoint when HAND Mode is active, PID is enabled and S5-01 $=1[$ HAND Frequency Reference Source $=$ HAND Ref S5-05 or PID SP S5-06]. Note: Parameters b5-46 [PID Unit Display Selection], b5-38 [PID User Unit Display Scaling], and b539 [PID User Unit Display Digits] set the unit, range, and resolution.	$\begin{gathered} 0.0 \\ (0.0-6000.0) \end{gathered}$
$\begin{aligned} & \text { S5-07 } \\ & (3235) \end{aligned}$	Operation HAND Key	Sets the HAND key on the HOA keypad to let you switch between HAND Mode and AUTO Mode. 0 : Disabled 1 : Enabled	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { S5-08 } \\ \text { (3D31) } \\ \text { RUN } \end{gathered}$	HAND Reference Prime Loss Level	Sets the level at which the drive will detect the Loss of Prime in the pump. Note: - If these conditions occur at the same time, the drive will detect LOP [Loss of Prime]: -The monitor set by Y1-18 [Prime Loss Detection Method] \leq S5-08 for longer than Y1-20 [Prime Loss Time] -Output frequency \geq S5-05 [HAND Frequency Reference] - The drive response to the Loss of Prime condition changes when the Y1-22 [Prime Loss Selection] setting changes. - Parameter Y1-18 [Prime Loss Detection Method] sets the units for this parameter.	$\begin{gathered} 0.0 \\ (0.0-1000.0) \end{gathered}$

S6: Protection

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{aligned} & \text { S6-01 } \\ & (3236) \end{aligned}$	Emergency Override Speed	Sets the speed command for emergency override mode when S6-02 $=0$ [Emergency Override Ref Selection = Use S6-01 Reference]. Note: Parameter default is lower-limited to E1-09. The default setting will automatically increase when E1-09>S6-01.	$\begin{gathered} 1.50 \mathrm{~Hz} \\ (1.50-60.00 \mathrm{~Hz}) \end{gathered}$
$\begin{aligned} & \text { S6-02 } \\ & (3237) \end{aligned}$	Emergency Override Ref Selection	Sets the Emergency Override Speed Source: 0 : Use S6-01 Reference 1 : Use Frequency Reference 2 : System PID Mode 3 : Independent PID Mode	$\begin{gathered} 0 \\ (0-3) \end{gathered}$
$\begin{gathered} \text { S6-03 } \\ (323 \mathrm{~A}) \end{gathered}$	EMOVR Independent PID Scale	Sets the scaling on the Emergency PID Feedback and Setpoint (if programmed) Analog Inputs. Note: - S6-05 [EMOVR Independent PID Unit Digit] sets the resolution for this parameter. - S6-04 [EMOVR Independent PID Unit] sets the units for this parameter.	$\begin{gathered} 100.00 \\ (0.10-600.00) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \mathrm{S} 6-04 \\ (323 \mathrm{~B}) \end{gathered}$	EMOVR Independent PID Unit	Sets the units displayed for S6-06 [EMOVR PID Setpoint] when S6-02 $=3$ [Emergency Override Ref Selection $=$ Independent PID Mode]. 0 : "WC: inches of water column 1 : PSI: pounds per square inch 2 : GPM: gallons/min 3: ${ }^{\circ} \mathrm{F}$: Fahrenheit 4 : $\mathrm{ft}^{3} / \mathrm{min}$: cubic feet $/ \mathrm{min}$ $5: \mathrm{m}^{3} / \mathrm{h}$: cubic meters/hour 6 : L/h: liters/hour 7 : L/s: liters/sec 8 : bar: bar 9 : Pa: Pascal $10:{ }^{\circ} \mathrm{C}$: Celsius 11 : m: meters 12 : ft: feet 13 : L/min: liters/min $14: \mathrm{m}^{3} / \mathrm{min}$: cubic meters $/ \mathrm{min}$ 15 : "Hg: Inch Mercury 16 : kPa: kilopascal 48 : \%: Percent 49 : Custom(b5-68~70) 50 : None	$\begin{gathered} 48 \\ (0-50) \end{gathered}$
$\begin{gathered} \mathrm{S} 6-05 \\ (323 \mathrm{C}) \end{gathered}$	EMOVR Independent PID Unit Digit	Sets the number of digits for S6-06 [EMOVR PID Setpoint] when S6-02 = 3[Emergency Override Ref Selection = Independent PID Mode]. 0 : No Decimal Places (XXXXX) 1: One Decimal Places (XXXX.X) 2 : Two Decimal Places (XXX.XX) 3 : Three Decimal Places (XX.XXX)	$\begin{gathered} 2 \\ (0-3) \end{gathered}$
$\begin{gathered} \text { S6-06 } \\ \text { (323D) } \\ \text { RUN } \end{gathered}$	EMOVR PID Setpoint	Sets the PID Setpoint when S6-02 $=3$ [Emergency Override Ref Selection $=$ Independent PID Mode]. Note: When $S 6-02=3$: units and resolution are dependent on S6-04 [EMOVR Independent PID Unit] and S6-05 [EMOVR Independent PID Unit Digit]. Value is internally limited to 300% of S6-03 [EMOVR Independent PID Scale].	$\begin{gathered} 0.00 \\ (0-600.00) \end{gathered}$
$\begin{aligned} & \text { S6-07 } \\ & (323 \mathrm{E}) \end{aligned}$	EMOVR Fault Suppression Mode	Sets the drive to let Emergency Override disable faults during operation. 0 : Fault Suppression 1 : Test Mode	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \mathrm{S} 6-08 \\ & (323 \mathrm{~F}) \end{aligned}$	EMOVR Drive Enable Input Mode	Sets whether the Drive Enable Input (if programmed) must be inactive (drive is disabled) for Emergency Override to function. 0 : Drive Enable Status Ignored 1 : EMOVRun Only When Drive Disabled Note: You must program Drive Enable to a Digital Input for this parameter to have an effect.	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { S6-09 } \\ & (3240) \end{aligned}$	Emergency Override Min Speed	When Emergency Override is active, the output frequency is lower-limited to this value.	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$
$\begin{aligned} & \text { S6-10 } \\ & (3241) \end{aligned}$	Emergency Override Max Speed	When Emergency Override is active, the output frequency is upper-limited to this value. Note: Set this parameter to 0.00 Hz to disable the limit.	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00) \end{gathered}$

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{aligned} & \text { S6-11 } \\ & (3242) \\ & \text { Expert } \end{aligned}$	EMOVR Drive Protection Fault ON	Sets the bit to enable fault detection during Emergency Override. bit 0 : Uv1 - DC Bus Undervoltage bit 1 : CoF - Current Offset Fault bit 2 : Reserved bit 3 : Err - EEPROM Write Error bit 4 : Reserved bit 5 : Reserved bit 6 : oL2 - Drive Overload bit 7 : oPr-Operator Connection bit 8 : PF - Input Phase Loss bit 9 : Reserved bit 10 : Reserved bit 11 : oH - Heatsink Overheat bit 12 : oH1 - Heatsink Overheat bit 13 : OD - Output Disconnect bit 14 : FAn1-Cooling Fan Fault bit 15 : ov2 - DC Bus Overvoltage 2 Note: The drive sets the bits in Hex.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{aligned} & \text { S6-12 } \\ & (3243) \\ & \text { Expert } \end{aligned}$	EMOVR Motor Protection Fault ON	Sets the bit to enable fault detection during Emergency Override. bit 0 : LF - Output Phase Loss bit 1 : LF2 - Output Current Imbalance bit 2 : oH3 - Motor Overheat PTC Input bit 3 : oH4 - Motor Overheat PTC Input bit 4 : Reserved bit 5 : oL1 - Motor Overload bit 6 : oL3-Overtorque Detection 1 bit 7 : oL4-Overtorque Detection 2 bit 8 : oL7 - High Slip Braking Overload bit 9 : Reserved bit 10 : UL3- Undertorque Detection 1 bit 11 : UL4 - Undertorque Detection 2 bit 12 : UL6 - Motor Underload bit 13 : Reserved bit 14 : oS - Overspeed bit 15 : dEv: Speed Deviation Note: The drive sets the bits in Hex.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
S6-13 (3244) Expert	EMOVR Option Fault ON	Sets the bit to enable fault detection during Emergency Override. bit 0 : bUS - Option Communication bit 1 : CE - Communication Error bit 2 : E5-SI-T3 Watch Dog Timer bit 3 : EF0-Option Card External Fault bit 4 : PE1-PLC Fault 1 bit 5 : PE2-PLC Fault 2 bit 6 : nSE - Node Setup Error bit 7 to 15 : Reserved Note: The drive sets the bits in Hex.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{gathered} \text { S6-14 } \\ (3245) \\ \text { Expert } \end{gathered}$	EMOVR Application 1 Fault ON	Sets the bit to enable fault detection during Emergency Override. bit 0 : EFx - External Faults bit 1 : Reserved bit 2 : HLCE - High Level Communications Error bit 3 : bAT-HOA Keypad Battery Voltage Low bit 4 : TiM - Keypad Time Not Set bit 5 : bCE - Bluetooth Communication Fault bit 6 : Reserved bit 7 : Reserved bit 8 : Reserved bit 9 : MSL - Net Master Lost bit 10 : VLTS - Thermostat Fault bit 11 to 15 : Reserved Note: The drive sets the bits in Hex.	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { S6-16 } \\ & (3247) \end{aligned}$	EMOVR Customer Safety Mode	Sets the status for the customer safety input (when programmed) that must occur for Emergency Override to function. 0 : Customer Safety Ignored 1 : EMOVRun Only When Safety OK 2 : EMOVRun Only When Safety NOT OK Note: You must set one of the bypass control digital inputs to a safety [Z2-0x $=22,38-43]$ for this parameter to have an effect.	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { S6-17 } \\ (3248) \end{gathered}$	EMOVR BAS Interlock Mode	Sets the status for the BAS Interlock input (when programmed) that must occur for Emergency Override to function. 0 : BAS Interlock Ignored 1 : EMOVRun Only When Interlock OK 2 : EMOVRun When Interlock NOT OK Note: You must set one of the bypass control digital inputs to Run Interlock (BAS) [Z2-0x=23] for this parameter to have an effect.	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { S6-20 } \\ (324 \mathrm{~B}) \\ \text { Expert } \end{gathered}$	EMOVR Bypass Fault ON	Sets the bit to enable fault detection during Emergency Override. bit 0 : FB02 bit 1 : FB03 bit 2 : FB05 bit 3 : FB06 bit 4 : FB07 bit 5 : FB08 bit 6 : FB09 bit 7 : FB10 bit 8 : FB13 bit 9 : FB15 bit 10 : FB16 bit 11 : FB17 bit 12 : FB18	$\begin{gathered} 0 \\ (0-\mathrm{FFFF}) \end{gathered}$
$\begin{gathered} \text { S6-23 } \\ (324 \mathrm{E}) \end{gathered}$	OV2 Detect Time	Sets the detection time of ov2 [DC Bus Overvoltage 2] in 0.1 s increments. Note: Set this parameter to 0.0 s to disable ov2 detection.	$\begin{gathered} 10.0 \mathrm{~s} \\ (0.0-1200.0 \mathrm{~s}) \end{gathered}$

7.13 Y: Application Features

- Y1: Application Basics

No. (Hex.)	Name	Description	Default (Range)
Y1-04 (3C03) RUN	Sleep Wake-up Level	Sets the level that feedback must be less than for the time set in Y1-05 [Sleep Wake-up Level Delay Time] to start the system. This level also sets the wake up level when the drive is in Sleep Mode. When Y1-04 <0, the feedback level must decrease this amount to less than the setpoint. Note: - When PID operates in reverse mode, the feedback value must increase to more than the start level for the time set in Y1-05 for the system to start. - When Y2-01 $=5$ [Sleep Level Type $=$ Output Frequency (non-PID)], the drive will ignore this parameter. - Set this parameter to 0.0 to disable the function. - Range is 0.00 to 99.99 with sign-bit "-" or " + " indicating Delta to Setpoint. - Display unit and scaling change when the system units change.	$\begin{gathered} 0.0 \\ (-999.9-+999.9) \end{gathered}$
$\begin{gathered} \text { Y1-05 } \\ (3 \mathrm{C} 04) \\ \text { RUN } \end{gathered}$	Sleep Wake-up Level Delay Time	Sets the drive to start the System again when the feedback decreases to less than Y1-04 [Sleep Wakeup Level] for the time set in this parameter.	$\begin{gathered} 1 \mathrm{~s} \\ (0-3600 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { Y1-06 } \\ (3 \mathrm{C} 05) \\ \text { RUN } \end{gathered}$	Minimum Speed	Sets the minimum frequency at which the drive will run. The drive applies this setting to HAND and AUTO modes. Note: The unit, decimal place, and setting range change when the Y1-07 [Minimum Speed Units] setting changes: - Y1-07 $=0[\mathrm{~Hz}]$: The setting range is 0.0 Hz to $E 1-04 \mathrm{~Hz}$. - Y1-07 = $1[R P M]$: The setting range is 0 RPM to ($E 1-04 \times 60$) RPM.	$\begin{gathered} 0.0 \mathrm{~Hz} \\ \text { Determined by Y1-07 } \end{gathered}$
$\begin{gathered} \text { Y1-07 } \\ (3 \mathrm{C} 06) \end{gathered}$	Minimum Speed Units	Sets the units and decimal place for Y1-06 [Minimum Speed]. 0 : Hz 1 : RPM Note: Changing Y1-07 will set Y1-06 [Minimum Speed] to the default value.	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { Y1-08 } \\ \text { (3C07) } \\ \text { RUN } \end{gathered}$	Low Feedback Level	Sets the lower detection level for the PID feedback. Note: - Unit and decimal place change when the system units change. - Range is 0.00 to 99.99 with sign-bit "-" indicating Delta to Setpoint.	$\begin{gathered} 0.00 \% \\ (0.00-99.99 \%) \end{gathered}$
$\begin{gathered} \text { Y1-09 } \\ (3 \mathrm{C} 08) \\ \text { RUN } \end{gathered}$	Low Feedback Lvl Fault Dly Time	Sets the delay time for the drive to detect an $L F B$ [Low Feedback Sensed] fault after the feedback level decreases to less than the value set in Y1-08 [Low Feedback Level]. Note: Set $Y 1-10=0[$ Low Feedback Selection $=$ Fault (and Digital Output)] to enable this parameter.	$\begin{gathered} 10 \mathrm{~s} \\ (0-3600 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { Y1-10 } \\ (3 \mathrm{C} 09) \end{gathered}$	Low Feedback Selection	Sets the drive response when the feedback decreases to less than Y1-08 [Low Feedback Level] for longer than the time set in Y1-09 [Low Feedback Lvl Fault Dly Time]. 0 : Fault (and Digital Output) 1: Alarm (and Digital Output) 2 : Digital Output Only	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { Y1-11 } \\ (3 \mathrm{C} 0 \mathrm{~A}) \\ \text { RUN } \end{gathered}$	High Feedback Level	Sets the upper detection level for the PID feedback. Note: - Unit and decimal place change when the system units change. - Range is 0.00 to 99.99 with sign-bit " + " indicating Delta to Setpoint.	$\begin{gathered} 0.00 \% \\ (0.00-99.99 \%) \end{gathered}$
$\begin{gathered} \text { Y1-12 } \\ (3 \mathrm{C} 0 \mathrm{~B}) \\ \text { RUN } \end{gathered}$	High Feedback Lvl Fault Dly Time	Sets the delay time between when the drive detects high feedback until the drive faults on an $H F B$ [High Feedback Sensed] fault. Note: This parameter is effective only when Y1-13 $=0$ [High Feedback Selection $=$ Fault (and Digital Output)].	$\begin{gathered} 5 \mathrm{~s} \\ (0-3600 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \mathrm{Y} 1-13 \\ (3 \mathrm{C} 0 \mathrm{C}) \end{gathered}$	High Feedback Selection	Sets the drive response when the feedback increased to more than Y1-11 [High Feedback Level] for longer than the time set in Y1-12 [High Feedback Lvl Fault Dly Time]. 0 : Fault (and Digital Output) 1 : Alarm (and Digital Output) 2 : Digital Output Only	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { Y1-14 } \\ \text { (3C0D) } \\ \text { RUN } \end{gathered}$	Feedback Hysteresis Level	Sets the hysteresis level for low and high level feedback detection. Note: Unit and decimal place change when the system units change.	$\begin{gathered} 0.0 \% \\ (0.0-10.00 \%) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
Y1-15 (3C0E) RUN	Maximum Setpoint Difference	Sets a percentage of difference between the setpoint and the feedback. The difference must be more than this value for the time set in Y1-16 [Not Maintaining Setpoint Time] to trigger the drive response set in Y1-17 [Not Maintaining Setpoint Sel]. Note: - Unit and decimal place change when the system units change. - If there is a fault, the drive will coast to a stop. - Set this parameter to 0.0 to disable the function. - This function is only active during run when in Auto Mode.	$\begin{gathered} 0.0 \% \\ (0.0-6000.0 \%) \end{gathered}$
$\begin{gathered} \mathrm{Y} 1-16 \\ (3 \mathrm{C} 0 \mathrm{~F}) \\ \text { RUN } \end{gathered}$	Not Maintaining Setpoint Time	Sets the delay time before a Setpoint Not Met condition occurs. The drive must detect the setpoint difference set in Y1-15 [Maximum Setpoint Difference] before the timer will start. Note: Set Y1-15 $=0$ [Maximum Setpoint Difference $=0]$ to disable this function.	$\begin{gathered} 60 \mathrm{~s} \\ (0-3600 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \mathrm{Y} 1-17 \\ (3 \mathrm{C} 10) \end{gathered}$	Not Maintaining Setpoint Sel	Sets the drive response when the feedback increases to more or decreases to less than the setpoint for more than the amount set in Y1-15 [Maximum Setpoint Difference]. 0 : Fault (and Digital Output) 1 : Alarm (and Digital Output) 2 : Digital Output Only	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{aligned} & \mathrm{Y} 1-18 \\ & (3 \mathrm{C} 11) \end{aligned}$	Prime Loss Detection Method	Sets the units and quantity that the drive will use to determine LOP [Loss of Prime]. $\begin{aligned} & 0: \text { Current (A) } \\ & 1: \text { Power (kW) } \\ & 2: \text { Torque (\%) } \end{aligned}$	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { Y1-19 } \\ (3 \mathrm{C} 12) \\ \text { RUN } \\ \hline \end{gathered}$	Prime Loss Level	Sets the level to detect the LOP [Loss of Prime] in the pump when in Auto or Sleep Boost Mode.	$\begin{gathered} 0.0 \\ (0.0-1000.0) \end{gathered}$
Y1-20 $(3 \mathrm{C} 13)$ RUN	Prime Loss Time	Sets the delay time before the drive detects an LOP [Loss of Prime] condition. The timer starts when the drive detects the conditions in Y1-18 [Prime Loss Detection Method] and Y1-19 [Prime Loss Level].	$\begin{gathered} 20 \mathrm{~s} \\ (0-600 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \mathrm{Y} 1-21 \\ (3 \mathrm{C} 14) \end{gathered}$	Prime Loss Activation Freq	Sets the frequency level above which the drive enables Loss of Prime detection.	$\begin{gathered} 0.0 \mathrm{~Hz} \\ (0.0-400.0) \end{gathered}$
$\begin{gathered} \mathrm{Y} 1-22 \\ (3 \mathrm{C} 15) \end{gathered}$	Prime Loss Selection	Sets the drive response when the drive is in the Loss of Prime condition. 0 : Fault (and Digital Output) 1: Alarm (and Digital Output) 2 : Digital Output Only	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \mathrm{Y} 1-23 \\ (3 \mathrm{C} 16) \end{gathered}$	Prime Loss Max Restart Time	Sets the time in minutes that the drive will wait before it tries a restart after a restart fails or after it does not do a restart because of a fault.	$\begin{gathered} 0.2 \mathrm{~min} \\ (0.2-6000.0 \mathrm{~min}) \end{gathered}$
$\begin{gathered} \text { Y1-40 } \\ (3 \mathrm{C} 27) \\ \text { RUN } \end{gathered}$	Maximum Speed	Sets the maximum speed. Note: This parameter is not effective when Y1-40 $=0.0 \mathrm{~Hz}$ or Y1-40 $>$ E1-04 [Maximum Output Frequency] \times d2-01 [Frequency Reference Upper Limit].	$\begin{gathered} 0.0 \mathrm{~Hz} \\ (0.0-416.0) \end{gathered}$

- Y2: PID Sleep and Protection

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{gathered} \text { Y2-01 } \\ (3 \mathrm{C} 64) \end{gathered}$	Sleep Level Type	Sets the data source that the drive uses to know when to activate the Sleep Function. 0 : Output Frequency 1: Output Current 2 : Feedback 3 : Output Speed (RPM) 5 : Output Frequency (non-PID) Note: - Feedback depends on PID direction operation. - When the Sleep Function is active, the keypad will show the "Sleep" Alarm.	$\begin{gathered} 5 \\ (0-5) \end{gathered}$
Y2-02 (3C65) RUN	Sleep Level	Sets the level that the level type set in Y2-01 [Sleep Level Type] must be at for the time set in Y2-03 [Sleep Delay Time] for the drive to enter Sleep Mode. Note: - When you set this parameter to 0.0 , this function will not be active. - This function is active only when the drive operates in AUTO Mode. - When Y2-01 = 5 [Output Frequency (non-PID)], the drive will disable the Sleep function when you set this parameter to 0.0 . - When $Y 2-01 \neq 5$, the drive will set the sleep level to the largest value from $d 2$ - 02 [Frequency Reference Lower Limit], Y1-06 [Minimum Speed], and Y4-12 [Thrust Frequency] when you set this parameter to 0.0 .	$\begin{gathered} 0.0 \\ (0.0-6000.0) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
Y2-03 (3C66) RUN	Sleep Delay Time	Sets the delay time before the drive enters Sleep Mode when the drive is at the sleep level set in Y202 [Sleep Level].	$\begin{gathered} 5 \mathrm{~s} \\ (0-3600 \mathrm{~s}) \end{gathered}$
Y2-04 (3C67) RUN	Sleep Activation Level	Sets the level above which the output frequency must increase to activate the Sleep Function when Y2-01 $=0$, 3, or 5 [Sleep Level Type $=$ Output Frequency, Output Speed $($ RPM $)$, or Output Frequency (non-PID)]. Note: When you set this parameter to 0.0 , this function will not be active, and the Sleep Function will activate above the minimum speed (largest value from d2-02 [Frequency Reference Lower Limit], Y1-06 [Minimum Speed], and Y4-12 [Thrust Frequency]).	$\begin{gathered} 0.0 \\ (0.0-6000.0) \end{gathered}$
$\begin{gathered} \text { Y2-05 } \\ \text { (3C68) } \\ \text { RUN } \end{gathered}$	Sleep Boost Level	Sets the quantity of boost that the drive applies to the setpoint before it goes to sleep. Note: Set this parameter to 0.00 to disable Sleep Boost Function.	$\begin{gathered} 0.00 \% \\ (0.00-600.00 \%) \end{gathered}$
$\begin{gathered} \text { Y2-06 } \\ \text { (3C69) } \\ \text { RUN } \end{gathered}$	Sleep Boost Hold Time	Sets the length of time that the drive will keep the boosted pressure before it goes to sleep.	$\begin{gathered} 5.0 \mathrm{~s} \\ (0.5-160.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { Y2-07 } \\ \text { (3C6A) } \\ \text { RUN } \end{gathered}$	Sleep Boost Max Time	Sets the length of time that the system (feedback) has to reach the boosted setpoint. The system must reach the boosted setpoint in the time set in this parameter, or it will go to sleep.	$\begin{gathered} 20.0 \mathrm{~s} \\ (1.0-160.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { Y2-08 } \\ (3 \mathrm{C} 6 \mathrm{~B}) \\ \text { RUN } \end{gathered}$	Delta Feedback Drop Level	Sets the level of the PID Error (set-point minus feedback) to deactivate the Sleep Mode operation. Note: Set this parameter to 0.00 to disable the function.	$\begin{gathered} 0.00 \% \\ (0.00-600.00 \%) \end{gathered}$
$\begin{gathered} \text { Y2-09 } \\ \text { (3C6C) } \\ \text { RUN } \end{gathered}$	Feedback Drop Detection Time	Sets the time during which the software monitors the feedback to detect a flow/no-flow condition. Refer to Y2-08 [Delta Feedback Drop Level] for more information.	$\begin{gathered} 10.0 \mathrm{~s} \\ (0.0-3600.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \mathrm{Y} 2-23 \\ (3 \mathrm{C} 7 \mathrm{~A}) \\ \text { RUN } \end{gathered}$	Anti-No-Flow Bandwidth	Sets the quantity of PI error bandwidth that the drive uses to detect an Anti- No-Flow condition. A setting of 0.00% disables Anti-No-Flow detection. Note: Do not set this parameter value too high, because operation can become unstable.	$\begin{gathered} 0.00 \% \\ (0.00-2.00 \%) \end{gathered}$
$\begin{gathered} \text { Y2-24 } \\ \text { (3C7B) } \\ \text { RUN } \end{gathered}$	Anti-No-Flow Detection Time	Sets the time delay before the drive starts the increased deceleration rate after it detects Anti-NoFlow.	$\begin{gathered} 10.0 \mathrm{~s} \\ (1.0-60.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { Y2-25 } \\ (3 \mathrm{C} 7 \mathrm{C}) \\ \text { RUN } \end{gathered}$	Anti-No-Flow Release Level	Sets the amount below the setpoint which the feedback must decrease before the drive will disengage Anti-No-Flow and return to normal PI operation. Note: The display unit and scaling change when the System Units change.	$\begin{gathered} 0.30 \% \\ (0.00-10.00 \%) \end{gathered}$

