SERVOPACK DC SERVOMOTOR CONTROLLER

FOR SPEED CONTROL TYPE CPCR-MR01C TO -MR99C

SERVOPACK type CPCR-MR@C is a speed controller for power servomotors such as Print Motor Standard Series, Cup Motor, Hi-Cup Motor, Minertia Motor, and Minertia Motor J Series. The speed of these servomotors, forward or reverse, is precisely controlled through a wide range.

The SERVOPACK type CPCR-MREC, thus, is useful for industrial machines in the fields where the following requirements are especially high:

- Wide range of variable speed control (1000:1)
- Frequent start and stop operations (1000 operations/min)
- Frequent reversing operations (1000 operations/min)
- High-speed precise positioning (10 μm or less)
- High-level servo characteristics (Frequency response: DC to 100 Hz).

Configuration of SERVOPACK Types CPCR-MR08C to -MR99C, Servomotor and Optional Components

CONTENTS

1. RATINGS AND SPECIFICATIONS / 4

1.1 SERVOPACK RATINGS AND SPECIFICATIONS / 4

- 1.2 SERVOPACK OVERLOAD CHARACTERISTICS / 6
- 1.3 SERVOMOTOR RATINGS FOR SERVOPACK / 8
- 1.4 SERVOMOTOR CHARACTERISTICS FOR SERVOPACK / 9

2. CONFIGURATION / 13

- 2.1 COMPONENTS / 13
- 2.2 INTERNAL BLOCK DIAGRAM / 14
- 2.3 EXTERNAL TERMINALS / 19

3. OPERATION / 22

- 3.1 POWER ON AND OFF / 22
- 3. 2 SPEED REFERENCE / 25
- 3.3 BUILT-IN FUNCTION / 26
- 3.4 PRECAUTIONS FOR APPLICATION / 31
- 3.5 PRECAUTIONS OF OPERATION / 33
- 3.6 CONNECTION DIAGRAM OF SERVOPACK / 35
- 3.7 APPLICATION / 38
- 3.8 OPTIONAL COMPONENTS / 39

4. INSTALLATION AND WIRING / 44

- 4.1 INSTALLATION / 44
- 4. 2 WIRING / 44
- 4.3 POWER LOSS / 47

5. DIMENSIONS in mm / 48

- 5.1 SERVOPACK / 48
- 5.2 POWER TRANSFORMER / 54
- 5.3 DC REACTOR / 54
- 5.4 RESISTOR UNIT (TYPE JUSP-RA03) / 54
- 5.5 SPEED ADJUSTING POTENTIOMETER / 54
- 5.6 THERMAL OVERLOAD RELAY / 55
- 5.7 REGENERATIVE UNIT
- (TYPES JUSP-RG001 TO -RG003) / 55
- 5.8 PROTECTION DEVICE (TYPE JESP-PT) / 55

6. ORDER / 55

- 7. SELECTION GUIDE / 57
- 7.1 DYNAMICS FORMULA FOR
- ELECTRIC FORCE / 57
- 7.2 SERVOMOTOR SELECTION GUIDE / 58

INDEX

	Subject	Section No. Pag
A	Allowable Frequency of Operation · · · · · · · · · · · · · · · · · · ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
в	BUILT-IN FUNCTION	· 3.3 · · · · 26
С	Coating (Varnish) Treatment	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
D	DC REACTOR · · · · · · · · · · · · · · · · · · ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Е	Emergency Stop Dynamic Braking (DB) Circuit	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	External Terminals for Types CPCR-MR01C to -MR07C · · · · · · · · · · · External Terminals for Types CPCR-MR08C to -MR99C · · · · · · · · · · · · · · · · · ·	· 2. 3. 1 · · · 19 · 2. 3. 2 · · · 20
н	Handling of Speed Reference Input Terminal · · · · · · · · · · · · · · · · · · ·	· 3. 2. 3 · · · 26
I	INSTALLATION · · · · · · · · · · · · · · · · · · ·	· 4. 1 · · · · 44 · 4 · · · · · 44 · 2. 2 · · · · 14

	Subject	Section No.	Page
L	Load Inertia	· · 3. 4. 6 · · · · 4. 1. 1 · ·	· 32 · 44
М	Minus Load · · · · · · · · · · · · · · · · · · ·	· · 3. 4. 2 · · · · 3. 4. 7 · · · · 4. 1. 2 · ·	· 31 · 32 · 44
Ν	Noise Treatment	· · · 3. 5. 1 · ·	· 33
0	OPERATION· ·	· ·	· 22 · 39 · 55 · 31 · 28
P	Power Line Protection	· · 3. 5. 2 · · · · · · 3. 3 · · · · · · 3. 1 · · · · · · 5. 2 · · · · · · 3. 4 · · · ·	· 34 · 47 · 22 · 54 · 31
	Precautions for Wiring PRECAUTIONS OF OPERATION PRECAUTIONS OF OPERATION Proportional Drive Reference Circuit (Complete Stop Reference Circuit) PROTECTION DEVICE TYPE JESP-PT Protection Device Type JESP-PT Protective Circuit Protective Circuit	• 4. 2. 2 • • • 3. 5 • • • 3. 3. 2 • • • 5. 8 • • • 3. 8. 1 • • • 3. 3. 5 • •	· 47 · 33 · 27 · 55 · 39 · 29
R	RATINGS AND SPECIFICATIONS	· · 1 · · · · · · · 3.8.2 · · · · 5.7 · · · · · 5.4 · · ·	· 4 · 42 · 55 · 54
S	SELECTION GUIDE	· · 7 · · · · · · · 4. 2. 1 · · · · 1. 4 · · · · · 1. 4. 3 · ·	· 57 · 44 · 9 · 12 · 8
	SERVOMOTOR SELECTION GUIDE SERVOPACK SERVOPACK SERVOPACK OVERLOAD CHARACTERISTICS SERVOPACK RATINGS AND SPECIFICATIONS SERVOPACK Types CPCR-MR01C to -MR07C	· · 7.2 · · · · · 5.1 · · · · · 1.2 · · · · · 1.1 · · · · · 3.1.1 · ·	· 58 · 48 · 6 · 4 · 22
	SERVOPACK Types CPCR-MR08C (W) to -MR99C · · · · · · · · · · · · · · · · · ·	· · 3. 1. 2 · · · 3. 4. 5 · · · 5. 5 · · · · 1. 4. 4 · · · 3. 2 · · ·	· 25 · 32 · 54 · 12 · 25
	Speed Reference Circuit Starting and Stopping Time Starting and Stopping Time Starting and Stopping Time Stop Reference Circuit Starting Starting Switching Operation of Multiple Servomotors Starting	· · 3. 2. 1 · · · · 1. 4. 1 · · · · 3. 2. 2 · · · · 3. 7. 1 · ·	· 25 · 9 · 26 · 38
т	Tachometer Connection Thermal Overload Relay THERMAL OVERLOAD RELAY Transformer for Multiple SERVOPACKs Transformer for Multiple SERVOPACKs Thermal Service Se	· · 3. 7. 4 · · · · 5. 6 · · · · · 3. 7. 5 · · · · · 3. 4. 4 · · · · · 3. 4. 3 · · ·	· 39 · 55 · 39 · 32 · 31
1	Types CPCR-MR01C to -MR07C	· · 3. 6. 1 · · · · 3. 6. 2 · · · · 3. 6. 3 · ·	· 35 · 36 · 37
U	Use of Servomotor with Holding Magnetic Brake	· · 3.7.3 · ·	· 39
w	WIRING	· · 4.2 · · ·	. 44

INDEX (Cont'd)

1. RATINGS AND SPECIFICATIONS

1.1 SERVOPACK RATINGS AND SPECIFICATIONS

SE	RVOPA	CK Types CPCR-	MR01C	MR01CJ	MR02C	MR02CJ	MR05C	MR07C		
Motor Output kW			0.1 max	0.1	0.2	0.2	0.5	0.77		
Contr	ol Metho	bd	Single-phase br	idge rectifying (p	ower transforme	r installed separa	itely), transistorize	ed PWM control		
	Main	Voltage	Single	Single-phase, 200/220 VAC ± 10% or 100/110 VAC ± 10%, 50/60 Hz ± 5%						
Power	Circuit	Capacity* kVA	0.3	0.3	0.5	0.5	1	1.5		
ouppiy	Control	Circuit	Single-phase, 1	00/110VAC ±1	0%, 50/60Hz, 5	0 VA (with power	transformer inst	alled separately)		
Max C	Dutput Vo	oltage (V _{MAX}) VDC	±30 (at ±6A)	±100 (at ±3A)	±45 (at ±7A)	±100 (at ±6A)	±85 (at ±8A)	±80 (at ±13A)		
Instan Curre	taneous nt (I _{MAX})	Max Output A	\pm 15 \pm 10 %	\pm 11 \pm 10 %	± 20 ± 10 %	\pm 15 \pm 10 %	\pm 20 \pm 10 %	\pm 30 \pm 10 %		
Contir	nuous Oi	utput Current (I out) A	±6	±3	±7	±6	± 8	±13		
Curre	nt Limiti	ng Range A	\pm 3 to \pm 15	± 1 to ± 11	± 3 to ± 20	± 3 to ± 15	± 3 to ± 20	± 6 to ± 30		
Waveform Factor					1.05 an	d below				
Derating Factor				0.95 and below						
Speed	Contro	l Range		1000 : 1						
-	Load R	egulation 0 to 100%	0.1% and below at rated speed, \pm 0.05% and below at 1/1000 rated speed							
tior	Voltage	Regulation ±10%	\pm 0.1 % and below at rated speed, \pm 0.02 % and below at 1/1000 rated speed							
oeed egula	Temper 25 ±35	rature Regulation 5°C	\pm 0.5% and below at rated speed, \pm 0.1% and below at 1/1000 rated speed							
N R	Tach-ge Regulat	en (TG) Temperature ion	- 0.05%/°C							
lce	Rated F	Reference Voltage	\pm 6 VDC (forward running at plus reference)							
sed ferer ut	Resista	nce			20 kΩ	±10%				
n Ref	Circuit	Time Constant			35 <i>µ</i> s	±20%				
ary	Rated F	Reference Voltage			±2 to	$\pm 10 V$				
vili:	Resista	nce		3.3kΩ/V						
Au	Circuit	Time Constant			45μs ar	nd below				
Speed	l Feedba	ick		DC tachome	ter generator feed	dback control (7V	//1000r/min)			
Built-i	n Refere	nce Power Supply	± 12 VDC, ± 30 mA							
Ambient Temperature			- 10°C to + 60°C (- 10°C to + 40°C in panel)							
Stora	ge Temp	erature			— 20°C t	o +60°C				
Humi	dity				85% and below (non-condensing)			
Allowable Load Inertia			Print motor standard series, Minertia motor: 3 times motor inertia							

Table 1.1 SERVOPACK Ratings and Specifications

*For rated output

[†]Used for application at a rated reference voltage other than ± 6 V.

Type Designation

[†]Type CPCR-MR(::]C and Type CPCR-MR(::]CW differ in the shapes and cooling systems. For ventilating construction with overload detection circuit, the type CPCR-MR(::]CWL is applied.

Notes:

 Make sure that the power voltage is limited to less than 220 V +10 % (242 V). For voltages higher than 220 to 242 V, use a step down transformer to reduce the voltage.

2. The drive characteristic of type CPCR-MR: C differs for Servopocks and applicable motors as shown in Fig. 1.1 (a) and (b). The allowable current-conduction time for the instantaneous rating depends on combinations with the applicable motor and is guaranteed only for time of start and stop (approx. 1s or less) in the allowable inertia range. An overload protection such as motor locking is therefore necessary depending on the application conditions.

3. When a servomotor is driven by thyristor drive units, the armature current generally pulsates, differing from that of battery-driven units. This reduces the average value (component to produce torque) of armature current when the motor rated current equals armature current (r/min), and therefore, it is necessary to reduce the rated torque for the motor.

The reduction rate is termed the derating factor. The derating factor of Servopock type CPCR-MR[]C is very excellent, 95 % or greater.

Example: When type CPCR-MR(\Box C or 95% derating factor is combined with a motor of rated output 1.5kW(8.183N·m), the effective output(torque) is 1.5kW (8.183N·m) \times 0.95(14.25kW).

- 4. In the speed control range, the lowest speed is defined under the condition not stopped by 100 % load variation.
- 5. Speed regulation is generally defined as follows:

 $Speed \ regulation = \frac{No \ load \ speed - Full \ load \ speed}{Rated \ speed} \times 100 \ \%$

MR08C MR08CW	MR15C MR15CW	MR22C MR22CW	MR S	MR55C MR55CW		75C	MR	99 C
0.8	1.5	2.2	3.7	5.5	6.0	7.5	6.2	9.9
	Three	phase bridge rectifying	g, transisto	rized PWM	control			-
	Thr	ee-phase, 200/220VA	$C \pm 10\%$	50/60Hz :	±5%			
 1.6	3.0	4.0	6.9	9	10	13	10	17
	Sing	le-phase, 200/220VA	$C \pm 10\%$,	50/60Hz, 9	50 VA			
±200 (at ±7A)	±200 (at ±13A)	±200 (at ±18A)	±200 (a	at ±30A)	±200 (a	at ±40A)	±200 (a	t ±55A)
± 20 ± 10 %	± 25 ± 10 %	\pm 40 \pm 10 %	± 60 (± 55	± 10 % ± 10 %)	±55 ±10%	±75 ±10%	±120 ±10%	±100 ±10%
 ± 7	±13	± 18	±	30	±	40	±	55
 ±1.5 to ±20	± 2.5 to ± 25	± 3.5 to ± 40	±6 to	±60	±7 to ±55	±7 to ±75	\pm 10 to \pm 120	± 10 to ± 100
		1.05 an	d below					
0.95 or more								
		100	0:1					
 0.1% and below at rated speed, \pm 0.05% and below at 1/1000 rated speed								
\pm 0.1% and below at rated speed, \pm 0.05% and below at 1/1000 rated speed								
	\pm 0.5% and belo	ow at rated speed, \pm	0.1% and	below at 1/	1000 rated	speed		
		- 0.05	5%/°C					
 		$\pm6\text{VDC}$ (forward run	ning at plu	is reference)			
		20kΩ	±10%					
		0.5 ms	±20%					
	<u>.</u>	±2 to	±10V		. <u> </u>			
 		3.3 k	Ω/ν					
 		0.1 ms a	nd below					
	· DC	tachometer generator fe	eedback co	ntrol (7V/100)0r/min)			
 		± 12 VDC	$\pm 30 \text{ mA}$	0.0				
 		$-10^{\circ}C$ to $+60^{\circ}C$ (-1)		U°C in pane	91)		· · · · · · · · · · · · · · · · · · ·	
 	••••••••••••	- 20°C t	$0 + 10^{\circ}C$					
		Woled Drig % co	(non-condi	ensing)				
L L	Jp to 3 times motor ine	rtia		U	o to 2 times	motor inert	ia	

Actually, however, the calculated resistance value is varied by amplifier drift due to voltage and temperature fluctuations, and such an effect appears as a speed change. The percentage ratio of this speed change to the rated speed is the respective speed regulation due to voltage and temperature fluctuations.