- Y4: Application Advanced

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
Y4-01 (3CFA) RUN	Pre-Charge Level	Sets the level at which the drive will activate the pre-charge function when the drive is running at the frequency set in Y4-02 [Pre-Charge Frequency]. Note: The drive will stop when one of these conditions is true: - The feedback level increases to more than Y4-01 - The pre-charge time set in Y4-03 [Pre-Charge Time] expires	$\begin{gathered} 0.00 \% \\ (0.00-600.00 \%) \end{gathered}$
$\begin{gathered} \text { Y4-02 } \\ (3 \mathrm{CFB}) \\ \text { RUN } \end{gathered}$	Pre-Charge Frequency	Sets the frequency at which the pre-charge function will operate.	$\begin{gathered} 0.0 \mathrm{~Hz} \\ (0.0-400.0 \mathrm{~Hz}) \end{gathered}$
Y4-03 (3CFC) RUN	Pre-Charge Time	Sets the length of time that the Pre-Charge function will run. Note: Set this parameter to 0.0 to disable the function.	$\begin{gathered} 0.0 \mathrm{~min} \\ (0.0-3600.0 \mathrm{~min}) \end{gathered}$
Y4-05 (3CFE) RUN	Pre-Charge Loss of Prime Level	Sets the level at which the drive will detect loss of prime in the pump.	$\begin{gathered} 0.0 \mathrm{~A} \\ (0.0-1000.0 \mathrm{~A}) \end{gathered}$
Y4-11 (3D04) RUN	Thrust Acceleration Time	Sets the time at which the drive output frequency will ramp up to the reference frequency set in $Y 4$ 12 [Thrust Frequency].	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0-600.0 \mathrm{~s}) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \text { Y4-12 } \\ \text { (3D05) } \\ \text { RUN } \end{gathered}$	Thrust Frequency	Sets the Thrust Frequency that the drive will use to know which acceleration and deceleration time to use. The drive will accelerate to this frequency in the Y4-11 [Thrust Acceleration Time] time and decelerate from this frequency in the Y4-13 [Thrust Deceleration Time] time.	$\begin{gathered} 0.0 \mathrm{~Hz} \\ (0.0-400.0 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { Y4-13 } \\ \text { (3D06) } \\ \text { RUN } \end{gathered}$	Thrust Deceleration Time	Sets the length of time necessary for the drive to go from the Thrust Frequency in Y4-12 [Thrust Frequency] to stop when Thrust Mode is active.	$\begin{gathered} 5.0 \mathrm{~s} \\ (0.0-600.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { Y4-18 } \\ \text { (3D0B) } \\ \text { RUN } \end{gathered}$	Differential Level	Sets the maximum difference that the drive will allow when it subtracts the Differential Feedback from the Primary PID Feedback. Note: - The drive will respond as specified by the setting in Y4-20 [Differential Level Detection Selection] when the difference increases to more than the value set in this parameter for the time set in Y4-19 [Differential Level Detection Time]. - Set this parameter to 0.00 to disable Differential Feedback Detection.	$\begin{gathered} 0.00 \% \\ (-99.99-+99.99 \%) \end{gathered}$
$\begin{gathered} \text { Y4-19 } \\ \text { (3D0C) } \\ \text { RUN } \end{gathered}$	Differential Lvl Detection Time	Sets the length of time that the difference between PID Feedback and the Differential Feedback must be more than Y4-18 [Differential Level] before the drive will respond as specified by Y4-20 [Differential Level Detection Selection].	$\begin{gathered} 10 \mathrm{~s} \\ (0-3600 \mathrm{~s}) \end{gathered}$
Y4-20 (3D0D) RUN	Differential Level Detection Sel	Sets the drive response during a Differential Level Detected condition. 0 : Fault (and Digital Out) 1 : Alarm (and Digital Out) 2 : Digital Out Only	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { Y4-22 } \\ \text { (3D0F) } \\ \text { RUN } \end{gathered}$	Low City On-Delay Time	Sets the length of time that the drive will wait to stop when the drive detects a Low City Pressure condition.	$\begin{gathered} 10 \mathrm{~s} \\ (1-1000 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { Y4-23 } \\ \text { (3D10) } \\ \text { RUN } \end{gathered}$	Low City Off-Delay Time	Sets the length of time that the drive will wait to start again after you clear a Low City Pressure condition.	$\begin{gathered} 5 \mathrm{~s} \\ (0-1000 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { Y4-24 } \\ \text { (3D11) } \\ \text { RUN } \end{gathered}$	Low City Alarm Text	Sets the alarm message to show on the keypad when the drive detects a Low City Pressure condition. 0 : Low City Pressure 1 : Low Suction Pressure 2 : Low Water in Tank	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { Y4-36 } \\ \text { (3D1D) } \\ \text { RUN } \end{gathered}$	Pressure Reached Exit Conditions	Sets how the digital output responds to Feedback changes after it activates. 0 : Hysteresis Above \& Below 1 : Hysteresis 1-Way	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { Y4-37 } \\ \text { (3D1E) } \\ \text { RUN } \end{gathered}$	Pressure Reached Hysteresis Lvl	Sets the hysteresis level that will cause the drive to exit the Pressure Reached condition.	$\begin{gathered} 0.30 \% \\ (0.1-10.00 \%) \end{gathered}$
$\begin{gathered} \text { Y4-38 } \\ \text { (3D1F) } \\ \text { RUN } \end{gathered}$	Pressure Reached On Delay Time	Sets the length of time that the drive will wait before it activates the Pressure Reached condition.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.1-60.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { Y4-39 } \\ & \text { (3D20) } \\ & \text { RUN } \end{aligned}$	Pressure Reached Off Delay Time	Sets the length of time that the drive will wait before it deactivates the Pressure Reached condition.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.1-60.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { Y4-40 } \\ & \text { (3D21) } \\ & \text { RUN } \end{aligned}$	Pressure Reached Detection Sel	Sets the drive status that triggers the Pressure Reached Detection digital output. 0 : Always 1 : Drive Running 2 : Run Command	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
Y4-41 (3D22) RUN	Diff Lvl Src Fdbk Backup Select	Sets the function to enable or disable Differential Level Source $[H 3-x x=2 D]$ as the backup transducer if there is a failure with the primary PID Feedback transducer $[H 3-x x=B]$ and the PID Feedback Backup transducer [H3-xx $=24$] is not available. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \mathrm{Y} 4-42 \\ & (3 \mathrm{D} 23) \end{aligned}$	Output Disconnect Detection Sel	This parameter applies only when in Drive Mode. It sets the drive response if the connection between the drive and the motor is disconnected. 0 : Disabled 1: Alarm - Speed Search 2 : Alarm - Start at Zero 3 : Fault Note: 1. Loss Of Load [Z1-31 to Z1-36], Load Verify [Z1-53], and Bypass Energy Savings [Z1-16] can interfere with the correct operation of Output Disconnect Detection. 2. When the Output Disconnect is active, the drive internally disables Output Phase Loss Detection of more than one phase. 3. The Output Current Limit function is not active when operating in Bypass Mode.	$\begin{gathered} 0 \\ (0-3) \end{gathered}$
$\begin{gathered} \mathrm{Y} 4-43 \\ (3 \mathrm{D} 24) \end{gathered}$	Output Disconnect Inject Current	Sets the level of DC injection current during output disconnect as a percentage of the drive rated current.	$\begin{gathered} 30 \% \\ (5-50 \%) \end{gathered}$

- YA: Preset Setpoint

No. (Hex.)	Name	Description	Default (Range)
YA-01 (3E58) RUN	Setpoint 1	Sets the PID Setpoint when b1-01 $=0$ [Frequency Reference Selection $1=$ Keypad or Multi-Speed Selection]. Note: Parameters b5-46 [PID Unit Display Selection], b5-38 [PID User Unit Display Scaling], and b539 [PID User Unit Display Digits] set the unit, range, and resolution.	$\begin{gathered} 0.00 \\ (0.00-600.00) \end{gathered}$
YA-02 (3E59) RUN	Setpoint 2	Sets the PID Setpoint as specified by the Multi-Setpoint digital inputs. Note: Parameters b5-46 [PID Unit Display Selection], b5-38 [PID User Unit Display Scaling], and b539 [PID User Unit Display Digits] set the unit, range, and resolution.	$\begin{gathered} 0.00 \\ (0.00-600.00) \end{gathered}$
YA-03 (3E5A) RUN	Setpoint 3	Sets the PID Setpoint as specified by the Multi-Setpoint digital inputs. Note: Parameters b5-46 [PID Unit Display Selection], b5-38 [PID User Unit Display Scaling], and b539 [PID User Unit Display Digits] set the unit, range, and resolution.	$\begin{gathered} 0.00 \\ (0.00-600.00) \end{gathered}$
$\begin{gathered} \text { YA-04 } \\ \text { (3E5B) } \\ \text { RUN } \end{gathered}$	Setpoint 4	Sets the PID Setpoint as specified by the Multi-Setpoint digital inputs. Note: Parameters b5-46 [PID Unit Display Selection], b5-38 [PID User Unit Display Scaling], and b539 [PID User Unit Display Digits] set the unit, range, and resolution.	$\begin{gathered} 0.00 \\ (0.00-600.00) \end{gathered}$

- YC: Foldback Features

No. (Hex.)	Name	Description	Default (Range)
YC-01 $(3 \mathrm{EBC})$	Output Current Limit Select	Sets the function to enable or disable the output current regulator. $0:$ Disabled $1:$ Enabled	0
$(0,1)$			

- YF: PI Auxiliary Control

$\begin{aligned} & \text { No. } \\ & \text { (Hex.) } \end{aligned}$	Name	Description	Default (Range)
$\begin{aligned} & \text { YF-01 } \\ & \text { (3F50) } \end{aligned}$	PI Aux Control Selection	Sets the PI Auxiliary Control function. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { YF-02 } \\ \text { (3F51) } \\ \text { RUN } \end{gathered}$	PI Aux Control Transducer Scale	Sets the full scale (10 V or 20 mA) output of the pressure transducer connected to the analog input terminal programmed for $H 3-x x=27$ [PI Aux Control Feedback Level]. Note: Parameters YF-21 [PI Aux Ctrl Level Unit Selection] and YF-22 [PI Aux Level Decimal Place $P o s]$ set the unit and resolution.	$\begin{gathered} 145.0 \\ (1.0-6000.0) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \text { YF-03 } \\ (3 F 52) \\ \text { RUN } \end{gathered}$	PI Aux Control Setpoint	Sets the level to which the drive will try to regulate. Note: Parameters YF-21 [PI Aux Ctrl Level Unit Selection] and YF-22 [PI Aux Level Decimal Place Pos] set the unit and resolution.	$\begin{gathered} 20.0 \text { PSI } \\ (0.0-6000.0) \end{gathered}$
$\begin{gathered} \text { YF-04 } \\ \text { (3F53) } \\ \text { RUN } \end{gathered}$	PI Aux Control Minimum Level	Sets the level below which the drive must be for longer than YF-05 [PI Aux Control Sleep Delay Time] before the drive goes to sleep and turns off all lag pumps. Note: - Set this parameter to 0.0 to disable the function. - Parameters YF-21 [PI Aux Ctrl Level Unit Selection] and YF-22 [PI Aux Level Decimal Place Pos] set the unit and resolution.	$\begin{gathered} 10.0 \text { PSI } \\ (0.0-6000.0) \end{gathered}$
YF-05 (3F54) RUN	PI Aux Control Sleep Delay Time	Sets the length of time that the drive will delay before it goes to sleep after the level is less than YF04 [PI Aux Control Minimum Level] (when YF-23 = 1 [PI Aux Ctrl Output Level Select $=$ Inverse Acting]) or more than YF-24 [PI Auxiliary Ctrl Maximum Level] (when YF-23 $=0$ [Direct Acting]).	$\begin{gathered} 5 \mathrm{~s} \\ (0-3600 \mathrm{~s}) \end{gathered}$
YF-06 (3F55) RUN	PI Aux Control Wake-up Level	Sets the level to wake up the drive when the drive after YF-04 [PI Aux Control Minimum Level] or YF-24 [PI Auxiliary Ctrl Maximum Level] put the drive to sleep. Note: - Parameter YF-23 [PI Aux Ctrl Output Level Select] sets the condition to wake up the drive. $-Y F-23=0$ [Direct Acting]: The PI Aux Feedback must be less than the level set in this parameter for longer than the time set in YF-07 to wake up. $-Y F-23=1$ [Inverse Acting]: The PI Aux Feedback must be more than the level set in this parameter for longer than the time set in YF-07 [PI Aux Control Wake-up Time] to wake up. - Parameters YF-21 [PI Aux Ctrl Level Unit Selection] and YF-22 [PI Aux Level Decimal Place $P o s]$ set the unit and resolution.	$\begin{gathered} 30.0 \text { PSI } \\ (-999.9-+999.9 \mathrm{PSI}) \end{gathered}$
$\begin{aligned} & \text { YF-07 } \\ & \text { (3F56) } \end{aligned}$	PI Aux Control Wake-up Time	Sets the time to wake up the drive when the drive after YF-04 [PI Aux Control Minimum Level] or YF-24 [PI Auxiliary Ctrl Maximum Level] put the drive to sleep. Note: Parameter YF-23 [PI Aux Ctrl Output Level Select] sets the condition to wake up the drive. - YF-23 = 0 [Direct Acting]: The PI Aux Feedback must be less than the level set in YF-06 for longer than the time set in $Y F-07$ to wake up. - YF-23 = 1 [Inverse Acting]: The PI Aux Feedback must be more than the level set in YF-06 [PI Aux Control Wake-up Level] for longer than the time set in YF-07 to wake up.	$\begin{gathered} 1 \mathrm{~s} \\ (0-3600 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { YF-08 } \\ (3 \mathrm{~F} 57) \\ \text { RUN } \end{gathered}$	PI Aux Control Minimum Speed	Sets the minimum speed at which the drive can run when the PI Auxiliary Control has an effect on the output speed. Note: The drive will use Y1-06 [Minimum Speed] and Y4-12 [Thrust Frequency] as the minimum speed when PI Aux Control does not have an effect on the output speed or when you set $Y F-08<Y 1-06$ and Y4-12.	$\begin{gathered} 0.00 \mathrm{~Hz} \\ (0.00-400.00 \mathrm{~Hz}) \end{gathered}$
YF-09 (3F58) RUN	PI Aux Control Low Level Detect	Sets the level below which the drive must be for longer than YF-10 [PI Aux Control Low Lvl Det Time] to respond as specified by YF-11 [PI Aux Control Low Level Det Sel]. Note: - Set this parameter to 0.0 to disable the function. - Parameter YF-10 only applies to when YF-11 = 2 and 3 [Fault and Auto-Restart (time set by YF-15)]. - Parameters YF-21 [PI Aux Ctrl Level Unit Selection] and YF-22 [PI Aux Level Decimal Place Pos] set the unit and resolution.	$\begin{gathered} 0.0 \mathrm{PSI} \\ (-999.9-+999.9 \mathrm{PSI}) \end{gathered}$
YF-10 (3F59) RUN	PI Aux Low Level Detection Time	Sets the length of time that the PI Aux Feedback must be less than YF-09 [PI Aux Control Low Lvl Detection] to trigger a drive response when YF-11 = 2 and 3 [PI Aux Control Low Level Det Sel $=$ Fault and Auto-Restart (time set by YF-15)].	$\begin{gathered} 0.1 \mathrm{~s} \\ (0.0-300.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { YF-11 } \\ (3 F 5 A) \end{gathered}$	PI Aux Control Low Level Det Sel	Sets drive response when the PI Aux Feedback decreases to less than YF-09 [PI Aux Control Low Lvl Detection] for longer than YF-10 [PI Aux Control Low Lvl Det Time]. 0 : No Display 1: Alarm Only 2 : Fault 3 : Auto-Restart (time set by YF-15) Note: - Set $Y F-01=1$ [PI Aux Control Selection = Enabled] and YF-09 [PI Aux Control Low Level Detect $]>0$ to enable PI Aux Low Level Detection. - Parameter YF-10 only applies when $Y F-11=2$ or 3 .	$\begin{gathered} 1 \\ (0-3) \end{gathered}$
$\begin{gathered} \text { YF-12 } \\ (3 F 5 B) \\ \text { RUN } \end{gathered}$	PI Aux Control High Level Detect	Sets the value above which the level must be for longer than YF-13 [PI Aux High Level Detection Time] to respond as specified by YF-14 [PI Aux Hi Level Detection Select]. Note: - Set this parameter to 0.0 to disable the function. - Parameter YF-13 only applies to when YF-14 $=2$ and 3 [Fault and Auto-Restart (time set by YF-15)]. - Parameters YF-21 [PI Aux Ctrl Level Unit Selection] and YF-22 [PI Aux Level Decimal Place $P o s]$ set the unit and resolution.	$\begin{gathered} 0.0 \mathrm{PSI} \\ (-999.9-+999.9 \mathrm{PSI}) \end{gathered}$
$\begin{gathered} \text { YF-13 } \\ (3 F 5 C) \\ \text { RUN } \end{gathered}$	PI Aux High Level Detection Time	Sets the length of time that the level must be more than YF-12 [PI Aux Control High Level Detect] before the drive will respond when $Y F-14=2,3$ [PI Aux Hi Level Detection Select].	$\begin{gathered} 0.1 \mathrm{~s} \\ (0.0-300.0 \mathrm{~s}) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { YF-14 } \\ & \text { (3F5D) } \end{aligned}$	PI Aux Control Hi Level Det Sel	Sets the drive response when the PI Aux Feedback increases to more than the YF-12 [PI Aux Control High Level Detect] level for longer than the time set in YF-13 [PI Aux High Level Detection Time]. 0 : NoDisplay (Digital Output Only) 1: Alarm Only 2 : Fault 3 : Auto-Restart (time set by YF-15) Note: - Set $Y F-01=1$ [PI Aux Control Selection $=$ Enabled] and YF-12 [PI Aux Control High Level Detect $]>0$ to enable PI Aux High Level Detection. - Parameter $Y F-13$ only applies when $Y F-14=2$ or 3	$\begin{gathered} 1 \\ (0-3) \end{gathered}$
$\begin{gathered} \text { YF-15 } \\ (3 F 5 E) \end{gathered}$	PI Aux Level Detect Restart Time	Sets the length of time the drive will wait before it tries an Auto-Restart of LOAUX [Low PI Aux Feedback Level] or HIAUX [High PI Aux Feedback Level] fault.	$\begin{gathered} 5.0 \mathrm{~min} \\ (0.1-6000.0 \mathrm{~min}) \end{gathered}$
$\begin{gathered} \text { YF-16 } \\ \text { (3F5F) } \\ \text { RUN } \end{gathered}$	PI Auxiliary Control P Gain	Sets the proportional gain for the suction pressure control.	$\begin{gathered} 2.00 \\ (0.00-25.00) \end{gathered}$
YF-17 (3F60) RUN	PI Auxiliary Control I Time	Sets the integral time for the suction pressure control. Note: Set this parameter to 0.0 to disable the integrator.	$\begin{gathered} 5.0 \mathrm{~s} \\ (0.0-360.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { YF-18 } \\ & \text { (3F61) } \end{aligned}$	PI Aux Control Detect Time Unit	Sets the time unit for YF-10 [PI Aux Control Low Lvl Det Time] and YF-13 [PI Aux High Level Detection Time]. 0 : Minutes (min) 1 : Seconds (sec)	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { YF-19 } \\ & (3 F 62) \end{aligned}$	PI Aux Ctrl Feedback WireBreak	Sets how the analog input selected for PI Aux Feedback will respond when it is programmed to receive a 4 mA to 20 mA signal and the signal is lost. 0 : Disabled 1 : Alarm Only 2 : Fault (no retry, coast to stop)	$\begin{gathered} 2 \\ (0-2) \end{gathered}$
$\begin{aligned} & \text { YF-20 } \\ & (3 \mathrm{~F} 63) \end{aligned}$	PI Aux Main PI Speed Control	Sets if the PI Auxiliary Controller has an effect on output speed. 0 : Disabled 1 : Enabled	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { YF-21 } \\ & (3 \mathrm{~F} 64) \end{aligned}$	PI Aux Ctrl Level Unit Selection	Set the units shown for the PI Aux Level parameters and monitors. 0 : "WC: inches of water column 1 : PSI: pounds per square inch 2 : GPM: gallons/min 3: ${ }^{\circ} \mathrm{F}$: Fahrenheit $4: \mathrm{ff}^{3} / \mathrm{min}$: cubic feet $/ \mathrm{min}$ $5: \mathrm{m}^{3} / \mathrm{h}$: cubic meters/hour 6 : L/h: liters/hour 7 : L/s: liters/sec 8 : bar: bar 9 : Pa: Pascal $10:{ }^{\circ} \mathrm{C}$: Celsius 11 : m: meters 12 : ft: feet 13 : L/min: liters/min $14: \mathrm{m}^{3} / \mathrm{min}$: cubic meters $/ \mathrm{min}$ 15 : "Hg: Inch Mercury 16 : kPa: kilopascal 48 : \%: Percent 49 : Custom (YF-32~34) 50 : None	$\begin{gathered} 1 \\ (0-50) \end{gathered}$
$\begin{aligned} & \text { YF-22 } \\ & \text { (3F65) } \end{aligned}$	PI Aux Level Decimal Place Pos	Sets the number of decimal places for the PI Aux Level parameters and monitors. 0 : No Decimal Places (XXXXX) 1 : One Decimal Places (XXXX.X) 2 : Two Decimal Places (XXX.XX) 3 : Three Decimal Places (XX.XXX)	$\begin{gathered} 1 \\ (0-3) \end{gathered}$
$\begin{aligned} & \text { YF-23 } \\ & \text { (3F66) } \end{aligned}$	PI Aux Ctrl Output Level Select	Sets the PI Auxiliary Controller to be Direct-acting or Inverse-acting. 0 : Direct Acting 1 : Inverse Acting	$\begin{gathered} 1 \\ (0,1) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
YF-24 (3F67) RUN	PI Auxiliary Ctrl Maximum Level	Sets the maximum level for PI Auxiliary Control. When the level is more than this setting for longer than YF-05 [PI Aux Control Sleep Delay Time], the drive will go to sleep and turn off all lag drives. Note: - Set this parameter to 0.0 to disable the function. - Parameters YF-21 [PI Aux Ctrl Level Unit Selection] and YF-22 [PI Aux Level Decimal Place $\operatorname{Pos}]$ set the unit and resolution.	$\begin{gathered} 0.0 \mathrm{PSI} \\ (0.0-6000.0 \mathrm{PSI}) \end{gathered}$
YF-25 (3F68) RUN	PI Aux Control Activation Level	Sets the level to activate the PI Auxiliary Control. Note: - The drive response changes when the YF-23 [PI Aux Ctrl Output Level Select] setting changes. $-Y F-23=0$ [Direct Acting]: When the PI Aux Feedback level is more than this setting for longer than YF-26 [PI Aux Control Activation Delay], the drive will activate the PI Auxiliary Control to control the output frequency. -YF-23 = 1 [Inverse Acting]: When the PI Aux Feedback level is less than this setting for longer than YF-26, the drive will activate PI Auxiliary Control to control the output frequency. - When you set this parameter to 0.0 PSI, PI Auxiliary Control is always enabled. - Parameters YF-21 [PI Aux Ctrl Level Unit Selection] and YF-22 [PI Aux Level Decimal Place $\operatorname{Pos}]$ set the unit and resolution.	$\begin{gathered} 0.0 \mathrm{PSI} \\ (0.0-6000.0 \mathrm{PSI}) \end{gathered}$
YF-26 (3F69) RUN	PI Aux Control Activation Delay	Sets the delay time to activate the PI Auxiliary Control. Note: - The drive response changes when the YF-23 [PI Aux Ctrl Output Level Select] setting changes. - YF-23 $=0$ [Direct Acting]: When the PI Aux Feedback level is more than YF-25 [PI Aux Control Activation Level] for longer than this time, the drive will activate the PI Auxiliary Control to control the output frequency. -YF-23 $=1$ [Inverse Acting]: When the PI Aux Feedback level is less than YF-25 for longer than this time, the drive will activate PI Auxiliary Control to control the output frequency. - When you set this parameter to 0.0 PSI, PI Auxiliary Control is always enabled.	$\begin{gathered} 2 \mathrm{~s} \\ (0-3600 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { YF-32 } \\ (3 \mathrm{~F} 6 \mathrm{~F}) \end{gathered}$	PI Aux Custom Unit Character 1	Sets the first character of the PI Aux custom unit display when YF-21 $=49$ [PI Aux Ctrl Level Unit Selection $=$ Custom (YF-32~34)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$
$\begin{aligned} & \text { YF-33 } \\ & \text { (3F70) } \end{aligned}$	PI Aux Custom Unit Character 2	Sets the second character of the PI Aux custom unit display when YF-2] $=49$ [PI Aux Ctrl Level Unit Selection $=$ Custom (YF-32~34)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$
$\begin{aligned} & \text { YF-34 } \\ & (3 F 71) \end{aligned}$	PI Aux Custom Unit Character 3	Sets the third character of the PI Aux custom unit display when YF-21 $=49$ [PI Aux Ctrl Level Unit Selection $=$ Custom (YF-32~34)].	$\begin{gathered} 41 \\ (20-7 \mathrm{~A}) \end{gathered}$
$\begin{gathered} \text { YF-35 } \\ (3 F 72) \end{gathered}$	PI Aux Minimum Transducer Scale	Sets the minimum scale output of the pressure transducer that is connected to the terminal set for H 3 $x x=27$ [MFAI Function Selection $=$ PI Auxiliary Control Feedback]. Note: - To enable this parameter, set it to less than YF-02 [PI Aux Control Transducer Scale]. If you set it to more than YF-02, it will disable the PI Auxiliary Feedback (set to 0). - Parameters YF-21 [PI Aux Ctrl Level Unit Selection] and YF-22 [PI Aux Level Decimal Place $P o s]$ set the unit and resolution.	$\begin{gathered} 0.0 \mathrm{PSI} \\ (-999.9-+999.9 \mathrm{PSI}) \end{gathered}$

7.14 Z: Bypass Parameters

Z1: Bypass Control System

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \mathrm{Z} 1-05 \\ (85 \mathrm{CA}) \end{gathered}$	Auto Transfer To Bypass	When the drive is running and a there is a drive fault, operation will switch to Bypass Mode. When you remove the fault, the operation will go back to Drive Mode 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \mathrm{Z} 1-06 \\ (85 \mathrm{CB}) \end{gathered}$	Power Up Mode	Sets the mode of bypass control at power-up. 0 : OFF-DRIVE 1 : AUTO-DRIVE 3 : AUTO-BYPASS 5 : Powerup HOA Memory	$\begin{gathered} 1 \\ (0-5) \end{gathered}$
$\begin{gathered} \text { Z1-10 } \\ (85 \mathrm{CF}) \end{gathered}$	Emergency Override Transfer	Enables and disables the function to auto transfer to EMOV bypass if the drive declares a fault when the bypass is running in EMOV drive. 0 : Disabled 1 : Enabled	$\begin{gathered} 1 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { Z1-11 } \\ (85 \mathrm{D} 0) \end{gathered}$	Motor AND/OR Function	0 : Disabled 1: Always Motor 1 2 : Always Motor 2 3: Always Motor 1 AND 2 4 : OR in HAND and AUTO 5 : MOTOR 1 in HAND OR in AUTO 6 : MOTOR 2 in HAND OR in AUTO 7 : AND/OR in HAND and AUTO 8 : MOTOR 1 in HAND AND/OR in AUTO 9 : MOTOR 2 in HAND AND/OR in AUTO 10 : MOTOR 1,2 in HAND AND/OR in AUTO	$\begin{gathered} 0 \\ (0-10) \end{gathered}$
$\begin{gathered} \text { Z1-12 } \\ (85 \mathrm{D} 1) \end{gathered}$	Run Delay Time	When the Run command is issued, the drive will run at speed set in Z1-14 [Run Delay Frequency Reference]. After the time set in this parameter, the frequency reference will return to its programmed source (bl-01 or HAND frequency reference).	$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0 \text { to } 300.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \mathrm{Z} 1-13 \\ (85 \mathrm{D} 2) \end{gathered}$	Pre Interlock Run Select	Determines if the drive will run at a preset speed when the BAS Interlock Digital Input is open and a Run command is present. 0 : Disabled 1 : Enabled (DRIVE Mode) 1 : Enabled (BYPASS Mode)	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \mathrm{Z} 1-14 \\ (85 \mathrm{D} 3) \end{gathered}$	Run Delay Frequency Reference	Sets the frequency that the bypass uses when it delays the Run command.	$\begin{gathered} 60.00 \mathrm{~Hz} \\ (0.00-\text { Max. Freq. }) \end{gathered}$
$\begin{gathered} \text { Z1-15 } \\ \text { (85D4) } \end{gathered}$	Interlock Wait Time	When you enter a Run command, it asserts the damper actuator output. When you program an input for Interlock and the time set to this parameter expires before the Interlock input activates, it will trigger a fault. Note: Set this parameter to 0.0 s to disable this function.	$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0-300.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { Z1-16 } \\ \text { (85D5) } \end{gathered}$	Energy Savings Mode	Enables the contactor-based Energy Savings function and determines which conditions must be met before the bypass will enter into Energy Savings Mode. 0 : Disabled 1 : Frequency 2 : Frequency + Current Note: If the motor is running in reverse, Energy Savings will not function.	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{aligned} & \text { Z1-17 } \\ & \text { (85D6) } \end{aligned}$	Energy Savings Frequency Ref	Both frequency reference and output frequency must be within the window defined by this parameter, Z1-19 [Energy Savings Fref Deadbnad], and Z1-20 [Energy Savings Out Freq Deadband] for Energy Savings operation.	$\begin{gathered} 60.00 \mathrm{~Hz} \\ (0.00-\text { Max. Freq. }) \end{gathered}$
$\begin{gathered} \text { Z1-18 } \\ \text { (85D7) } \end{gathered}$	Energy Savings Output Cur Level	Drive output current must be in the window defined by this parameter and Z1-21 [Energy Savings Out Cur Deadband] to enter Energy Savings Mode.	$\begin{gathered} 0.0 \% \\ (0.0-100.0 \%) \end{gathered}$
$\begin{gathered} \text { Z1-19 } \\ (85 \mathrm{D} 8) \end{gathered}$	Energy Savings Fref Deadband	Used with Z1-17 [Energy Savings Frequency Ref] to set when to enter and exit Energy Savings Mode. Note: Units, default, and range are different for different ol-03 [Frequency Display Unit Selection] values.	$\begin{gathered} 0.50 \mathrm{~Hz} \\ (0.00-5.00 \mathrm{~Hz}) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{gathered} \text { Z1-20 } \\ \text { (85D9) } \end{gathered}$	Energy Savings Out Freq Deadband	Used with Z1-17 [Energy Savings Frequency Ref] to set when to enter Energy Savings Mode. Note: Units, default, and range are different for different o1-03 [Frequency Display Unit Selection] values.	$\begin{gathered} 0.50 \mathrm{~Hz} \\ (0.00-5.00 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \text { Z1-21 } \\ (85 \mathrm{DA}) \end{gathered}$	Energy Savings Out Cur Deadband	Used with Z1-18 [Energy Savings Output Cur Level] to set when to enter Energy Savings Mode.	$\begin{gathered} 15.0 \% \\ (0.0-30.0 \%) \end{gathered}$
$\begin{gathered} \mathrm{Z} 1-22 \\ (85 \mathrm{DB}) \end{gathered}$	Energy Savings Mode Time	Sets the length of time that all conditions must be in the set limits before transferring into Energy Savings Mode.	$\begin{gathered} 30 \mathrm{~s} \\ (10-3600 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \mathrm{Z} 1-23 \\ (85 \mathrm{DC}) \end{gathered}$	Energy Savings Freq Ref Increase	Sets the value to add to the drive Frequency Reference when transferring to Bypass Energy Savings Mode. WARNING! Sudden Movement Hazard. This parameter can cause operation higher than the E1-04 [Maximum Output Frequency] setting of the drive. Note: Units, default, and range are different for different ol-03 [Frequency Display Unit Selection] values.	$\begin{gathered} 6.00 \mathrm{~Hz} \\ (0.00-10.00 \mathrm{~Hz}) \end{gathered}$
$\begin{gathered} \mathrm{Z} 1-24 \\ (85 \mathrm{DD}) \end{gathered}$	Contactor Open Delay	Sets the time to delay after commanding the drive output contactor K2 or bypass contactor K3 or 2Motor OR/AND contactors K4 and K5 to open to let the contacts open.	$\begin{gathered} 0.2 \mathrm{~s} \\ (0.0-5.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { Z1-25 } \\ (85 \mathrm{DE}) \end{gathered}$	Contactor Close Delay	Sets the time to delay after commanding the drive output contactor K2 or bypass contactor K3 or 2Motor OR/AND contactors K4 and K5 to close to let the contacts close.	$\begin{gathered} 0.2 \mathrm{~s} \\ (0.0-5.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \mathrm{Z} 1-27 \\ & (85 \mathrm{E} 0) \end{aligned}$	Brownout Voltage Level	Sets the voltage level below which is a brownout condition. Note: Voltage level is measured on the output of the built-in 120 VAC control transformer.	$\begin{gathered} 98 \mathrm{~V} \\ (0-150 \mathrm{~V}) \end{gathered}$
$\begin{aligned} & \mathrm{Z} 1-28 \\ & (85 \mathrm{E} 1) \end{aligned}$	Brownout Detection Time	Sets the length of time that the Bypass voltage must be less than the Brownout Voltage Level before the Bypass will trigger a Brownout fault.	$\begin{gathered} 3.0 \mathrm{~s} \\ (1.0-300.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \mathrm{Z} 1-29 \\ & (85 \mathrm{E} 2) \end{aligned}$	Blackout Voltage Level	Sets the voltage level to determine a blackout condition. Use Z1-60 [Blackout Operation Select] to set power blackout behavior. Note: Voltage level is measured on the output of the built-in 120 VAC control transformer.	$\begin{gathered} 75 \mathrm{~V} \\ (0-150 \mathrm{~V}) \end{gathered}$
$\begin{aligned} & \mathrm{Z} 1-31 \\ & (85 \mathrm{E} 4) \end{aligned}$	Loss of Load Detection Select	Sets the function to detect loss of load. 0 : Disabled 1 : Enable and Fault 2 : Enable and Alarm	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{aligned} & \mathrm{Z} 1-32 \\ & (85 \mathrm{E} 5) \end{aligned}$	Loss of Load Drive Frequency	Sets the value to which the drive output frequency must be equal to or more than for the drive to detect a loss of load.	$\begin{gathered} 60.00 \mathrm{~Hz} \\ (0.00-\text { Max Freq. }) \end{gathered}$
$\begin{aligned} & \text { Z1-33 } \\ & (85 \mathrm{E} 6) \end{aligned}$	Loss of Load Drive Out Current	For Drive Mode only, the drive output current must be less than this level to detect a Loss of Load condition.	$\begin{gathered} 0.0 \mathrm{~A} \\ (0.0-999.9 \mathrm{~A}) \end{gathered}$
$\begin{aligned} & \text { Z1-34 } \\ & \text { (85E7) } \end{aligned}$	Loss of Load Drive Det Time	The loss of load conditions must be met for the length of time in this parameter before the bypass will detect a loss of load in Drive Mode.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0-300.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { Z1-35 } \\ & (85 \mathrm{E} 8) \end{aligned}$	Loss of Load Bypass Current	For Bypass Mode only, the motor current must be less than this level to detect a Loss of Load condition.	$\begin{gathered} 0.0 \mathrm{~A} \\ (0.0-999.9 \mathrm{~A}) \\ \hline \end{gathered}$
$\begin{aligned} & \text { Z1-36 } \\ & \text { (85E9) } \end{aligned}$	Loss of Load Bypass Det Time	The motor current must be less than the value set in Z1-35 [Loss of Load Bypass Current] for the length of time set in this parameter before the bypass will detect a loss of load in Bypass Mode.	$\begin{gathered} 1.0 \mathrm{~s} \\ (0.0-300.0 \mathrm{~s}) \end{gathered}$
$\begin{gathered} \text { Z1-39 } \\ (85 \mathrm{EC}) \end{gathered}$	Drive/Bypass Source Select	Sets the function to select the Drive or the Bypass as the source of Drive/Bypass Mode selection. 0 : Keypad : Digital Input 2 : Serial Communications 3 : Option PCB	$\begin{gathered} 0 \\ (0-3) \end{gathered}$
$\begin{gathered} \mathrm{Z1}-40 \\ \text { (85ED) } \end{gathered}$	Auto Transfer Delay Time	When you enable Auto Transfer and the bypass detects a drive fault, the bypass controller will wait for the length of time set in this parameter before it switches to bypass.	$\begin{gathered} 0.0 \mathrm{~s} \\ (0.0-300.0 \mathrm{~s}) \end{gathered}$

$\begin{aligned} & \text { No. } \\ & \text { (Hex.) } \end{aligned}$	Name	Description	Default (Range)
$\begin{gathered} \text { Z1-42 } \\ (85 \mathrm{EF}) \end{gathered}$	Soft Starter Selection	This parameter is normally set at the factory and does not require adjustment. Set this parameter when you use a soft starter used in bypass operation and when you will use the soft starter for a "soft stop". 0 : Not Installed - Contactor Only : Installed - Coast To Stop Installed - Ramp To Stop Note: When [Z1-42 = 1 or 2$]$ to enable the soft starter: - The bypass automatically disables welded contactor detection. Parameter Z1-55 [Welded Contactor Detection] does not have an effect. - The bypass automatically sets Z2-08 $=29$ [Digital Input 8 Function $($ TB2-8) $=$ External Overload Motor $1(N C)$] and Z2-16 $=0$ [Digital Input 8 Invert Select $=$ Normal (Noninverted)]. When you change $Z 1-42$ FROM 1 or 2 TO 0 , the bypass does not automatically change Z2-08 and $Z 2-16$ back to their default values. These parameters stay at their previous settings. When you use serial communications or an option card to set Z1-42, Z2-08 [Digital Input 8 Function (TB2-8) and Z2-16 [Digital Input 8 Invert Select] will not change unless H5-11 = 1 [Comm ENTER Command Mode $=$ ENTER Command Not Required].	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{aligned} & \mathrm{Z} 1-43 \\ & (85 \mathrm{~F} 0) \end{aligned}$	Soft Starter Delay Timer	This parameter is normally set at the factory and does not require adjustment. Sets the delay time between closing contactor K3 and energizing the soft starter. Note: This parameter is enabled when Z1-42 $=1$ or 2 [Soft Starter Selection $=$ Installed - Coast To Stop or Installed - Ramp To Stop].	$\begin{gathered} 2.0 \mathrm{~s} \\ (0.0-60.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \mathrm{Z} 1-44 \\ & (85 \mathrm{~F} 1) \end{aligned}$	Soft Starter Rampdown Timeout	Sets the maximum wait time for the current to be less than 5% of $E 2-01$ after removing the soft starter Run command.	$\begin{gathered} 15.0 \mathrm{~s} \\ (1.0-60.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \mathrm{Z} 1-50 \\ & (85 \mathrm{~F} 7) \end{aligned}$	Bypass Input Phase Loss Level	The bypass measures the current unbalance between phases to detect input phase loss. Usually it is not necessary to change this parameter. Sets the current level between phases in Bypass Mode.	$\begin{gathered} 25.0 \% \\ (5.0-50.0 \%) \end{gathered}$
$\begin{aligned} & \mathrm{Z} 1-51 \\ & (85 \mathrm{~F} 8) \end{aligned}$	Bypass Input Phase Loss Delay	Sets the trip time for an input phase loss condition in Bypass Mode. Note: When you set this parameter to 0.0 , it will disable bypass phase loss detection.	$\begin{gathered} 5.0 \mathrm{~s} \\ (0.0-30.0 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { Z1-52 } \\ & \text { (85F9) } \end{aligned}$	Input Phase Rotation Detection	Sets bypass response when the Bypass Mode phase rotation is incorrect. 0 : Disabled 1 : Alarm 2 : Fault	$\begin{gathered} 0 \\ (0-2) \end{gathered}$
$\begin{gathered} \text { Z1-53 } \\ (85 \mathrm{FA}) \end{gathered}$	Load Verify Detection	Enables and disables verification that the motor is running when commanded to run. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { Z1-55 } \\ (85 \mathrm{FC}) \end{gathered}$	Welded Contactor Detection	Enables and disables detection of K3 "welded contactor" condition. 0 : Disabled 1 : Enabled Note: When Z1-42 $=1$ or 2 [Soft Starter Selection $=$ Installed - Coast To Stop or Installed - Ramp To Stop], the bypass will automatically disable welded contactor detection.	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { Z1-56 } \\ (85 \mathrm{FD}) \\ \text { RUN } \end{gathered}$	Test Mode	Sets the behavior of the drive input contactor K1 during Bypass Mode. 0 : Drive Power Off during Bypass 1 : Drive Power On during Bypass	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { Z1-60 } \\ & (8601) \end{aligned}$	Blackout Operation Select	Sets bypass behavior when contactor voltage is less than Z1-29 [Blackout Voltage Level]. 0 : Fault Restart Delay with Speed Search 2 : Restart Delay from Zero Speed 3 : Disabled Note: Restart Delay works best when: - A keypad is connected - There is a good battery in the keypad - The date and time are set correctly in the keypad	$\begin{gathered} 1 \\ (0-3) \end{gathered}$
$\begin{aligned} & \text { Z1-61 } \\ & (8602) \end{aligned}$	Power Loss Restart Delay Time	Sets the time delay for restart. This parameter works together Z1-60 [Blackout Operation Select]	$\begin{gathered} 10 \mathrm{~s} \\ (1-300 \mathrm{~s}) \end{gathered}$
$\begin{aligned} & \text { Z1-70 } \\ & \text { (860B) } \end{aligned}$	Green Contactor Mode	Green Contactor Mode opens the output and motor contactors when the bypass unit is idle and does not have a Run command. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{aligned} & \text { Z1-98 } \\ & \text { (8627) } \\ & \text { Expert } \end{aligned}$	Minimum Drive SW Ver	Only change this parameter under the guidance of Yaskawa technical support (1-800-YASKAWA). If you change this parameter incorrectly, it can cause incorrect operation of the bypass system. Bypass SW VST800440 : Default: 0 Bypass SW VST800441 : Default: 0 Bypass SW VST800442 : Default: 0 Bypass SW VST800443 : Default: 1013 Bypass SW VST800444 : Default: 1013 Bypass SW VST800445 : Default: 1013 Bypass SW VST800446 : Default: 1013 Bypass SW VST800447 : Default : 1013 Bypass SW VST800448 : Default : 1013	Depends on software version (00000-65535)
$\begin{aligned} & \text { Z1-99 } \\ & \text { (8628) } \\ & \text { Expert } \end{aligned}$	Maximum Drive SW Ver	Only change this parameter under the guidance of Yaskawa technical support (1-800-YASKAWA). If you change this parameter incorrectly, it can cause incorrect operation of the bypass system. Bypass SW VST800440 : Default: 1010 Bypass SW VST800441 : Default: 1011 Bypass SW VST800442 : Default: 1012 Bypass SW VST800443 : Default: 1013 Bypass SW VST800444 : Default: 1014 Bypass SW VST800445 : Default: 1015 Bypass SW VST800446 : Default: 1016 Bypass SW VST800447 : Default: 1017 Bypass SW VST800448 : Default: 1017	Depends on software version $(00000-65535)$

Z2: Bypass Control Input/Output

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { Z2-01 } \\ & (8563) \end{aligned}$	Digital Input 1 Function (TB2-1)	Sets the function for bypass digital input 1.	$\begin{gathered} 21 \\ (0-47) \end{gathered}$
$\begin{aligned} & \text { Z2-02 } \\ & (8564) \end{aligned}$	Digital Input 2 Function (TB2-2)	Sets the function for bypass digital input 2 .	$\begin{gathered} 22 \\ (0-47) \end{gathered}$
$\begin{aligned} & \text { Z2-03 } \\ & (8565) \end{aligned}$	Digital Input 3 Function (TB2-3)	Sets the function for bypass digital input 3 .	$\begin{gathered} 23 \\ (0-47) \end{gathered}$
$\begin{aligned} & \text { Z2-04 } \\ & (8566) \end{aligned}$	Digital Input 4 Function (TB2-4)	Sets the function for bypass digital input 4.	$\begin{gathered} 24 \\ (0-47) \end{gathered}$
$\begin{aligned} & \text { Z2-05 } \\ & (8567) \end{aligned}$	Digital Input 5 Function (TB2-5)	Sets the function for bypass digital input 5 .	$\begin{gathered} 25 \\ (0-47) \end{gathered}$
$\begin{aligned} & \text { Z2-06 } \\ & (8568) \end{aligned}$	Digital Input 6 Function (TB2-6)	Sets the function for bypass digital input 6.	$\begin{gathered} 0 \\ (0-47) \end{gathered}$
$\begin{aligned} & \text { Z2-07 } \\ & (8569) \end{aligned}$	Digital Input 7 Function (TB2-7)	Sets the function for bypass digital input 7 .	$\begin{gathered} 0 \\ (0-47) \end{gathered}$
$\begin{aligned} & \text { Z2-08 } \\ & (856 \mathrm{~A}) \end{aligned}$	Digital Input 8 Function (TB2-8)	Sets the function for bypass digital input 8 .	$\begin{gathered} 0 \\ (0-47) \end{gathered}$
$\begin{gathered} \text { Z2-09 } \\ (856 \mathrm{~B}) \end{gathered}$	Digital Input 1 Invert Select	Inverts the output of the function selected in Digital Input 1. 0 : Normal (Non-inverted) 1 : Inverted	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { Z2-10 } \\ & \text { (856C) } \end{aligned}$	Digital Input 2 Invert Select	Inverts the output of the function selected in Digital Input 2. 0 : Normal (Non-inverted) 1 : Inverted	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{gathered} \text { Z2-11 } \\ \text { (856D) } \end{gathered}$	Digital Input 3 Invert Select	Inverts the output of the function selected in Digital Input 3. 0 : Normal (Non-inverted) 1 : Inverted	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { Z2-12 } \\ & (856 \mathrm{E}) \end{aligned}$	Digital Input 4 Invert Select	Inverts the output of the function selected in Digital Input 4. 0 : Normal (Non-inverted) 1 : Inverted	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { Z2-13 } \\ & (856 \mathrm{~F}) \end{aligned}$	Digital Input 5 Invert Select	Inverts the output of the function selected in Digital Input 5 . 0 : Normal (Non-inverted) 1 : Inverted	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

No. (Hex.)	Name	Description	Default (Range)
$\begin{aligned} & \text { Z2-14 } \\ & (8570) \end{aligned}$	Digital Input 6 Invert Select	Inverts the output of the function selected in Digital Input 6. 0 : Normal (Non-inverted) 1 : Inverted	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { Z2-15 } \\ & (8571) \end{aligned}$	Digital Input 7 Invert Select	Inverts the output of the function selected in Digital Input 7. 0 : Normal (Non-inverted) 1 : Inverted	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { Z2-16 } \\ & (8572) \end{aligned}$	Digital Input 8 Invert Select	Inverts the output of the function selected in Digital Input 8. 0 : Normal (Non-inverted) 1 : Inverted	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \text { Z2-23 } \\ & (8579) \end{aligned}$	Digital Output 7 (TB1 1~3)	Sets the function for bypass digital output 7. Normally Open: TB1 - Terminals 2 and 3 Normally Closed: TB1 - Terminals 2 and 1	$\begin{gathered} 7 \\ (0-99) \end{gathered}$
$\begin{gathered} \text { Z2-24 } \\ (857 \mathrm{~A}) \end{gathered}$	Digital Output 8 (TB1 4~6)	Sets the function for bypass digital output 8 . Normally Open: TB1 - Terminals 5 and 6 Normally Closed: TB1 - Terminals 5 and 4	$\begin{gathered} 10 \\ (0-99) \end{gathered}$
$\begin{gathered} \text { Z2-25 } \\ (857 B) \end{gathered}$	Digital Output 9 (TB1 7~9)	Sets the function for bypass digital output 9 . Normally Open: TB1 - Terminals 8 and 9 Normally Closed: TB1 - Terminals 8 and 7	$\begin{gathered} 12 \\ (0-99) \end{gathered}$
$\begin{aligned} & \text { Z2-26 } \\ & (857 \mathrm{C}) \end{aligned}$	$\begin{aligned} & \text { Digital Output } 10 \text { (TB1 } \\ & 10 \sim 12 \text {) } \end{aligned}$	Sets the function for bypass digital output 10 . Normally Open: TB1 - Terminals 11 and 12 Normally Closed: TB1 - Terminals 11 and 10	$\begin{gathered} 15 \\ (0-99) \end{gathered}$
$\begin{aligned} & \text { Z2-30 } \\ & (8580) \end{aligned}$	Analog Input Signal Level Select	Sets the input signal level for the analog input on the bypass control board A2 Terminal TB4-2. $\begin{aligned} & 0: 0 \text { to } 10 \mathrm{~V}(\text { Lower Limit at } 0) \\ & 2: 4 \text { to } 20 \mathrm{~mA} \\ & 3: 0 \text { to } 20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 0 \\ (0-3) \end{gathered}$
$\begin{aligned} & \text { Z2-32 } \\ & (8582) \end{aligned}$	Analog Input Gain Setting	Sets the gain of the analog signal input to the analog input on the bypass control board A2 Terminal TB4-2..	$\begin{gathered} 100.0 \% \\ (-999.9-+999.9 \%) \end{gathered}$
$\begin{aligned} & \text { Z2-33 } \\ & (8583) \end{aligned}$	Analog Input Bias Setting	Sets the bias of the analog signal input to the analog input on the bypass control board A2 Terminal TB4-2.	$\begin{gathered} 0.0 \% \\ (-999.9-+999.9 \%) \end{gathered}$

Z2-xx: Digital Input Setting Values

Setting Value	Function	
0	Not Used	Description
1	Drive S1 Passthrough	Simulates a digital input on drive digital input terminal S1. Use H1-01 [Terminal Sl Function Selection] to program the function.
2	Drive S2 Passthrough	Simulates a digital input on drive digital input terminal S2. Use H1-02 [Terminal S2 Function Selection] to program the function.
3	Drive S3 Passthrough	Simulates a digital input on drive digital input terminal S3. Use H1-03 [Terminal S3 Function Selection] to program the function.
4	Drive S4 Passthrough	Simulates a digital input on drive digital input terminal S4. Use H1-04 [Terminal S4 Function Selection] to program the function.
5	Drive S5 Passthrough	Simulates a digital input on drive digital input terminal S5. Use H1-05 [Terminal S5 Function Selection] to program the function.
6	Drive S6 Passthrough	Simulates a digital input on drive digital input terminal S6. Use H1-06 [Terminal S6 Function Selection] to program the function.
7	Drive S7 Passthrough	Simulates a digital input on drive digital input terminal S7. Use H1-07 [Terminal S7 Function Selection] to program the function.
21	Run (AUTO)	Starts and stops the bypass.
22	Run Enable - Safety (NC)	Stops the bypass. Normally closed signal.
23	Run Interlock (BAS)	Stops the drive and triggers alarm AL02. Normally closed signal.
24	Remote Transfer to Bypass	Forces the bypass into Bypass Mode.
25	Emergency Override Bypass	Forces the bypass to operate in Bypass Mode.
26	Emergency Override Drive (FWD)	Forces the bypass to operate in the forward direction in Drive Mode.
27	Motor OR Select	Sets the command for the bypass to operate motor 1 or motor 2.
28	Motor AND Select	Sets the command for the bypass to operate motor 1 and motor 2 at the same time.
29	External Overload Motor 1 (NC)	Input for an external motor overload relay. Normally closed signal.
20		

7.14 Z: Bypass Parameters

Setting Value	Function	Description
30	$\begin{aligned} & \text { External Overload Motor } 2 \\ & (\mathrm{NC}) \end{aligned}$	Input for an external motor overload relay (Motor 2). Normally closed signal.
31	HAND Select	Selects HAND Mode from the digital inputs instead of the keypad.
32	AUTO Select	Selects AUTO Mode from the digital inputs instead of the keypad.
33	Drive/Bypass Select	Sets the bypass to operate in Bypass Mode or Drive Mode. ON : Bypass Mode is selected OFF : Drive Mode is selected
34	Fault Reset	Resets any faults that are present.
35	External Fault (EF0)	Forces the drive into an $E F O$ fault condition.
36	External Fault (EFB)	Triggers external fault $E F B$ on the bypass.
37	Run Reverse (AUTO)	Starts and stops the bypass in reverse.
38	Fire Stat Switch (NC)	Stops the drive from running and shows "Fire Stat" on the keypad.
39	Freeze Stat Switch (NC)	Stops the drive from running and shows "Freeze Stat" on the keypad.
40	Smoke Alarm (NC)	Stops the drive from running and shows "Smoke Alarm Active" on the keypad.
41	OverPressure Switch (NC)	Stops the drive from running and shows "Over Pressure Detected" on the keypad.
42	Low Suction Switch (NC)	Stops the drive from running and shows "Low Suction Detected" on the keypad.
43	Vibration Switch (NC)	Stops the drive from running and shows "Vibration Detected" on the keypad.
44	Emergency Override Drive (REV)	Forces the bypass to operate in Drive Mode in the reverse direction.
45	Serial Hardware Test (RS- 485)	Sets the function for the bypass control to self-test the RS-485 serial communications operation.
46	Low City Pressure	Indicates that sufficient or insufficient pressure is present on the inlet to the pump. Used mainly for pressure booster situations.
47	Motor Preheat	Sets the command to apply the motor pre-heat current. Use b2-09 [Pre-heat Current 2] to adjust.