The speed regulation due to temperature fluctuation must consider the effect of TG temperature fluctuation. The TG temperature fluctuation, relating to the ratio to TG generation voltage, is not significant at a low speed, but cannot be ignored when the speed is high.

(a) Combination of Type CPCR-MR[]C and DC Servomotors (PM, CM, HM, MM) 6. When housed in a panel, the inside temperature must not exceed ambient temperature range.

7. Type CPCR-MREC is limited in its regenerative control capability and therefore its load inertia is limited. (At a constant motor speed, the When regenerative energy of the motor is proportional to inertia.) the load inertia exceeds the allowable range, make sure to follow Par. 3.4.6 "Load Inertia" and 3.8.2 "Regenerative Unit Type JUSP-RG."

-MR^[]C-J, and DC Servomotors (JM)

NR: Rated Motor Speed IR: Rated Motor Current lout: NMAX: Maximum Drive Speed (Maximum Output Voltage VMAX) Instantanious Maximum Output Current Nimax: IMAX: (Instantaneous Maximum Torque TMAX)

Continuous Output Current Instantaneous Maximum Torque Drive Speed

Fig. 1.1 Type CPCR-MR[]]C Drive Characteristic

1.2 SERVOPACK OVERLOAD CHARACTERISTICS

The allowable conduction time of CPCR-MR[]C is shwon in Fig. 1.2(a) through (h).

In Fig. 1.2, cold and hot starts mean the following:

· Cold start: The overload characteristic when Servopack at the ambient temperature starts to operate.

(a) Types CPCR-MR01C and -MR02C

5000 5000 1000 1000 500 500 COLD START COLD START ALLOWABLE 100 ALLOWABLE 100 CONDUCTION CONDUCTION TIME (s) TIME (s) 50 50 HOT START 10 10 HOT START OVERLOAD -DETECTION LEVEL OF 5 TYPE JESP-PT203L 5 OVERLOAD DETECTION LEVEL OF TYPE CPCR-MR08CL 10⁴¹5 10"5 10 15 20 10 15 LOAD CURRENT (A) LOAD CURRENT (A) (d) Type CPCR-MR08C

- · Hot start: The overload characteristic when Servopack is running at the rated load and so saturated thermally.
- · Ambient temperature: For these data, the ambient temperature is 60°C. At lower ambient temperatures, the allowable conduction time increases.

.7

1.3 SERVOMOTOR RATINGS FRO SERVOPACK

	DC Servomotor								
SERVOPACK Type CPCR-	Туре	Effective Output kW	Rated Speed r/min	Effective Rated Torque N+m	Instantaneous Max Torque N+m	Effective Current A	Allowable Inertia kg⋅m²×10 ⁻⁴	Max Drive Speed r/min	Max Torque Drive Speed r/min
	UGPMEN-08	0.047	4000	0.114	0.451	4.9	1.175	5000	4000
MR01C	PMES-09	0.095	4000	0.225	0.745	5.5	1.375	4500	4000
	UGPMEN-09	0.095	4000	0.225	0.745	5.7	1.3	4500	4000 -
MR01CJ	UGJMED-10M	0.095	1000	0.904	4.9	2.3	12	1700	100
110000	PMES-12	0.19	3000	0.603	2.156	6.4	4.5	3250	3000
MRUZC	UGPMEN-12	0.19	3000	0.603	2.156	6.6	4.8	3250	3000
MR02C-M	UGMMEM-06	0.18	3000	0.559	1.96	6.2	2.85	3400	3000
100001	UGJMED-40M	0.152	1000	1.452	5.586	5.0	32	2100	700
MRUZUJ	UGJMED-40L	0.24	1000	2.272	7.546	5.6	40	2050	700
MDAFA	PMES-16	0.47	2500	1.813	5.488	7.3	18.6	2550	2500
MRUSC	UGPMEN-16	0.47	2500	1.813	5.488	7.5	18.9	2550	2500
	UGCMED-04AA	0.37	1750	2.029	5.88	8.0	44.75	2300	1750
MRUSC-C	UGCMEM-04	0.38	1750	2.078	5.88	8.0	46	2250	1750
MR05C-H	UGHMED-03GG	0.24	1000	2.234	6.566	7.8	40.75	1850	1200
MR05-M	UGMMEM-13	0.38	3000	1.205	3.528	7.4	4.25	3850	3000
MR07C*	UGMMEM-25	0.73	3000	2.323	5.488	13.1	8.5	3400	3000
MR08C	UGCMED-08AA	0.71	1750	3.881	13.132	6.7	132.5	2500	2000
MR08CW	UGCMEM-08GC	0.71	1750	3.881	13.134	6.4	108	2500	2000
	UGHMED-06AA	0.57	1000	5.439	19.6	6.2	219	1600	1200
MR08C-H	UGHMEM-06AA	0.57	1000	5.439	21.56	5.5	163.75	1500	1200
MR08CW-H	UGHMED-06GG	0.49	1000	4.655	15.974	6.5	99	1800	1200
MR08C-J MR08CW-J	UGJMED-60MA	0.43	1000	4.096	17.64	6.0	132	1800	1000
MR15C	UGCMED-15AA	1.43	1750	7.771	19.6	11.2	303	2250	2000
MR15CW	UGCMEM-15GC	1.43	1750	7.771	18.13	11.9	255	2400	2000
MR15C-P	PMES-20	0.95	3000	3.018	9.996	8.3	61	3900	3600
	UGHMED-12AA	1.14	1000	10.898	28.42	10.6	402	1450	1200
MR15C-H	UGHMEM-12AA	1.14	1000	10.898	29.106	10.0	260	1450	1200
MR15CW-H	UGHMED-12GG	1.14	1000	10.898	28.42	10.6	402	1450	1200
MR15C-J	UGJMED-60L	0.81	1000	7.713	21.56	11.0	189	1700	1000
MR15CW-J	UGJMED-80M	1.05	1000	9.967	25.48	11.5	420	1700	1000
MR15C-M			0000	1.055	10.100		07	4000	
MR15CW-M	UGMMEM-50AA	1.46	3000	4.655	10.486	12.1	21	4000	3000
MR22C	UGCMED-22AA	2.09	1750	11.456	30.38	16.1	456	2350	2000
MR22CW	UGCMEM-22GC	2.09	1750	11.456	29.106	17.2	369	2400	2000
	UGHMED-20AA	1.90	1000	18.159	49	16.6	876	1400	1200
MR22C-H	UGHMEM-20AA	1.90	1000	18.159	46.256	16.9	708	1450	1200
MR22CW+H	UGHMED-20GG	1.71	1000	16.297	45.08	16.2	702	1500	1200
MR22C-J MR22CW-J	UGJMED-80L	1.54	1000	14.671	39.2	18.0	735	1700	1000
MRSEC	UGCMED-37AA	3.52	1750	19.179	48.02	27.0	596	2250	2000
MR55C	UGCMEM-37FB	3.52	1750	19.179	45.472	27.6	750	2400	2000
MHSSCW	UGCMED-55AA	5.23	1750	28.489	63.504	30.0	946	1750	1750
	UGHMED-30AA	2.85	1000	27.185	70.756	23.3	988	1300	1000
MR55C-H	UGHMEM-30AA	2.85	1000	27.185	66.346	24.2	788	1450	1200
MR55CW-H	UGHMED-30GG	2.74	1000	26.068	73.99	21.0	730	1250	1000
	UGHMED-44AA	4.18	1000	39.847	94.472	24.7	2276	1000	1000
MR55C-J MR55CW-J	UGJMED-80K	2.47	1000	23.745	77.028	23.0	670	1450	650
MR55C-M MR55CW-M	UGMMEM-1AA	2.93	3000	9.31	24.5	24.9	50.5	4000	3000
MR75C	UGCMFD-75AA	6.92	1750	37.701	78.4	40.0	1446	1750	1750
MR75C-H	UGHMFD-60AA	5.70	1000	54.37	98.98	33.6	2276	1000	1000
MR99C	GEELM-K	9.14	1750	47.784	98	53.5	1000	1750	1750
MR99C-M	UGMMKR-2AA	5.86	3000	18.62	45.08	54.1	105	4000	3000

Table 1.2 Servomotor Ratings for SERVOPACK

*Specifications are the same as those for type CPCR-MR08. Notes:

1. Motors in _____ are applied to Servopack with standard adjustment.

2. The instantaneous maximum torque means the motor-generated torque when the Servopack is at the maximum instantaneous output current, when Servopack and a servomotor are combined for start and stop operations (Fig. 1. 2).

- 3. The maximum drive speed is the speed that can be driven at the rated motor torque or below.
- 4. The instantaneous maximum torque drive speed is the maximum speed available at the instantaneous maximum torque (Fig. 1. 2).

5. For the details of combination of types CPCR-MR75C-H and UGHMFD -60, contact the company.

6. In the combination of CPCR-MR99C and GEELM-K, the rated speed differs from the rated speed of the motor.

7. Motor types PM: Print motor standard series, JM: Minertia motor J series, MM: Minertia motor standard series, CM: Cup motor, HM: Hi-Cup motor

 Allowable inertia is the value at rated motor speed or below. When operating speed exceeds rated speed, the values of allowable inertia are smaller than those listed in the table above.

1.4 SERVOMOTOR CHARACTERISTICS FOR SERVOPACK

1.4.1 Starting and Stopping Time

The starting time and stopping time of servomotor under a constant load is shown by the formula below. Viscous or friction torque of the motor is neglected.

Starting Time:

$$tr = 104.7 \times \frac{N_R (J_M + J_L)}{K t I_R (\alpha - \beta)}$$
 (ms)

Stopping Time:

$$t_f = 104.7 \times \frac{N_R (J_M + J_L)}{K t I_R (\alpha + \beta)}$$
 (ms)

Where,

- N_R : Rated motor speed (r/min)
- J_M : Motor inertia (kg·m²)
- J_L : Load inertia converted to the motor shaft.(kg.m²)
- K_t : Torque constant of motor (N·m/A)
- I_R : Motor rated current (A)
- $\alpha = I_P / I_R$: Acceleration/deceleration current constant
- I_P : Acceleration/deceleration current (Acceleration/deceleration current α times the motor rated current) (A)
- $\beta = I_L / I_R$: Load current constant
- I_L : Current equivalent to load torque (Load current β times the motor rated current) (A)

Fig. 1.3 Timing Chart of Motor Armature Current and Speed

Fig. 1.4(a) shows the starting and stopping time when Servopack type CPCR-MR02-M is combined with servomotor type UGMMEM-06. Fig.1.4 (b) shows the starting and stopping time when Servopack type CPCR-MR15C-H is combined with servomotor type UGHMED-12AA.

The values shown in Fig. 1.4 are measured when operating motor at no load $(J_L = 0)$. When J_L is equal to J_M , the starting and stopping time is twice the value in Fig. 1.4. When J_L is double J_M , the starting and stopping time is three times the value in Fig. 1.4.

(a) Combination of SERVOPACK Type CPCR-MR02C-M and Servomotor Type UGMMEM-06AA1

(b) Combination of SERVOPACK Type CPCR-MR15C-H and Servomotor Type UGHMED-12AA

Fig. 1.4 Motor Starting and Stopping Time

1.4.2 Allowable Frequency of Operation

The allowable frequency of operation is restricted by the servomotor and Servopack, and both the conditions must be considered for satisfactory operation.

(1) Allowable Frequency of Operation restricted by the Servopack

The allowable frequency of operation is restricted by the heat generated in the regenerative resistor in the Servopack and varies depending on the motor type, capacity, load inertia, acceleration/ deceleration current values, and motor speed.

Figs. 1.5 to 1.7 show the allowable frequency of operation when Servopack is combined with servomotors such as Cup Motor, Hi-Cup Motor or Minertia Motor.

The values in Figs. 1.5 to 1.7 are shown when load inertia is 0. When load inertia is m times of motor inertia, the frequency is $\frac{1}{m+1}$ times the value in the figure. If load inertia exceeds three times the motor inertia or if the combination of Servopack type CPCR-MR 99C and industrial DC motor type GEELM-K is applied, contact your Yaskawa representative.

1.4.2 Allowable Frequency of Operation (Cont'd)

10

• When the motor remains at standstill between cycles of acceleration and deceleration without continuous rated speed running.

The timing chart of the motor armature current and speed is as shown in Fig. 1.9. The allowable frequency of operation "n" can be calculated as follows:

$$n = 286.5 \times \frac{Kt \cdot I_R}{N_R (J_M + J_L)} \times (1/\alpha - \beta^2 / \alpha^3) \quad (\text{times/min})$$

Fig. 1.10(a) and (b) indicate allowable frequency of operation of Minertia Motor type UGMMEN-06AA1 and Hi-Cup Motor type UGHMED-12AA, respectively.

The values in Fig. 1.10 are measured when operating motor at no load. When J_L is equal to J_M , the frequency is half of the value in the figure. When J_L is twice of J_M , the frequency is one-third of the value in the figure.

0.8

1.0

0.4

0.2

(b) Hi-Cup Motor Type UGHMED-12AA

Fig. 1.10 Allowable Frequency of Operation

0.6

LOAD CURRENT COEFFICIENT B

• When the motor accelerates, runs at constant speed, and decelerates in a continuing cycle without being at standstill.

The timing chart of the motor armature current and speed is as shown in Fig. 1.11. The allowable frequency of operation "n" can be calculated as follows.

$$n = 286.5 \times \frac{Kt \cdot I_R}{N_R (J_M + J_L)} \times (1/\alpha - \beta^2 / \alpha) \quad (\text{times/min})$$

Fig. 1.12(a) and (b) indicate allowable frequency of operation of Minertia Motor type UGMMEN-06AA1 and Hi-Cup Motor type UGHMED-12AA, respectively.