- Z2-xx: Digital Output Setting Values

Setting Value	Function	Description
0	Serial Communication Control	Activates when b1-01 $=2$ [Frequency Reference Selection $1=$ Serial Communications], and/or b1-02 $=2$ or 8 [Run Command Selection $1=$ Serial Communications or AUTO Command + Serial Run] to set the bypass for control by serial communications. Note: This does not apply when Option PCB-based serial communications control the bypass.
1	K1 Drive Input Contactor	Active when the K1 (Drive Input Power) contactor is energized.
2	K2 Drive Output Contactor	Active when the K2 (Drive Output) contactor is energized.
3	K3 Bypass Contactor	Active when the K3 (Bypass Run) contactor is energized.
4	K4 Motor 1 Contactor	Active when the K4 (Motor 1) contactor is energized.
5	K5 Motor 2 Contactor	Active when the K5 (Motor 2) contactor is energized.
6	READY	Active when the system is ready to operate. ON : System is ready to operate OFF : System is faulted, in Programming Mode, or one of the safety digital inputs is open
7	RUN Active	Active when the system is running in Drive Mode or Bypass Mode.
8	Drive RUN active	The digital output activates when the system is in Drive Mode and the HV600 drive is running. ON : Running in Drive Mode OFF : Not running or in Bypass Mode
9	Bypass RUN active	The digital output activates when the system is in Bypass Mode and is running. Contactor K3 is closed. ON : Running in Bypass Mode OFF : Not running or in Drive Mode
10	HAND mode Active	The digital output activates when the system is running in HAND Mode during Drive Mode and Bypass Mode. ON : Running in HAND Mode OFF : Not running or in AUTO Mode

Setting Value	Function	
11	OFF mode Active	The digital output activates when the HAND/OFF/AUTO selection is in OFF Mode or if system is faulted. It is also active when in Emergency Override Mode. ON : System is in OFF Mode or is faulted OFF : HAND Mode, AUTO Mode (even if not running), Emergency Override.
12	Auto mode Active	The digital output activates when the HAND/OFF/AUTO selection is in AUTO Mode. It will activate when the system is running and when the system is not running and in Drive Mode and Bypass Mode. ON : System is in AUTO Mode OFF : HAND Mode, OFF Mode, Faulted, Emergency Override
99	Drive Mode Selected	The digital output activates when Drive Mode is selected. It stays active during Remote Transfer to Bypass, Emergency Override Bypass, Energy Savings, Fault condition, and when the system is not running. ON : Drive Mode is selected OFF : Bypass Mode is selected
14	Bypass Mode Selected	The digital output activates when Bypass Mode is selected. It stays active during Emergency Override Drive, Fault condition, and when the system is not running. ON : Bypass Mode is selected OFF : Drive Mode is selected
28	Mirror HV600 M5-M6	Mirror HV600 M3-M4
15	Fault Active	The digital output activates when the HV600 drive digital output (M5-M6) is closed. ON : Digital Output M5-M6 on HV600 is closed OFF : Digital Output M5-M6 on HV600 is open
16	Drive Fault Active	The digital output activates when the HV600 drive digital output (M3-M4) is closed. ON : Digital Output M3-M4 on HV600 is closed OFF : Digital Output M3-M4 on HV600 is open
26	Bypass Fault Active	This setting allows serial communications to control the output.
17	Safeties Closed an active Drive fault or Bypass fault.	

Z3: Bypass Control Serial Comm

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	Default (Range)
$\begin{aligned} & \text { Z3-12 } \\ & (850 \mathrm{~B}) \end{aligned}$	Network Digital Inputs	Enables and disables control of the digital inputs over a network. When this is enabled, it is not necessary to wire to the physical digital input. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$
$\begin{aligned} & \mathrm{Z} 3-13 \\ & (850 \mathrm{C}) \end{aligned}$	BACnet Register Retention	Sets what to restore when you lose power then reapply power. WARNING! Sudden Movement Hazard. Clear all personnel from the drive, motor, and machine area before you reapply power. If you set this parameter to 2 or 3, the bypass unit can start before it receives a valid network message. Failure to obey can cause injury to personnel. 0 : Disabled 1 : Restore Frequency Reference Only 2 : Restore Commands Only 3 : Restore Commands and Freq Ref	$\begin{gathered} 0 \\ (0-3) \end{gathered}$
$\begin{aligned} & \text { Z3-16 } \\ & (850 \mathrm{~F}) \end{aligned}$	Apogee Run Enable LDO35	This parameter is applicable only when $H 5-08=2$ [Communication Protocol Selection $=$ Apogee/ P1]. Sets whether the data in point LDO 35 will have an effect on the ability of the bypass to run. 0 : Disabled 1 : Enabled	$\begin{gathered} 0 \\ (0,1) \end{gathered}$

7.15 U: Monitors

U1: Operation Status Monitors

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { U1-01 } \\ & (0040) \end{aligned}$	Frequency Reference (AI)	Shows the frequency reference value. Parameter ol-03 [Keypad Display Unit Selection] sets the display units. Unit: 0.01 Hz	$10 \mathrm{~V}=\underset{(0 \mathrm{~V} \text { to }+10 \mathrm{~V})}{\text { Maximum frequency }}$
$\begin{aligned} & \text { U1-02 } \\ & (0041) \end{aligned}$	Output Frequency	Shows the output frequency. Parameter ol-03 [Keypad Display Unit Selection] sets the display units. Unit: 0.01 Hz	$10 \mathrm{~V}=\underset{(0 \mathrm{~V} \text { to }+10 \mathrm{~V})}{\text { Maximum frequency }}$
$\begin{aligned} & \text { U1-03 } \\ & (0042) \end{aligned}$	Output Current	Shows the drive unit output current. The keypad shows the value of U1-03 in amperes (A). When you use serial communications to show the monitor, the current is " $8192=$ drive rated current (A) ". Use the formula: "Numerals being displayed / $8192 \times$ drive rated current (A)" to use the serial communication current value shown in the monitor. Note: Use monitor $\mathrm{Ub}-01$ to show output current for both drive and bypass modes. Unit: Determined by the drive model. - $0.01 \mathrm{~A}: 2011$ to 2046,4005 to 4014 - 0.1 A: 2059 to 2273,4021 to 4302	$10 \mathrm{~V}=$ Drive rated current
$\begin{aligned} & \text { U1-04 } \\ & (0043) \end{aligned}$	Control Method	Shows the drive control method. 0 : V/f Control	No signal output available
$\begin{aligned} & \text { U1-06 } \\ & (0045) \end{aligned}$	Output Voltage Ref	Shows the output voltage reference. Unit: 0.1 V	$\begin{gathered} 208 / 240 \mathrm{~V}: 10 \mathrm{~V}=200 \mathrm{Vrms} \\ 480 \mathrm{~V}: 10 \mathrm{~V}=400 \mathrm{Vrms} \end{gathered}$
$\begin{aligned} & \text { U1-07 } \\ & (0046) \end{aligned}$	DC Bus Voltage	Shows the DC bus voltage. Unit: 1 V	$\begin{gathered} 208 / 240 \mathrm{~V}: 10 \mathrm{~V}=400 \mathrm{~V} \\ 480 \mathrm{~V}: 10 \mathrm{~V}=800 \mathrm{~V} \end{gathered}$
$\begin{aligned} & \text { U1-08 } \\ & (0047) \end{aligned}$	Output Power	Shows the internally-calculated output power. Unit: Determined by the drive model. - $0.01 \mathrm{~kW}: 2011$ to 2046, 4005 to 4014 - $0.1 \mathrm{~kW}: 2059$ to 2273,4021 to 4302	10 V: Drive capacity (motor rated power) kW $(-10 \mathrm{~V}$ to $+10 \mathrm{~V})$
$\begin{aligned} & \text { U1-10 } \\ & (0049) \end{aligned}$	Input Terminal Status	Shows the status of the MFDI terminal where $1=(\mathrm{ON})$ and $0=(\mathrm{OFF})$. For example, U1-10 shows "00000011" when terminals S1 and S2 are ON. bit0 : Terminal S1 (MFDI 1) bit1 : Terminal S2 (MFDI 2) bit2 : Terminal S3 (MFDI 3) bit3: Terminal S4 (MFDI 4) bit4 : Terminal S5 (MFDI 5) bit5 : Terminal S6 (MFDI 6) bit6 : Terminal S7 (MFDI 7) bit7 : Not used (normal value of 0).	No signal output available
$\begin{aligned} & \text { U1-11 } \\ & (004 \mathrm{~A}) \end{aligned}$	Output Terminal Status	Shows the status of the MFDO terminal where $1=(\mathrm{ON})$ and $0=(\mathrm{OFF})$. For example, U1-11 shows " 00000011 " when terminals M1 and M3 are ON. Note: When H2-xx = 100 to IC4 [Inverse Output of Function], the monitor will show the value before inversion. bit 0 : Terminals M1-M2 bit 1 : Terminals M3-M4 bit 2 : Terminals M5-M6 bit 3 : Not used (normal value of 0). bit 4 : Not used (normal value of 0). bit 5 : Not used (normal value of 0). bit 6 : Not used (normal value of 0). bit 7 : Fault relay MA/MB-MC	No signal output available
$\begin{aligned} & \text { U1-12 } \\ & (004 B) \end{aligned}$	Drive Status	Shows drive status where $1=\mathrm{ON}$ and $0=\mathrm{OFF}$. For example, UI-12 shows " 00000101 " during run with the Reverse Run command. bit0: During Run bit1: During zero-speed bit2 : During reverse bit3 : During fault reset signal input bit4: During speed agreement bit5 : Drive ready bit6 : During minor fault detection bit7 : During fault detection	No signal output available

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { U1-13 } \\ & (004 \mathrm{E}) \end{aligned}$	Terminal A1 Level	Shows the signal level of terminal A1. Unit: 0.1\%	$10 \mathrm{~V}=100 \%(0 \mathrm{~V}$ to $+10 \mathrm{~V})$
$\begin{aligned} & \text { U1-14 } \\ & (004 \mathrm{~F}) \end{aligned}$	Terminal A2 Level	Shows the signal level of terminal A2. Unit: 0.1\%	$10 \mathrm{~V}=100 \%(0 \mathrm{~V}$ to $+10 \mathrm{~V})$
$\begin{aligned} & \text { U1-16 } \\ & (0053) \end{aligned}$	SFS Output Frequency	Shows the output frequency after soft start. Shows the frequency with acceleration and deceleration times and S-curves. Parameter ol-03 [Keypad Display Unit Selection] sets the display units. Unit: 0.01 Hz	$\begin{gathered} 10 \mathrm{~V}=\underset{(0 \mathrm{~V} \text { to }+10 \mathrm{~V})}{\text { Maximum frequency }} \end{gathered}$
$\begin{gathered} \text { U1-18 } \\ (0061) \end{gathered}$	oPE Fault Parameter	Shows the parameter number that caused the oPE02 [Parameter Range Setting Error] or oPE08 [Parameter Selection Error].	No signal output available
$\begin{gathered} \text { U1-19 } \\ (0066) \end{gathered}$	Serial Error Code	Shows the contents of the serial communication error where $1=$ "error" and $0=$ "no error". For example, U1-19 shows " 00000001 " when there is a CRC error. bit0 : CRC Error bit1 : Data Length Error bit2 : Not used (normal value of 0). bit3: Parity Error bit4: Overrun Error bit5: Framing Error bit6 : Timed Out bit7: Not used (normal value of 0).	No signal output available
$\begin{aligned} & \text { U1-25 } \\ & (004 \mathrm{D}) \end{aligned}$	SoftwareNumber Flash	Shows the FLASH ID.	No signal output available
$\begin{gathered} \text { U1-26 } \\ (005 B) \end{gathered}$	SoftwareNumber ROM	Shows the ROM ID.	No signal output available
$\begin{aligned} & \text { U1-60 } \\ & (1089) \end{aligned}$	System Setpoint	Shows the PID Setpoint. Unit: 0.01\% Note: Parameters b5-46 [PID Unit Display Selection], b5-38 [PID User Unit Display Scaling], and b539 [PID User Unit Display Digits] set the unit, range, and resolution.	No signal output available
$\begin{aligned} & \text { U1-61 } \\ & (108 \mathrm{~A}) \end{aligned}$	System Feedback	Shows the PID Feedback. Unit: 0.01\% Note: Parameters b5-46 [PID Unit Display Selection], b5-38 [PID User Unit Display Scaling], and b539 [PID User Unit Display Digits] set the unit, range, and resolution.	No signal output available
$\begin{aligned} & \text { U1-64 } \\ & \text { (108D) } \end{aligned}$	Motor Speed	Shows the absolute value of the parameter U1-02 [Output Frequency] converted to RPM. Unit: 1 RPM	No signal output available
$\begin{gathered} \text { U1-99 } \\ \text { (3BAE) } \end{gathered}$	Anti-No-Flow Timer	Shows the value of the anti-no-flow timer. When this value is at the Y2-24 [Anti-No-Flow Detection Time] setting, the anti-no-flow feature starts to decrease the output frequency. Unit: 0.1 s	No signal output available

- U2: Fault Trace

No. (Hex.)	Name	Description	MFAO Signal Level
U2-01 (0080)	Current Fault	Shows the fault that the drive has when viewing the monitor.	No signal output available
U2-02 (0081)	Previous Fault	Shows the fault that occurred most recently.	No signal output available
U2-03 (0082)	Freq Reference@Fault	Shows the frequency reference at the fault that occurred most recently. Use U1-01 [Frequency Reference] to monitor the frequency reference value. Unit: 0.01 Hz	No signal output available
U2-04 (0083)	Output Freq @ Fault	Shows the output frequency at the fault that occurred most recently. Use U1-02 [Output Frequency] to monitor the actual output frequency. Unit: 0.01 Hz	No signal output available

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { U2-05 } \\ & (0084) \end{aligned}$	Output Current@Fault	Shows the motor current at the fault that occurred most recently. Use Ub-01 [Motor Current] to monitor the output current. The keypad shows the value of Ub-01 in amperes (A). When you use serial communications to show the monitor, the current is " $8192=$ drive rated current (A)". Use the formula: "Numerals being displayed / $8192 \times$ drive rated current (A)" to use the serial communication current value shown in the monitor. Unit: Determined by the drive model. - $0.01 \mathrm{~A}: 2011$ to 2046,4005 to 4014 - 0.1 A: 2059 to 2273,4021 to 4302	No signal output available
$\begin{aligned} & \text { U2-07 } \\ & (0086) \end{aligned}$	Output Voltage@Fault	Shows the output voltage reference at the fault that occurred most recently. Use U1-06 [Output Voltage Ref] to monitor the output voltage reference. Unit: 0.1 V	No signal output available
$\begin{aligned} & \text { U2-08 } \\ & (0087) \end{aligned}$	DC Bus Voltage@Fault	Shows the DC bus voltage at the fault that occurred most recently. Use U1-07 [DC Bus Voltage] to monitor the DC bus voltage. Unit: 1 V	No signal output available
$\begin{aligned} & \text { U2-09 } \\ & (0088) \end{aligned}$	Output Power @ Fault	Shows the output power at the fault that occurred most recently. Use U1-08 [Output Power] to monitor the output power. Unit: 0.1 kW	No signal output available
$\begin{aligned} & \text { U2-11 } \\ & (008 \mathrm{~A}) \end{aligned}$	Byp Inp Terminal Status @ Fault	Shows the status of the bypass digital input terminals at the most recent fault where $1=(\mathrm{ON})$ and $0=$ (OFF). For example, $U 2-11$ shows " 00000011 " when terminals TB2-1 and TB2-2 are ON. Use Ub-02 [Bypass Digital Input Status] to monitor the terminal status. bit 0 : Digital Input 1 (TB2-1) bit 1 : Digital Input 2 (TB2-2) bit 2 : Digital Input 3 (TB2-3) bit 3 : Digital Input 4 (TB2-4) bit 4 : Digital Input 5 (TB2-5) bit 5 : Digital Input 6 (TB2-6) bit 6 : Digital Input 7 (TB2-7) bit 7 : Digital Input 8 (TB2-8)	No signal output available
$\begin{aligned} & \text { U2-12 } \\ & (008 B) \end{aligned}$	Byp Relay Status @ Fault	Shows the status of the bypass digital output terminals at the most recent fault where $1=(\mathrm{ON})$ and 0 $=(\mathrm{OFF})$. For example, $U 2-12$ shows " 00000011 " when terminals M1 and M3 are ON. Use Ub-02 [Bypass Digital Output Status] to monitor the terminal status. bit 0: K1 (Input Contactor) bit 1 : K2 (Output Contactor) bit 2 : K3 (Bypass Contactor) bit 3 : K4 (Motor 1 Output Contactor) bit 4 : K5 (Motor 2 Output Contactor) bit 5 : Fan Output Relay bit 6 : Digital Output 7 (TB1 1~3) (Z2-23) bit 7 : Digital Output 8 (TB1 4~6) (Z2-24)	No signal output available
$\begin{aligned} & \text { U2-13 } \\ & (008 \mathrm{C}) \end{aligned}$	Bypass Status @ Fault	Shows the status of the bypass at the most recent fault where $1=(\mathrm{ON})$ and $0=(\mathrm{OFF})$. For example, U2-13 shows "00000001" during run. Use Ub-05 [Bypass Status 1] to monitor the bypass. bit 0 : Hand Mode Active bit 1 : Off Mode Active bit 2 : Auto Mode Active bit 3 : Drive Mode bit 4 : Bypass Mode bit 5 : Emergency Override Bypass bit 6 : Emergency Override Drive bit 7 : Safety Open	No signal output available
$\begin{aligned} & \text { U2-14 } \\ & (008 \mathrm{D}) \end{aligned}$	Elapsed Time @ Fault	Shows the cumulative operation time of the drive at the fault that occurred most recently. Use U4-01 [Cumulative Ope Time] to monitor the cumulative operation time. Unit: 1 h	No signal output available
$\begin{aligned} & \text { U2-15 } \\ & (07 \mathrm{E} 0) \end{aligned}$	SFS Output @ Fault	Shows the output frequency after soft start at the fault that occurred most recently. Use U1-16 [SFS Output Frequency] to monitor the output frequency after soft start. Unit: 0.01 Hz	No signal output available
$\begin{aligned} & \text { U2-16 } \\ & \text { (07E1) } \end{aligned}$	q-Axis Current@Fault	Shows the q -Axis current of the motor at the fault that occurred most recently. Use U6-01 [Iq Secondary Current] to monitor the q-Axis current of the motor. Unit: 0.1%	No signal output available

No. (Hex.)	Name	Description	MFAO Signal Level
U2-20 $(008 \mathrm{E})$	Heatsink Temp @Fault	Shows the heatsink temperature at the fault that occurred most recently. Use U4-08 [Heatsink Temperature] to monitor the temperature of the heatsink. Unit: $1{ }^{\circ} \mathrm{C}$	No signal output available
U2-30 (3008)	Fault 1 YYYY	Shows the year when the most recent fault occurred.	No signal output available
U2-31 (3009)	Fault 1 MMDD	Shows the month and day when the most recent fault occurred.	No signal output available
U2-32 $(300 A)$	Fault 1 HHMM	Shows the time when the most recent fault occurred.	No signal output available

U3: Fault History

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { U3-01 } \\ & (0090) \end{aligned}$	1st MostRecent Fault	Shows the fault history of the most recent fault. Note: The drive saves this fault history to two types of registers at the same time for serial communications.	No signal output available
$\begin{aligned} & \text { U3-02 } \\ & (0091) \end{aligned}$	2nd MostRecent Fault	Shows the fault history of the second most recent fault. Note: The drive saves this fault history to two types of registers at the same time for serial communications.	No signal output available
$\begin{aligned} & \text { U3-03 } \\ & (0092) \end{aligned}$	3rd MostRecent Fault	Shows the fault history of the third most recent fault. Note: The drive saves this fault history to two types of registers at the same time for serial communications.	No signal output available
$\begin{aligned} & \text { U3-04 } \\ & (0093) \end{aligned}$	4th MostRecent Fault	Shows the fault history of the fourth most recent fault. Note: The drive saves this fault history to two types of registers at the same time for serial communications.	No signal output available
$\begin{aligned} & \text { U3-05 } \\ & (0804) \end{aligned}$	5th MostRecent Fault	Shows the fault history of the fifth most recent fault.	No signal output available
$\begin{aligned} & \text { U3-06 } \\ & (0805) \end{aligned}$	6th MostRecent Fault	Shows the fault history of the sixth most recent fault.	No signal output available
$\begin{aligned} & \text { U3-07 } \\ & (0806) \end{aligned}$	7th MostRecent Fault	Shows the fault history of the seventh most recent fault.	No signal output available
$\begin{aligned} & \text { U3-08 } \\ & (0807) \end{aligned}$	8th MostRecent Fault	Shows the fault history of the eighth most recent fault.	No signal output available
$\begin{aligned} & \text { U3-09 } \\ & (0808) \end{aligned}$	9th MostRecent Fault	Shows the fault history of the ninth most recent fault.	No signal output available
$\begin{aligned} & \text { U3-10 } \\ & (0809) \end{aligned}$	10th MostRecentFault	Shows the fault history of the tenth most recent fault.	No signal output available
$\begin{aligned} & \text { U3-11 } \\ & (0094) \end{aligned}$	ElapsedTime@1stFault	Shows the cumulative operation time when the most recent fault occurred. Note: The drive saves this cumulative operation time to two types of registers at the same time for serial communications. Unit: 1 h	No signal output available
$\begin{aligned} & \text { U3-12 } \\ & (0095) \end{aligned}$	ElapsedTime@2ndFault	Shows the cumulative operation time when the second most recent fault occurred. Note: The drive saves this cumulative operation time to two types of registers at the same time for serial communications. Unit: 1 h	No signal output available
$\begin{aligned} & \text { U3-13 } \\ & (0096) \end{aligned}$	ElapsedTime@3rdFault	Shows the cumulative operation time when the third most recent fault occurred. Note: The drive saves this cumulative operation time to two types of registers at the same time for serial communications. Unit: 1 h	No signal output available

$\begin{gathered} \text { No. } \\ \text { (Hex.) } \end{gathered}$	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { U3-14 } \\ & (0097) \end{aligned}$	ElapsedTime@4thFault	Shows the cumulative operation time when the fourth most recent fault occurred. Note: The drive saves this cumulative operation time to two types of registers at the same time for serial communications. Unit: 1 h	No signal output available
$\begin{aligned} & \text { U3-15 } \\ & \text { (080E) } \end{aligned}$	ElapsedTime@5thFault	Shows the cumulative operation time when the fifth most recent fault occurred. Unit: 1 h	No signal output available
$\begin{aligned} & \text { U3-16 } \\ & \text { (080F) } \end{aligned}$	ElapsedTime@6thFault	Shows the cumulative operation time when the sixth most recent fault occurred. Unit: 1 h	No signal output available
$\begin{aligned} & \text { U3-17 } \\ & (0810) \end{aligned}$	ElapsedTime@7thFault	Shows the cumulative operation time when the seventh most recent fault occurred. Unit: 1 h	No signal output available
$\begin{aligned} & \text { U3-18 } \\ & (0811) \end{aligned}$	ElapsedTime@8thFault	Shows the cumulative operation time when the eighth most recent fault occurred. Unit: 1 h	No signal output available
$\begin{aligned} & \text { U3-19 } \\ & (0812) \end{aligned}$	ElapsedTime@9thFault	Shows the cumulative operation time when the ninth most recent fault occurred. Unit: 1 h	No signal output available
$\begin{aligned} & \text { U3-20 } \\ & (0813) \end{aligned}$	ElapsedTime@10 Fault	Shows the cumulative operation time when the tenth most recent fault occurred. Unit: 1 h	No signal output available
$\begin{aligned} & \text { U3-21 } \\ & \text { (300B) } \end{aligned}$	Fault 1 YYYY	Shows the year when the most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-22 } \\ & (300 \mathrm{C}) \end{aligned}$	Fault 1 MMDD	Shows the month and day when the most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-23 } \\ & \text { (300D) } \end{aligned}$	Fault 1 HHMM	Shows the time when the most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-24 } \\ & (300 \mathrm{E}) \end{aligned}$	Fault 2 YYYY	Shows the year when the second most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-25 } \\ & (300 \mathrm{~F}) \end{aligned}$	Fault 2 MMDD	Shows the month and day when the second most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-26 } \\ & (3010) \end{aligned}$	Fault 2 HHMM	Shows the time when the second most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-27 } \\ & (3011) \end{aligned}$	Fault 3 YYYY	Shows the year when the third most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-28 } \\ & (3012) \end{aligned}$	Fault 3 MMDD	Shows the month and day when the third most recent fault occurred.	No signal output available
$\begin{gathered} \text { U3-29 } \\ (3013) \end{gathered}$	Fault 3 HHMM	Shows the time when the third most recent fault occurred.	No signal output available
$\begin{gathered} \text { U3-30 } \\ \text { (3014) } \end{gathered}$	Fault 4 YYYY	Shows the year when the fourth most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-31 } \\ & (3015) \end{aligned}$	Fault 4 MMDD	Shows the month and day when the fourth most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-32 } \\ & (3016) \end{aligned}$	Fault 4 HHMM	Shows the time when the fourth most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-33 } \\ & (3017) \end{aligned}$	Fault 5 YYYY	Shows the year when the fifth most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-34 } \\ & \text { (3018) } \end{aligned}$	Fault 5 MMDD	Shows the month and day when the fifth most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-35 } \\ & (3019) \end{aligned}$	Fault 5 HHMM	Shows the time when the fifth most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-36 } \\ & (301 \mathrm{~A}) \end{aligned}$	Fault 6 YYYY	Shows the year when the sixth most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-37 } \\ & (301 B) \end{aligned}$	Fault 6 MMDD	Shows the month and day when the sixth most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-38 } \\ & (301 \mathrm{C}) \end{aligned}$	Fault 6 HHMM	Shows the time when the sixth most recent fault occurred.	No signal output available
$\begin{aligned} & \text { U3-39 } \\ & \text { (301D) } \end{aligned}$	Fault 7 YYYY	Shows the year when the seventh most recent fault occurred.	No signal output available

No. (Hex.)	Name	Description	MFAO Signal Level
U3-40 $(301$ E $)$	Fault 7 MMDD	Shows the month and day when the seventh most recent fault occurred.	No signal output available
U3-41 $(301 F)$	Fault 7 HHMM	Shows the time when the seventh most recent fault occurred.	No signal output available
U3-42 (3020)	Fault 8 YYYY	Shows the year when the eighth most recent fault occurred.	No signal output available
U3-43 (3021)	Fault 8 MMDD	Shows the month and day when the eighth most recent fault occurred.	No signal output available
U3-44 (3022)	Fault 8 HHMM	Shows the time when the eighth most recent fault occurred.	No signal output available
U3-45 (3023)	Fault 9 YYYY	Shows the year when the ninth most recent fault occurred.	No signal output available
U3-46 (3024)	Fault 9 MMDD	Shows the month and day when the ninth most recent fault occurred.	No signal output available
U3-47 (3025)	Fault 9 HHMM	Shows the time when the ninth most recent fault occurred.	No signal output available
U3-48 (3026)	Fault 10 YYYY	Shows the year when the tenth most recent fault occurred.	No signal output available
U3-49 (3027)	Fault 10 MMDD	Shows the month and day when the tenth most recent fault occurred.	No signal output available
U3-50 (3028)	Fault 10 HHMM	Shows the time when the tenth most recent fault occurred.	No signal output available

- U4: Maintenance Monitors

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { U4-01 } \\ & (004 \mathrm{C}) \end{aligned}$	Cumulative Ope Time	Shows the cumulative operation time of the drive. Use parameter o4-01 [Elapsed Operating Time Setting] to reset this monitor. Use parameter o4-02 [Elapsed Operating Time Selection] to select the cumulative operation times from: - The time from when the drive is energized until it is de-energized. - The time at which the Run command is turned ON. The maximum value that the monitor will show is 99999 . After this value is more than 99999 , the drive automatically resets it and starts to count from 0 again. Unit: 1 h Note: The MEMOBUS/Modbus communication data is shown in 10 h units. Use register 0099H for data in 1 h units.	10 V : 99999 h
$\begin{aligned} & \text { U4-02 } \\ & (0075) \end{aligned}$	Num of Run Commands	Shows how many times that the drive has received a Run command. Use parameter o4-13 [RUN Command Counter @ Initialize] to reset this monitor. The maximum value that the monitor will show is 65535 . After this value is more than 65535 , the drive automatically resets it and starts to count from 0 again. Unit: 1	10 V : 65535 times
$\begin{aligned} & \text { U4-03 } \\ & (0067) \end{aligned}$	Cooling Fan Ope Time	Shows the cumulative operation time of the cooling fans. Use parameter o4-03 [Fan Operation Time Setting] to reset this monitor. The maximum value that the monitor will show is 99999 . After this value is more than 99999 , the drive automatically resets it and starts to count from 0 again. Unit: 1 h Note: The MEMOBUS/Modbus communication data is shown in 10 h units. Use register 009BH for data in 1 h units.	10 V : 99999 h
$\begin{gathered} \text { U4-04 } \\ (007 \mathrm{E}) \end{gathered}$	Cool Fan Maintenance	Shows the cumulative operation time of the cooling fans as a percentage of the replacement life of the cooling fans. Use parameter o4-03 [Fan Operation Time Setting] to reset this monitor. Unit: 1% Note: Replace the cooling fans when this monitor is 90%.	10 V: 100%

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \mathrm{U} 4-05 \\ & (007 \mathrm{C}) \end{aligned}$	CapacitorMaintenance	Shows the operation time of the electrolytic capacitors for the main circuit and control circuit as a percentage of the replacement life of the electrolytic capacitors. Use parameter o4-05 [Capacitor Maintenance Setting] to reset this monitor. Unit: 1\% Note: Replace the electrolytic capacitor when this monitor is 90%.	10 V : 100%
$\begin{aligned} & \text { U4-06 } \\ & \text { (07D6) } \end{aligned}$	PreChargeRelayMainte	Shows the operation time of the soft charge bypass relay as a percentage of the replacement life of the soft charge bypass relay. Use parameter 04-07 [Softcharge Relay Maintenance Set] to reset this monitor. Unit: 1\% Note: Replace the drive when this monitor is 90%.	$10 \mathrm{~V}: 100 \%$
$\begin{aligned} & \text { U4-07 } \\ & \text { (07D7) } \end{aligned}$	IGBT Maintenance	Shows the operation time of the IGBTs as a percentage of the replacement life of the IGBTs. Set parameter o4-09 [IGBT Maintenance Setting] to reset this monitor. Unit: 1\% Note: Replace the drive when this monitor is 90%.	$10 \mathrm{~V}: 100 \%$
$\begin{aligned} & \text { U4-08 } \\ & (0068) \end{aligned}$	Heatsink Temperature	Shows the heatsink temperature of the drive. Unit: $1{ }^{\circ} \mathrm{C}$	10 V: $100^{\circ} \mathrm{C}$
$\begin{aligned} & \text { U4-09 } \\ & (005 \mathrm{E}) \end{aligned}$	LED Check	Turns on the LED Status Ring and all of the keypad LEDs to make sure that the LEDs operate correctly. 1. Set o2-24 $=0$ [LED Light Function Selection $=$ Enable Status Ring \& Keypad LED]. 2. Push \square with U4-09 shown on the keypad. All LEDs on the keypad and LED Status Ring will turn on. Note: When Safety input 2 CH is open (STo), READY will flash.	No signal output available
$\begin{aligned} & \mathrm{U} 4-10 \\ & (005 \mathrm{C}) \end{aligned}$	kWh, Lower 4 Digits	Shows the lower 4 digits of the watt hour value for the drive. Unit: 1 kWh Note: The watt hour is displayed in 9 digits. Monitor U4-11 [kWh, Upper 5 Digits] shows the upper 5 digits and U4-10 shows the lower 4 digits. Example for 12345678.9 kWh : U4-10: 678.9 kWh U4-11: 12345 MWh	No signal output available
$\begin{aligned} & \text { U4-11 } \\ & \text { (005D) } \end{aligned}$	kWh, Upper 5 Digits	Shows the upper 5 digits of the watt hour value for the drive. Unit: 1 MWh Note: Monitor U4-11 shows the upper 5 digits and U4-10 [kWh, Lower 4 Digits] shows the lower 4 digits. Example for 12345678.9 kWh : U4-10: 678.9 kWh U4-11: 12345 MWh	No signal output available
$\begin{gathered} \text { U4-13 } \\ (07 \mathrm{CF}) \end{gathered}$	Peak Hold Current	Shows the hold value of the peak value (rms) for the drive output current. Use U4-14 [PeakHold Output Freq] to show the drive output frequency at the time that the drive holds the output current. The drive will hold the peak hold current at the next start up and restart of the power supply. The drive keeps the held value during baseblock (during stop). The keypad shows the value of $U 4-13$ in amperes (A). When you use serial communications to show the monitor, the current is " $8192=$ drive rated current (A)." Use the formula: "Numerals being displayed / $8192 \times$ drive rated current (A)" to use the serial communication current value shown in the monitor. Unit: Determined by the drive model. - 0.01 A: 2011 to 2046,4005 to 4014 - 0.1 A: 2059 to 2273,4021 to 4302	No signal output available
U4-14 (07D0)	PeakHold Output Freq	Shows the output frequency at which the peak value (rms) of the drive output current is held. The peak hold current can be monitored by U4-13 [Peak Hold Current]. The peak hold output frequency will be cleared at the next startup and restart of the power supply. The drive keeps the value that was under hold during baseblock (during stop). Unit: 0.01 Hz	No signal output available
$\begin{aligned} & \text { U4-16 } \\ & \text { (07D8) } \end{aligned}$	Motor oL1 Level	Shows the integrated value of oL1 [Motor Overload] as a percentage of oLl detection level. Unit: 0.1\%	10 V : 100%

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{gathered} \text { U4-18 } \\ \text { (07DA) } \end{gathered}$	Reference Source	Shows the selected frequency reference source. The keypad shows the frequency reference source as "XY-nn" as specified by these rules: X: Frequency reference - 1: b1-01 [Frequency Reference Selection 1] Y-nn: Frequency reference source - 0-01: Keypad (d1-01 [Reference 1]) - 1-00: Analog input (unassigned) - 1-01: MFAI terminal A1 - 1-02: MFAI terminal A2 - 2-02 to 2-17: Multi-step speed reference (d1-02 to d1-17 [Reference 2 to 8, Jog Reference]) - 3-01: Serial communications - 4-01: Communication option card - 7-01: Reserved - 9-01: Reserved - B-00: Hand Reference 1 (Analog) - B-01: Hand Reference 1 (S5-05 [HAND Frequency Reference])	No signal output available
$\begin{aligned} & \text { U4-19 } \\ & \text { (07DB) } \end{aligned}$	Modbus FreqRef (dec)	Shows the frequency reference sent to the drive from the MEMOBUS/Modbus communications as a decimal. Unit: 0.01\%	10 V : Maximum frequency (0 V to +10 V)
$\begin{aligned} & \text { U4-20 } \\ & \text { (07DC) } \end{aligned}$	Option Freq Ref (dec)	Shows the frequency reference sent to the drive from the communication option as a decimal.	$10 \mathrm{~V} \text { : Maximum frequency }$ $(0 \mathrm{~V} \text { to }+10 \mathrm{~V})$
$\begin{aligned} & \text { U4-21 } \\ & \text { (07DD) } \end{aligned}$	Run Command Source	Shows the selected Run command source. The keypad shows the Run command source as "XY-nn" as specified by these rules: X: Run command - 0: OFF - 1: AUTO - 2: HAND - 3: JOG, Emergency Override Y: Run command source - 0: Keypad - 1: Control circuit terminal - 3: Serial communications - 4: Communication option card - 7: Reserved nn : Run command limit status data - 00: No limit status. - 01: The Run command stayed ON when the drive stopped in Programming Mode. - 03: The Run command is in standby after the drive was energized until the soft charge bypass contactor turns ON. Note: The drive will detect Uvl [DC Bus Undervoltage] or Uv [Undervoltage] if the soft charge bypass contactor does not turn ON after 10 s . - 04: Will not restart after run stop. - 05: An MFDI terminal cased a Fast stop or you pushed \square on the keypad to ramp the motor to stop. - 06: b1-17 = 0 [Run Command at Power Up $=$ Disregard Existing RUN Command]. - 07: During baseblock while coast to stop with timer. - 08: Frequency reference is less than E1-09 [Minimum Output Frequency] during baseblock. - 09: Waiting for the Enter command from PLC.	No signal output available

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { U4-22 } \\ & (07 \mathrm{DE}) \end{aligned}$	Modbus CmdData (hex)	Shows the operation signal (register 0001 H) sent to the drive from MEMOBUS/Modbus communications as a 4-digit hexadecimal number (zero suppress). The keypad shows the operation signal as specified by these rules: bit 0 : Forward run/Stop bit 1 : Reverse run/Stop bit 2 : External fault bit 3 : Fault Reset bit 4 : Multi-function input 1 bit 5 : Multi-function input 2 bit 6 : Multi-function input 3 bit 7 : Multi-function input 4 bit 8 : Multi-function input 5 bit 9 : Multi-function input 6 bit A: Multi-function input 7 bit B : Not used (normal value of 0). bit C: Not used (normal value of 0). bit D: Not used (normal value of 0). bit E: Not used (normal value of 0). bit F: Not used (normal value of 0).	No signal output available
$\begin{aligned} & \mathrm{U} 4-23 \\ & (07 \mathrm{DF}) \end{aligned}$	Option CmdData (hex)	Shows the operation signal (register 0001 H) sent to the drive from MEMOBUS/Modbus communications as a 4-digit hexadecimal number. The keypad shows the operation signal as specified by these rules: bit 0 : Forward run/Stop bit 1 : Reverse run/Stop bit 2 : External fault bit 3 : Fault Reset bit 4 : Multi-function input 1 bit 5 : Multi-function input 2 bit 6 : Multi-function input 3 bit 7 : Multi-function input 4 bit 8 : Multi-function input 5 bit 9 : Multi-function input 6 bit A: Multi-function input 7 bit B : Not used (normal value of 0). bit C: Not used (normal value of 0). bit D: Not used (normal value of 0). bit E: Not used (normal value of 0). bit F: Not used (normal value of 0).	No signal output available
$\begin{aligned} & \text { U4-24 } \\ & (07 \mathrm{E}) \end{aligned}$	Number of Runs (Low)	Shows the lower 4 digits of the drive run count. Note: The drive run count is an 8-digit number. Monitor U4-25 [Number of Runs(High)] shows the upper 4 digits and $U 4-24$ shows the lower 4 digits.	No signal output available
$\begin{aligned} & \mathrm{U} 4-25 \\ & (07 \mathrm{E} 7) \end{aligned}$	Number of Runs(High)	Shows the lower 4 digits of the drive run count. Note: The drive run count is an 8-digit number. Monitor U4-25 shows the upper 4 digits and U4-24 [Number of Runs (Low)] shows the lower 4 digits.	No signal output available
$\begin{aligned} & \text { U4-61 } \\ & \text { (3096) } \\ & \text { Expert } \end{aligned}$	Total EMOVR Run Time	Shows the length of time that the drive operated in Emergency Override Mode. Unit: 1 min Note: - The maximum value is $60,000 \mathrm{~min}$. - This monitor does not accumulate operation time when S6-07 $=1$ [EMOVR Fault Suppression Mode $=$ Test Mode $]$.	No signal output available

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { U5-03 } \\ & (0064) \end{aligned}$	PID Output	Shows the PID control output as a percentage of the maximum output frequency. Unit: 0.01\%	10 V : Maximum frequency (0 V to +10 V)
$\begin{gathered} \text { U5-04 } \\ (0065) \end{gathered}$	PID Setpoint	Shows the PID setpoint. Unit: 0.01\% Note: Parameters b5-46 [PID Unit Display Selection], b5-38 [PID User Unit Display Scaling], and b539 [PID User Unit Display Digits] set the unit, range, and resolution.	$\begin{gathered} 10 \mathrm{~V}=\text { Maximum frequency } \\ (-10 \mathrm{~V} \text { to }+10 \mathrm{~V}) \end{gathered}$
$\begin{aligned} & \text { U5-05 } \\ & \text { (07D2) } \end{aligned}$	PID DifferentialFdbk	Shows the PID differential feedback value as a percentage of the maximum output frequency. This monitor is available after you set H3-02 or H3-10 $=16$ [Terminal A1/A2 Function Selection $=$ Differential PID Feedback]. Unit: 0.01\%	$10 \mathrm{~V}=\text { Maximum frequency }$
$\begin{aligned} & \text { U5-06 } \\ & \text { (07D3) } \end{aligned}$	PID FdbkDif PID Fdbk	Shows the difference from calculating "U5-05 [PID DifferentialFdbk] - U5-01[PID Feedback]". Unit: 0.01\% Note: U5-01 [PID Feedback] $=$ U5-06 when H3-02 or H3-10 $\neq 16$ [Terminal A1/A2 Function Selection \neq Differential PID Feedback].	$\begin{gathered} 10 \mathrm{~V}=\text { Maximum frequency } \\ (-10 \mathrm{~V} \text { to }+10 \mathrm{~V}) \end{gathered}$
$\begin{aligned} & \text { U5-07 } \\ & (0072) \end{aligned}$	AUTO Mode Freq Ref	Shows the Frequency reference value at AUTO Mode. Unit: 0.01 Hz Note: Parameter ol-03 [Frequency Display Unit Selection] sets the display unit.	No signal output available
$\begin{aligned} & \text { U5-08 } \\ & (0073) \end{aligned}$	HAND Mode Freq Ref	Shows the Frequency reference value at HAND Mode. Unit: 0.01 Hz Note: Parameter ol-03 [Frequency Display Unit Selection] sets the display unit.	No signal output available
$\begin{aligned} & \text { U5-14 } \\ & (086 \mathrm{~B}) \end{aligned}$	PID Out2 Upr4 Digits	Shows the custom PI output. Monitor U5-14 shows the upper four digits and U5-15 [PID Out2 Lwr4 Digits] shows the lower four digits. The drive uses b5-43 [PID Out2 Monitor MAX Upper4 Dig] and b5-44 [PID Out2 Monitor MAX Lower4 Dig] to scale the monitors. Unit: 1 Note: Parameter b5-41 [PID Output 2 Unit] sets the display unit.	$10 \mathrm{~V}=\mathrm{b} 5-43 \times 10000$
$\begin{aligned} & \text { U5-15 } \\ & (086 \mathrm{C}) \end{aligned}$	PID Out2 Lwr4 Digits	Shows the custom PI output. Monitor U5-14 shows the upper four digits and U5-15 [PID Out2 Lwr4 Digits] shows the lower four digits. The drive uses b5-43 [PID Out2 Monitor MAX Upper4 Dig] and b5-44 [PID Out2 Monitor MAX Lower 4 Dig to scale the monitors. Unit: 0.01 Note: Parameter b5-41 [PID Output 2 Unit] sets the display unit.	$\begin{aligned} & b 5-43>0: 10 \mathrm{~V}=10000 \\ & \mathrm{~b} 5-43=0: 10 \mathrm{~V}=\mathrm{b} 5-44 \end{aligned}$
$\begin{aligned} & \text { U5-16 } \\ & \text { (086D) } \end{aligned}$	PI Aux Ctrl Feedback	Shows the PI Auxiliary Control Feedback level from the terminal set for $H 3-x x=27$ [PI Auxiliary Control Feedback]. Unit: PSI Note: Parameters YF-21 [PI Aux Ctrl Level Unit Selection] and YF-22 [PI Aux Level Decimal Place Pos] set the unit and resolution.	No signal output available
$\begin{aligned} & \text { U5-17 } \\ & (086 \mathrm{E}) \end{aligned}$	PI2 Control Setpoint	Shows the PI2 Control setpoint. Note: Parameters S3-04 [PI2 Control Unit Selection] and S3-03 [PI2 Control Decimal Place Pos] set the unit and resolution.	$10 \mathrm{~V}=\mathrm{S} 3-02$
$\begin{aligned} & \text { U5-18 } \\ & (086 \mathrm{~F}) \end{aligned}$	PI2 Control Feedback	Shows the PI2 Control Feedback Level from the terminal set for H3-xx $=26$ [PI2 Control Feedback]. Note: Parameters S3-04 [PI2 Control Unit Selection] and S3-03 [PI2 Control Decimal Place Pos] set the unit and resolution.	$10 \mathrm{~V}=\mathrm{S} 3-02$
$\begin{aligned} & \text { U5-19 } \\ & (0870) \end{aligned}$	PI2 Control Input	Shows the PI2 Control input (deviation between PI target and feedback). Note: Parameters S3-04 [PI2 Control Unit Selection] and S3-03 [PI2 Control Decimal Place Pos] set the unit and resolution.	$10 \mathrm{~V}=\mathrm{S} 3-02$
$\begin{aligned} & \text { U5-20 } \\ & (0871) \end{aligned}$	PI2 Control Output	Shows the PI2 Control output. Note: - Parameters S3-04 [PI2 Control Unit Selection] and S3-03 [PI2 Control Decimal Place Pos] set the unit and resolution. - The drive operation while H1-xx = A8 or 1A8 [PI2 Control Disable] changes when the S3-12 [PI2 Control Disable Mode Sel] setting changes.	$10 \mathrm{~V}=\mathrm{S} 3-02$

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { U5-30 } \\ & (3000) \end{aligned}$	Time Hr Min HHMM	Shows the current time (Hours and Minutes).	No signal output available
$\begin{aligned} & \text { U5-31 } \\ & (3001) \end{aligned}$	Date Year	Shows the current year.	No signal output available
$\begin{aligned} & \text { U5-32 } \\ & (3002) \end{aligned}$	Date Mo Day MMDD	Shows the current date (Month and Date).	No signal output available
$\begin{gathered} \text { U5-33 } \\ (3003) \end{gathered}$	Date Week	Shows the current date of the week. bit 0 : Sunday bit 1 : Monday bit 2 : Tuesday bit 3 : Wednesday bit 4 : Thursday bit 5 : Friday bit 6 : Saturday bit 7 : Not used (normal value of 0).	No signal output available
$\begin{gathered} \text { U5-79 } \\ \text { (3B9A) } \end{gathered}$	PID Feedback Backup	Shows the PID Feedback Backup [H3-xx = 24] signal that the drive uses when it loses the PID Feedback [H3-xx = B]. Unit: 0.01\% Note: Display unit and scaling are dependent on System Units.	No signal output available
$\begin{aligned} & \text { U5-81 } \\ & (3 \mathrm{~B} 9 \mathrm{C}) \end{aligned}$	Diff Level Source	Shows the Differential Feedback signal from the terminal set for $H 3-x x=2 D$ [Differential Level Source]. Unit: 0.00\% Note: Unit and display scaling are dependent on System Units.	No signal output available
$\begin{aligned} & \text { U5-99 } \\ & (1599) \end{aligned}$	Setpoint	Shows the PID setpoint command. Unit: 0.01\% Note: Parameters b5-46 [PID Unit Display Selection], b5-38 [PID User Unit Display Scaling], and b539 [PID User Unit Display Digits] set the unit, range, and resolution.	$\begin{gathered} 10 \mathrm{~V}=\text { Maximum frequency } \\ (-10 \mathrm{~V} \text { to }+10 \mathrm{~V}) \end{gathered}$

U6: Operation Status Monitors

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { U6-01 } \\ & (0051) \end{aligned}$	Iq Secondary Current	Shows the value calculated for the motor secondary current (q-Axis) as a percentage of the motor rated secondary current. Unit: 0.1\%	10 V : Motor secondary rated current (0 V to +10 V)
U6-17 (07D1) Expert	Energy Save Coeff	Shows the total time of direction of motor rotation detections for Speed Estimation Speed Searches. This value adjusts b3-26 [Direction Determination Level]. Note: Upper limit is +32767 and lower limit is -32767 .	No signal output available
$\begin{aligned} & \text { U6-21 } \\ & \text { (07D5) } \end{aligned}$	Offset Frequency	Shows the total value of $d 7-01$ to $d 7$-03 [Offset Frequency 1 to 3] selected with Add Offset Frequency 1 to 3 [H1-xx $=44$ to 46$]$. Unit: 0.1\%	10 V : Maximum Frequency
$\begin{aligned} & \text { U6-31 } \\ & (007 B) \end{aligned}$	TorqueDetect Monitor	Monitors the torque reference or the output current after applying the filter. Unit: 0.1%	10 V :100\%
$\begin{aligned} & \text { U6-36 } \\ & (0720) \\ & \text { Expert } \end{aligned}$	Comm Errors-Host	Shows the number of inter-CPU communication errors. When you de-energize the drive, this value resets to 0 .	No signal output available
$\begin{aligned} & \text { U6-37 } \\ & (0721) \\ & \text { Expert } \end{aligned}$	Comm Errors-Sensor	Shows the number of inter-CPU communication errors. When you de-energize the drive, this value resets to 0 .	No signal output available
$\begin{aligned} & \text { U6-80 } \\ & (07 \mathrm{~B} 0) \end{aligned}$	Option IP Address 1	Shows the currently available local IP Address (1st octet).	No signal output available
$\begin{aligned} & \text { U6-81 } \\ & \text { (07B1) } \end{aligned}$	Option IP Address 2	Shows the currently available local IP Address (2nd octet).	No signal output available
$\begin{aligned} & \text { U6-82 } \\ & (07 \mathrm{~B} 2) \end{aligned}$	Option IP Address 3	Shows the currently available local IP Address (3rd octet).	No signal output available

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { U6-83 } \\ & \text { (07B3) } \end{aligned}$	Option IP Address 4	Shows the currently available local IP Address (4th octet).	No signal output available
$\begin{aligned} & \text { U6-84 } \\ & \text { (07B4) } \end{aligned}$	Online Subnet 1	Shows the currently available subnet mask (1st octet).	No signal output available
$\begin{aligned} & \text { U6-85 } \\ & \text { (07B5) } \end{aligned}$	Online Subnet 2	Shows the currently available subnet mask (2nd octet).	No signal output available
$\begin{aligned} & \text { U6-86 } \\ & (07 \mathrm{~B} 6) \end{aligned}$	Online Subnet 3	Shows the currently available subnet mask (3rd octet).	No signal output available
$\begin{aligned} & \text { U6-87 } \\ & \text { (07B7) } \end{aligned}$	Online Subnet 4	Shows the currently available subnet mask (4th octet).	No signal output available
$\begin{aligned} & \text { U6-88 } \\ & (07 \mathrm{~B} 8) \end{aligned}$	Online Gateway 1	Shows the currently available Gateway address (1st octet).	No signal output available
$\begin{aligned} & \text { U6-89 } \\ & \text { (07B9) } \end{aligned}$	Online Gateway 2	Shows the currently available Gateway address (2nd octet).	No signal output available
$\begin{aligned} & \text { U6-90 } \\ & (07 \mathrm{~F}) \end{aligned}$	Online Gateway 3	Shows the currently available Gateway address (3rd octet).	No signal output available
$\begin{aligned} & \mathrm{U} 6-91 \\ & (07 \mathrm{~F} 1) \end{aligned}$	Online Gateway 4	Shows the currently available Gateway address (4th octet).	No signal output available
$\begin{aligned} & \text { U6-92 } \\ & (07 \mathrm{~F} 2) \end{aligned}$	Online Speed	Shows the currently available communications speed. $\text { 10: } 10 \mathrm{Mbps}$ $\text { 100: } 100 \mathrm{Mbps}$	No signal output available
$\begin{gathered} \text { U6-93 } \\ (07 \mathrm{~F} 3) \end{gathered}$	Online Duplex	Shows the currently available Duplex setting.	No signal output available
$\begin{aligned} & \mathrm{U} 6-98 \\ & (07 \mathrm{~F}) \end{aligned}$	First Fault	Shows the contents of the most recent communication options fault (Modbus TCP/IP, EtherNet/IP).	No signal output available
$\begin{aligned} & \text { U6-99 } \\ & (07 \mathrm{~F} 9) \end{aligned}$	Current Fault	Shows the contents of current fault from communication options (Modbus TCP/IP, EtherNet/IP).	No signal output available

Ub: Bypass Control Monitors

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { Ub-01 } \\ & (8780) \end{aligned}$	Motor Current	Format is XXX.X amps. The number of decimal places depends on drive kVA rating. Unit: Amp	No signal output available
$\begin{aligned} & \text { Ub-02 } \\ & (8781) \end{aligned}$	Bypass Digital Input Status	View status of bypass digital inputs XXXXXXXX Where $\mathrm{X}=0$ (not asserted) or 1 (asserted) The right-most digit is the status of digital input 1 . This monitor will show the digital input status and any digital input forced to "ON" over serial communications. Unit: - bit 0 : Digital Input 1 (TB2-1) bit 1 : Digital Input 2 (TB2-2) bit 2 : Digital Input 3 (TB2-3) bit 3 : Digital Input 4 (TB2-4) bit 4 : Digital Input 5 (TB2-5) bit 5 : Digital Input 6 (TB2-6) bit 6 : Digital Input 7 (TB2-7) bit 7 : Digital Input 8 (TB2-8)	No signal output available

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { Ub-03 } \\ & (8782) \end{aligned}$	Bypass Digital Output Status	View status of bypass digital outputs XXXXXXXX Where $\mathrm{X}=0$ (not asserted) or 1 (asserted) The right-most digit is the status of K 1 (Input Contactor). Unit: - bit 0 : K1 (Input Contactor) bit 1 : K2 (Output Contactor) bit 2 : K3 (Bypass Contactor) bit 3 : K4 (Motor 1 Output Contactor) bit 4 : K5 (Motor 2 Output Contactor) bit 5 : Fan Output Relay bit 6 : Digital Output 7 (TB1 1~3) (Z2-23) bit 7 : Digital Output 8 (TB1 4~6) (Z2-24) bit 8 : Digital Output 9 (TB1 7~9) (Z2-25) bit 9 : Digital Output 10 (TB1 10~12) (Z2-26) bit 10, 11 : Reserved	No signal output available
$\begin{aligned} & \text { Ub-04 } \\ & (8783) \end{aligned}$	Bypass Dig Out Status D09/ D10	View status of bypass digital outputs XXXXXXXX Where $\mathrm{X}=0$ (not asserted) or 1 (asserted) The right-most digit is the status of digital output 9 . Unit: - bit 0 : Digital Output 9 (TB1 7~9) (Z2-25) bit 1 : Digital Output 10 (TB1 $10 \sim 12$) (Z2-26)	No signal output available
$\begin{aligned} & \text { Ub-05 } \\ & (8784) \end{aligned}$	Bypass Status 1	bit 0 : HAND Mode : 0: Not in HAND : 1: In HAND Mode bit 1 : OFF Mode : 0 : Not in OFF : 1: In OFF Mode bit 2 : AUTO Mode : 0 : Not in AUTO : 1: In AUTO Mode bit 3 : DRIVE mode (cmnd) : 0: Drive mode not commanded $: 1$: Drive mode commanded bit 4 : BYPASS mode (cmnd) : 0: Bypass mode not commanded : 1: Bypass mode commanded bit 5 : Emergency override BYP Act : 0: Not active $: 1$: Emergency override bypass is active bit 6 : Emergency override DRV Act : 0: Not active $: 1$: EMOV Drive is active (Emergency override drive) bit 7 : Safety Open : 0: All programmed safeties closed : 1: At least one programmed safety open bit 8 : Alarm Active : 0: No Alarm : 1: Alarm bit 9 : Drive Run active :0: Not running in drive $: 1$: Running in drive mode bit 10 : Bypass run active $: 0$: Not running in bypass $: 1$: Running in bypass mode bit 11 : Emergency override Drive REV : 0: running FWD : 1: running REV bit 12 : Drive comms active : 0: Drive comms Not active : 1: Drive comms active bit 13 : System READY : 0: Not READY : 1: READY Note: Unit: - Bits 12 and 13 are not shown on the keypad. You can use serial communications to read them.	No signal output available