The values in Fig. 1.12 are measured when operating motor at no load. When J_L is equal to J_M , the frequency is half of the value in the figure. When J_L is twice of J_M , the frequency is one-third of the value in the figure.

Fig. 1.11 Timing Chart of Motor Armature Current and Speed

(a) Minertia Motor Type UGMMEM-06AA1

Fig. 1.12 Allowable Frequency of Operation

1.4.3 Servomotor Frequency

In the servo drive consisting of Servopack and servomotor, motor speed amplitude is restricted by the maximum armature current controlled by Servopack.

The relation between motor speed amplitude (N) and frequency(f) is shown by the formula below:

$$N = 1.52 \quad \frac{\alpha \times Kt \times I_R}{(J_M + J_L)} \quad [r/min]$$

Fig. 1.14 shows servomotor frequency of Hi-Cup Motor type UGHMED-12AA. The values in Fig. 1.14 are measured when operating motor at no load. When J_L is equal to J_M , the speed is half of the value in the figure. When J_L is twice of J_M , the speed is one-third of the value in the figure.

Fig. 1.13 Timing Chart of Motor Armature Current and Speed

Fig. 1.14 Servomotor Frequency of Hi-Cup Motor Type UGHMED-12AA

1.4.4 Speed-Input Voltage Characteristic

Fig. 1.15 shows motor speed and input voltage curve when speed reference input terminals 1CN-1 and 2 are used.

When the auxiliary input terminals ③ and ② are used, by adjusting Servopack $\boxed{\text{IN-B}}$, the rated speed can be obtained by input voltages of ± 2 to ± 10 V (Fig. 1.16).

The forward motor rotation (+) means counterclockwise rotation when viewed from the drive end (Forward motor rotation is given by connection as shwon in Figs. 2.1 to 2.5.)

2. CONFIGURATION

2.1 COMPONENTS

Table 2.1 shows optional components to be combined with Servopack.

		Optional Components to be Combined							
SERVOPACK Type CPCR-	Servomotor Type with TG (7V/1000 r/min)	Thermal Overload Relay Type	Power Transformer Type	DC Reactor Type	Speed Adjusting Potentiometer Type	Magnetic Contactor Type	Protection Device Type	Regen- erative Unit	Magnetic Field Power Unit Type
MR01C	UGPMEN-08 PMES-09 UGPMEN-09	RHP-15/4.9 RHP-15/5.7	CPT8585 (300 VA)				JESP -PT101(L)	JUSP -RG003	
MR01CJ	UGJMED-10M	RH-18/2.2PV	CPT8589 (300 VA)				JESP -PT201(L)	JUSP -RG001	
MR02C	PMES-12 UGPMEN-12	RHP-15/6.6	CPT8624 (500 VA)				JESP	JUSP	
MR02C-M	UGMMEM-06	RH-35/6.2HV					11102(2)	NGUUE	
MR02CJ	UGJMED-40M UGJMED-40L	RH-18/5.0PV RH-18/5.5PV	CPT8630 (500 VA)	_		HI-10E	JESP -PT202(L)	JUSP -RG001	1
MR05C	PMES-16 UGPMEN-16	RHP-15/7.5					JESP -PT203(L)		
MR05C-C	UGCMED-04AA UGCMEM-04GC	RH-35/7.8HV	CPT8660 (1 kVA)				JESP -PT203(L)-C	JUSP -RG001	
MR05C-H	UGHMED-03GG	DU 05 (0 00)					-PT203(L)-H		
MR05C-M	UGMMEM-13	RH-35/6.9HV	CPT8665				-PT203(L)-M		
MRU/C	UGMINIEM-25	RH-35/12.5HV	(1.5 KVA)				-PT204(L)		
MR08C(W)	UGCMEM 086C	PH 25/6 2HV							
		RH-35/6 2HV	. <u> </u>	X3055 (10mH8A)		1			
MB08C(W)-H		RH-35/5 5HV							
	LIGHMED-06GG	BH-35/6 2HV							
MR08C-J	UGJMED-60MA	RH-35/7T							
MR15C(W)	UGCMED-15AA UGCMEM-15GC	RH-35/11.5HV							
MR15C-P	PMES-20	RHP-15/8.3F			25HP-10B				-
	UGHMED-12AA	RH-35/10.5HV		VOOFO	2 kΩ				
MR15C(W)-H	UGHMEM-12AA	RH-35/10HV		(10mH13A)		HI-15E₅			
	UGHMED-12GG	RH-35/10.5HV							
MB15C(W)-J	UGJMED-60L	RH-35/15T1							
	UGJMED-80M	RH-35/15T2]						
MR15C(W)-M	UGMMEM-50AA	RH-35/12.5HV						ĺ	
MR22C(W)	UGCMED-22AA	RH-35/1/HV						_	
	UGCMEM-22GC	RH-35/17.5HV	-	¥2057	1		-		
	UGHMED-20AA	RH-35/17HV		(10mH18A)					
MR220(W)-H	UGHMED 2000	RH-35/17.5HV	-		J				
MB22C(W)-1		RH-35/26T							1
1011220(11)-0	UGCMED-37AA	BH-35/27HV			-		-		
MB55C	UGCMEM-37EB	BH-35/28HV	-	1					
	UGCMED-55AA	BH-35/30HV				3.7 kW or			
<u>د</u>	UGHMED-30AA	RH-35/23.5HV		VOOD		Delow:			
	UGHMEM-30AA	RH-35/24.5HV	1 <u></u>	(10mU28A)			1		
MH350(W)-H	UGHMED-30GG	RH-35/21HV	1			3.7 to			
	UGHMED-44AA	RH-35/24.5HV	1			5.5 kW:			
MR55C(W)-J	UGJMED-80K	RH-35/30T]			HI-25E			
MR55C(W)-M	UGMMEM-1AA	RH-35/24.5HV			ļ	5.5 to		1	
MR75C	UGCMFD-75AA	RH-35/41.2HV		X3066		11 kW:			1
MR75C-H	UGHMFD-60AA	RH-35/33HV		(10mH40A)	ļ	HI-35E			
MR99C	GEELM-K	RH-35/53HVW	_	X3067				Regenerative resistor unit	
MR99C-M	UGMMKR-2AA			(10mH55A)		<u> </u>		JUSP-RA03	20(RH)

Table 2.1 Combination of SERVOPACK and Servomotors and Optional Component

Notes:

1. Servopacks in _____ are standard products.

2. Thermal overload relay, RH-35/[]HV comes attached to the motor. Others must be procured separately.

3. For CPCR-MR99C and CPCR-MR99C-M, the regenerative resistor unit must be installed separately.

4. When ordering, see Par. 6. "Order."

5. When power supply 100/110 VAC is used for CPCR-MR07C, use magnetic contactor, HI-15E.

2.2 INTERNAL BLOCK DIAGRAM

Notes:

- 1. Terminals (3) and (2) are normally open contact. They are different from terminals (5) and (2) (normally closed contacts) of the previous types (CPCR-MR01 to -MR05).
- Thermal overload relay is directly connected to terminal (A) and the motor in series. Previous types (CPCR-MR01 to -MR05) have connection terminal (m).
- 3. Terminal E is not connected internally. In the previous types (CPCR-MR01 to -MR05) it is common to SG 0V.
- 4. O·S drive works only for type CPCR-MRECJ.

Fig. 2.1 Internal Block Diagram of SERVOPACK Types CPCR-MR01C to -MR05C

- 1. Terminals (5) and (2) are normally open contact. They are different from terminals (5) and (2) (normally closed contacts) of the previous types (CPCR-MR01 to -MR05).
- 3. Terminal is not connected internally. In the previous types (CPCR-MR01 to -MR05) it is common to SG 0V.
- 4. O·S drive works only for type CPCR-MR \square CJ.

Fig. 2.2 Internal Block Diagram of SERVOPACK Type CPCR-MR07C

2.2 INTERNAL BLOCK DIAGRAM (Cont'd)

2. Plug fuse is connected to the DC circuit. For previous types (CPCR-MR08H to -MR22H), alarm fuse is connected to the AC circuit. 1. The regenerative resistor is built-in. The resistor unit JUSP-ROCII for previous types (CPCR-MR08H to -MR22H) is not used.

3. Cooling fan 1FAN is attached to only type CPCR-MR[]CW.

Fig. 2.3 Internal Block Diagram of SERVOPACK Types CPCR-MR08C to -MR22C

Fig. 2.4 Internal Block Diagram of SERVOPACK Types CPCR-MR55C and -MR75C

17

2.2 INTERNAL BLOCK DIAGRAM (Cont'd)

2.3 EXTERNAL TERMINALS

2.3.1 External Terminals for Types CPCR-MR01C to -MR07C

Terminal Symbol		Name	Description
	(U) (U)	Main Circuit Power Input	Connected to terms. u1/v1 of secondary side of power transformer.
	U2 V2	Control Circuit Power Input	Connected to terms. u2/v2 of secondary side of power transformer.
Main Circuit	A B	Thermal Relay and Motor Connection	Connects term. (A) to motor term. (A), and term. (B) of thermal relay (connected in series) to motor term. (B).
	P 10	Optional	Connected to term. P/N of regenerative processing unit type JUSP-RG[].
	C3 C4	Alarm Output	Detects main circuit fuse blown-out or fin overheat (only for type CPCR-MR07C). Normally open, 220 VAC at 1 A.
	12	Speed Reference Input	② is at SG 0V. The rated forward rotation is given at $+6$ V.
	34	TG Input	(4) is at SG 0V. Connect TG(-) to (3) and TG(+) to (4).
	92	Auxiliary Input	Used to provide the rated speed at voltages (± 2 to ± 10 V) other than the ± 6 V rated reference voltage.
	56	Overtravel Base off at Reverse Running	Reverse-side base off with open across (5) and (6). Used with a limit switch.
	5 7	Overtravel Base off at Forward Running	Forward-side base off with open across (5) and (7). Used with a limit switch.
Control Circuit	8 (1)	Proportional Drive	 is at 0 V. Proportional drive when shortcircuiting across (8) and At this time, set the speed reference to 0 V.
		±12 V Power Output	(1) is at 0 V, (1) at $+12$ V, and (1) at -12 V. 30 mA can be supplied. Used for speed setting, etc
	(3 (1)	External Current Limiting at Reverse Running	Used to limit the current from external at reverse running.
	•••	External Current Limiting at Forward Running	Used to limit the current from external at forward running.
	()) ())	External Base off	1 is at 0 V. Shortcircuiting across 1 and 1 breaks bases at forward and reverse running.
	E	Grounding	This is a free terminal to be used for shielded wires for TG and input or as a junction terminal for grounding.

Table 2.2 External Terminals for Types CPCR-MR01C to -MR07C

2.3.2 External Terminals for Types CPCR-MR08C to -MR99C

Terminal Symbol		Name	Description
	8 S T	Main Circuit Power Input	Three phase 200/220 VAC ±10 %, 50/60 Hz
	(† (†	Control Circuit Power Input	Single phase 200/220 VAC \pm 10 %, 50/60 Hz
	© A	DC Reactor and Thermal	Connects DC reactor to thermal overload
	(([]) ([]*)	Overload Relay Connection	Relay in series
Main Circuit	A B	Motor Connection	Connects terminal \textcircled{B} to motor terminal \textcircled{B} , and terminal \textcircled{B} to motor terminal \textcircled{B} .
	(133) (143)	Regenerative Resistance Junction Terminal	Used as the internal junction terminal of the regenerative resistor unit. Cannot be connected from the outside [†] .
	(((((((((((((((((((((()))))))))))))))))	Thermo Switch Junction Terminal	Used for only CPCR-MR55C(W) to -MR99C shortcircuiting across \textcircled{m} - \textcircled{m} externally. Cannot be connected from the outside.
	1 2	Speed Reference Input	(2) is at SG 0V. The rated forward rotation is given at ± 6 V.
	34	TG Input	(4) is at SG 0V. Connect $TG(-)$ to (3) and $TG(+)$ to (4).
	92	Auxiliary Input	Used to provide the rated speed at voltages (± 2 to $\pm 10V$) other than the rated reference voltage, ± 6 V.
	56	Overtravel Base off at the Forward Running	Forward-side base off when shortcircuiting across (5) and (6). Used with a limit switch.
	57	Overtravel Base off at the Reverse Running	Reverse-side base off when shortcircuiting across (5) and (7) . Used with a limit switch.
	8 1	Proportional Drive	 is at 0 V. Proportional drive when shortcircuiting across (8) and At this time, set the speed reference to 0 V.
		±12 V Power Output	(1) is at 0 V, (1) at ± 10 V, and (1) at -12 V. 30 mA can be supplied. Used for speed setting, etc.
Control Circuit	13 10	External Current Limiting at the Reverse Running	Used to limit the current from external at reverse running.
	•••	External Current Limiting at the Forward Running	Used to limit the current from external at forward running.
	(1) (1)	Current Monitor	(1) is at 0 V. Armature current is observed at (1).
	16 17 18	Servo Trouble Output	Terminal to output servo trouble. 1 NONC contact (16: NC, 17: common, 18: NO) Current capacity: 100/200 VAC 1 A, 24 VDC 1 A
	() ()	External Base off	(1) is at 0 V. Shortcircuiting across (19) and (11) breaks bases at the forward and reverse running.
	20 21	Optional	Not used.
	(E) (D)	Grounding	This is a free terminal to be used for shielded wires for TG and input or grounding.

T-61- 0.0	Estevent Tevesingle few	Tunna ODOD MD090 to	MDOOC
Table 2.3	External rerminals for	Types CPUR-MIRUOU IO	-141 4990

*Only for CPCR-MR75C and -MR99C.

[†]Only for CPCR-MR99C, separate regenerative resistor unit JUSP-RA03 is connected (Fig. 3. 23).

Note: Do not use empty terminals to connect the external circuit (some unused terminals may be used in product modification, so reserve them for possible Servopack replacement).

,

2.3.3 External Terminal for Components to be combined

Table 2.4	Tachometer-generator Terminals
	and Servomotors

	DC Tachometer Generator (TG)							
Servomotor Type	Turne		Symbol					
	гуре	Connection Type	Plus (+)	Minus (—)				
		Cannon Connector	A	В				
		Terminal board or out- going lead opening	11	2				
UGJMED-[]]		Terminal board or						
UGCMED-[]]AA	UGTGIM-7LVC	outgoing lead	1	2				
UGHMED-[]]GG		opening						
UGPMEN-[]]		Screw terminal	1	2				
PMES-[]]	11TG-D027	Cannon Connector	С	D				
UGMMEM-[]]		Cannon Connector	С	D				
UGPMEN-[]]								
PMES-[]]								
UGCMEM-[]]	TG-7SV							
UGCMED-[]]	built-in	Cappon Connector	G					
UGHMEM-[]]	unit, type	Carnon Connector	G					
UGHMED-[]]	TFUE-LJC7							
UGJMED-[]]								
UGMMEM-[]]								

Note: When positive voltage is applied to motor terminal @, plus side terminal shown in Table 2.4 becomes positive.