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{gathered} \text { Ub-06 } \\ (8785) \end{gathered}$	Bypass Status 2	$\begin{aligned} & \text { bit } 0: \text { Interlock Open } \\ & : 0: \text { Interlock is pen } \\ & : 1: \text { Interlock is closed } \\ & \text { bit } 1: \text { RUN active } \\ & : 0: \text { No RUN active } \\ & : 1: \text { Bypass or Drive run active } \\ & \text { bit } 2: \text { Fault active } \\ & : 0: \text { Fault not active } \\ & : 1: \text { Fault active } \\ & \text { bit } 3: \text { Auto Xfer Active } \\ & : 0: \text { Auto Xfer not Active } \\ & : 1: \text { Auto Xfer Active } \\ & \text { bit } 4: \text { Remote Xfer Active } \\ & : 0: \text { Remote Xfer not Active } \\ & : 1: \text { Remote Xfer Active } \\ & \text { bit } 5: \text { Energy Sav Active } \\ & : 0: \text { Energy Savings not Active } \\ & : 1: \text { Energy Savings Active } \\ & \text { bit } 6: \text { Motor } 1 \text { Selected } \\ & : 0: \text { Motor } 1 \text { not Selected } \\ & : 1: \text { Motor } 1 \text { Selected } \\ & \text { bit } 7: \text { Motor } 2 \text { Selected } \\ & : 0: \text { Motor } 2 \text { not selected } \\ & : 1: \text { Motor } 2 \text { selected } \\ & \text { bit } 8: \text { Run verify detected } \\ & : 0: \text { Run verify not detected } \\ & : 1: \text { Run verify detected } \\ & \text { bit } 9: \text { Restart delay active } \\ & : 0: \text { Restart delay not active } \\ & : 1: \text { Restart delay active } \\ & \text { bit } 10 \text { to } 15: \text { Reserved } \\ & \text { Unit: - } \\ & \hline \end{aligned}$	No signal output available
$\begin{aligned} & \text { Ub-07 } \\ & (8786) \end{aligned}$	Bypass Fault Status 1	bit 0 : Drive Fault bit 1 : Safety Open bit 2 : FB02-Wait For Interlock Timeout bit 3 : FB03-External Fault Bypass (EFB) bit 4 : FB13-Loss Of Load bit 5 : FB05-Motor Overload (Internal, Electronic) bit 6 : FB06-External Overload 1 bit 7 : FB07-External Overload 2 bit 8 to 11 : Reserved Unit: -	No signal output available
$\begin{aligned} & \text { Ub-08 } \\ & (8787) \end{aligned}$	Bypass Fault Status 2	bit 0 : FB08-Brownout Detected bit 1 : FB09-Blackout Detected bit 2 : FB10-Loss of Drive Communications bit 3 : FB15-Input Phase Loss bit 4 : FB26-Option on Drive Detected bit 5 : FB13-Loss of Load bit 6 : CE-Serial Communications Error bit 7 : FB16-Input Phase Rotation bit 8 : FB18-Welded Bypass Contactor Detected bit 9 to 11 : Reserved Unit: -	No signal output available
$\begin{aligned} & \text { Ub-09 } \\ & (8788) \end{aligned}$	Current Fault	Displays the current fault. Unit: -	No signal output available
$\begin{gathered} \text { Ub-10 } \\ (8789) \end{gathered}$	Current Fault YYYY	Displays the year of the current fault. Unit: -	No signal output available
$\begin{gathered} \text { Ub-11 } \\ (878 \mathrm{~A}) \end{gathered}$	Current Fault MMDD	Displays the month and day of the current fault. Unit: -	No signal output available
$\begin{gathered} \mathrm{Ub}-12 \\ (878 \mathrm{~B}) \end{gathered}$	Current Fault HHMM	Displays the hour and minute of the current fault. Unit: -	No signal output available

No. (Hex.)	Name	Description	MFAO Signal Level
$\begin{aligned} & \mathrm{Ub}-13 \\ & (878 \mathrm{C}) \end{aligned}$	Previous Fault	Displays the previous fault. Unit: -	No signal output available
$\begin{gathered} \text { Ub-14 } \\ (878 \mathrm{D}) \end{gathered}$	Previous Fault YYYY	Displays the year of the previous fault. Unit: -	No signal output available
$\begin{aligned} & \text { Ub-15 } \\ & (878 \mathrm{E}) \end{aligned}$	Previous Fault MMDD	Displays the month and day of the previous fault. Unit: -	No signal output available
$\begin{aligned} & \text { Ub-16 } \\ & (878 \mathrm{~F}) \end{aligned}$	Previous Fault HHMM	Displays the hour and minute of the previous fault. Unit: -	No signal output available
$\begin{aligned} & \text { Ub-17 } \\ & (8790) \end{aligned}$	Contactor Voltage	Displays the measured voltage for the power going to the contactor coils. Unit: 1 Vac	No signal output available
$\begin{aligned} & \text { Ub-18 } \\ & (8791) \end{aligned}$	Software Version	Displays the software version currently programmed into the bypass. Unit: -	No signal output available
$\begin{gathered} \text { Ub-19 } \\ (8792) \end{gathered}$	Date Year YYYY	Displays the current year. Unit: -	No signal output available
$\begin{aligned} & \text { Ub-20 } \\ & (8793) \end{aligned}$	Date Month Day MMDD	Displays the current date (Month and Date). Unit: -	No signal output available
$\begin{aligned} & \text { Ub-21 } \\ & (8794) \end{aligned}$	Time Hour Min HHMM	Displays the current time (Hours and Minutes). Unit: -	No signal output available
$\begin{aligned} & \text { Ub-22 } \\ & (8795) \end{aligned}$	Bypass Analog Input	Bypass MFAI level Unit: 0-100\%	No signal output available
$\begin{aligned} & \text { Ub-23 } \\ & (8796) \end{aligned}$	Motor 1 Overload	Motor 1 Overload level Unit: 0-100\%	No signal output available
$\begin{aligned} & \text { Ub-24 } \\ & (8797) \end{aligned}$	Motor 2 Overload	Motor 2 Overload level Unit: 0-100\%	No signal output available
$\begin{gathered} \text { Ub-94 } \\ \text { (87DD) } \end{gathered}$	Bypass CPU Usage	Current Bypass CPU Load Unit: 0-100\%	No signal output available
$\begin{gathered} \text { Ub-95 } \\ \text { (87DE) } \end{gathered}$	Line Frequency	Calculated AC line frequency Unit: Hz	No signal output available
$\begin{gathered} \text { Ub-96 } \\ \text { (87DF) } \end{gathered}$	Byp Phase Loss Level	Current Phase Loss level Unit: 0-100\%	No signal output available
Ub-99 (87E2) Expert	Desired HV600 software version	Shows the latest version of HV600 software that this version of HV600 Bypass software supports. Unit: -	No signal output available

- UC: BACnet Diagnostic Monitors

$\begin{aligned} & \text { No. } \\ & \text { (Hex.) } \end{aligned}$	Name	Description	MFAO Signal Level
$\begin{aligned} & \text { UC-01 } \\ & (3 \mathrm{DB} 0) \end{aligned}$	BN MSTP Net Health	Shows a number between 0.0% and 100.0% that identifies the health of the MSTP network. This number is dependent on the number of CRC errors, token losses, token retries, and net deadtime perceived. Unit: 0.1\%	No signal output available
$\begin{aligned} & \text { UC-02 } \\ & \text { (3DB1) } \end{aligned}$	BACnet Tokens Rx	Shows the number of received MSTP Tokens after you energize the drive. Unit: 1	No signal output available
$\begin{gathered} \text { UC-03 } \\ \text { (3DB2) } \end{gathered}$	BACnet Tokens Tx	Shows the number of transmitted MSTP Tokens after you energize the drive. Unit: 1	No signal output available
$\begin{aligned} & \text { UC-04 } \\ & \text { (3DB3) } \end{aligned}$	BACnet Messages Rx	Shows the number of messages with data (non-token, non-polling) received by the drive. Unit: 1	No signal output available
$\begin{aligned} & \text { UC-05 } \\ & \text { (3DB4) } \end{aligned}$	BACnet Messages Tx	Shows the number of messages with data (non-token, non-polling) transmitted by the drive. Unit: 1	No signal output available
$\begin{aligned} & \text { UC-06 } \\ & \text { (3DB5) } \end{aligned}$	MSTP Next Node Addr	Shows the next known node in the MSTP loop. This is the node to which the drive will pass the token. Unit: Hex	No signal output available
$\begin{aligned} & \text { UC-07 } \\ & \text { (3DB6) } \end{aligned}$	MSTP Prev Node Addr	Shows the previous known node in the MSTP loop. This is the node from which the drive received the token. Unit: Hex	No signal output available

No. (Hex.)	Name	Description	MFAO Signal Level
UC-08 (3DB7)	MSTP H MAC Found	Shows the highest MAC address found on the network. This will report the highest value MAC address to which the token was passed by any node on the MSTP loop. Unit: Hex	No signal output available
UC-09 (3DB8)	MSTP L MAC Found	Shows the lowest MAC address found on the network. This will report the lowest value MAC address to which the token was passed by any node on the MSTP loop. Unit: Hex	No signal output available
UC-10 (3DB9)	MSTP \# Nodes Found	Shows the number of unique nodes that transmitted a token on the local MSTP loop. Unit: 1	Shows the number of COV subscriptions requested by the nodes on the BACnet network. This is limited to the number of objects that support COV subscriptions. Unit: 1
UC-11 (3DBA)	\# of BN COV Sbscrpt	No Signal output available	
UC-12 (3DBB)	MSTP Loop TIme	Shows the number of milliseconds between drive transmitted token and drive token received, showing how long the MSTP loop took to pass the token to all nodes on the MSTP network. Unit: 1 ms	No signal output available
UC-13 (3DBC) Expert	BN MSTP CRC Errors	Shows the number of CRC errors detected after you energize the drive. Unit: 1	No signal output available
UC-14 (3DBD) Expert	BN MSTP Tokens Lost	Shows the number of token losses seen by the unit since power-on. This is sensed by a net deadtime of more than 500 ms. Unit: 1	No signal output available
UC-15 (3DBE) Expert	BN MSTP Tokens Retry	Shows the number of token retries seen by the unit since power-on. This is sensed by two subsequent token frames seen from the same node to the same node with the same CRC. Unit: 1	No signal output available
UC-16 (3DBF) Expert	BN MSTP Silence Avg	Shows the average net deadtime (space between active messages), averaged over a 60 packet period. Unit: 1.0 ms	No signal output available

Network Communications

8.1 Section Safety 262
8.2 Fieldbus Network Support 263
8.3 BACnet Communications 264
8.4 Other Embedded Communication Protocols 283

8.1 Section Safety

8.1 Section Safety

! DANGER

Do not ignore the safety messages in this manual.
If you ignore the safety messages in this manual, it will cause serious injury or death. The manufacturer is not responsible for injuries or damage to equipment.

8.2 Fieldbus Network Support

You can use a PLC or building automation controller to control and monitor the bypass through the network. The bypass has a standard RS-485 interface (serial communications). Install a separately sold communication option on the bypass to support other network communications.

Available Communication Options

Refer to Table 8.1 for the fieldbus networks that are compatible with the bypass. Contact Yaskawa or your nearest sales representative to order a communication option.

Table 8.1 Available Fieldbus Network

Type of Communications	Option Models
LonWorks	SI-W3
Modbus TCP/IP	SI-EM3
PROFINET	SI-EP3
EtherNet/IP	SI-EN3

Type of Communications	Option Models
Dual port Modbus TCP/IP	SI-EM3D
Dual port EtherNet/IP	SI-EN3D
BACnet/IP	JOHB-SMP3

8.3 BACnet Communications

This section gives detailed information about the parameters, error codes, and communication procedures for BACnet communications.

- Configure Master/Slave

You can monitor and control the bypasses from a controller on a Building Automation and Control network (BACnet) with RS-485 technology and Master-Slave/Token-Passing (MS-TP) protocol. The drives agree with the device profile of the BACnet Application Specific Controller (B-ASC).
A maximum of 127 bypasses can communicate on a single BACnet MS-TP network depending on network conditions. When more bypasses or BACnet devices are necessary, a BACnet router is necessary to let another MSTP network be available with a possible maximum of another 127 bypasses.
You can use parameters to set the MSTP MAC address, MSTP baud rate, and Device Object ID. You can also use parameters to set Device object properties Max Masters and Max Info Frames. Set other Device Object properties, for example Device Object Name and Device Object Location, through the BACnet network after you connect the bypass and the bypass is communicating.
When you set the addressing, a controller can start communication to the bypass. The bypass will do the specified function and send a response back to the controller. The bypass will usually respond immediately, but can delay its response until it gets the token for commands that can take longer local processing time.

Figure 8.1 Connection Example of Multiple Bypasses to a BACnet Workstation

Communication Specifications

Table 8.2 lists the specifications for the BACnet communications.

Table 8.2 BACnet Specifications

Item	Specifications
Interface	Master-Slave/Token-Passing (MS-TP)
	RS-485
Communication parameter	Communications speed: $9.6,19.2,38.4,76.8 \mathrm{kbps}$
	Data length: 8 bit (fixed)
	Parity: even, odd, none
	Stop Bit: 1 bit (fixed)
Communication protocol	BACnet MS-TP
Number of possible units to connect	Maximum: 127 units for each MS-TP network segment depending on network conditions.

Communication with the Controller

This section gives information about the settings for the termination resistor and how to connect to BACnet communications.

Connect Communications Cable

Use this procedure to start communication between the controller and bypass.

1. De-energize the bypass then connect the communications cable to the controller and the bypass. The bypass uses terminal TB3 for serial communications.

Figure 8.2 Communications Cable Connection Terminal (TB3)

Note:

Isolate the communications wiring from the main circuit wiring and other high-power wiring. Use shielded wires for the communications wiring and connect cable sheaths as shown in "Wiring Diagram for More than One Bypass". Incorrect wiring procedures could cause bypass malfunction because of electrical interference.
2. Enable the termination resistor ONLY when the bypass is at the end of the communications network. Set DIP switch S1 to the "ON" position to enable the termination resistor. Refer to "Set the Termination Resistor" for more information.
3. Energize the bypass.
4. Use the keypad to set the necessary communications parameters $\mathrm{H} 5-01$ to $\mathrm{H} 5-11$.

- H5-01 [Drive Node Address]
- H5-02 [Communication Speed Selection]
- H5-04 [Stopping Method after Com Error]
- H5-05 [Comm Fault Detection Select]
- H5-08 [Communication Protocol Selection]
- H5-09 [CE Detection Time]

5. Because communications parameters do not take effect immediately, either de-energize and re-energize the bypass or set $45-20=1$ [Communication Parameters Reload $=$ Reload Now].

The bypass is prepared to start communication with the controller.

- Set the Termination Resistor

You must enable the termination resistor on the serial terminals of the devices on the two physical ends of the network to use serial communications. Use DIP switch S1 on the bypass control PCB to enable and disable the built-in termination resistor. Refer to Figure 8.3 for an example of how to set DIP switch S1. Use the tip of a tweezers or a small flat-blade screwdriver to set the DIP switch. When you install the bypass at the end of the network line, set DIP switch S1 to "ON" to enable the termination resistor. Set DIP switch S1 to "OFF" on all other bypasses.

Figure 8.3 Termination Resistor DIP Switch S1

Wiring Diagram for More than One Bypass

Figure 8.4 shows how to wire more than one connected bypass using serial communications.

Figure 8.4 Wiring Diagram for More than One Bypass
Note:
When you install the bypass at the end of the network line, set DIP switch S1 to "ON" to enable the termination resistor. Set DIP switch S1 to "OFF" on all other bypasses.

Bypass Operations by Serial Communications

Parameters will apply to the settings when the bypass is running during serial communications. This section gives information about the available functions and their related parameters.

Executable Functions

A controller can do these operations with serial communications. Parameter settings (except $H 5-x x$) do not have an effect on the availability of these operations.

- Monitor the bypass status and operate the bypass
- Set and view parameters
- Fault Reset Procedure

Bypass Control

To use external commands to set the frequency references and motor run/stop with serial communications, set these parameters as specified by the application:

- b1-01 $=2$ [Frequency Reference Selection $1=$ Serial Communications]
- b1-02 = 2 or 8 [Run Command Selection $1=$ Serial Communications or AUTO Command + Serial Run]

For more information about operation mode selection, refer to b1-01 and b1-02.

BACnet Objects Supported

- Present Value Access

The Present Value (PV) of BACnet objects can always be read. Some PVs can also be written or commanded. A commandable PV is similar to a writable PV , but the value is actually written into a priority array. The value that then has the highest priority in the array will be used by the drive.

Table 8.3 Present Value Access Types and Descriptions

PV Access	Name	Description
C	Commandable	Value written to a priority array. The highest priority value in the array is then written to the drive.
R	Readable	Value is read-only
W	Writable	Value written to the drive

Supported Properties of Objects

Table 8.4 Object Properties

Property	Object Type						
	Device	Analog Input (AI)	Analog Output (AO)	Analog Value (AV)	Binary Input (BI)	Binary Output (BO)	Binary Value (BV)
Object_Identifier	Yes						
Object_Name	Yes						
Location	Yes	-	-	-	-	-	-
Object_Type	Yes						
System_Status	Yes	-	-	-	-	-	-
Vendor_Name	Yes	-	-	-	-	-	-
Vendor_Identifier	Yes	-	-	-	-	-	-
Model_Name	Yes	-	-	-	-	-	-
Firmware_Revision	Yes	-	-	-	-	-	-
Protocol_Version	Yes	-	-	-	-	-	-
Protocol_Revision	Yes	-	-	-	-	-	-
Protocol_Services_Supported	Yes	-	-	-	-	-	-
Protocol_Object_Types_Supported	Yes	-	-	-	-	-	-
Object_List	Yes	-	-	-	-	-	-
Max_ADPU_Length_Accepted	Yes	-	-	-	-	-	-

Property	Object Type						
	Device	Analog Input (Al)	Analog Output (AO)	Analog Value (AV)	Binary Input (BI)	Binary Output (BO)	Binary Value (BV)
Segmentation_Supported	Yes	-	-	-	-	-	-
Local_Time	Yes	-	-	-	-	-	-
Local_Date	Yes	-	-	-	-	-	-
ADPU_Timeout	Yes	-	-	-	-	-	-
Number_Of_ADPU_Retries	Yes	-	-	-	-	-	-
Max_Masters	Yes	-	-	-	-	-	-
Max_Info_Frames	Yes	-	-	-	-	-	-
Device_Address_Binding	Yes	-	-	-	-	-	-
Database_Revision	Yes	-	-	-	-	-	-
Active_COV_Subscriptions	Yes	-	-	-	-	-	-
Present_Value	-	Yes	Yes	Yes	Yes	Yes	Yes
Status_Flags	-	Yes	Yes	Yes	Yes	Yes	Yes
Event_State	-	-	-	-	-	-	-
Reliability	-	Yes	Yes	Yes	Yes	Yes	Yes
Out_Of_Service	-	Yes	Yes	Yes	Yes	Yes	Yes
Units	-	Yes	Yes	Yes	-	-	-
Priority_Array	-	-	Yes *1	Yes *1	-	Yes	Yes
Relinquish_Default	-	-	Yes *1	Yes * 1	-	Yes	Yes
Polarity	-	-	-	-	Yes	Yes	-
Inactive_Text	-	-	-	-	Yes	Yes	Yes
Active_Text	-	-	-	-	Yes	Yes	Yes
COV_Increment *2	-	Yes	Yes	Yes	-	-	-
Property_List	Yes						
Local Time	Yes	-	-	-	-	-	-
Local Date	Yes	-	-	-	-	-	-

*1 For Commandable Object Instances only.
*2 COV function is only available on objects that are not commandable and not writable.
Analog Input Objects

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Precision	Range	Units
AI1	Drive Analog Input 1 Level (Drv Anlg In 1 Level)	004 Eh	XXX.X	$0-100.0$	R

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Precision	Range	Units	PV Access
AI8	Inverter Model o2-04	0508h	XXXXX	0-65535	-	R
AI9	Rated Current n9-01	05D0h	XXXX.X (for drives rated higher than 11 kVA) XXX.XX (for drives rated 11 kVA or lower)	0-6553.5 (for drives rated higher than 11 kVA) 0-65535 (for drives rated 11 kVA or lower)	A	R
AI10	Motor Current UB-01	8780h	XXXX.X (for drives rated higher than 11 kVA) XXX.XX (for drives rated 11 kVA or lower)	0-6553.5 (for drives rated higher than 11 kVA) 0-65535 (for drives rated 11 kVA or lower)	A	R
AI11	Contactor Voltage	8790h	XXXXX	0-65535	V	R

Analog Output Objects

Object ID	Object Name (Network Display)	Modbus Reg.	Precision	Range	Units
AO1	Drive Terminal FM Analog Output Level Command (set H4-01 $0)$ (Drv Anlg Outl Level)	0007 h	XXX.X	$0-100.0$	C
AO2	Drive Terminal AM Analog Output Level Command (Set H4-04 $0)$ $($ Drv Anlg Out2 Level $)$	0008 h	XXX.X	$0-100.0$	$\%$

Analog Value Objects

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Precision	Range	Units	PV Access
AV1	Drive Operation Command (Operation Cmd) Note: Do not command bypass using AV1. Use BV58 to BV71 instead.	0001 h		Bitmap		
AV2	Frequency Cmd	0002 h	XXX.XX	C		
AV3	PI Setpoint Cmd	0006 h	Xetermined by o1-03	$0-600.00$	Determined by ol-03	C

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Precision	Range	Units	PV Access
AV4	Drive Multi-Function Output Command (MF Output Cmd) - bit 0: Multi-Function Digital Output 1 (terminal M1-M2) - bit 1: Multi-Function Digital Output 2 (terminal M3-M4) - bit 2: Multi-Function Digital Output 3 (terminal M5-M6) - bit 3: Reserved - bit 4: Reserved - bit 5: Reserved - bit 6: Enables the function in bit 7 - bit 7: Fault Contact Output (terminal MA-MB-MC) - bit 8 to F : Reserved Note: When using AV4, do not use BO1 to BO3 or BV12.	0009h	-	0-255	Bitmap	C
AV5	Drive Reference Select Command (Reference Select Cmd) - bit 0: Reserved - bit 1: PID Setpoint Input - bit 2: Reserved - bit 3: Reserved - bit 4: PI2 Target Input - bit 5 to B: Reserved - bit C: Multi-Function Input 5 - bit D: Multi-Function Input 6 - bit E: Multi-Function Input 7 - bit F: Reserved Note: When you use AV5, you must not use AV1, BO4, or BV9 to BV11.	000Fh	-	0-32767	Bitmap	C
AV6	System Status (Drive Status) - bit 0: During Run (drive or bypass) - bit 1: During Reverse - bit 2: System ready - bit 3: System faulted - bit 4: Data Setting Error - bit 5: Multi-Function Digital Output 1 (terminal M1-M2) - bit 6: Multi-Function Digital Output 2 (terminal M3-M4) - bit 7: Multi-Function Digital Output 3 (terminal M5-M6) - bit 8 to D: Reserved - bit E: ComRef status - bit F: ComCtrl status	0020h	-	0-65535	Bitmap	R

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Precision	Range	Units	PV Access
AV7	Fault Details - bit 0: oC [Overcurrent], GF [Ground Fault] - bit 1:ov [Overvoltage] - bit 2: oL2 [Drive Overload] - bit 3: oH1 [Heatsink Overheat], oH2 [External Overheat ($\mathrm{H} 1-\mathrm{XX}=\mathrm{B}$)] - bit 4 to 6: Reserved - bit 7: EF to EF7 [External Fault] - bit 8: CPFxx [Hardware Fault] (includes oFAxx) - bit 9: oL1 [Motor Overload], oL3 [Overtorque Detection 1], UL3 [Undertorque Detection 1] - bit A: Reserved - bit B: Uv [DC Bus Undervoltage] - bit C: Uv1[DC Bus Undervoltage], Uv2 [Control Power Undervoltage], Uv3 [Soft Charge Answerback Fault] - bit D: LF [Output Phase Loss], PF [Input Phase Loss] - bit E: CE [Serial Communication Error], bUS [Option Communication Error] - bit F: oPr [Keypad Connection Fault]	0021h	-	0-65535	Bitmap	R
AV8	Data Link Status - bit 0 : Writing Data - bit 1: Reserved - bit 2: Reserved - bit 3: Upper or lower limit error - bit 4: Data conformity error - bit 5: Writing to EEPROM - bit 6 to F: Reserved	0022h	-	0-63	Bitmap	R
AV9	Frequency Reference	0040h	$\begin{gathered} \text { XXX.XX } \\ \text { Determined by ol-03 } \end{gathered}$	0-600.00	Determined by ol-03	R
AV10	Output Frequency	0041h	XXX.XX Determined by o1-03	0-600.00	Determined by ol-03	R
AV11	Output Voltage	0045h	XXXX.X	0-6553.5	V	R
AV12	Output Current	0026h	XXXX.X	0-6553.5	A	R
AV13	Output Power	0047h	$\begin{gathered} \text { XXXX.X }>11 \mathrm{kVA} \\ \text { XXX. } \mathrm{XX}<=11 \mathrm{kVA} \end{gathered}$	$\begin{gathered} 0-6553.5>11 \mathrm{kVA} \\ 0-655.35<=11 \mathrm{kVA} \end{gathered}$	KW	R
AV14	Torque Reference	0048h	XXXX.X	0-100.0	\%	R
AV15	Drive Multi-Function Input Status (MF Input Status)	002Bh	XXX	0-127	Bitmap	R
AV16	Drive Status 2	002 Ch	XXXXX	0-65535	Bitmap	R
AV17	Drive Multi-Function Output Status (MF Output Status)	002Dh	XXX	0-135	Bitmap	R

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Precision	Range	Units	PV Access
AV18	DC Bus Voltage	0031h	XXXX.X	0-6553.5	V	R
AV19	PI Feedback Level	0038h	XXXX. X	0-100.0	\%	R
AV20	PI Input Level	0039h	XXXX.X	0-100.0	\%	R
AV21	PI Output Level	003Ah	Xxxx. ${ }^{\text {d }}$	0-100.0	\%	R
AV22	Drive SW Num	004Dh	Xxxxx	0-65535	-	R
AV23	Bypass SW Num	8791h	XXXXX	0-65535	-	R
AV24	Comm Error Detail	003Dh	XXX	0-127	Bitmap	R
AV25	KVA Setting	0508h	XXXXX	-	Enumerated Data Vendor Specific	R
AV26	Control Method	0043h	XXXXX	-	Enumerated Data Vendor Specific	R
AV27	Accel Time	0200h	XXXX.X	0-6000.0	S	W
AV28	Decel Time	0201h	XXXX.X	0-6000.0	S	W
AV29	Parameter Number	\#\#\#\#h Determined in runtime	XXXXX	0-65535	-	W
AV30	Parameter Data	\#\#\#\#h Determined in runtime	XXXXX	0-65535	-	W
AV31	Motor Current	8780h	$\begin{gathered} \text { XXXX.X }>11 \mathrm{kVA} \\ \text { XXX. } \mathrm{XX}<=11 \mathrm{kVA} \end{gathered}$	$\begin{aligned} 0-6553.5 & >11 \mathrm{kVA} \\ 0-655.35 & <=11 \mathrm{kVA} \end{aligned}$	A	R
AV32	120 V to Kx Coils	8790h	Xxxxx	0-65535	V	R
AV33	Drive kWh consumed (kWh consumed)	005Ch -005Dh	XXXXXXXXX	0-999999999	kWh	R
AV34	Not Used AV34	-	-	-	-	R
AV35	Drive Run Time	004Ch	XXXXX	0-65535	Hours	R
AV36	Out Freq in \%	003Fh	XXX.XX	0-100.00	\%	R
AV37	Out Freq in RPM	003Eh	XXXXX	0-65535	RPM	R
AV38	Torque Iq (U6-01)	0051h	XXXX.X	0-6553.5	\%	R
AV39	Drive HOA Status	004Bh	X	0-2	-	R
AV40	Last Drive Fault Refer to page 96 for information on fault decimal values.	0081h	XXXXX	0-65535	-	R
AV41	Last Bypass Fault Refer to page 96 for information on fault decimal values.	878Ch	XXXXX	0-65535	-	R
AV42	Current Sys Fault (Current Sys Flt) Refer to 96 for information on fault decimal values.	0080h	XXXXX	0-65535	-	R

Binary Input Objects

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Active Text	Inactive Text
BI1	Drive Input Terminal 1 (Input Terminal 1)	$002 \mathrm{Bh}:$ bit 0	ON	OFF
BI2	Drive Input Terminal 2 (Input Terminal 2)	$002 \mathrm{Bh}:$ bit 1	ON	OFF
BI3	Drive Input Terminal 3 (Input Terminal 3)	$002 \mathrm{Bh}:$ bit 2	ON	OFF

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Active Text	Inactive Text	PV Access
BI4	Drive Input Terminal 4 (Input Terminal 4)	002Bh:bit 3	ON	OFF	R
BI5	Drive Input Terminal 5 (Input Terminal 5)	002Bh:bit 4	ON	OFF	R
BI6	Drive Input Terminal 6 (Input Terminal 6)	002Bh:bit 5	ON	OFF	R
BI7	Drive Input Terminal 7 (Input Terminal 7)	002Bh:bit 6	ON	OFF	R
BI8	Drive MF Output 1 (Multi Function Out 1)	0020h:bit 5	ON	OFF	R
BI9	Drive MF Output 2 (Multi Function Out 2)	0020h:bit 6	ON	OFF	R
BI10	BYP DI-1 STAT	8781h:bit 0	ON	OFF	R
BI11	BYP DI-2 STAT	8781h:bit 1	ON	OFF	R
BI12	BYP DI-3 STAT	8781h:bit 2	ON	OFF	R
BI13	BYP DI-4 STAT	8781h:bit 3	ON	OFF	R
BI14	BYP DI-5 STAT	8781h:bit 4	ON	OFF	R
BI15	BYP DI-6 STAT	8781h:bit 5	ON	OFF	R
BI16	BYP DI-7 STAT	8781h:bit 6	ON	OFF	R
BI17	BYP DI-8 STAT	8781h:bit 7	ON	OFF	R
BI18	BYP DO-1 STAT	8782h:bit 0	ON	OFF	R
BI19	BYP DO-2 STAT	8782h:bit 1	ON	OFF	R
BI20	BYP DO-3 STAT	8782h:bit 2	ON	OFF	R
BI21	BYP DO-4 STAT	8782h:bit 3	ON	OFF	R
BI22	BYP DO-5 STAT	8782h:bit 4	ON	OFF	R
BI23	BYP DO-6 STAT	8782h:bit 5	ON	OFF	R
BI24	BYP DO-7 STAT	8782h:bit 6	ON	OFF	R
BI25	BYP DO-8 STAT	8782h:bit 7	ON	OFF	R
BI26	BYP DO-9 STAT	8783h:bit 0	ON	OFF	R
BI27	BYP DO-10 STAT	8783h:bit 1	ON	OFF	R
BI28	Drive Fault Status	004Bh:bit 7	ON	OFF	R
BI29	Drive Alarm Status	004Bh:bit 6	ON	OFF	R
BI30	Sys Alarm Status	8784h:bit 8	ON	OFF	R

Binary Output Objects

Object ID	Object Name	Modbus Reg.	Active Text	Inactive Text
BO1	MF Output M1 - M2	$0009 \mathrm{~h}:$ Bit 0	ON	OFF
BO2	MF Output M3 - M4	$0009 \mathrm{~h}:$ Bit 1	ON	OFF
BO3	MF Output M5 - M6	$0009 \mathrm{~h}:$ Bit 2	ON	C
BO4	Ref Sel:PI Setpoint	$000 \mathrm{Fh}:$ Bit 1	ON	C
BO5	Ref Sel:Term S5 IN	$0001 \mathrm{~h}:$ Bit 8	ON	OFF
BO6	Ref Sel:Term S6 IN	$0001 \mathrm{~h}:$ Bit 9	ON	OFF
BO7	Ref Sel:Term S7 IN	$0001 \mathrm{~h}:$ Bit A	ON	OFF
BO8 ${ }^{*} 1$	BYP DO-07 COMMAND	$8403 \mathrm{~h}:$ Bit 6	ON	OFF

Object ID	Object Name	Modbus Reg.	Active Text	Inactive Text	PV Access
BO $9{ }^{*} 1$	BYP DO-08 COMMAND	$8403 \mathrm{~h}:$ Bit 7	ON	OFF	C
BO10 $* l$	BYP DO-09 COMMAND	$8403 \mathrm{~h}:$ Bit 8	ON	OFF	
BO11 $* l$	BYP DO-10 COMMAND	$8403 \mathrm{~h}:$ Bit 9	ON	OFF	C

*1 Set the corresponding Z2-xx parameter $=99-$ Not Used.
Binary Value Objects

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Active Text	Inactive Text	PV Access
BV1	Not Used BV001	-	-	-	C
BV2	Not Used BV002	-	-	-	C
BV3	Drive External Fault Command (Ext Fault Cmd)	0001h: Bit 2	FAULT	OFF	C
BV4	Drive Fault Reset Command (Fault Reset Cmd)	0001h: Bit 3	RESET	OFF	C
BV5	Not Used BV005	-	-	-	C
BV6	Not Used BV006	-	-	-	C
BV7	Drive Multi-Function Input 3 Command (MF Input 3 Cmd)	0001h: Bit 6	ON	OFF	C
BV8	Drive Multi-Function Input 4 Command (MF Input 4 Cmd)	0001h: Bit 7	ON	OFF	C
BV9	Drive Multi-Function Input 5 Command (MF Input 5 Cmd)	0001 h : Bit 8	ON	OFF	C
BV10	Drive Multi-Function Input 6 Command (MF Input 6 Cmd)	0001h: Bit 9	ON	OFF	C
BV11	Drive Multi-Function Input 7 Command (MF Input 7 Cmd)	0001h: Bit A	ON	OFF	C
BV12	Set Fault Contact Cmd (Set Flt Contact Cmd)	0009h: Bit 6\&7	ENABLE	OFF	C
BV13	RUN-STOP	0020h: Bit 0	RUN	OFF	R
BV14	REV-FWD	0020h: Bit 1	REV	FWD	R
BV15	READY	0020h: Bit 2	READY	OFF	R
BV16	FAULT	0020h: Bit 3	FAULTED	OFF	R
BV17	Data Set Error	0020h: Bit 4	ERR	OFF	R
BV18	Overcurrent - Ground Fault (Overcurrent- Gnd Fault)	0021h: Bit 0	$\mathrm{OC}-\mathrm{GF}$	OFF	R
BV19	Main Circuit Overvoltage (Main Ckt Overvoltage)	0021h: Bit 1	OV	OFF	R
BV20	Drive Overload	0021h: Bit 2	OL2	OFF	R
BV21	Drive Overheat	0021h: Bit 3	OH1-OH2	OFF	R
BV22	Fuse Blown	0021h: Bit 5	PUF	OFF	R
BV23	PI Feedback Loss	0021h: Bit 6	FBL	OFF	R
BV24	External Fault	0021h: Bit 7	EF0 - EF	OFF	R
BV25	Hardware Error	0021h: Bit 8	CPF	OFF	R

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Active Text	Inactive Text	PV Access
BV26	Motor Overload - Overtorque (Mtr OvrLd - OvrTorque)	0021h: Bit 9	OL1 - OL3	OFF	R
BV27	Overspeed	0021h: Bit A	OS -DEV	OFF	R
BV28	Main Circuit Undervoltage (Main Ckt Undervoltage)	0021h: Bit B	UV	OFF	R
BV29	MCU, Control Power Supply Error (MCU Cntrl Pwr Sy Err)	0021h: Bit C	UV1-2-3	OFF	R
BV30	Output Phase Loss	0021h: Bit D	LF	OFF	R
BV31	Communication Error	0021h: Bit E	CE	OFF	R
BV32	Operator Disconnect	0021h: Bit F	OPR	OFF	R
BV33	Operating	002Ch: Bit 0	OPERATING	OFF	R
BV34	Zero Speed	002Ch: Bit 1	ON	OFF	R
BV35	Frequency Agree	002Ch: Bit2	ON	OFF	R
BV36	Desired Frequency Agree (Desired Freq Agree)	002Ch: Bit 3	ON	OFF	R
BV37	Frequency Detect 1	002Ch: Bit 4	ON	OFF	R
BV38	Frequency Detect 2	002 Ch : Bit 5	ON	OFF	R
BV39	Drive Startup Complete (Drv Startup Complete)	002Ch: Bit 6	ON	OFF	R
BV40	Low Voltage Detect	002Ch: Bit 7	ON	OFF	R
BV41	Base Block	002Ch: Bit 8	ON	OFF	R
BV42	Frequency Reference Mode (Frequency Ref Mode)	002Ch: Bit 9	COM	LOCAL	R
BV43	Run Command Mode	002Ch: Bit A	COM	LOCAL	R
BV44	Over Torque Detect	002Ch: Bit B	ON	OFF	R
BV45	Frequency Reference Lost (Frequency Ref Lost)	002Ch: Bit C	ON	OFF	R
BV46	Retry Error	002Ch: Bit D	ON	OFF	R
BV47	Modbus Comms Error	002Ch: Bit E	ON	OFF	R
BV48	Modbus Timeout Error	002Ch: Bit F	ON	OFF	R
BV49	CRC Error	003Dh: Bit 0	ON	OFF	R
BV50	Invalid Data Length	003Dh: Bit 1	ON	OFF	R
BV51	Parity Error	003Dh: Bit 3	ON	OFF	R
BV52	Overrun Error	003Dh: Bit 4	ON	OFF	R
BV53	Framing Error	003Dh: Bit 5	ON	OFF	R
BV54	Timeout Error	003Dh: Bit 6	ON	OFF	R
BV55	Parameter Accept	Object activates an internal bit that performs desired object function	ON	OFF	W
BV56	Parameter Enter	Object activates an internal bit that performs desired object function	ON	OFF	W
BV57	Drive Comms Error	002Ch: Bit F	ON	OFF	R
BV58	Bypass Forward Run Cmd (BYP Run Fwd CMD)	0001h: Bit 0	ON	OFF	C
BV59	Bypass Reverse Run Cmd (BYP Run Rev CMD)	0001h: Bit 1	ON	OFF	C

8.3 BACnet Communications

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Active Text	Inactive Text	PV Access
BV60	Emergency Override Drive Reverse (Em Over DRV REV CMD	8400h: Bit F	ON	OFF	C
BV61	Bypass Transfer to Bypass Cmd (BYP Xfer to BYP CMD)	8400h: Bit 3	ON	OFF	C
BV62	Emergency Override Bypass (Em Over BYPASS CMD)	8400h: Bit 4	ON	OFF	C
BV63	Emergency Override Drive Forward (Em Over DRV FWD CMD)	8400h: Bit 5	ON	OFF	C
BV64	Bypass Motor OR Select Command (BYP Mtr OR Sel CMD)	8400h: Bit 6	ON	OFF	C
BV65	Bypass Motor AND Select Command (BYP Mtr AND Sel CMD)	8400h: Bit 7	ON	OFF	C
BV66	Not Used BV066	-	ON	OFF	R
BV67	Not Used BV067	-	ON	OFF	R
BV68	Not Used BV068	-	ON	OFF	R
BV69	Bypass BYPASS Select Command (BYP BYPASS Sel CMD)	8400h: Bit C	ON	OFF	C
BV70	Bypass Fault Reset Command (BYP Fault Reset CMD)	8400h: Bit D	ON	OFF	C
BV71	Bypass External Fault Command (BYP Ext Fault CMD)	8400h: Bit E	ON	OFF	C
BV72	Bypass DI-01 Command (BYP DI-01 Command)	8402h: Bit 0	ON	OFF	C
BV73	Bypass DI-02 Command (BYP DI-02 Command)	8402h: Bit 1	ON	OFF	C
BV74	Bypass DI-03 Command (BYP DI-03 Command)	8402h: Bit 2	ON	OFF	C
BV75	Bypass DI-04 Command (BYP DI-04 Command)	8402h: Bit 3	ON	OFF	C
BV76	Bypass DI-05 Command (BYP DI-05 Command)	8402h: Bit 4	ON	OFF	C
BV77	Bypass DI-06 Command (BYP DI-06 Command)	8402h: Bit 5	ON	OFF	C
BV78	Bypass DI-07 Command (BYP DI-07 Command)	8402h: Bit 6	ON	OFF	C
BV79	Bypass DI-08 Command (BYP DI-08 Command)	8402h: Bit 7	ON	OFF	C
BV80	Bypass HAND Mode Status (BYP HAND Mode Status)	8784h: Bit 0	ON	OFF	R
BV81	Bypass OFF Mode Status (BYP OFF Mode Status)	8784h: Bit 1	ON	OFF	R
BV82	Bypass AUTO Mode Status (BYP AUTO Mode Status)	8784h: Bit 2	ON	OFF	R
BV83	Bypass DRIVE Mode Status (BYP DRV Mode Status)	8784h: Bit 3	ON	OFF	R
BV84	Bypass BYPASS Mode Status (BYP BYPASS Mode Stat)	8784h: Bit 4	ON	OFF	R

Object ID	Object Name (Network Display, if Different)	Modbus Reg.	Active Text	Inactive Text	PV Access
BV85	Bypass Emergency Run Bypass Status (BYP Smk Prg BYP Stat)	8784h: Bit 5	ON	OFF	R
BV86	Bypass Emergency Run Drive Fwd Status (BYP Smk Prg DRV Stat)	8784h: Bit 6	ON	OFF	R
BV87	Bypass Safety Status (BYP Safety Status)	8784h: Bit 7	ON	OFF	R
BV88	Bypass BAS Interlock Status (BYP BAS Interlk Stat)	8785h: Bit 0	ON	OFF	R
BV89	Bypass Run Status (BYP RUN Status)	8785h: Bit 1	ON	OFF	R
BV90	Bypass Fault Status (BYP Fault Status)	8785h: Bit 2	ON	OFF	R
BV91	Bypass Auto Transfer Status (BYP Auto Xfer Status)	8785h: Bit 3	ON	OFF	R
BV92	Bypass Remote Transfer Status (BYP Remote Xfer Stat)	8785h: Bit 4	ON	OFF	R
BV93	Bypass Energy Savings Status (BYP Energy Save Stat)	8785h: Bit 5	ON	OFF	R
BV94	Bypass Motor 1 Select Status (BYP Motor 1 Sel Stat)	8785h: Bit 6	ON	OFF	R
BV95	Bypass Motor 2 Select Status (BYP Motor 2 Sel Stat)	8785h: Bit 7	ON	OFF	R
BV96	Bypass Drive Fault Status (BYP Drive Flt Status)	8786h: Bit 0	ON	OFF	R
BV97	Bypass Safety Fault Status (BYP Safety Flt Stat)	8786h: Bit 1	ON	OFF	R
BV98	Bypass BAS Interlock Fault Status (BYP BAS ILock Status)	8786h: Bit 2	ON	OFF	R
BV99	Bypass External Fault Status (BYP Ext Fault Stat	8786h: Bit 3	ON	OFF	R
BV100	Not Used BV100	-	-	-	R
BV101	Bypass Motor OL Status (BYP Motor OL Stat)	8786h: Bit 5	ON	OFF	R
BV102	Bypass Motor 1 OL Status (BYP Motor 1 OL Stat)	8786h: Bit 6	ON	OFF	R
BV103	Bypass Motor 2 OL Status (BYP Mtr 2 OL Stat)	8786h: Bit 7	ON	OFF	R
BV104	Bypass Input Phase Loss Status (BYP Input Phase Loss)	8787h: Bit 0	ON	OFF	R
BV105	Bypass Drive Comms Status (BYP Drive Comms)	8787h: Bit 2	ON	OFF	R
BV106	Bypass Loss of Load Status (BYP Loss Of Load)	8787h: Bit 5	ON	OFF	R
BV107	Option Board on Drive Status (BYP Option Brd Comms)	8787h: Bit 4	ON	OFF	R

Device Object

The Device Object is the BACnet device to the network in this manual. The Device Object Instance ID, the Device Object Name, and the Device Object Location are configurable. Refer to Table 8.5 for more information.

Table 8.5 Device Objects

Item	Description	Data Type
Device Object Instance ID	A unique internetwork-wide numerical value. To set this ID, set H5-14 [BACnet Device Obj ID LOW BITS] and H5-15 [BACnet Device Obj ID HIGH BITS].	22-bit value Range: $0-4,194,302$
Device Object Name	A unique internetwork-wide character string that is writable from the BACnet network.	40-character strings
Device Object Location	Character field to describe the location of the device that is writable from the Bacnet network.	40 -character strings

Note:
Any changes to the parameter settings and any new string written will not take effect until you de-energize the drive.

Accessing Drive Parameters and the Enter Command

Read Drive Parameters

To read the drive parameters that are not listed in the analog or digital objects, use AV29 and AV30 as shown in this procedure:

1. Write the desired Modbus register to AV29 in decimal value.
2. Read the decimal value at the given register from AV30.

For example, to read the Frequency Reference Upper Limit, read from parameter d2-01 [Frequency Reference Upper Limit].
Parameter $d 2-01$ is located at Modbus register 0289 H , which is decimal 649.
Set AV29 to "649."
Read AV30 to get the value.

Write Drive Parameters

To write the drive parameters that are not listed in the analog or digital objects, use AV29, AV30, and BV55 or BV56 as shown in this procedure:

1. In AV29, write the desired Modbus register number in decimal format.
2. In AV30, write the value that you want to put into the register set in AV29 in decimal format.

At this point the value is written to the drive, but the location is pending.
If necessary, write in more values this way, the drive will accept these settings by one of two methods:

- Set BV55 to "ON" to move data to active memory.
- Set BV56 to "ON" to move data into active memory and save to non-volatile memory.

For example, to reset the KWH Monitor, write a value of "1" to parameter o4-12 [kWh Monitor Initialization].
Parameter o4-12 is located at Modbus register 0512 (Hex.), which is decimal 1298.
Set AV29 to "1298."
Set AV30 to "1."
Set BV55 to "ON."

- Enter Command

Enter Commands are only necessary to use AV29 and AV30 to access drive parameters. Enter commands are not necessary to read or write to the other BACnet objects.
This section gives information about the Enter command.

Types of Enter Commands

The drive supports two Enter commands shown in Table 8.6.

Table 8.6 Types of Enter Commands

BACnet Object	Modbus Address (Hex.)	Description
BV55 (Write "ON")	0910 (Write 0)	This updates the data on the RAM, but does not write data to the EEPROM. This process saves the parameter changes until you de-energize the drive.
BV56 (Write "ON")	0900 (Write 0)	When you write parameter data to the EEPROM, you will enable the data on the RAM at the same time. This process saves the parameter changes until you de-energize the drive.

Note:

You can write the EEPROM to the drive a maximum of 100,000 times. Do not frequently execute the Enter command (0900 (Hex.)) that is written to EEPROM. The Enter command registers 0900 (Hex.) and 0910 (Hex.) are write-only. If these registers are read, the register address will not be applicable, but BACnet objects BV55 and BV56 can be read without error.

Self-Diagnostics

The bypass can use Self-Diagnostics to verify the hardware transceiver on the control circuit. Self-Diagnostics connects the transmission terminal to the reception terminal on the control circuit and transmits the data to itself to makes sure that the bypass can communicate correctly.
Use this procedure to do Self-Diagnostics:
DANGER! Electrical Shock Hazard. Do not examine, connect, or disconnect wiring on an energized bypass. Before servicing, disconnect all power to the equipment and wait for the time specified on the warning label at a minimum. The internal capacitor stays charged after the bypass is de-energized. The charge indicator LED extinguishes when the DC bus voltage decreases below 50 Vdc . When all indicators are OFF, remove the covers before measuring for dangerous voltages to make sure that the bypass is safe. If you do work on the bypass when it is energized, it will cause serious injury or death from electrical shock.

1. Energize the bypass.
2. Set $Z 2-06=45$ [Digital Input 6 Function (TB2-6) - Serial Hardware Test (RS-485)].
3. De-energize the bypass.
4. Disconnect the RS-485 terminals (TB3).
5. Connect a jumper between control circuit terminals TB2-6 and TB2-9 or TB2-10.

Figure 8.5 Self-Diagnostics Jumper Terminals
6. Energize the bypass.
7. When normal, the keypad will show PASS [Serial Communication Test].

Note:

If there is an error, the keypad will show CE [Serial Communication Error]. Disconnect the bypass from the network and test the bypass again. If the error stays, there is a possible hardware problem. If there is no error, there is a possible network wiring problem.
8. De-energize the bypass.
9. Disconnect the jumper from Step 4 . Set $Z 2-06$ to its initial function.

Self-Diagnostics is complete and the bypass returns to its usual function.

BACnet Protocol Implementation Conformance Statement

- Date: 3/1/2020
- Vendor Name: Yaskawa
- Product Name: VFD Bypass
- Product Model Number: HV600 Bypass
- Application Software Version: VST8004xx
- Firmware Revision: 2.01
- BACnet Protocol Revision: 14
- Product Description:

The Yaskawa VFD Bypass is a high performance product specifically designed for commercial building automation applications. The Yaskawa BACnet feature connects the VFD Bypass to a standard BACnet MS/TP network. These products may be fully controlled and monitored over BACnet. All Bypass and drive parameters are available for reading and writing.

- BACnet Standardized Device Profile (Annex L):
- BACnet Cross-Domain Advanced Operator Workstation (B-XAWS)
\square BACnet Advanced Operator Workstation (B-AWS)
\square BACnet Operator Workstation (B-OWS)
\square BACnet Operator Display (B-OD)
\square BACnet Advanced Life Safety Workstation (B-ALSWS)
\square BACnet Life Safety Workstation (B-LSWS)
\square BACnet Life Safety Annunciator Panel (B-LSAP)
\square BACnet Advanced Access Control Workstation (B-AACWS)
\square BACnet Access Control Workstation (B-ACWS)
\square BACnet Access Control Security Display (B-ACSD)
\square BACnet Building Controller (B-BC)
\square BACnet Advanced Application Controller (B-AAC)
- BACnet Application Specific Controller (B-ASC)
\square BACnet Smart Actuator (B-SA)
\square BACnet Smart Sensor (B-SS)
\square BACnet Advanced Life Safety Controller (B-ALSC)
\square BACnet Life Safety Controller (B-LSC)
\square BACnet Advanced Access Control Controller (B-AACC)
\square BACnet Access Control Controller (B-ACC)
\square BACnet Router (B-RTR)
\square BACnet Gateway (B-GW)
\square BACnet Broadcast Management Device (B-BBMD)
\square BACnet Access Control Door Controller (B-ACDC)
\square BACnet Access Control Credential Reader (B-ACCR)
\square BACnet General (B-GENERAL)
- List all BACnet Interoperability Building Blocks Supported (Annex K):
- Data Sharing-ReadProperty-B (DS-RP-B)
- Data Sharing-WriteProperty-B (DS-WP-B)
- Data Sharing-ReadPropertyMultiple-B (DS-RPM-B)
- Data Sharing-WritePropertyMultiple-B (DS-WPM-B)
- Data Sharing-Change Of Value-B (DS-COV-B)
- Data Sharing-Change Of Value Property-B (DS-COVP-B)
- Device Management-Dynamic Device Binding-B (DM-DDB-B)
- Device Management-Dynamic Object Binding-B (DM-DOB-B)
- Device Management-DeviceCommunicationControl-B (DM-DCC-B)
- Device Management-ReinitializeDevice-B (DM-RD-B)
- Device Management-TimeSynchronization-B (DM-TS-B)
- Segmentation Capability:

Able to transmit segmented messages / Window Size:
\square Able to receive segmented messages / Window Size:

- Standard Object Types Supported:

Object Types	Descriptions
Device Object	Optional Writeable: - Max_Info_Frames - Max Master
Analog Input Object	Optional properties supported: - COV_Increment Optional Writeable: - COV Increment - supported on various instances
Analog Output Object	-
Analog Value Object	Optional properties supported: - COV_Increment Optional Writeable: - COV_Increment - supported on various instances
Binary Input Object	-
Binary Output Object	-
Binary Value Object	-

- Data Link Layer Options:
\square ARCNET (ATA 878.1), 2.5 Mb . (Clause 8)
\square ARCNET (ATA 878.1), EIA-485 (Clause 8), baud rate(s):
\square BACnet IP, (Annex J)
\square BACnet IP, (Annex J), BACnet Broadcast Management Device (BBMD)
\square BACnet IP, (Annex J), Network Address Translation (NAT Traversal)
\square BACnet IPv6, (Annex U)
\square BACnet IPv6, (Annex U), BACnet Broadcast Management Device (BBMD)
\square BACnet/ZigBee (Annex O)
\square Ethernet, ISO 8802-3 (Clause 7)
\square LonTalk, ISO/IEC 14908.1 (Clause 11), medium:
■ MS/TP master (Clause 9), baud rate(s): 9600, 19200, 38400, 76800
\square MS/TP slave (Clause 9), baud rate(s)
\square Point-To-Point, EIA 232 (Clause 10), baud rate(s):
\square Point-To-Point, modem, (Clause 10), baud rate(s):
\square Other:
- Device Address Binding:

Is static device binding supported? (This is currently necessary for two-way communication with MS/TP slaves and certain other devices.) \square Yes \square No

- Networking Options:
\square Router, Clause 6 - List all routing configurations, e.g., ARCNET-Ethernet, Ethernet-MS/TP, etc.
\square Annex H, BACnet Tunneling Router over IP
- Character Sets Supported:

Indicating support for multiple character sets does not imply that they can all be supported simultaneously.
■ ISO 10646 (UTF-8)
\square IBM/Microsoft DBCS
\square ISO 8859-1

- ISO 10646 (UCS-2)
- ISO 10646 (UCS-4)
- JIS X 0208
- Gateway Options:

If this product is a communication gateway, describe the types of non-BACnet equipment/networks(s) that the

If this product is a communication gateway which presents a network of virtual BACnet devices, a separate PICS shall be provided that describes the functionality of the virtual BACnet devices. That PICS shall describe a superset of the functionality of all types of virtual BACnet devices that can be presented by the gateway.