(2) Power Transformer Terminals

Table 2.5 Power Transformer	Terminals
-----------------------------	-----------

SERVOPACK Type CPCR-	Power Transformer Type	Voltage across (i) and (v)	Voltage across @ and @	Primary Side Connection of Power Transformer
MR01 C	CPT8585 (300VA)	35VAC ±10%		
MR01CJ	CPT8589 (300VA)	100 VAC ± 10%		
MR02C	CPT8624 (500VA)	47 VAC ±10%	100 VAC	
MR02CJ	CPT8630 (500VA)	100 VAC ± 10%	10% (50VA)	200 V 50, 60 Hz 200 V
MR05C	CPT8660 (1 kVA)	85VAC ±10%		
MR07C	CPT8665 (1.5kVA)	80VAC ±10%		

(3) DC Reactor Terminals

Table 2.6 DC Reactor Terminals

SERVOPACK	DC Beactor Type	DC Reactor Terminals			
CPCR-		Termina	il Type	Number	
MR08C	X3055 (10mH 8 A)				
MR15C	X3056 (10mH 13A)	Terminal board M4 screw			
MR22C	X3057 (10mH 18A)				
MR55C	X3058 (10mH 28A)	Stud M6 Bolt			
MR75C	X3066 (10mH 40A)	termi-	M8 Bolt		
MR99C	X3067 (10mH 55A)	board			

(4) Thermal Overload Relay Terminals

Table 2.7 Thermal Overload Relay Terminals

Thermal Overload Relay Type	Terminal Arrangement
RHP-15	
RH-18∏PV	
RH-35/⊞HV	
RH-35/[]T	5 6 6 0

3. OPERATION

3.1 POWER ON AND OFF

For CPCR-MR[]C, the input must be made separately for the main circuit power (types CPCR-MR01 to -MR07C: u₁, v₂ input; types CPCR-MR08C to -MR99C: R,S,T input) and for the control circuit power (types CPCR-MR01C to -MR07C: u₂, v₂ input; types CPCR-MR08C to -MR99C: r,t input)

3. 1. 1 SERVOPACK Types CPCR-MR01C to -MR07C

(1) When Only One Servopack is used (Fig. 3.1)

The main circuit power and the control power must be supplied or cut at the same time, via a power transformer. Speed reference must be 0V while power is applied. If motor is started or stopped (power on or off) while applying speed reference voltage, trouble may result.

Fig. 3.1 Power Sequence Example for Types CPCR-MR01C to -MR07C

(2) Combination of Servopack and Protection Device Type JESP-PT (Fig. 3.2)

When protection device type JESP-PT is used with Servopack, make sequence so that only the main circuit power is cut off in the case of servo alarm. (For details, refer to Par.3.8.1 "Protection Device".)

For precautions at power on, refer to Par. 3.1.1 (1). If IMC is turned off during trouble, fault indicator will be out.

(3) Combination of Servopack and Regenerative Unit Type JUSP-RG(Fig. 3.3)

When regenerative unit type JUSP-RG is used with Servopack, make sequence so that the power is cut off by an alarm signal of regenerative unit. (For details, refer to Par. 3.8.2 "Regenerative Unit".)

3. 1. 1 SERVOPACK Types CPCR-MR01C to -MR07C (Cont'd)

(4) Combination of Servopack, Protection Device Type JESP-PT and Regenerative Unit Type JUSP-RG (Fig. 3.4)

3. 1. 2 SERVOPACK Types CPCR-MR08C (W) to -MR99C

The main circuit power (R, S, T) and the control power (r, t) must be input either at the same time, or the control power first followed by the main circuit power.

They must be cut off either at the same time (instantaneous power failure included), or the main circuit first followed by the control power. Thus, the sequence for power on and off is reversed.

In the case of trouble (servo alarm), only the main circuit power is to be cut off (Fig. 3.5).

Troubleshooting is described in Par. 3.3.5 (2)

3.2 SPEED REFERENCE

3. 2. 1 Speed Reference Circuit

From the Servopack built-in control power (terminals (10, (11), (12)) or the external power, the speed reference voltage is given to terminals (1) and (2) or to terminals (9) and (2). When the Servopack built-in control power is used, the motor speed fluctuates in the range of $\pm 2\%$ of the speed

(1) For Accurate (Inching) Speed Setting:

 Type 25HP-10B: Multiple-rotation type, wire wound variable resistor (with dial MD10-30B4) made by Sakae Tsushin Inc.

> (a) When Multiple-rotation Type, Wire Wound Variable Resistor is used

set value. When external power is used to give the speed reference voltage to Servopack, use the range of 0 to ± 12 V.

The method for giving speed reference voltage is described below.

- Type RV30YN: Carbon-film variable resistor made by Tokyo Cosmos Electric.
- Low-and high-speed relays: Reed relay (PG series) made by Nippon Electric or equivalent, or low-level relay (G2A-432) made by OMRON Corporation or equivalent.

Note: When a carbon resistor is used, a great residual resistance remains, and so the speed control range becomes approximately 500:1.

(b) When Carbon Variable Resistor is used

Fig. 3.6 Method for Giving Speed Reference Voltage (for Accurate Speed Setting)

3. 2. 1 Speed Reference Circuit (Cont'd)

Note: When a carbon resistor is used, a great residual resistance remains, and so the speed control range becomes about 500:1.

Fig. 3.7 Method for Giving Speed Reference Voltage (for relatively Rough Speed Setting as compared with Fig. 3.6)

3. 2. 2 Stop Reference Circuit

When commanding a stop, do not open the speed reference circuit (terminal (1) or (9)), but set to to 0 V [Fig. 3.8 (a) and (b)].

(a) When Multiple-rotation Type, Wire Wound Variable Resistor is used

(b) When Carbon Variable Resistor is used

Fig. 3.8 Method for Giving Stop Reference

3.2.3 Handling of Speed Reference Input Terminal

The unused terminal, out of the speed reference terminal (1) and the auxiliary input terminal (9), must be short-circuited to SG 0 V (terminal (2)), which is then grounded (Fig. 3.9.) If it cannot be grounded, the speed reference circuit and TG feedback circuit must be carefully connected to prevent noise.

(a) Types CPCR-MR01C (b) Types CPCR-MR08C to -MR07C to -MR99C

> Fig. 3.9 Handling of Speed Reference Input Terminal

3.2.4 Auxiliary Input Terminal (\pm 2 to \pm 10 V)

When using the auxiliary input terminals, adjust the input resistance to 3.3 k Ω /V (10 k Ω for 3 V rating, 33 k Ω for 10 V rating, for example).

3.3 BUILT-IN FUNCTION

3.3.1 External Current Limiting Reference Circuit

Current can be limited from the outside as well as within Servopack.

The external current limit is used for the following cases:

- To protect the motor from overload current when an abnormal load lock occurs in the load.
- To change the current limit value according to the external sequence.

The current can be limited by multi-stage setting by the use of relays (Fig. 3.10). The same effect can be obtained by giving voltage signals making analog change.

Fig. 3.10 Multi-stage Switching of Current Value at Forward Side

(1) Method of Giving External Current Limit Reference

The forward current (current from motor terminal (A) to (B) and reverse current can be controlled independently. The forward current can be controlled by giving a reverse voltage (0 to -9 V) to Servopack terminal (A); the reverse current by a forward voltage (0 to 9 V) to terminal (B). The power supply must use an internal resistance less than 2 k Ω . The input resistance at Servopack side must be greater than 5 k Ω . When external current is not restricted, terminals (B) and (A) are opened.

(2) Set Voltage and Current Limit Values

The relationship between set voltages of 0 to \pm 9 V and current limit values are shown in Fig. 3.11.

(3) Current Limit when Motor is locked

When locking a motor by applying a current limit, determine the current limit value less than the rated current of the motor. If the load condition requires a current limit exceeding the rated motor current, refer to Par.1.2."SERVOPACK OVERLOAD CHARACTERISTIC", and make sure to unlock the motor before reaching the overload, level.

Note that when the speed reference voltage is less than tens or so millivolts (affected by setting of gain of 4VR and 6VR), the motor lock current sometimes pulsates. If this is not desirable, the current pulsation can be removed by increasing the speed reference voltage.

For motor locked more than one minute, consult your Yaskawa representatives.

3.3.2 Proportional Drive Reference Circuit (Complete Stop Reference Circuit)

If a position loop is not set for positioning, and after completion of positioning, has been left for quite a long time, the positioned point may have moved due to preamplifier drift. This can be avoided by shortcircuiting terminals (8) and (1) immediately after the positioning (Fig. 3.12). This switches the speed amplifier from PI drive to P drive and the loop gain in the control system drops and the drift decreases. The P drive reference circuit can be controlled also by non-contact signal (0 V common, open collector operation). See Fig. 3.13.

In this case, pay attention to the voltage and currnet of the drive element. P drive reference ON/OFF timing is shown in Fig. 3.14.

Relay: Low-level relay type G₂A-432A made by OMRON Corporation or equivalent.

Note: When P drive reference is input, if the speed reference voltage is not 0 V, the motor rotates.

Fig. 3. 12 Proportional (P) Drive Reference Circuit

Note: Types CPCR-MR55C-H and -MR75C-H have been designed in 55A limit.

-9

10 1.5 TO 7

0 - 1

-5

SET VOLTAGE (V)

-10

0

5

SET VOLTAGE (V)

9

1.5 TO -7

(b) Types CPCR-MR08C to -MR99C

Fig. 3.11 Set Voltage – Current Limit Characteristics

3.3.2 Proportional Drive Reference Circuit (Complete Stop Reference Circuit) (Cont'd)

(a) Types CPCR-MR01C to -MR07C

(b) Types CPCR-MR08C to -MR99C

Fig. 3.13 Example of P Drive Reference Circuit Non-Contact Signal

Table 3.1 Overtravel Preventive Circuit

Notes:

 Arrow → means a delay time greater than the operating time for one relay (10 ms).

 P drive reference OFF → ON timing is done after the motor has stopped (after completion of positioning). When the operation does not include positioning, the timing can be set by setting timer (t₀) instead of the speed reference OFF. (Set (t₀) longer than the time needed for motor stop.)

Fig. 3.14 P Drive Reference Timing

3. 3. 3 Overtravel Preventive Circuit (Forward OFF, Reverse OFF Circuit)

This circuit is used to stop the motor drive at forward running (counterclockwise direction when viewed from the drive end) and at reverse running. The circuit, however, only cuts off the output voltage that drives the motor, and therefore, the motor stops after coasting. To apply brake action, set the speed reference voltage to 0 V, or use the dynamic brake circuit (generator control).

* 1RR, 2RR: Low-level relay, type G2A-432A made by OMRON Corporation

3. 3. 4 External Base off Circuit

When one Servopack is used to control several motors, the motors and TG must be switched with the drive circuit off. To keep the motor in standstill, the drive circuit must be off. In this case, by shortcircuiting across terminals (1) and (1), the drive circuits for the forward and reverse sides can be stopped at the same time (Fig. 3.15 (a) and (b)].

EXTERNAL BASE OFF

432A made by OMRON Corporation or equivalent.

External Base off Circuit (a) using Low-level-Relay

Fig. 3.15 External Base off Circuit

(b) External Base off Circuit

using Non-contact Signal

3.3.5 Protective Circuit

Servopack CPCR-MR[]C provides various functions to protect the body and motor from malfunctions.

When the external base off circuit operates, the proportional drive command circuit in Par. 3.3.2 operates at the same time. To prevent an abnormal operation due to saturation of the speed amplifier when releasing the base off, it is unnecessary to use the proportional drive command circuit. As reference, Fig 3.16 shows the external base off methods when overtravel preventive circuits are used.

Fig. 3.16 External Base off Method when using **Overtravel Preventive Circuit**

(1) Trouble Detecting Function

The trouble detecting functions are shown in Table 3.2.

		CPCR - MR 01 C to - MR 07 C CPCR-MR08C to -MR99C				C to -MR99C
Trouble Protecting Function	SERVOPACK only	SERVOPACK and Type JESP-PT	SERVOPACK and Type JUSP-RG	Standard Type	Type CPCR- MR[]CL	
TG Trouble Detection: Detects, bro ed wiring or reverse connection in T	— .	O	_	()	
Overcurrent Detection*: Detects an overcurrent in transistor due to malfunctioning such as motor insulation problems.		0	O	0	(0
Overvoltage Detection: Detects abnormal DC voltage in the main circuit due to large load inertia.		0	O	۲	(0
Blown Fuse Detection: Detects that the SERVOPACK main fuse is blown.		(Output: Contact output across terminals @-@)			0	
Overload Detection:	Motor Overload	Accomplished by a separately installed thermal overload relay.				ad relay.
SERVOPACK	SERVOPACK Overload [†]	_		_	. _	Ø
Heat Sink Overheat Detection1: Detects exces- sively overheated heat sink by cooling fan malfunction etc.		(For type CPCR - MR 07 C)) MR55C to -MR99C)	
Regenerative Circuit Trouble Detection: Detects breakdown of regenerative resistance, or trouble in regenerative transistor or regenerative circuit.		- 0 0			0	
	Indication	See the next	Par. (2). Take co	prrective action wh	nen protective cire	cuit operates.
Protective Circuit ON	Output [‡]	_	Item () contact output 1NONC contact	Item () Lead relay contact output	Item © contac	t output
	Reset	Power off	Reset BS	Power off	Rese	et BS

Table 3.2 Trouble Detecting Function

*Overcurrent means an instantaneous (100 μ s or less) current (greater than 1.2 to 2.0 times the instantaneous maximum current of Servopack) passing through the power transistor used in the main circuit.

[†] Specification for the special type.

†O: External signals are not output.