- Network Security Options:
\square Non-secure Device - is capable of operating without BACnet Network Security
\square Secure Device - is capable of using BACnet Network Security (NS-SD BIBB)
$-\square$ Multiple Application-Specific Keys
$-\square$ Supports encryption (NS-ED BIBB)
$-\square$ Key Server (NS-KS BIBB)

8.4 Other Embedded Communication Protocols

For detailed information about:

- APOGEE FLN (P1) Communications
- Metasys N2 Communications
- MEMOBUS/Modbus Communications

Refer to the HV600 Bypass Technical Reference (SIEPYAIHB601).

Standards Compliance

This chapter gives information about how to make the machines and devices that use this product comply with UL standards, seismic standards, and European standards.
9.1 Section Safety 286
9.2 UL Standards 288
9.3 Seismic Standards 289
9.4 European Standards 290

9.1 Section Safety

! DANGER
Electrical Shock Hazard
Do not examine, connect, or disconnect wiring on an energized bypass. Before servicing, disconnect all power to the equipment and wait for the times specified on the warning label at a minimum. The internal capacitor stays charged after the bypass is de-energized. The charge indicator LED extinguishes when the DC bus voltage decreases below 50 Vdd. When all indicators are OFF, remove the covers before measuring for dangerous voltages to make sure that the bypass is safe. If you do work on the bypass when it is energized, it will cause serious injury or death from electrical shock.

AWARNING

Electrical Shock Hazard

Do not operate the bypass when covers are missing. Replace covers and shields before you operate the bypass. Use the bypass only as specified by the instructions.
Some figures in this section include bypasses without covers or safety shields to more clearly show the inside of the bypass. If covers or safety shields are missing from the bypass, it can cause serious injury or death.

Always ground the motor-side grounding terminal.
If you do not ground the equipment correctly, it can cause serious injury or death if you touch the motor case.
Do not remove covers or touch circuit boards while the bypass is energized.
If you touch the internal components of an energized bypass, it can cause serious injury or death.
Only let approved personnel install, wire, maintain, examine, replace parts, and repair the bypass. If personnel are not approved, it can cause serious injury or death.
Do not wear loose clothing or jewelry when you do work on the bypass. Tighten loose clothing and remove all metal objects, for example watches or rings.
Loose clothing can catch on the bypass and jewelry can conduct electricity and cause serious injury or death.
Do not modify the bypass body, drive body, bypass circuitry, or drive circuitry.
Modifications to bypass and drive body and circuitry can cause serious injury or death, will cause damage to the bypass and drive, and will void the warranty. Yaskawa is not responsible for modifications of the product made by the user.

Fire Hazard

Tighten all terminal screws to the correct tightening torque.
Connections that are too loose or too tight can cause incorrect operation and damage to the bypass. Incorrect connections can also cause death or serious injury from fire.
Tighten screws at an angle in the specified range shown in this manual.
If you tighten the screws at an angle not in the specified range, you can have loose connections that can cause damage to the terminal block or start a fire and cause serious injury or death.

Damage to Equipment

Do not apply incorrect voltage to the main circuit of the bypass. Operate the bypass in the specified range of the input voltage on the nameplate.
Voltages that are higher than the permitted nameplate tolerance can cause damage to the bypass.

Fire Hazard

Do not put flammable or combustible materials on top of the bypass and do not install the bypass near flammable or combustible materials. Attach the bypass to metal or other noncombustible material.
Flammable and combustible materials can start a fire and cause serious injury or death.

AWARNING

Crush Hazard

Wear eye protection when you do work on the bypass.
If you do not use correct safety equipment, it can cause serious injury or death.

Electrical Shock Hazard

After the bypass blows a fuse or trips a GFCI, do not immediately energize the bypass or operate peripheral devices. Wait for the time specified on the warning label at a minimum and make sure that all indicators are OFF. Then check the wiring and peripheral device ratings to find the cause of the problem. If you do not know the cause of the problem, contact Yaskawa before you energize the bypass or peripheral devices.
If you do not fix the problem before you operate the bypass or peripheral devices, it can cause serious injury or death.

NOTICE

Damage to Equipment

When you touch the bypass, drive, and circuit boards, make sure that you observe correct electrostatic discharge (ESD) procedures.
If you do not follow procedures, it can cause ESD damage to the drive and bypass circuitry.
Do not break the electrical connection between the bypass and the motor when the bypass is outputting voltage.
Incorrect equipment sequencing can cause damage to the bypass.
Make sure that all connections are correct after you install the bypass and connect peripheral devices.
Incorrect connections can cause damage to the bypass.

[^0]
9.2 UL Standards

Figure 9.1 UL/cUL Mark
The UL/cUL Mark identifies that this product conforms to rigid safety standards. This mark appears on products in the United States and Canada. It shows UL approval, which identifies that the product complies with safety standards after careful inspection and assessment. You must use UL Listed or UL Recognized parts for all primary components that are built into electrical equipment that has UL approval.
This product has been tested in accordance with UL standard UL508A, and has been verified to be in compliance with UL standards.
Machines and devices integrated with this product must satisfy the following conditions for compliance with UL standards.

Area of Use

Install this product in a location with Overvoltage Category III and pollution degree 2 or less.

- Ambient Temperature Setting

Maintain the ambient temperature within the following ranges according to the enclosure type.

- IP20/UL Type 1: $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14{ }^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
- IP55/UL Type $12:-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14{ }^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$

9.3 Seismic Standards

Yaskawa bypasses that have the certification label in Figure 9.2 are capable of structurally and operationally withstanding the seismic response criteria as defined in the International Building Code (IBC), ASCE7, and California Department of Health Care Access and Information (HCAI).
The models in this section were tested in compliance with AC-156 to meet the IBC seismic certification as shown on the certification labels.

> Seismic Certification
> HCAI Preapproval: OSP-0687
> CoC: VMA-53982-01C
> Product Type: General Purpose Bypass VFD
> Product Models: HV600 Narrow Bypass Panel
> Manufacturer: Yaskawa America, Inc
> Manufacturer's ID: 000000
> Mounting Configuration: Rigid or Flexible Wall Mount
> Applicable Building Codes: IBC 2018,2021
> Perf Spec: $\mathrm{S}_{\mathrm{DS}} \leq 2.00 \mathrm{~g}, \quad \mathrm{z} / \mathrm{h} \leq 1.0, \mathrm{I}_{\mathrm{p}} \leq 1.5$
> $\mathrm{~S}_{\mathrm{DS}} \leq 2.50 \mathrm{~g}, \quad \mathrm{z} / \mathrm{h}=0$

Refer to Seismic Install Manual TOEPYASUP18

Figure 9.2 Seismic Certification Label Example for Bypasses

9.4 European Standards

Figure 9.3 CE Mark
The CE Mark identifies that the product meets environmental and safety standards in the European Union. Products manufactured, sold, or imported in the European Union must display the CE Mark.
European Union standards include standards for electrical appliances (Low Voltage Directive), standards for electrical noise (EMC Directive), and standards for machinery (Machinery Directive).
This product displays the CE Mark in accordance with the Low Voltage Directive, the EMC Directive, and the Machinery Directive.

Table 9.1 Harmonized Standard

European Directive	Harmonized Standard
Low Voltage Directive 2014/35/EU	EN 61800-5-1:2007
EMC Directive $2014 / 30 / E U ~$	EN 61800-3:2004/A1:2012 First environment restricted distribution
Machinery Directive	- EN 61800-5-2:2007 (SIL3)
$2006 / 42 / E C$	- EN 62061:2005/A2:2015 (SIL CL3)

The customer must display the CE Mark on the final device containing this product. Customers must verify that the final device complies with EU standards.

EU Declaration of Conformity

Go to www.yaskawa.com and search for "EU Declaration of Conformity" to get an original copy of the EU Declaration of Conformity.
Yaskawa declares that this product complies with the following directives and standards at our sole responsibility.

CE Low Voltage Directive Compliance

It has been confirmed that this product complies with the CE Low Voltage Directive by conducting a test according to IEC/EN 61800-5-1:2007.
The following conditions must be satisfied for machines and devices incorporating this product to comply with the CE Low Voltage Directive.

- Area of Use

Install this product in a location with Overvoltage Category III and pollution degree 2 or less.

- Guarding Against Debris

When you install IP20/UL Open Type drives (model: $2 \mathrm{xxxxB}, 4 \mathrm{xxxxB}$), use an enclosure that does not let unwanted material enter the drive from above or below.

- EMC Directive

Drives with built-in EMC filters were tested in accordance with European standard IEC/EN 61800-3:2004/A1:2012, and comply with the EMC Directive.

Install a Drive to Conform to the EMC Directive

Use this procedure to install drives that comply with the EMC Directive when the drive is a single unit or installed in a larger device.

1. Install the drive on a grounded metal plate.
2. Wire the drive and motor.
3. Ground the wire shielding on the drive side and motor side.

A - Drive
B - 100 m ($\mathbf{3 2 8} \mathrm{ft}$) maximum
D - Metal conduit
C - Motor
E-Grounding wire

Figure 9.4 Wiring the Drive and Motor

Note:

- Use a braided shield cable for the drive and motor wiring or put the wires through a metal conduit.
- The maximum wiring length between the drive and motor is $100 \mathrm{~m}(328 \mathrm{ft})$. Keep the wire as short as possible.
- Keep the grounding wire as short as possible.

4. Use a cable clamp to ground the motor cable to the metal plate.

Note:

Make sure that the protective ground wire complies with technical specifications and local safety standards.

A - Braided shield cable
C - Cable clamp (conductive)
B - Metal plate

Figure 9.5 Ground the shield

A - Grounding surface (Remove any
paint or sealant.)
B - Metal plate
C - Drive
D - Shielded wire

E - Motor
F - Motor cable
G - Cable clamp
H - Grounding wire

Figure 9.6 Install a Drive with a Built-in EMC Filter

Ground Wiring

WARNING! Electrical Shock Hazard. Do not remove covers or touch circuit boards while the bypass is energized. If you touch the internal components of an energized bypass, it can cause serious injury or death.
WARNING! Electrical Shock Hazard. Ground the neutral point on the power supply of the bypass to comply with the EMC Directive before you turn on the EMC filter. If you turn ON the EMC filter, but you do not ground the neutral point, it can cause serious injury or death.

Enable the Internal EMC Filter

Move the screws to turn ON and OFF (enable and disable) the EMC filter.
Make sure that the symmetric grounding network is applied, and install the both screws in the ON position to enable the built-in EMC filter in compliance with the EMC Directive. The EMC filter switch screws are installed in the OFF position by default.

WARNING! Electrical Shock Hazard. Disconnect all power to the drive, wait for the time specified on the warning label, and check the drive for dangerous voltages before you remove covers or touch EMC filter screws. If you touch the screws when there are dangerous voltages, it will cause serious injury or death.

WARNING! Electrical Shock Hazard. Do not remove covers or touch circuit boards while the bypass is energized. If you touch the internal components of an energized bypass, it can cause serious injury or death.
WARNING! Electrical Shock Hazard. Ground the neutral point on the power supply of the bypass to comply with the EMC Directive before you turn on the EMC filter. If you turn ON the EMC filter, but you do not ground the neutral point, it can cause serious injury or death.
WARNING! Electrical Shock Hazard. Connect the ground cable correctly. If you touch electrical equipment that is not grounded, it can cause serious injury or death.
NOTICE: To disable the internal EMC filter, move the screws from ON to OFF and then tighten to the specified torque. If you fully remove the screws or tighten the screws to an incorrect torque, it can cause drive failure.
NOTICE: Move the EMC switch screw or screws to the OFF position for networks that are not symmetrically grounded. If the screws are not in the correct position, it can cause damage to the drive.

Figure 9.7 Symmetric Grounding
NOTICE: When you use the drive with a non-grounding, high-resistance grounding, or asymmetric-grounding network, put the EMC Filter screw or screws in the OFF position to disable the built-in EMC filter. Failure to obey the instructions can damage the drive.
Table 9.2 shows asymmetric grounding networks.
Table 9.2 Asymmetric Grounding
Type of Grounding \quad Grounded at the corner of the delta connection
Type of Grounding Single-phase, grounded at the end point

Table 9.3 EMC Filter Switch Location

Bypass Model	Drive Model	Switch Location Diagram
D002-D016	$2011,2017,4005-4014$	Figure 9.8
B001-B014	$2024,2031,4021-4034$	Figure 9.9
D024, D030		Figure 9.10
B021-B034	$2046,2059,4040-4065$	Figure 9.11
D046, D059		
B040-B065	2075,4077	
D074		

A - SW (ON)

B - Screw (OFF)
Figure 9.8 EMC Filter Switch Location 1

A - SW (ON)
B - Screw (OFF)

Figure 9.9 EMC Filter Switch Location 2

A - SW (ON)
B - Screw (OFF)
Figure 9.10 EMC Filter Switch Location 3

Figure 9.11 EMC Filter Switch Location 4
If you lose an EMC filter switch screw, use Table 9.4 to find the correct replacement screw and install the new screws with the correct tightening torque.
NOTICE: Only use the screws specified in this manual. If you use screws that are not approved, it can cause damage to the drive.

Table 9.4 Screw Sizes and Tightening Torques

Model	Screw Size	Tightening Torque N•m
$2011-2059,4005-4065$	$M 4 \times 20$	$1.0-1.3$
2075,4077	$M 4 \times 30$	$1.0-1.3$

Disposal
10.1 Section Safety 298
10.2 Disposal Instructions 299
10.3 WEEE Directive 300

10.1 Section Safety

AWARNING

Electrical Shock Hazard

De-energize the bypass and wait 5 minutes minimum until the Charge LED turns off. Remove the front cover and terminal cover to do work on wiring, circuit boards, and other parts. Use terminals for their correct function only.
Incorrect wiring, incorrect ground connections, and incorrect repair of protective covers can cause death or serious injury.
Only let approved personnel install, wire, maintain, examine, replace parts, and repair the bypass. If personnel are not approved, it can cause serious injury or death.
Do not wear loose clothing or jewelry when you do work on the bypass. Tighten loose clothing and remove all metal objects, for example watches or rings.
Loose clothing can catch on the bypass and jewelry can conduct electricity and cause serious injury or death.

Fire Hazard

Handle keypad batteries properly. Do not charge the battery or disassemble the keypad.
If the battery explodes, it can cause a fire.
Do not disassemble batteries. Do not expose batteries to heat or fire.
If the battery explodes, it can cause a fire.

Crush Hazard

Wear eye protection when you do work on the bypass.
If you do not use correct safety equipment, it can cause serious injury or death.
Only approved personnel can operate a crane or hoist to move the bypass.
If unapproved personnel operate a crane or hoist, it can cause serious injury or death from falling equipment.
Use a crane or hoist to move large bypasses when necessary.
If you try to move a large bypass without a crane or hoist, it can cause serious injury or death.

ACAUTION

Crush Hazard

Tighten terminal cover screws and hold the case safely when you move the bypass.
If the bypass or covers fall, it can cause moderate injury.

NOTICE
Damage to Equipment
The keypad battery stays in use after you de-energize the bypass. When you will keep the bypass
de-energized for long periods of time, remove the battery from the keypad. When the expected life
of the battery is complete, replace the battery immediately.
A dead battery in the keypad can leak and cause damage to the keypad and bypass.

10.2 Disposal Instructions

Correctly discard the drive, packing material, battery, and microSD card as specified by regional, local, and municipal laws and regulations for this product. (Example: European Waste 1602 14)

Note:

-Remove the battery and microSD card from the keypad before you discard the drive.

- You cannot recycle the battery. Discard used batteries as specified by the battery manufacturer.
- Customers are responsible for microSD card data protection. PC functions that format and delete the data may not be sufficient to fully erase the microSD card data.
Yaskawa recommends that customers physically destroy the microSD card in a shredder or use data wipe software to fully erase the card.

10.3 WEEE Directive

The wheelie bin symbol on this product, its manual, or its packaging identifies that you must recycle it at the end of its product life.
You must discard the product at an applicable collection point for electrical and electronic equipment (EEE). Do not discard the product with usual waste.

Index

A
 Adjustment of control functionality 83
 AFBL .. 126

AL02... 126
AL03.. 126
AL09.. 126
AL13... 126
AL16.. 126
AL17.. 126
AL18... 126
Alarm ... 88, 126
ALM indicator... 69
Altitude
Environment... 24
Ambient humidity.. 24
Ambient Temperature Setting ... 24
APOGEE FLN (P1).. 283
AuDis.. 126
AuFbl ... 126
AUTO indicator ...69, 71
AUTO key... 69
AUTO LED .. 71
Auto-Tuning ... 81
Induction Motor ... 81
Precautions ... 81
Rotational Auto-Tuning Precautions............................... 82
Stationary Auto-Tuning for Line-to-Line Resistance
precautions... 82
Stationary Auto-Tuning Precautions................................ 82
Stator resistance Auto-Tuning precautions........................ 82
Auto-Tuning Error .. 88, 142
AUXFB
Fault... 102
Minor Fault.. 126
B
BACnet
Communication specifications..................................... 264
Enter command ... 278
Self-diagnosis ... 279
bAT
Fault... 102
Minor Fault.. 127
Battery
Disposal.. 299
bb... 127
bCE
Fault ... 102
Minor Fault... 127
Bu-Fb .. 127
BuDif ... 127
BuFbl .. 127
bUS
Fault... 102
Minor Fault... 127
bUSy ... 128
Bypass control circuit terminals
Wiring.48
C
CALL 128
CE
Fault 102
Minor Fault 128-129
CoF. 103
Connection diagram Connection diagram 38
Control circuit terminals
Wiring procedure for terminal block 52, 59
Copy Function Error 88, 145
CPF00 103
CPF01 103
CPF02 103
CPF03 103
CPF06 104
CPF07 104
CPF08 104
CPF11 104
CPF12 104
CPF13 104
CPF14 104
CPF16 105
CPF17 105
CPF18 105
CPF19 105
CPF20 105
CPF21 105
CPF22 105
CPF23 105
CPF24 106
CPF26 106
CPF27 106
CPF28 106
CPF29 106
CPF30 106
CPF31 106
CPF32 106
CPF33 107
CPF34 107
CPF35 107
CPF36 107
CPF37 107
CPF38 107
CPF39 107
CPyE 145
CrST 129
CSEr 145
CyPo 129
D
dEv
Fault 107
dFPS 145
Diagnosing and Resetting Faults 147
DIFF
Fault 108
Minor Fault 129
Disposal
Battery 299
Drive 299-300
microSD card 299
Packing material 299-300

dnE ... 129.1Drive	
Disposal.	.299-300
Rating (208 V).	151
Rating (480 V).	. 153
Drive control circuit terminals	
Wiring.	54
Drive cooling fans..	163
Drive watt loss.	157
dv7	. 108
E	
EF	. 129
EF0	
Fault.	. 108
Minor Fault	. 130
EF1	
Fault.	. 108
Minor Fault.	.. 130
EF2	
Fault.	. 108
Minor Fault.	. 130
EF3	
Fault	. 108
Minor Fault.	. 130
EF4	
Fault	. 109
Minor Fault.	... 130
EF5	
Fault.	. 109
Minor Fault.	... 130
EF6	
Fault	. 109
Minor Fault.	. 130
EF7	
Fault.	.. 109
Minor Fault.	. 131
End1.	. 142
End2.	.. 142
End3.	. 142
End4.	. 142
End5.	. 142
End6.	. 142
End7.	. 142
Enter command.	. 278
EOF	. 131
EOR.	. 131
EP24v	. 131
Er-01	. 142
Er-02	. 143
Er-03	. 143
Er-04	. 143
Er-05	. 143
Er-08	. 143
Er-09	. 144
Er-12	. 144
Er-13	. 144
Er-18	. 144
Er-25	. 144
Err..	.. 109
Error Code List	.89, 96
F	
FAn1	.. 109

Fault. 88, 102
Fault Code List 89, 96
Fault Reset 147
FB02 110
FB03 110
FB05 110
FB06 111
FB07 111
FB08 111
FB09 111
FB10 111
FB13 111
FB15 112
FB16 112
FB17 112
FB18 112
FB26 112
FB27 112
FB28 112
FB30 113
FDBKL
Fault 113
Minor Fault 131
Fine tuning 83
FIRE ST 131
FLGT 131
FR<MS 132
FR<TH. 132
FREEZ ST 132
G
GF 113
Ground
Drive 44
H
HAND indicator 69, 71
HAND LED 71
HCA. 132
HFB 114
HIAUX
Fault 114
Minor Fault 132
HIFB 132
How to read catalog codes 18
Humidity
Environment 24
I
iFEr. 145
Induction Motor
Auto-Tuning 81
Inspection 163
Installation
Front cover 31
Terminal cover 31
Installation environment 24
INTLK 133
KKeypad
Meaning of indicators 69
Method of operation 69
L

LCP	. 133	oFA15.	. 117
LF	114	oFA16.	117
LF2.	.. 114	oFA17.	117
LFB	. 114	oFA30.	. 117
LOAUX		oFA31.	. 117
Fault.	... 114	oFA32	. 118
Minor Fault	. 133	oFA33.	118
LOFB	. 133	oFA34.	. 118
LoG 133	oFA35.	118
LOP		oFA36.	. 118
Fault.	... 115	oFA37.	. 118
Minor Fault	. 133	oFA38.	. 118
LOW_SUCT	. 134	oFA39.	. 118
LSP.	... 134	oFA40.	. 119
LT-1	. 134	oFA41.	. 119
LT-2	. 134	oFA42	. 119
LT-3	.. 134	oFA43.	.. 119
LT-4	. 134	OFF key	.. 69
LWT.	.. 134	oH	
M		Fault.	. 119
Main circuit terminals		Minor Fault.	. 135
Line voltage drop.	.. 43	oH1.	. 119
Wire gauge 43	oH2.	. 135
Wiring.....	.. 42	oH3	
Wiring procedure for terminal block.	.. 46	Fault 119
MEMOBUS		Minor Fault.	. 135
Self-diagnosis.	. 279	oH4.	120
MEMOBUS/Modbus Communications	... 283	oL1	120
Metasys		oL2	121
Self-diagnosis .	. 279	${ }^{\text {oL3 }}$	
Metasys N2 Communications	.. 283	Fault Minor Fault.	. 122
		oL4	
Disposal..	. 299	${ }^{\text {oL4 }}$ Fault	
Insertion slot 69	Fault Minor Fault.	.. 122
Minor Fault	. 88,126	${ }^{\text {Minor Fault.. }}$. 132
Minor Fault Code List.	... 89, 96	oL7	122
Modbus		oPE01	. 139
Self-diagnosis 279	oPE02	. 139
Motor		oPE03	. 139
Wiring.	... 42	oPE05.	. 140
Wiring distance		oPE07	. 140
N		opE09	. 140
Nameplate	...17-18	oPE10	. 140
ndAT 145	oPE11	. 141
NMS		oPE16	. 141
Fault... 115	oPE20	. 141
Minor Fault.	... 134	oPE29	. 141
O		oPE34.	. 141
oC 115	oPE36	. 141
OD		oPr.	122
Fault. 116	Options	158-159
Minor Fault. 135	ov	
oFA00.	... 116	Fault.	... 122
oFA01.	... 116	Minor Fault..	. 136
oFA05. 116	OV_PRESS	. 136
oFA06.	.. 116	ov2	. 123
oFA10.	... 116	ovEr.	. 136
oFA11.. 116	P	
oFA12.	.. 117	PA1.	... 136
oFA13.	. 117	Parameter Setting	. 88, 139
oFA14.		PASS 136

C
Connection procedure 64
PE1 123
PE2 123
Peripheral Devices 158-159
PF. 123, 136
Power loss 157
PSE
Fault 123
RRating (208 V)Drive151
Rating (480 V)Drive153
rdEr 145
Remove
Front cover 31
Terminal cover 31
RESET key 69
RJ-45 connector 69
Rotational Auto-Tuning
Induction Motor 81
Precautions 82
S
SAFE 137
SC 124
SCF 124
Schematic 38
SE 137
SEr 124
SMK ALRM 137
Stationary Auto-Tuning
Induction Motor 81
Precautions 82
Stationary Auto-Tuning for Line-to-Line Resistance 81
Precautions 82
Stator resistance Auto-Tuning
Precautions 82
STo 137
SToF 137
T
Temperature
Environment. 24
Terminal function selection
Terminal A1 62
Terminal A2 62
Terminal AM 62
Terminal FM 62
Test run
Fine tuning 83
Tightening torque
Main circuit terminals 43
TiM
Fault 124
Minor Fault 137
Troubleshooting
Code Displayed 89, 96
TrPC. 137
U
UL3
Fault 124

Revision History

Date of Publication	Revision Number	Section	
February 2024	$<3>$	All	Revision: Updated documentation to support firmware version 00448.
April 2023	$<2>$	All	Revision: Updated documentation to support firmware version 00447. Updated and corrected documentation.
May 2022	$<1>$	All	Revision: Updated documentation to support firmware versions 00444, 00445, and 00446. Added model H6BPB1P1. Added seismic certification data. Added Type 12 Narrow data.
May 2020	-	-	First Edition

YASKAWA

HV600
 NARROW BYPASS INSTALLATION \& STARTUP

YASKAWA AMERICA, INC.
2121, Norman Drive South, Waukegan, IL 60085, U.S.A.
+1-800-YASKAWA (927-5292)
http://www.yaskawa.com

DRIVE CENTER (INVERTER

PLANT)

2-13-1, Nishimiyaichi, Yukuhashi, Fukuoka, 824-8511, Japan
Phone: +81-930-25-2548
https://www.yaskawa.co.jp

YASKAWA EUROPE GmbH

Hauptstr. 185, 65760 Eschborn, Germany
Phone: +49-6196-569-300
E-mail: support@yaskawa.eu.com
http://www.yaskawa.eu.com

YASKAWA ELÉTRICO DO BRASIL LTDA.
777, Avenida Piraporinha, Diadema, São
Paulo, 09950-000, Brasil
Phone: +55-11-3585-1100
http://www.yaskawa.com.br

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply.
Specifications are subject to change without notice for ongoing product modifications and improvements.
Original instructions.
© 2020 YASKAWA America, Inc.

[^0]: Note:
 Do not use unshielded cable for control wiring. Use shielded, twisted-pair wires and ground the shield to the ground terminal of the bypass. Unshielded wire can cause electrical interference and unsatisfactory system performance.