O, O, T: External signals are output. Output contact specification

Power relay 1NONC contact; 200 VAC 1A, 24 VDC 1A

Lead relay 1NO contact; 100 VAC 0.3A (15 VA max)

1NO contact; 200 VAC 1A, 24 VDC 1A :

3. 3. 5 Protective Circuit (Cont'd)

(2) Corrective Action when Protective Circuit Operates

When the protective circuit operates, the drive circuit in Servopack is turned OFF, the content of operation is displayed with LEDs, and alarm signals are output from the external terminals (B, (D, and (B . This state continues until reset. The output of an alarm signal shows some trouble, so check the cause and take the proper corrective action to restart the operation.

Do not check the cause while power is applied to the main circuit. Make a sequence to cut off only the main circuit power supply, (terminals (1_1) and (1_2) , or (\mathbb{R}) , (\mathbb{S}) , and (\mathbb{T})) using an alarm signal. See Fig. 3.5. Do not cut off the control power (terminals and or and) at this time, because this will turn off LEDs in CPCR-MR or JESP-PT indicating the cause of alarm.

NOTE

Before restarting the operation, set the speed reference to 0V. Then turn on the main circuit power. (Due to saturation of the speed amplifier, an instantaneous high-speed rotation may occur momentally.)

3.3.6 Display

Servopack CPCR-MR []] C is provided with a variety of LEDs for indicating the operating conditions in protective circuit and control section. Table 3.3 shows indicating specifications.

	Indicating Function	LED Name	Lighting Condition	SERVOPACK Types CPCR-MR01C to -MR07C	Protection Device Type JESP-PT	SERVOPACK Types CPCR-MR08C to -MR09C
Power Supply		POWER (Green)	Control power is supplied. (CPCR-MR01C to -MR07C: 100 VAC \pm 10%, single-phase across terminals (2)-(2): CPCR-MR08C to -MR99C: 200 VAC \pm 10%, single-phase across terminals (7-(1).)	0	_	0
		MAIN (Green)51LED	Main circuit power is supplied.	_		0
Sp Inp	eed Reference ut	INPUT (White)	Speed reference ($\pm 60 \text{ mV}$ or more) is input across terminals (1)-(2) or (9)-(2).	—	0	0
Base off		(INHIBIT) (White)	 Base is off in both forward and reverse rotations: Overtravel preventive circuit (terminals (\$), (\$), (?)) operates in both forward and reverse rotations. External base off circuit (terminals (\$)-(1)) operates. Servo trouble detecting circuit operates. Main power is not applied to SERVOPACK. (200VAC ± 10%, three-phase, 50/60Hz across terminals (\$)-(\$). 	_	0	0
	TG Trouble	TG (Red)	TG trouble detecting circuit operates.	_	0	0
	Overevenent	PROTECT (Red)			0	0
	Overcurrent	ALARM (Red)	Overcurrent detecting circuit operates.	0	_	
	Overveltage	RE · GENE (Red)		—	0	0
uble	Overvollage	ALARM (Red)	Overvoltage detecting circuit operates.	0	_	—
Tro		RE-GENE (Red)	Blown-fuse detecting circuit operates.	—	_	0
Servo	Blown Fuse	Fuse Element	Blown-fuse indicator comes out from fuse element itself.	See Fig. 3. 17 (a).		See Fig. 3.17 (b).
	Overload	OL (Red)	SERVOPACK overload detecting circuit operates. (Protection device: type JESP-PT[]]L only; SERVOPACK, type CPCR-MR[]]CL only)	_		
	Heat Sink Overheat	TG (Red) PROTECT (Red)	Heat sink overheat detecting circuit operates. (For SERVOPACK types CPCR-MR55C to -MR99C)	-	_	
	Regenerative Trouble	RE.GENE (Red)	Trouble detecting circuit for regenerative circuit operates.	_	_	0

Table 3.3 LED Indication Specification

Notes:

1. Mark △ is for specification of special types.

2. Mark \bigcirc or \bigtriangleup is displayed with Servopock.

(b) Types CPCR-MR08C to -MR99C

3. 3. 7 Current Monitor

Motor current appears as a voltage signal at terminal (5) of Servopack types CPCR-MR08C to -MR99C or protection device type JESP-PT (Table 3.4). The signal is used to detect overload of the motor. The connecting load must have input impedance of 10 k Ω or greater (Normally open).

Table 3.4 Voltage Level of Current Monitor Terminals

SERVOPACK Type (Protection Device Type)	Current Monitor Terminal Voltage (With Terminal (5) opened)
CPCR-MR01C to -MR07C + (JESP-PT)	0.045 V ± 10 % / A
CPCR - MR 08 C	0.06 V ± 10 % / A
CPCR - MR 15 C	0.05 V ± 10 % / A
CPCR - MR 22 C	0.03 V ± 10 % / A
CPCR - MR 55 C	0.02 V ± 10 % / A
CPCR - MR 75 C	0.015 V ± 10 % / A
CPCR - MR 99 C	0.01 V ± 10 % / A

3. 3. 8 Overspeed Drive (O-S Drive)

To fully develop the characteristic of Minertia Motor J series (large torque at low speed), CPCR -MR [] CJ and CPCR-MR [] C-J provides the O.S drive function enabling an overspeed drive up to approximately 1.5 to 2 times the rated speed within the allowable speed range of the motor. It is therefore unnecessary to control the current limit characteristic determined by the motor (according to the speed, automatic current limit is applied from the outside).

3.4 PRECAUTIONS FOR APPLICATION

3. 4. 1 Coating (Varnish) Treatment

When used in ambients where oil mist is likely to deposit or humidity is high, Servopack internal insulating resistance drops due to oil mist or moisture and malfunction may occur. For use in a severe ambient condition, the type of treatment for severe environment should be applied.

For the severe ambient condition, types having control board coated with varnish are available.

3.4.2 Minus Load

The motor is rotated by the load; it is impossible, by the use of CPCR-MR []C, to apply brake (regenerative brake) against this rotation and achieve continuous running.

Example: Driving a motor to lower objects (with no counterweight)

Since Servopack types CPCR-MR08C to -MR99C has the regenerative brake capability of short time (corresponding to the motor stopping time), for application to a minus load, contact the company. For regenerative unit type JUSP-PG used with types CPCR-MR01C to -MR07C, refer to Par. 3.8.2.

3. 4. 3 Type CPCR-MR CW Application

Types CPCR-MR08CW to -MR55CW are applicable to harmful ambients containing iron powder and cutting oil, such as in cutting and milling machines or car factories. The characteristics are the same as those of types CPCR-MR08C to -MR55C, but the construction differs in that cooling air is taken from the outside of the unit and discharged to the outside [Fig. 3.18 (a) and (b)].

Fig. 3.18 Cooling System

3.4.4 Type CPCR-MR CL and Type JESP-PT L Application

For continuous running of Servopack, the load conditions must be checked thoroughly. Special care is needed for application to an operation mode in which the load varies and the Servopack continuous output current is exceeded (except for overload due to start and stop), or where the motor locking current may continue for 1 second or longer when the motor is locked due to machine trouble. In such an application, use Servopack type CPCR-MR[]CL or type JESP-PT[]L with the overload detecting function to prevent trouble made by exceeding Servopack overload capability.

The protective circuit detecting level is set under condition of a motor locked during motor running, and therefore the safety factors and allowable conduction times are different for each Servopack. See Fig. 1.2 (a) to (h).

Servopack operates at an early time for frequent start and stop application in this set level. In application, thorough consideration is necessary for the value to be set. Note that the thermal overload relay for motor overload protection does not protect all the overload characteristics of Servopack.

3.4.5 Special Power Voltage

(1) Types CPCR-MR01C to -MR07C

Where the supply voltage is 400 or 440 V, it is necessary to charge power supply transformer. The transformer is available on order.

(2) Types CPCR-MR08C to -MR99C

For power voltage of 400 V class, a transformer must be added. In such a case, contact the company. Single-phase power of 100 V class cannot be used.

3.4.6 Load Inertia

Type CPCR-MRCC has a limit in its regenerative control capability and therefore the load inertia is restricted. When the motor speed is constant, the regenerative energy of the motor is proportional to inertia.

The allowable load inertia converted to the motor shaft is as follows:

(1) Types CPCR-MR01C to -MR07C

- Print Motor standard series (PM)
- Minertia Motor standard series (MM) $J_{L} \leq 3J_{M}$
- Cup Motor
- Hi-Cup Motor $J_L \leq 2J_M$
- Minertia Motor J series
- (2) Types CPCR-MR08C to -MR22C: $J_L \leq 3J_M$

(3) Types CPCR- MR55C to -MR99C: $J_L \leq 2J_M$ If load inertia exceeds the above values, contact your Yaskawa representatives for types CPCR-MR-08C the available range of load inertia is max five times of motor inertia by using regenerative unit. (Refer to Par. 3.8.2.)

3.4.7 Motor Overload Protection

If a motor runs continuously under overload, motor coil may burn out. To protect the motor, use a thermal overload relay that matches the thermal characteristic of the motor. Make sure to connect the specified thermal overload relay as shown in Figs. 2.1 to 2.5. Make a sequence circuit so that the main circuit power is turned off when the thermal overload relay operates.

For Minertia Motor J series, the thermoguard may be contained in the motor as an optional. In this case, the contact of the thermal overload relay is connected in series to the contact of the thermoguard (Fig. 3.19). Note that the thermal overcurrent relay is not attached to the motor and must be procured separately.

Overload Protection

3.5 PRECAUTIONS FOR OPERATION

3.5.1 Noise Treatment (Fig. 3.20)

Servopack CPCR-MR \square C uses a power transistor in the main circuit. When these transistors are switched, the effect of $\frac{di}{dt}$ or $\frac{dv}{dt}$ (switching noise)

may sometimes occur depending on the wiring or grounding method. To reduce switching noise as much as possible, the recommended method of wiring and grounding is shown below.

Note: By balancing the ground impedance viewed from PWM power (by adding 1 X - 1 L equivalent reactor), the normal mode noise is converted to the common mode noise. This is an effective action for R. F. I. However, readjustment may be required.

(1) Noise Filter Installation

When noise filters are installed to prevent noise from the power line, the preventive type must be used. The recommended noise filter is shown in Table 3.5. The power supply to peripherals also needs noise filters.

SERVOPACK	Kind of Applicable Noise Filter	Recommended Noise Filter		
Type CPCR-	Kind of Applicable Noise Filter	Туре	Specifications	
MR 01 C		LF - 205 A	Single-phase 200, 100 VAC class 5 A	
MR 02 C	oo	LF - 210	Single-phase 200, 100 VAC class 10 A	
MR 05 C	÷	LF - 215	Single-phase 200, 100 VAC class 15 A	
MR 07 C	÷	LF - 215	Single-phase 200/100 VAC class 15 A	
MR 08 C	Correct	LF - 305	Three-phase 200 VAC class 5 A	
MR 15 C	\sim	LF - 310	Three-phase 200 VAC class 10 A	
MR 22 C		LF - 315	Three-phase 200 VAC class 15 A	
MR 55 C		LF - 330	Three-phase 200 VAC class 30 A	
MR 75 C		LF - 340	Three-phase 200 VAC class 40 A	
MR 99 C	Wrong	LF - 350	Three-phase 200 VAC class 50 A	

Table 3.5 Recommended Noise Filter*

* Made by Tokin Corp.

3.5.1 Noise Treatment (Fig. 3.20) (Cont'd)

- (2) Grounding Method
- Motor frame grounding

When the motor is at the machine side and dy

grounded through the frame, Cf $\frac{dv}{dt}$ current

flows from the PWM power through the floating capacity of the motor. To prevent this effect of current, the motor frame is directly grounded.

• Servopack SG 0 V

Noise may remain in the input signal line, so make sure to ground SG 0 V (terminal (2)).

The terminals (E), (E_0) , and (E_0) are connected to nowhere into Servopack. These terminals must be grounded outside. When motor wiring is contained in metal conduits, the conduits and boxes must be grounded.

The above grounding uses one-point grounding. For wiring, see Par. 4.2.2.

(3) Grounding when Multiple Servopacks are used

When Servoapck types CPCR-MR[]C are housed in the same control panel, ground them as shown in Fig. 3.21.

Fig. 3. 21 Grounding when Multiple SERVOPACKs are used

(4) Others

- For an effective action due to R. F. I., use three-phase insulation transformer for the power supply (for types CPCR-MR08C to -MR99C).
- For preventing noise from the speed reference circuit, use an isolator.

Example: V/V Isolator M3000B Type made by M. T. T. Co.

3.5.2 Power Line Protection

Servopack CPCR-MR08C to -MR99C are the line operation type using the commercial power line. To protect the power line from grounding or contact accidents or the system from a fire, it is necessary to use molded-case circuit breakers (MCCB) or fuses depending on the number of Servopacks to be used (Table 3.6).

The fuses contained in Servopack are to protect the DC circuit, but not to protect the power line. Quick-melting fuses cannot be used. Servopack CPCR-MR[]C has the capacity-input type power and so quick-melting fuses may be blown at the time of power input.

Table 3.6 Pov	wer Capacity	and MCCB	or	Fuse
---------------	--------------	----------	----	------

SERVOPACK Type CPCR-	Power Capacity per SERVOPACK	Current Capacity per MCCB or Fuse
MR 08 C	1.6 kVA	5 A
MR 15 C	3.0 kVA	9 A
MR 22 C	4.0 kVA	12 A
MR 55 C	3.7 kW 6.9 kVA	20 A
	5.5 kW 9 kVA	26 A
MD 75 0	6 kW 10 kVA	26 A
MR 75 C	7.5 kW 13 kVA	35 A
MR 99 C	9.9 kW 17 kVA	50 A

3. 5. 3 Driving Motor with Cooling Fan and Motor with Separate Excitation

• The cooling fan comes attached to Cup motor type UGCMFM-75FB, Hi-Cup motor type UGHMFM-60, industrial DC motor type GEELM-K, and Minertia motor type UGMMKR-2AA, respectively. For the cooling fan specifications (power requirement, number of phases, thermal overload relay type for protection, connection method, and air flow), see the individual motor specifications and make correct connection.

Make the sequence so that the motor-drive main circuit is cut off when the fan-protecting thermal overload relay operates.

Minertia motor type UGMMKR-2AA requires a field power supply in addition to Servopack. Our company offers the field power unit NPSA-TM-20(RH)Y1 for type UGMMKR-2AA. For details, contact your Yaskawa representative.

3.6 CONNECTION DIAGRAM OF SERVOPACK

3.6.1 Types CPCR-MR01C to -MR07C

*The thermal overload relay (1THR) for PM or JM provides neither terminal (5) nor (6).

Fig. 3.22 Example of Connection Diagram of SERVOPACK Types CPCR-MR01C to -MR07C

3.6.2 Types CPCR-MR08C to -MR55C

*The thermal overload relay should be connected on DC reactor side.

Fig. 3.23 Example of Connection Diagram of SERVOPACK Types CPCR-MR08C to -MR55C

~

3. 6. 3 Types CPCR-MR75C, -MR99C

*For only Servopack type CPCR-MR99C-M.

Notes:

- 1. The thermal overload relay should be connected on DC reactor side.
- The regenerative unit, type JUSP-RA03, is used only for type CPCR-MR99C.
- Connect a power supply for cooling fan to motor using correct terminals according to motor specifications.

Fig. 3.24 Example of Connection Diagram of SERVOPACK Types CPCR-MR75C and -MR99C

3.7 APPLICATION

3.7.1 Switching Operation of Multiple Servomotors

When one Servopack is used for switching operation of multiple servomotors (the same type and capacity), follow the procedure below [Fig. 3.25 (a) and (b).]

- Input stop reference (speed reference voltage: 0 V) [DCM1 stop].
- Input external base off (terminals (1) and (1): ON).
- Release DC output for DCM1 (MC1: OFF).
- Break TG circuit for DCM1 (CX1: OFF).
- Input DC output for DCM2 (MC2: ON).
- Make TG circuit for DCM2 (CX2: ON).
- Release external base off (terminals (1)) and (1): OFF).
- Input speed reference [DCM2 run].

NOTES

- 1. Arrow I shows a delay time greater than the operating time (10 ms) of one relay.
- 2. Input the external base off after a delay of one relay from the time the motor has stopped.

(a) Switching Operation Circuit for Multiple (Two) DC Servomotors

Notes:

- Arrow→shows a delay time greater than the operating time (10 ms) of one relay.
 Turn on the external base off after the motor has stopped
- completely. This can be done normally by setting timer to from the speed reference OFF (set to greater than the motor stopping time).
- For MC1 and MC2, use magnetic contactor with high contact reliability.
 - (b) Switching-operation Timing-chart for Multiple (Two) DC Servomotors

3.7.2 Emergency Stop Dynamic Braking (DB) Circuit

When an external DB circuit for emergency stop is used, make and break the DB circuit in the sequence shown in Fig. 3.26 (a) and (b). The DB resistance value differs depending on the applicable motors and conditions. Examples are shown in Table 3.7 as reference.

When making a DB circuit with the overtravel preventive circuit, contact your Yaskawa representative.

- Input the external base off with an emergency stop signal (terminals (9) and (1): ON).
- Input DB circuit (MC2: ON)

• (Speed reference voltage: 0 V)

- Break DB circuit (MC2: OFF)
- Release the external base off (terminals (19) and (11): OFF).

NOTES

- 1. Arrow↓ shows a delay time greater than the operating time of one relay.
- 2. Release the DB circuit after setting the speed reference to 0 V.

Note: Arrow $\ensuremath{\rightarrow}$ shows a delay time greater than the operating time of one relay.

- (b) Timing Chart when Making and Breaking DB Circuit for Emergency Stop
- Fig. 3.26 Use of DB Circuit for Emergency Stop

Fig. 3. 25 Switching Operation for Multiple DC Servomotors

D	C Servomotor Type	DB Resistor Type (R _{DB})	DB Contactor Type (MC2)	
e	UGPMEN-08	0H710W 10 x 2P		
t Motor dard Ty _l	PMES-09			
	PMES-12	QHZ-Y30W1Ω	(B X 3P)	
tanc	PMES-16	QHY60W 2Ω		
۹S	PMES-20	QHY60W 5Ω		
	UGJMED-10M			
2	UGJMED-40M	QHY30W 2Ω		
oto	UGJMED-40L			
ي <	UGJMED-60M	QHY30W 2 Ω +QHZ10W 1 Ω	RA-6E2	
irie irie	UGJMED-60L		(B×3P)	
Seli	UGJMED-80M	OHY 60 W 20		
≥ ¬	UGJMED-80L			
	UGJMED-80K		SGC50-4 (B×4P)	
	UGCMED - 04	QHY60W 2Ω		
5	UGCMED-08		RA-6E2 (B×3P)	
g	UGCMED-15			
Σ	UGCMED - 22			
3	UGCMED - 37	Gillioo II Elli		
0	UGCMED - 55		SRC 50-4	
	UGCMFD -75		(B × 4 P)	
ğ	UGHMED-06	QHY30W 2Ω		
Mo	UGHMED-12		RA-6E2	
đ	UGHMED - 20	OHY60W 20	(B×3P)	
୍ ଦ୍	UGHMED - 30			
ī	UGHMED -44		SRC50-4 (B×4P)	
ŝ	UGMMEM-06			
otor	UGMMEM-13		BA-6E2	
d S.	UGMMEM-25	QHY60W 2Ω	(B×3P)	
ertia dar	UGMMEM-50			
Aine Stan	UGMMEM-1A	,		
20	UGMMKR-2A	QHY 60 W 2 Ω × 2P	SRC50-4 (B×4P)	

Table 3.7 DB Resistor for DC Servomotor

3.7..3 Use of Servomotor with Holding Magnetic Brake

When servomotor with holding magnetic brake is used, use the following timing for signals ON and OFF. The holding magnetic brake is released by current conduction.

*Input speed reference 0.1 second or more after the brake release reference has been input.

†Apply brake after the motor has stopped completely. (Do not use the brake to decelerate the motor.)

Note: Arrow \rightarrow shows a delay time greater than the operating time (10 ms) of one relay.

Fig. 3.27 Holding Magnetic Brake ON-OFF Timing

3.7.4 Tachometer Connection

When a tachometer is connected to the tachometer generator, make the connection as shown in Fig. 3.28, using a DC ammeter of $\pm 1 \text{ mA}$ (both swing). Using resistances 1R and 2R and a potentiometer 1 VR, set the maximum speed per full scale.

Notes:

1. Instrument: ±1 mA (both swing) ammeter.

- 1R, 2R and 1VR should be selected according to the setting of maximum speed per full scale. (select 1R = 2R; 1VR is for fine adjustment)
- Use ammeter of type DCF-6 or DCF-12N by Toyo Instrument or equivalent.

Fig. 3.28 Tachometer Connection

3. 7. 5 Transformer for Multiple SERVOPACKs

Power transformer is needed when Servopack types CPCR-MR01C to -MR07C are used. The capacity of one power transformer is usually limited to one Servopack. Where multiple Servopacks are applied to one transformer, a special transformer is required. In this case, contact your Yaskawa representative.

3.8 OPTIONAL COMPONENTS

3.8.1 Protection Device Type JESP-PT

Protection device type JESP-PT[] for Servopack types CPCR-MR01C to -MR07C is available as an option. Protection device type JESP-PT[] contains protective circuits to detect overcurrent and overvoltage protection. If any trouble occurs, the protective circuit is actuated and the indicator LED lights to indicate the status. Operating status cannot be output outside of Servopack.

By using Servopack with protective device type JESP-PT[], trouble status can be indicated and output by built-in relays. The protection devices can be easily connected to Servopack using connectors.

Protection device type JESP-PT[] contains functions such as TG trouble detection and input/ output prohibition indication, and current monitor terminal. Type JESP-PT[]L containing overload detection is available upon request.

39

3.8.1 Protection Device Type JESP-PT[] (Cont'd)

(1) Specifications

Protection E Type JESP-	Device	PT101 PT102 PT201 PT202 PT203 PT203-C PT203-M PT203-H PT204 PT101L PT102L PT201L PT202L PT203L PT203L-C PT203L-M PT203L-H PT204L					
SERVOPACI	K Type CPCR-	MR01C MR02C MR01CJ MR02CJ MR05C MR05C-C MR05C-M MR05C-H MR07C					
	Reference Input	ED [INPUT] (white): Indicates speed reference status of SERVOPACK.					
	Inhibition (Base off)	LED [INHIBIT] (white): Indicates base-off status of SERVOPACK.					
Indicating		LED TG (red): Indicates operating status of TG trouble detecting circuit.					
Functions*	Servo	LED PROTECT (red): Indicates operating status of overcurrent detecting circuit.					
	Trouble	LED <u>RE·GENE</u> (red): Indicates operating status of overvoltage detecting circuit.					
		LED OL [†] (red): Indicates operating status of overload detecting circuit.					
	TG Trouble Detection	Activates when disconnected or shorted wiring or reverse connection in TG circuit is detected. Prevents motor overrun.					
Protective	Overcurrent Detection	Activates when overcurrent flows in the transistor due to malfunction such as motor insulation problems. Prevents transistor breakdown.					
Functions	Overvoltage Detection	Prevents troubles due to excessive regenerative power due to large load inertia.					
	Overload Detection	Prevents troubles due to excessive overload of SERVOPCAK.					
Servo Trou Output Spe (Terminals (ble cifications 16, 17, 18)	When the protective circuit is actuated, a servo trouble signal is sent to SERVOPACK from terminals (b), (i) and (b), to stop the action of the motor drive circuit. Contact rating: Transfer 1 contact (1 C) 200/100 VAC 1 A, 24 VDC 1 A					
Reset		For resetting, depress the 1PB on the surface of the protection device (the alarm circuit [ALARM] of SERVOPACK is reset simultaneously.)					
Current Mo (Terminals (nitor (5-(1)) [†]	0.045 V ±10 %/A at terminal ⁽).					

Table 3.8 Specifications of Protection Device

* Refer to Per. 3.3.6, "Display."

[↑]Only for type JESP-PT[]L.

tAt terminal ()), forward direction current gives \oplus voltage and reverse direction current gives \ominus voltage.

(2) Elementary Diagram

2. Terminals (2) and (2) are used when Yaskawa Programmable Motion Controller is connected. (3) Connection

- (4) Precautions in Use
- (a) Installation
- Be sure to mount the protection device on the left side of Servopack.
- Mount it on Servopack as shown in Fig. 3.31.

3. 8. 1 Protection Device Type JESP-PT[] (Cont'd)

- Do not pull, tug or jerk the connector leads.
- When fitting the connector, insure proper direction of insertion and avoid bending pins. Do not insert forcibly.
- When wiring, do not obscure the reset pushbutton and the indicating LEDs.

(c) Procedures when the protectior device has been actuated

The protection device contains two indicators; a white LED which turns red to indicate an input/output signal and a red LED which lights to indicate the protecting-circuit operation mode.

If the protecting circuit ("overcurrent protection," "overvoltage protection" and "TG trouble protection") is actuated, a servo trouble signal is sent to Servopack, to stop the action of the motor drive circuit.

The protecting circuit continues to function unless the protection device is reset. For resetting the protecting circuit, locate the cause of trouble, and take a proper action.

For resetting, depress the 1BS pushbutton on the surface of the protection device (the alarm circuit of Servopack is reset simultaneously). While the pushbutton is kept depressed, the LEDs <u>PROTECT</u>, TG and <u>RE-GENE</u> and <u>ALARM</u> on the circuit board of Servopack light.

3.8.2 Regenerative Unit Type JUSP-RG

Regenerative unit type JUSP-RG[] for Servopack types CPCR-MR01C to -MR07C is available as an option. Servopack type CPCR-MR[]C utilizes regenerative braking system to stop the motor, so that the main circuit voltage increases by regenerative power when applying dynamic brake.

When a load with large inertia is driven or when motor is driven with minus load and regenerative energy is continuously generated, main circuit parts may be damaged due to overvoltage. Type JUSP-RG[] caps the increase of voltage at a constant value and prevents Servopack main circuit parts from damage.

Type JUSP-RG[] contains protective circuits to detect overvoltage and regenerative circuit trouble caused by defective regeneration, and outputs operation status as alarm signals (lead relay contact). Therefore if any trouble occurs, or when an increase of regenerative processing performance is required, depending on load conditions, or prompt corrective action can be taken.

(1) Specifications

Table 3.9 shows the specifications of regenerative unit type JUSP-RG.

Regenerative Unit Type JUSP-		RG 001	RG 002	RG 003		
SERVOPACK Type CPCR-		MR 05 C, MR 07 C MR 01 CJ, MR 02 CJ	MR 02 C MR 01 C			
Regenerative Voltage		170 VDC	85 VDC	65 VDC		
Regenerative Current		8 ADC	8 ADC	6 ADC		
	Overvoltage Detection*	192 V ± 5 V	96 V ± 3 V	73 V ± 2 V		
		The protective circuit operates instantaneously at the above voltage.				
Protective Functions	Regenerative Trouble Detection [†]	The protective circuit operates when regenerative circuit is in failure status for approx 0.5 s.				
	Protective Circuit Operation Output Relay (Alarm Relay) [†]	Lead relay (Type SRF-14B made by Nippon Electric); 1NO contact Contact capacity-100 V, 0.3 A max (15 VA max)				
External Additional Resistor #		20 Ω or more (100 W or more)	10 Ω or more (100 W or more)	10Ω or more (100 W or more)		

Table 3.9 Specifications of Regenerative Of	Table 3.9	Specifications	of Regenerative	Uni
---	-----------	----------------	-----------------	-----

*This works when main circuit voltage increases more than the value in the table due to regenerative circuit trouble or regenerative processing shortage.

[†] Overvoltage detection signals and regeneration trouble detection signals are output from the same relay.

Abnormal (failure) status of the regenerative circuit means; abnormal short circuit in the power transistor for regeneration; disconnection of the wire-wound resistor for regeneration. # This external resistor will be connected to terminals (R) and (R) in the unit to increase regenerative current in the case of regenerative processing shortage.

⁽b) Wiring

Fig. 3.32 Elementary Diagram of Regenerative Unit

(3) Connection

See Fig. 3.3.

(4) Precautions in Use

(a) Installation

Frequent start/stop operation of the regenerative unit results in high temperature. Components having low heat-resistance should not be installed within 150 mm of the resistor unit.

(b) Procedures when the protection device has been actuated

• When the protection device has been actuated while braking.

Cause: Regenerative processing shortage due to very large load inertia

Action: Connect an additional resistor (installed separately) between terminals (R_1) and (R_2) on the regenerative unit.

• When the protection device has been actuated approx 0.5 seconds after power is applied.

Cause: Power transistor failure for regeneration (short circuit failure) or disconnection of wirewound resistor for regeneration

• Action: Check the power transistor and the resistor. If any trouble is found, replace it.

LED (red) in the regenerative unit lights while power is applied. It does not indicate alarm status.

4. INSTALLATION AND WIRING

4.1 INSTALLATION

Servopack type CPCR-MR[]C is to be mounted on a base as standard.

4.1.1 Location

(1) When installed in A Panel:

Keep the temperature around Servopack at 60° or below. Avoid blowing cooling air directly against the transistors on the printed circuit board. (Fig. 4.1)

Fig. 4.1 Typical Layout for Panel Mounting

(2) When installed near A Heat Source:

Keep the temperature around Servopack below 60° . (Fig. 4.2)

Fig. 4.2 Protection against Heat Radiation

(3) If subjected to Vibration:

Mount the unit on shock absorbing material.

(4) If Corrosive Gases Prevailing:

Avoid the location where corrosive gases exist as it may cause extensive damage with long use, especially:

- Poor commutation of the motor commutator
- Defective switching operation of contactors and relays.

(5) Where Unfavourable Atmospheric Conditions considered:

Select a location with minimum exposure to oil, water, hot air, high humidity, excessive dust or metallic particles.

4.1.2 Mounting

(1) Direction

Mount the unit vertically on the wall using the mounting holes (4) on the base plate, with main terminals at the bottom. (Fig. 4.3)

Fig. 4.3 Mounting Direction of SERVOPACK

(2) Effect on Peripheral Equipment

Air contained in the upper side of Servopack will be heated due to the heat dissipation of the heat sink in Servopack. Other equipment and cable ducts having low heat-resistance should be located at least 150 mm from the upper part of Servopack.

4.2 WIRING

4.2.1 Selection of Cable Size

Cable size should be determined according to the rated currents of each Servopack type shown in Table 4.1. Table 4.2 shows recommended cable sizes for the use at ambient temperature of 40° C, with 3 cables harnessed in a bundle, and at the rated current of Servopack, shown in Table 4.1. Table 4.3 shows recommended cable types.

		Servopack Type		Rated C	urrent A		
	Circuit Terminals	Terminal Symbol	MR 01 C MR 01 CJ	MR 02 C MR 02 CJ	MR-05 C	MR 07 C	AC/DC
	AC Power Supply	(v) (v)	9	10.5	12	19	AC
Sircuit	Motor Main Circuit and Thermal Overload Relay	A B	6	7	8	13	DC
2	Optional	® N	6	8	8	8	
٨ai	Control Circuit Power Supply	u2 v2		0.	2	•	AC
~	Blown Fuse Detecting Circuit	C3 C4	220 VAC, 1 A*				-
	Speed Reference Input	12	0 t	7 V			
Ħ	Tachometer-generator Circuit	3 4	(±				
D.	Overtravel Circuit	567					
ē	Proportional Drive	8 (1)					
ē	Aux. Speed Reference Input	92		\pm 2 to \pm 10 V,	0 to $\pm 0.5 \mathrm{mA}$		
ont	Output of ± 12 V	0 0 0		± 12 V, 30) mA max.		1
Ō	External Current-limit Circuit	(13) (14)	0 to \pm 6 V, 2 mA				
	External Base-off	(19 (1)		+ 8 V,	3 mA		- ,
Do	war Transformar Brimary Sida	At 200 V	1.5	2.5	5	7.5	A.C.
		At 100 V	3	5	10	15	

Table 4.1 (a) Rated Current of SERVOPACK Types CPCR-MR01C to -MR07C

*Allowable operational current.

Table 4.1 (b) Rated Current of SERVOPACK Types CPCR-MR08C to -MR99C

		Ter SERVOPACK			Rated C	urrent (A)				101
	Circuit Terminals	minal Symbol	MR 08 C MR 08 CW	MR 15 C MR 15 CW	MR 22 C MR 22 CW	MR 55 C MR 55 CW	MR 75	С	MR 99 C	DC
	AC Power Supply	® S T	5	9	12	20 at 26 at 3.7kW 5.5kW	26 at 35 6 kW 9.9	5 at 9kW	50 at 9.9 kW	AC
ü	Control Circuit Power Supply	() ()			0	.3]
n Circ	DC Reactor and Thermal Overload Relay	© @*	7	13	18	30	40		50	
Aair	Motor Main Circuit	A B								
~	Regenerative Resistor [†]	Y3 Y4	6 16 32 48							
	Thermal Switch	(\mathbf{y}, \mathbf{y})	- 0.5							AC
	Speed Reference Input	12	0 to \pm 6 V, 0 to \pm 0.3 mA							
	Tachometer Generator Circuit	34	0 to \pm 7 V (\pm 21 V), 0 to \pm 1 mA (\pm 3 mA)							
	Aux. Speed Reference Input	92	0 to \pm 2 V (\pm 10 V), 0 to \pm 0.1 mA (\pm 0.5 mA)							
	Overtravel Circuit at Forward Running	56								
	Overtravel Circuit at Reverse Running	5 7			1 12 V	, 1 3 MA				
ü	Proportional Drive	8 11			+12 V,	\pm 10 mA				
5 S	Output of ± 12 V	10 11 12			12 V,	\pm 30 mA				
itrol (External Current-limit Circuit at Reverse Running	13 11			0 to $+ 6 V$,	0 to + 2 mA			-	
Gon	External Current-limit Circuit at Forward Running	14 11			0 to $-$ 6 V,	0 to — 2 mA				
	Current Monitoring Circuit	(15 (1)		0	to \pm 1.2 V,	0 to \pm 0.05 r	nA			
	Servo Trouble Detecting Circuit	16 17 18	100 VAC or 200 VAC, 1 A [†] 24 VDC, 1 A [†]						-	
	External Base-off	(19) (1)	D + 8 V, + 3 mA							
	Optional	20 2)				_				DC
	Grounding	E E				-				

*Terminals L_1 and L_2 are used for types CPCR-MR75C, -MR99C.

[†] Junction terminals in Servopock and not used for external wiring.

[†]Allowable operational current.

4.2.1 Selection of Cable Size (Cont'd)

Table 4.2 (a) Recommended Cable Size of SERVOPACK Types CPCR-MR01C to -MR07C

		\sim	SERVOPACK		Cable S	Size mm²			
	Circuit Terminal	Terminal Symbol	Туре	MR 01 C MR 01 CJ	MR 02 C MR 02 CJ	MR 05 C	MR 07 C		
	AC Power Supply	(u	\mathbb{D}						
Sircuit	Motor Main Circuit and Thermal Overload Relay	(ð B	2.0 or more* 3.5 or more					
2	Optional	(Ð N						
Чai	Control Circuit Power Supply	(ui	2 2	1.25 or more					
-	Blown Fuse Detecting Circuit	C:	3 @4						
	Speed Reference Input	(12	Two-core twisted shielded cable type RG-108A/U made by Fujik					
÷	Tachometer-generator Circuit	(3 4	Ltd., or equivale	ent.				
no.	Overtravel Circuit	5	6 7		1.05 /	or more			
ö	Proportional Drive	(8 11		1.25 (Ji more			
2	Aux. Speed Reference Input		92	Two-core twister	d shielded cable t	type RG-108A/U			
ont	Output of \pm 12 V	10	1) 12	1.25 or more					
Õ	External Current-limit Circuit	(3 1 4	Twisted Cable 0.2 or more					
	External Base-off	(9 11						
	Power Transformer Primary Side		-		2.0 or	r more*			

*Heat-resistant cable Notes:

vinyl chloride conduit or metallic conduit), determine the cable size considering the current drop rate of the cables.

1. For the main circuit, use cables of 600 V or more.

2. Where cables are bundled or put in a duct (unplasticized poly-

3. Where the ambient temperature (in the panel) is high (40 to 60°C), use heat-resistant cables.

Table 4.2 (b) Recommended Cable Size of SERVOPACK Types CPCR-MR08C to -MR99C

		SERVOPACK	OPACK Cable Size mm ²								
	Circuit Terminals	minal CPCR- Symbol	MR 08 C MR 08 CW	MR 15 C MR 15 CW	MR 22 C MR 22 CW	MR 55 C MR 55 CW	MR 75 C	MR 99 C			
	AC Power Supply	8 S T	2.0 or more*	2.0 or more*	3.5 or more*	5.5 or more*	8.0 or more*	14.0 or more*			
Ħ	Control Circuit Power Supply	() ()			1.25 c	or over					
Circu	DC Reactor and Thermal Overload Relay	© Ø	2.0 or more*	2.0 or more*	3.5 or more*	5.5 or more*	8.0 or more*	14.0 or more*			
Щ.	Motor Main Circuit	A B									
ŝ	Regenerative Resistor	(3) (4)	- 5.5*								
	Thermal Switch	(Y) (Y2			-	-					
	Speed Reference Input	12									
	Tachometer-Generator Circuit	34		т	a aava hudataal	abialded apple					
	Aux. Speed Reference Input	92	type BG-108A/LL made by Eulikura								
	Overtravel Circuit at Forward Running	56	Ltd., or equivalent.								
	Overtravel Circuit at Reverse Running	57									
Suit	Proportional Drive	8 11			1 25 0	r moro					
Oir,	Output of \pm 12 V	10 11 12			1.23 0	i more					
Itrol (External Current-limit Circuit at Reverse Running	(13) (11)									
Col	External Current-limit Circuit at Forward Running	14 11			Twisted cable	0.3 or more					
	Current Monitoring Circuit	(5 (1)									
	Servo Trouble Detecting Circuit	16 17 18			1.25 o	r more					
	External Base-off	(19) (11)			Twisted cable	e 0.3 or more					
	Optional	20 21				-					
	Grounding	E) E)			2.0 or	more					

*Heat-resistant cable

Notes:

vinyl chloride conduit or metallic conduit), determine the cable size considering the current drop rate of the cables.

1. For the main circuit, use cables of 600 V or more.

2. Where cables are bundled or put in a duct (unplasticized poly-

3. Where the ambient or panel inside temperature is high (40 to 60°C), use heat-resistant cables.

Table 4	4.3	Recommended	Cable	Туре
---------	-----	-------------	-------	------

Conductor Max Allowable Temperature °C	Cable Type				
75	Heat-resistant vinyl	HIV SHIV			
80	Ebic (made by Sumitomo Electric Industries, Ltd.)	IP LP			
90	Polyethylene heat- resistant	H- CV			

4.2.2 Precautions for Wiring

Servopack is a divice for speed control of 1000:1, and thus its wiring needs great precaution. The signal level must process 6 mV or less and therefore the following precautions are necessary:

(1) Run the power line and signal line in separate ducts; do not run them in the same duct or in a bundle.

(2) The signal line and TG feedback line must use two-core twisted shielded cable [Type RG 108A/U made by Fujikura Ltd.] or coaxial cable. Do not bundle them with the power line or contain in the same duct.

(3) When the same power as for an electric welder or electrical discharge machine is used for Servopack, or when a high-frequency noise source is present in the neighborhood, use filters in the power and input circuits.

(4) Type CPCR-MR []C uses a switching amplifier, and noise may remain in the signal line.

Ground SG 0 V (terminal 2). Ground resistance should be $100\,\Omega$ or below.

When noise cannot be avoided due to the necessity of wiring route and length, use a filter in the input circuit.

(5) Remedy for Radio Frequency Interference (R.F.I)

Servopack is not provided with a protection from radio frequency interference. If the controller is troubled by radio wave, connect a noise filter to power supply. See Par. 3.5.1.

(6) Replacing Previous Type CPCR-MR[]H with Type CPCR-MR08C to -MR75C

The resistor unit (type JUSP-R00[]) is not used because type CPCR-MR[]C incorporates the regenerative resistor, when replacing type CPCR-MR[]H with type CPCR-MR[]C.

4.3 POWER LOSS

The power loss of Servopack and peripheral devices is shown in Table 4.4.

	SERV	OPACK		Optional C	omponents	Total	
Type CPCR-	Output Current	Power Loss	Regenerative Resistor*	Power Transformer	DC Reactor	Power Loss	
	A		V	vv		vv	
MR01C	6	60		26		86	
MR02C	7	60		33		93	
MR05C	8	80		50	_	130	
MR07C	13	130		66		196	
MR08C	7	75	30		35	140	
MR15C	13	110	30		45	185	
MR22C	18	180	60		60	300	
	25	250				540	
MR55C	28	280	180		110	570	
	30	310				600	
MR75C	40	400	180	1	140	720	
MR99C	55	750	250	1	200	1200	

Table 4.4 Power Loss of SERVOPACK and Optional Components

*The loss of regenerative resistor occurs when the motor stops. The loss can be ignored when the start and stop are not frequent.

5. DIMENSIONS in mm

5.1 SERVOPACK

(1) Types CPCR-MR01C to -MR05C

APPROX WEIGHT: 6.3 kg

(2) Type CPCR-MR07C

(3) Types CPCR-MR08C, -MR15C

APPROX WEIGHT: 13kg

*Furnished for types CPCR-MR08CL and -MR15CL. Note: Parallel installation requires space more than 30 mm.

5.1 SERVOPACK (Cont'd)

(4) Types CPCR-MR22C, -MR55C

APPROX WEIGHT: 14kg

*Furnished for types CPCR-MR22CL and MR55CL. Note: Parallel installation requires space more than 30 mm.

Drilling Plan

*Furnished for types CPCR-MR08CWL and -MR15CWL. Note: Parallel installation requires space more than 30 mm.

5.1 SERVOPACK (Cont'd)

(6) Types CPCR-MR22CW, -MR55CW

*Furnished for types CPCR-MR22CWL and -MR55CWL. Note: Parallel installation requires space more than 30 mm.

(7) Type CPCR-MR75C, -MR99C

53

5.2 POWER TRANSFORMER

Туре	Ca- pacity VA	A±2	B±2	C±1	D	E_{-3}^{0}	F	G	Approx Weight kg
CPT8585	300	130	117	90	140	95	7	30 (M3)	6.2
CPT8624	500	130	117	90	165	120	7	30 (M3)	9.5
CPT8660	1k	150	160	104	170	125	7	30 (M3)	16
CPT8665	1.5 k	185	173	125	215	175	10	30 (M3)	27
CPT8589	300	130	117	90	140	95	7	30 (M3)	6.2
CPT8630	500	130	117	90	165	120	7	30 (M3)	9.5

5.4 RESISTOR UNIT TYPE JUSP-RA03

5.5 SPEED ADJUSTING POTENTIOMETER

5.3 DC REACTOR

• Types X3055 to X3058

Туре	Specification	A	в	с	D	Е	F	G	н	J	Approx Weight kg
X3055	10 mH 8A	73	_175	50	101	89	90	50	6	M 4	4
X3056	10 mH 13 A	73	180	50	111	99	90	55	6	M 4	5
X3057	10 mH 18 A	110	_185	70	141	124	130	55	6	M 4	8.5
X3058	10 mH 28 A	150	240	80	160	135	(150)	100	7	6 dia bolt	14
X3066	10 mH 40 A	240	355	190	220	170	-	-	10	M 8	37
X3067	10 mH 55 H	250	400	200	230	180		_	10	M 8	47

• Types X3066 and X3067

5.6 THERMAL OVERLOAD RELAY

(1) Type RHR-15 **Drilling Plan** 35 5.3 DIA HOLE g 25 M4 TAPPED HOLE RESET ROD 74.5 APPROX WEIGHT: 0.1 kg (2) Type RH-18[]PV $\hat{\beta}$ Drilling Plan **8** 40 RESET ROD 74.5 34.2 M4 TAPPED HOLE 62 2-4.8 DIA HOLE APPROX WEIGHT: 0.125kg (3) Type RH-35[]HV Drilling Plan ŝ 8 5.3 DIA HOLE M4 TAPPED HOLE RESET ROD 101.5 APPROX WEIGHT: 0.24 kg (4) Type RH-35/[]HVW MAIN CIRCUIT TERMINALS M8 80.1 75 7.5 4 15 8

/ 4-5.8 DIA MTG HOLES

5.7 REGENERATIVE UNIT (TYPES JUSP-RG001 TO -RG003)

Φ

RESET ROD

5.8 PROTECTION DEVICE TYPE JESP-PT

6. ORDER

Servopack types CPCR-MR[]C has a spare fuse as the standard accessary. If the fuse is blown off, it should be replaced by one of the same specification. Table 4.5 shows the types and capacities of alarm fuses used for type CPCR-MR[]C.

To order Servopack and optional components, the type must be specified. When ordering, pay attention to the following:

Table 6.1 Types and Capacities of Alarm Fuses

SERVOPACK Type CPCR-		MR01C	MR01CJ	MR02C	MR02CJ	MR05C	MR07C
	Туре	PL-475	PL-450	PL-475	PL-475	PL-4100	PL-4150
Alarm Fuse	Ca- pac- ity	7.5 A	5 A	7.5 A	7.5 A	10 A	15 A

SERVOPACK Type CPCR-		MR08C (W)	MR15C (W)	MR22C (W)	MR55C (W)	MR75C	MR99C
	Туре	C-10	C-15	C-20	C-30	C-40	C-60
Alarm Fuse	Ca- pac- ity	10 A	15 A	20 A	30 A	40 A	60 A

6. ORDER (Cont'd)

(1) Servopack

Table 6.2 shows combination of DC servomotors and Servopacks.

Table 6.2	Combination of DC Servomotors		
and SERVOPACK			

DC Servomotor	SERVOPACK Type			
Type with TG (7 V/1000 rpm)	Standard	Order I *	Order I *	
			<u> </u>	
PMES-09 (10-pole)	CPCB-MB01C		_	
			_	
		MB02C-M		
		1011020-101		
	CPCR-MR02CJ	—	_	
PMES-16 (10-pole)				
LIGPMEN-16		—		
	CPCR-MR05C	MR05C-C	-	
		MB05C-H		
LIGMMEM-13		MR05C-M		
LIGMMEM-25	CPCB-MB07C			
			MB08CW-C	
			MR08CL-	
	CPCR-MR08C	MR08C-H	MROBOWL	
		MR08C-L		
LIGCMED-154A		Will 1000-0		
LIGCMEM-15GC				
PMES-20		MB15C-P		
LIGHMED-12AA			MB15CW-[7]	
	CPCB-MB15C	MB15C-H	MR15CL-C	
UGHMED-12GG			MR15CWL-[7]	
LIG IMED-601				
LIG.IMED-80M		MR15C-J		
LIGMMEM-50AA		MB15C-M		
UGCMED-22AA				
UGCMEM-22GC			1000000	
UGHMED-20AA			MR22CW-LJ	
UGHMEM-20AA	CPCR-MR22C	MB22C-H	MR22CL-LJ	
UGHMED-20GG	· ·		MR22CWL-LJ	
UGJMED-80L		MR22C-J		
UGCMED-37AA		1		
UGCMEM-37FB	1	_		
UGCMED-55AA	1			
UGHMED-30AA	CPCR-MR55C		MR55CW-[]	
UGHMEM-30AA			MR55CL-[]	
UGHMED-30GG	1	MH55C-H	MR55CWL-[]]	
UGHMED-44AA	1			
UGJMED-80K	1	MR55C-J	1	
UGMMEM-1AA		MR55C-M	l	
UGCMFD-75AA			MR75CL [7]	
UGHMFD-60AA		MR75C-H		
GEELM-K			MRAACLETT	
UGMMKR-2AA		MR99C-M		

• Adjustment only. • Not adjustment only.

* The price and delivery time of ordered products are different from those of the standard stock products. Contact your Yaskawa representative for information when ordering.

Note: Adjusting method is described in the separate instructions (TOE-C717-12.1 and TOE-C717-12.2).

– Loop gain (MM)

Drive characteristic

— ЕМҒ (НМ, ЈМ, ММ)

- (2) Power Transformer
- Power transformer type: CPT[][][][]
- Order power transformer separately.

(3) DC Reactor

- DC reactor type: XEEEE
- Order DC reactor separately.

(4) Thermal Overload Relay

Type RHP for the Print motor standard series and types RH-18 and RH-35/[]T for Minertia motor J series does not come attached to the motor. They should be ordered separately. Other thermal overload relays come attached to the motor.

7. SELECTION GUIDE

7.1 DYNAMICS FORMULA FOR ELECTRIC FORCE

The drive system calculation is possible by knowing the efficiency of the inlet (motor), the outlet (load), and intermediate (reduction gear), etc.

	ltem		Linear Motion	Rotating Motion
Basic Dynamics Formula Optimum Reduction Ratio		Reference Figure		TE NE MOTOR NM JM
	Basic Dynamics	Load Running Power	$P_o = \frac{2 \pi \cdot N_M \cdot T_L}{60}$	$P_o = \frac{2 \pi \cdot N_M \cdot T_L}{60}$
	Formula	Load Accelerating Power	$P_a = \left[\frac{2\pi}{60} \cdot N_M\right] \times \frac{J_L}{ta}$	$P_a = \left[\frac{2 \pi}{60} \cdot N_M\right] \times \frac{J_L}{ta}$
		Load Torque	$T_{L} = \frac{9.8 \times \mu \cdot M \cdot P_{B}}{2 \pi \cdot R \cdot \eta}$	$T_L = \frac{T_t}{R \cdot \eta}$
		Load Inertia	$J_L = M \cdot \left[\frac{P_B}{2 \pi \cdot R}\right]^2$	$J_{L} = \frac{1}{R^{2}} \times J_{k}$
		Starting Time	$ta = \frac{2 \pi \times N_M (J_M + J_L)}{60 (T_P - T_L)}$	$ta = \frac{2 \pi \times N_M (J_M + J_L)}{60 (T_P - T_L)}$
		Braking Time	$td = \frac{2 \pi \times N_M \cdot (J_M + J_L)}{60 (T_P + T_L)}$	$td = \frac{2 \pi \times N_M \cdot (J_M + J_L)}{60 (T_P + T_L)}$
	Optimum Reduction Ratio Optimum Reduction Ratio		$J_{\kappa} = \frac{1}{8} \times M_{\kappa} \cdot D^{2} \text{ or } J_{\kappa} = \frac{\pi}{32} \cdot M_{\kappa} : \text{ Weight of solid cylinder (kg)}$ $P : \text{ Density (kg/m^{3})}$ $J_{\kappa} : = M \cdot D^{2}$ $R_{o} = \sqrt{\frac{J_{L} + N_{t}}{94 \cdot ta} + T_{t}}$ $\frac{J_{M} \cdot N_{t}}{M \cdot ta}$	$\rho \cdot L \cdot D^{4}$ $D (m)$ $M (kg) REDUCTION RATIO 1/Ro$ $MOTOR$ $MOTOR$ J_{L} J_{L} T_{2}
Torque RMS Torque RMS Value Value		Torque RMS Value	$Trms = \sqrt{\frac{T_{P}^{2} \cdot ta + T_{L}^{2} \cdot tc + T_{P}^{2} \cdot td}{t}}$	VØ (NM) TP TC TC TC TC TC TC TC TC TC TC
-	P_o : Running Power (W) P_a : Accel Power (W) N_t : Driven Motor Speed (r/min) N_M : Motor Speed (r/min) V_t : Load Speed (m/min=100cm/min) η : Speed Reducer Efficiency		$\begin{array}{l} \mu \ : \mbox{Friction Coefficient} \\ M \ : \mbox{Weight of Linear Motion Part (kg)} \\ J_\ell \ : \mbox{Load Inertia (kg·m2)} \\ J_L \ : \mbox{Load Inertia (kg·m2)} \\ J_M \ : \mbox{Motor Inertia (kg·m2)} \\ T_\ell \ : \mbox{Load Torque} \end{array}$	T_L : Load Torque (N·m) T_P : Average Motor Start Torque (N·m) rms: Effective Average Torque (N·m) ta: Starting Time (s) tc: Running Time (s) td: Braking Time (s) P_B : Ball Screw Lead (m)

7.2 SERVOMOTOR SELECTION GUIDE

(1) Speed Diagram

$$P_o = \frac{2\pi N_M \cdot T_L}{60} = \frac{2\pi \times 3000 \times 0.195}{60} = 61.3 \text{ (W)}$$

(6) Load Acceleration Power

$$P_{s} = \left(\frac{2\pi}{60} N_{M}\right)^{2} \times \frac{J_{L}}{t_{s}} = \left(\frac{2\pi}{60} \times 3000\right)^{2} \times \frac{1.942 \times 10^{-4}}{0.1}$$
$$= 191.7 (W)$$

(7) Temporary Servomotor Selection (Selectoin condition)

> • $T_{L} \leq$ Motor rated torque * $\cdot P_a + P_o = (1 \text{ to } 2) \times \text{Motor rated output}^*$ * Value when combining Servomotor with Servopack $\cdot N_{M} \leq$ Motor rated speed • $J_L \leq$ Allowable load inertia of Servopack

From the conditions, select temporarily Servomotor and Servopack.

 Servomotor : Minertia motor standard series, 185 W, Type UGMME - 06 AA 10 F
 Servopack : For speed control, Type CPCR - MR 02 C - M

(Combination Characteristics of Servomotor and Servopack)

Rated output :	165 (W)
Rated speed :	3000 (r∕min)
Rated torque :	0.559 (N·m)
Instantaneous max. torque :	1.96 (N·m)
Motor inertia :	$0.567 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$
Servopack allowable load inertia :	2.85×10^{-4} (kg·m ²)

(8) Check of Temporary Selected Servomotor

① Required starting torque

 $T_P = \frac{2 \pi N_M (J_M + J_L)}{60 t_a} - T_L = \frac{2 \pi \times 3000 \times (0.567 + 1.942) \times 10^{-4}}{60 \times 0.1}$

+0.195 = 0.983 (N·m) < Instantaneous max. torque ······ Usable

2 Required braking torque

 $T_{P} = \frac{2 \pi N_{M} (J_{M} + J_{L})}{60 t_{d}} - T_{L} = \frac{2 \pi \times 3000 \times (0.567 + 1.942) \times 10^{-4}}{60 \times 0.1}$

-0.195 = 0.593 (N.m) < Instantaneous max. torque Usable

③ Torque effective value

$$Trms = \sqrt{\frac{T_{t}^{2} \cdot t_{s} + T_{L}^{2} \cdot t_{c} + T_{s}^{2} \cdot t_{d}}{t}}$$
$$= \sqrt{\frac{(0.983)^{2} \times 0.1 + (0.195)^{2} \times 0.3 + (0.593)^{2} \times 0.1}{1}}$$

= 0.378 (N.m) < Rated torque \cdots Usable

(9) Selection Results

From the above conditions, temporary selected Servomotor and Servopack are usable. The torque diagram becomes as shown below.

SERVOPACK DC SERVOMTOR CONTROLLER

FOR SPEED CONTROL TYPE CPCR-MR01C TO -MR99C

TOKYO OFFICE Ohtemachi Bldg, 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo, 100 Japan Phone (03) 3284-9111, -9145 Telex YASKAWA J33530 Fax (03) 3284-9034 SEOUL OFFICE Seoul Center Bldg, 91-1, So Kong-Dong, Chung-ku, Seoul, Korea Phone (02) 776-7844 Fax (02) 753-2639 TAIPEI OFFICE Union Commercial Bldg, 14F, 137, Nanking East Road, Sec 2, Taipei, Taiwan Phone (02) 507-7065, -7732 Fax (02) 506-3837 YASKAWA ELECTRIC AMERICA, INC. : SUBSIDIARY Chicago-Corporate Headquarters 2942 MacArthur Blvd. Northbrook, Illinois 60062-2028, U.S.A. Phone (708) 291-2340 Fax (708) 498-2430 Chicago-Technical Center 3160 MacArthur Blvd. Northbrook, Illinois 60062-1917, U.S.A. Phone (708) 291-0411 Fax (708) 291-1028 Los Angeles Office 7341 Lincoln Way, Garden Grove, California 92641, U.S.A. Phone (714) 894-5911 Telex (230) 678396 YASKAWAUS TSTN Fax (714) 894-3258 New Jersey Office 30 Two Bridges Road, Fairfield, New Jersey 07006, U.S.A. Phone (201) 575-5940 Fax (201) 575-5947 YASKAWA ELECTRIC EUROPE GmbH : SUBSIDIARY Niederhöchstädter Straße 71-73, W 6242 Kronberg-Oberhöchstadt, Germany Phone (05173) 938-0 Telex 415660 YASE D Fax (06173) 68421 YASKAWA ELECTRIC DO BRASIL COMÉRCIO LTDA. : SUBSIDIARY Av. Brig. Faria Lima, 1664-ci, 721/724, Pinheiros, São Paulo-SP, Brasil CEP-01452 Phone (011) 813-3933, 813-3694 Telex (011) 82689 YSKW BR Fax (011) 815-8795 YASKAWA ELECTRIC (SINGAPORE) PTE. LTD. CPF Bldg, 79 Robinson Road No. 13-05, Singapore 0106 Phone 2217530 Telex (87) 24890 YASKAWA RS Fax (65) 224-5854

YASKAWA ELECTRIC CORPORATION

BULLETIN